Commit Graph

704 Commits

Author SHA1 Message Date
Joonsoo Kim
0139aa7b7f mm: rename _count, field of the struct page, to _refcount
Many developers already know that field for reference count of the
struct page is _count and atomic type.  They would try to handle it
directly and this could break the purpose of page reference count
tracepoint.  To prevent direct _count modification, this patch rename it
to _refcount and add warning message on the code.  After that, developer
who need to handle reference count will find that field should not be
accessed directly.

[akpm@linux-foundation.org: fix comments, per Vlastimil]
[akpm@linux-foundation.org: Documentation/vm/transhuge.txt too]
[sfr@canb.auug.org.au: sync ethernet driver changes]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Berg <johannes@sipsolutions.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Sunil Goutham <sgoutham@cavium.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Manish Chopra <manish.chopra@qlogic.com>
Cc: Yuval Mintz <yuval.mintz@qlogic.com>
Cc: Tariq Toukan <tariqt@mellanox.com>
Cc: Saeed Mahameed <saeedm@mellanox.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Vlastimil Babka
fd901c9538 mm: wake kcompactd before kswapd's short sleep
When kswapd goes to sleep it checks if the node is balanced and at first
it sleeps only for HZ/10 time, then rechecks if the node is still
balanced and nobody has woken it during the initial sleep.  Only then it
goes fully sleep until an allocation slowpath wakes it up again.

For higher-order allocations, waking up kcompactd is done only before
the full sleep.  This turns out to be an issue in case another
high-order allocation fails during the initial sleep.  It will wake
kswapd up, however kswapd considers the zone balanced from the order-0
perspective, and will just quickly try to sleep again.  So if there's a
longer stream of high-order allocations hitting the slowpath and waking
up kswapd, it might never actually wake up kcompactd, which may be
considered a regression from kswapd-based compaction.  In the worst
case, it might be that a single allocation that cannot direct
reclaim/compact itself is waking kswapd in the retry loop and preventing
kcompactd from being woken up and unblocking it.

This patch makes sure kcompactd is woken up in such situations by simply
moving the wakeup before the short initial sleep.  More efficient
solution would be to wake kcompactd immediately instead of kswapd if the
node is already order-0 balanced, but in that case we should also move
reset_isolation_suitable() call to kcompactd so it's not adding to the
allocator's latency.  Since it's late in the 4.6 cycle, let's go with
the simpler change for now.

Fixes: accf62422b ("mm, kswapd: replace kswapd compaction with waking up kcompactd")
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-28 19:34:04 -07:00
Minchan Kim
7bf52fