set_memory_* functions have moved to set_memory.h. Switch to this
explicitly
Link: http://lkml.kernel.org/r/1488920133-27229-5-git-send-email-labbott@redhat.com
Signed-off-by: Laura Abbott <labbott@redhat.com>
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Bit 0x100 of a page table, segment table of region table entry
can be used to disallow code execution for the virtual addresses
associated with the entry.
There is one tricky bit, the system call to return from a signal
is part of the signal frame written to the user stack. With a
non-executable stack this would stop working. To avoid breaking
things the protection fault handler checks the opcode that caused
the fault for 0x0a77 (sys_sigreturn) and 0x0aad (sys_rt_sigreturn)
and injects a system call. This is preferable to the alternative
solution with a stub function in the vdso because it works for
vdso=off and statically linked binaries as well.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
These files were only including module.h for exception table
related functions. We've now separated that content out into its
own file "extable.h" so now move over to that and avoid all the
extra header content in module.h that we don't really need to compile
these files.
The additions of uaccess.h are to deal with implict includes like:
arch/s390/kernel/traps.c: In function 'do_report_trap':
arch/s390/kernel/traps.c:56:4: error: implicit declaration of function 'extable_fixup' [-Werror=implicit-function-declaration]
arch/s390/kernel/traps.c: In function 'illegal_op':
arch/s390/kernel/traps.c:173:3: error: implicit declaration of function 'get_user' [-Werror=implicit-function-declaration]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: linux-s390@vger.kernel.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This fixes the same issue Steven already fixed for x86
in following commit:
237d28db03 ftrace/jprobes/x86: Fix conflict between jprobes and function graph tracing
It fixes the crash, that happens when function graph tracing
and jprobes are used simultaneously. Please refer to above
commit for details.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Yet another leftover from the 31 bit era. The usual operation
"y = x & PSW_ADDR_INSN" with the PSW_ADDR_INSN mask is a nop for
CONFIG_64BIT.
Therefore remove all usages and hope the code is a bit less confusing.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
This is a leftover from the 31 bit area. For CONFIG_64BIT the usual
operation "y = x | PSW_ADDR_AMODE" is a nop. Therefore remove all
usages of PSW_ADDR_AMODE and make the code a bit less confusing.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reviewed-by: David Hildenbrand <dahi@linux.vnet.ibm.com>
Remove the s390 architecture implementation of probe_kernel_write() and
instead use a new function s390_kernel_write() to modify kernel text and
data everywhere.
The s390 implementation of probe_kernel_write() was potentially broken
since it modified memory in a read-modify-write fashion, which read four
bytes, modified the requested bytes within those four bytes and wrote
the result back.
If two cpus would modify the same four byte area at different locations
within that area, this could lead to corruption.
Right now the only places which called probe_kernel_write() did run within
stop_machine_run. Therefore the scenario can't happen right now, however
that might change at any time.
To fix this rename probe_kernel_write() to s390_kernel_write() which can
have special semantics, like only call it while running within stop_machine().
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Make use of gcc's hotpatch support to generate better code for ftrace
function tracing.
The generated code now contains only a six byte nop in each function
prologue instead of a 24 byte code block which will be runtime patched to
support function tracing.
With the new code generation the runtime overhead for supporting function
tracing is close to zero, while the original code did show a significant
performance impact.
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
When we generate the instruction for out of line execution the length
of the to be copied instruction was evaluated from a not initialized
memory location.
Therefore we ended up with a random (2, 4 or 6) number of bytes being
copied instead of taking the real instruction length into account.
This works surprisingly well most of the time, but still not always.
Reported-by: Ursula Braun <ursula.braun@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Use NOKPROBE_SYMBOL() instead of __kprobes annotation.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
If the function tracer is enabled, allow to set kprobes on the first
instruction of a function (which is the function trace caller):
If no kprobe is set handling of enabling and disabling function tracing
of a function simply patches the first instruction. Either it is a nop
(right now it's an unconditional branch, which skips the mcount block),
or it's a branch to the ftrace_caller() function.
If a kprobe is being placed on a function tracer calling instruction
we encode if we actually have a nop or branch in the remaining bytes
after the breakpoint instruction (illegal opcode).
This is possible, since the size of the instruction used for the nop
and branch is six bytes, while the size of the breakpoint is only
two bytes.
Therefore the first two bytes contain the illegal opcode and the last
four bytes contain either "0" for nop or "1" for branch. The kprobes
code will then execute/simulate the correct instruction.
Instruction patching for kprobes and function tracer is always done
with stop_machine(). Therefore we don't have any races where an
instruction is patched concurrently on a different cpu.
Besides that also the program check handler which executes the function
trace caller instruction won't be executed concurrently to any
stop_machine() execution.
This allows to keep full fault based kprobes handling which generates
correct pt_regs contents automatically.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Pull percpu consistent-ops changes from Tejun Heo:
"Way back, before the current percpu allocator was implemented, static
and dynamic percpu memory areas were allocated and handled separately
and had their own accessors. The distinction has been gone for many
years now; however, the now duplicate two sets of accessors remained
with the pointer based ones - this_cpu_*() - evolving various other
operations over time. During the process, we also accumulated other
inconsistent operations.
This pull request contains Christoph's patches to clean up the
duplicate accessor situation. __get_cpu_var() uses are replaced with
with this_cpu_ptr() and __this_cpu_ptr() with raw_cpu_ptr().
Unfortunately, the former sometimes is tricky thanks to C being a bit
messy with the distinction between lvalues and pointers, which led to
a rather ugly solution for cpumask_var_t involving the introduction of
this_cpu_cpumask_var_ptr().
This converts most of the uses but not all. Christoph will follow up
with the remaining conversions in this merge window and hopefully
remove the obsolete accessors"
* 'for-3.18-consistent-ops' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (38 commits)
irqchip: Properly fetch the per cpu offset
percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t -fix
ia64: sn_nodepda cannot be assigned to after this_cpu conversion. Use __this_cpu_write.
percpu: Resolve ambiguities in __get_cpu_var/cpumask_var_t
Revert "powerpc: Replace __get_cpu_var uses"
percpu: Remove __this_cpu_ptr
clocksource: Replace __this_cpu_ptr with raw_cpu_ptr
sparc: Replace __get_cpu_var uses
avr32: Replace __get_cpu_var with __this_cpu_write
blackfin: Replace __get_cpu_var uses
tile: Use this_cpu_ptr() for hardware counters
tile: Replace __get_cpu_var uses
powerpc: Replace __get_cpu_var uses
alpha: Replace __get_cpu_var
ia64: Replace __get_cpu_var uses
s390: cio driver &__get_cpu_var replacements
s390: Replace __get_cpu_var uses
mips: Replace __get_cpu_var uses
MIPS: Replace __get_cpu_var uses in FPU emulator.
arm: Replace __this_cpu_ptr with raw_cpu_ptr
...
This patch moves common functions from kprobes.c to probes.c.
Thus its possible for uprobes to use them without enabling kprobes.
Signed-off-by: Jan Willeke <willeke@de.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Even if it has a __used annotation it is actually unused.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
At the end of the patch set all uses of __get_cpu_var have been removed so
the macro is removed too.
The patch set includes passes over all arches as well. Once these operations
are used throughout then specialized macros can be defined in non -x86
arches as well in order to optimize per cpu access by f.e. using a global
register that may be set to the per cpu base.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
this_cpu_inc(y)
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
CC: linux390@de.ibm.com
Acked-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Pull trivial tree updates from Jiri Kosina:
"Usual earth-shaking, news-breaking, rocket science pile from
trivial.git"
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (23 commits)
doc: usb: Fix typo in Documentation/usb/gadget_configs.txt
doc: add missing files to timers/00-INDEX
timekeeping: Fix some trivial typos in comments
mm: Fix some trivial typos in comments
irq: Fix some trivial typos in comments
NUMA: fix typos in Kconfig help text
mm: update 00-INDEX
doc: Documentation/DMA-attributes.txt fix typo
DRM: comment: `halve' -> `half'
Docs: Kconfig: `devlopers' -> `developers'
doc: typo on word accounting in kprobes.c in mutliple architectures
treewide: fix "usefull" typo
treewide: fix "distingush" typo
mm/Kconfig: Grammar s/an/a/
kexec: Typo s/the/then/
Documentation/kvm: Update cpuid documentation for steal time and pv eoi
treewide: Fix common typo in "identify"
__page_to_pfn: Fix typo in comment
Correct some typos for word frequency
clk: fixed-factor: Fix a trivial typo
...
Since we have an in-kernel disassembler we can make sure that
there won't be any kprobes set on random data.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
When checking the insn address wether it is a kernel image or module
address it should be an if-else-if statement not two independent if
statements.
This doesn't really fix a bug, but matches s390_free_insn_slot().
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
"execute relative long" may have all sorts of side effects dependend on
the instructions it executes.
Therefore prohibit setting a kprobe on exrl just like we do for the
regular execute instruction.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
With the general-instruction extension facility (z10) a couple of
instructions with a pc-relative long displacement were introduced. The
kprobes support for these instructions however was never implemented.
In result, if anybody ever put a probe on any of these instructions the
result would have been random behaviour after the instruction got executed
within the insn slot.
So lets add the missing handling for these instructions. Since all of the
new instructions have 32 bit signed displacement the easiest solution is
to allocate an insn slot that is within the same 2GB area like the
original instruction and patch the displacement field.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reviewed-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The compare and branch instructions (not relative) all need special
handling when kprobed:
- if a branch was taken, the instruction pointer should be left alone
- if a branch was not taken, the instruction pointer must be adjusted
The compare and branch instructions family was introduced with the general
instruction extension facility (z10).
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
I'm not sure why, but the hlist for each entry iterators were conceived
list_for_each_entry(pos, head, member)
The hlist ones were greedy and wanted an extra parameter:
hlist_for_each_entry(tpos, pos, head, member)
Why did they need an extra pos parameter? I'm not quite sure. Not only
they don't really need it, it also prevents the iterator from looking
exactly like the list iterator, which is unfortunate.
Besides the semantic patch, there was some manual work required:
- Fix up the actual hlist iterators in linux/list.h
- Fix up the declaration of other iterators based on the hlist ones.
- A very small amount of places were using the 'node' parameter, this
was modified to use 'obj->member' instead.
- Coccinelle didn't handle the hlist_for_each_entry_safe iterator
properly, so those had to be fixed up manually.
The semantic patch which is mostly the work of Peter Senna Tschudin is here:
@@
iterator name hlist_for_each_entry, hlist_for_each_entry_continue, hlist_for_each_entry_from, hlist_for_each_entry_rcu, hlist_for_each_entry_rcu_bh, hlist_for_each_entry_continue_rcu_bh, for_each_busy_worker, ax25_uid_for_each, ax25_for_each, inet_bind_bucket_for_each, sctp_for_each_hentry, sk_for_each, sk_for_each_rcu, sk_for_each_from, sk_for_each_safe, sk_for_each_bound, hlist_for_each_entry_safe, hlist_for_each_entry_continue_rcu, nr_neigh_for_each, nr_neigh_for_each_safe, nr_node_for_each, nr_node_for_each_safe, for_each_gfn_indirect_valid_sp, for_each_gfn_sp, for_each_host;
type T;
expression a,c,d,e;
identifier b;
statement S;
@@
-T b;
<+... when != b
(
hlist_for_each_entry(a,
- b,
c, d) S
|
hlist_for_each_entry_continue(a,
- b,
c) S
|
hlist_for_each_entry_from(a,
- b,
c) S
|
hlist_for_each_entry_rcu(a,
- b,
c, d) S
|
hlist_for_each_entry_rcu_bh(a,
- b,
c, d) S
|
hlist_for_each_entry_continue_rcu_bh(a,
- b,
c) S
|
for_each_busy_worker(a, c,
- b,
d) S
|
ax25_uid_for_each(a,
- b,
c) S
|
ax25_for_each(a,
- b,
c) S
|
inet_bind_bucket_for_each(a,
- b,
c) S
|
sctp_for_each_hentry(a,
- b,
c) S
|
sk_for_each(a,
- b,
c) S
|
sk_for_each_rcu(a,
- b,
c) S
|
sk_for_each_from
-(a, b)
+(a)
S
+ sk_for_each_from(a) S
|
sk_for_each_safe(a,
- b,
c, d) S
|
sk_for_each_bound(a,
- b,
c) S
|
hlist_for_each_entry_safe(a,
- b,
c, d, e) S
|
hlist_for_each_entry_continue_rcu(a,
- b,
c) S
|
nr_neigh_for_each(a,
- b,
c) S
|
nr_neigh_for_each_safe(a,
- b,
c, d) S
|
nr_node_for_each(a,
- b,
c) S
|
nr_node_for_each_safe(a,
- b,
c, d) S
|
- for_each_gfn_sp(a, c, d, b) S
+ for_each_gfn_sp(a, c, d) S
|
- for_each_gfn_indirect_valid_sp(a, c, d, b) S
+ for_each_gfn_indirect_valid_sp(a, c, d) S
|
for_each_host(a,
- b,
c) S
|
for_each_host_safe(a,
- b,
c, d) S
|
for_each_mesh_entry(a,
- b,
c, d) S
)
...+>
[akpm@linux-foundation.org: drop bogus change from net/ipv4/raw.c]
[akpm@linux-foundation.org: drop bogus hunk from net/ipv6/raw.c]
[akpm@linux-foundation.org: checkpatch fixes]
[akpm@linux-foundation.org: fix warnings]
[akpm@linux-foudnation.org: redo intrusive kvm changes]
Tested-by: Peter Senna Tschudin <peter.senna@gmail.com>
Acked-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Gleb Natapov <gleb@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This is the s390 port of 70627654 "x86, extable: Switch to relative
exception table entries".
Reduces the size of our exception tables by 50% on 64 bit builds.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Remove the file name from the comment at top of many files. In most
cases the file name was wrong anyway, so it's rather pointless.
Also unify the IBM copyright statement. We did have a lot of sightly
different statements and wanted to change them one after another
whenever a file gets touched. However that never happened. Instead
people start to take the old/"wrong" statements to use as a template
for new files.
So unify all of them in one go.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Restructure the kprobe breakpoint handler function. Add comments to
make it more comprehensible and add a sanity check for re-entering
kprobes.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Register %r14 and %r15 are already stored in jprobe_saved_regs, no need
to store them a second time in jprobe_saved_r14 / jprobe_saved_r15.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The s390 architecture can execute code on kmalloc/vmalloc memory.
No need for the __ARCH_WANT_KPROBES_INSN_SLOT detour.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Replace set_current_kprobe/reset_current_kprobe/save_previous_kprobe/
restore_previous_kprobe with a simpler scheme push_kprobe/pop_kprobe.
The mini kprobes stack can store up to two active kprobes.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Determine instruction fixup details in resume_execution, no need to do
it beforehand. Remove fixup, ilen and reg from arch_specific_insn.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Move the definition of the helper structure ins_replace_args to the
only place where it is used and drop the old member as it is not needed.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The saved interrupt mask and the saved control registers are only
relevant while single stepping is set up. A secondary kprobe while
kprobe single stepping is active may not occur. That makes is safe
to remove the save and restore of kprobe_saved_imask / kprobe_save_ctl
from save_previous_kprobe and restore_previous_kprobe.
Move all single step related code to two functions, enable_singlestep
and disable_singlestep.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Remove special case of a kprobe on a breakpoint while a relocated
instruction is single stepped. The only instruction that may cause
a fault while kprobe single stepping is active is the relocated
instruction. There is no kprobe on the instruction slot retrieved
with get_insn_slot().
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Analog to git commit 737480a0d5
fix the return address of subsequent kretprobes when multiple
kretprobes are set on the same function.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Execute the kprobe exception and fault handler with interrupts disabled.
To disable the interrupts only while a single step is in progress is not
good enough, a kprobe from interrupt context while another kprobe is
handled can confuse the internal house keeping.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Fix kprobes after git commit 1e54622e04
broke it. The kprobe_handler is now called with interrupts in the state
at the time of the breakpoint. The single step of the replaced instruction
is done with interrupts off which makes it necessary to enable and disable
the interupts in the kprobes code.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
The probed instructions will be executed in a single stepped and irq
disabled context. Therefore the results of stnsm, stosm and epsw would
be wrong if probed.
So let's just disallow probing of these functions. If really needed a
fixup could be written for each of them, but I doubt it's worth it.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
get_krobe_ctlblk returns a per cpu kprobe control block which holds
the state of the current cpu wrt to kprobe.
When inserting/removing a kprobe the state of the cpu which replaces
the code is changed to KPROBE_SWAP_INST. This however is done when
preemption is still enabled. So the state of the current cpu doesn't
necessarily reflect the real state.
To fix this move the code that changes the state to non-preemptible
context.
Reported-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Use proble_kernel_write() to patch the kernel.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial: (24 commits)
trivial: chack -> check typo fix in main Makefile
trivial: Add a space (and a comma) to a printk in 8250 driver
trivial: Fix misspelling of "firmware" in docs for ncr53c8xx/sym53c8xx
trivial: Fix misspelling of "firmware" in powerpc Makefile
trivial: Fix misspelling of "firmware" in usb.c
trivial: Fix misspelling of "firmware" in qla1280.c
trivial: Fix misspelling of "firmware" in a100u2w.c
trivial: Fix misspelling of "firmware" in megaraid.c
trivial: Fix misspelling of "firmware" in ql4_mbx.c
trivial: Fix misspelling of "firmware" in acpi_memhotplug.c
trivial: Fix misspelling of "firmware" in ipw2100.c
trivial: Fix misspelling of "firmware" in atmel.c
trivial: Fix misspelled firmware in Kconfig
trivial: fix an -> a typos in documentation and comments
trivial: fix then -> than typos in comments and documentation
trivial: update Jesper Juhl CREDITS entry with new email
trivial: fix singal -> signal typo
trivial: Fix incorrect use of "loose" in event.c
trivial: printk: fix indentation of new_text_line declaration
trivial: rtc-stk17ta8: fix sparse warning
...
Add kprobe_insn_mutex for protecting kprobe_insn_pages hlist, and remove
kprobe_mutex from architecture dependent code.
This allows us to call arch_remove_kprobe() (and free_insn_slot) while
holding kprobe_mutex.
Signed-off-by: Masami Hiramatsu <mhiramat@redhat.com>
Acked-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: "Luck, Tony" <tony.luck@intel.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently list of kretprobe instances are stored in kretprobe object (as
used_instances,free_instances) and in kretprobe hash table. We have one
global kretprobe lock to serialise the access to these lists. This causes
only one kretprobe handler to execute at a time. Hence affects system
performance, particularly on SMP systems and when return probe is set on
lot of functions (like on all systemcalls).
Solution proposed here gives fine-grain locks that performs better on SMP
system compared to present kretprobe implementation.
Solution:
1) Instead of having one global lock to protect kretprobe instances
present in kretprobe object and kretprobe hash table. We will have
two locks, one lock for protecting kretprobe hash table and another
lock for kretporbe object.
2) We hold lock present in kretprobe object while we modify kretprobe
instance in kretprobe object and we hold per-hash-list lock while
modifying kretprobe instances present in that hash list. To prevent
deadlock, we never grab a per-hash-list lock while holding a kretprobe
lock.
3) We can remove used_instances from struct kretprobe, as we can
track used instances of kretprobe instances using kretprobe hash
table.
Time duration for kernel compilation ("make -j 8") on a 8-way ppc64 system
with return probes set on all systemcalls looks like this.
cacheline non-cacheline Un-patched kernel
aligned patch aligned patch
===============================================================================
real 9m46.784s 9m54.412s 10m2.450s
user 40m5.715s 40m7.142s 40m4.273s
sys 2m57.754s 2m58.583s 3m17.430s
===========================================================
Time duration for kernel compilation ("make -j 8) on the same system, when
kernel is not probed.
=========================
real 9m26.389s
user 40m8.775s
sys 2m7.283s
=========================
Signed-off-by: Srinivasa DS <srinivasa@in.ibm.com>
Signed-off-by: Jim Keniston <jkenisto@us.ibm.com>
Acked-by: Ananth N Mavinakayanahalli <ananth@in.ibm.com>
Cc: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Masami Hiramatsu <mhiramat@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>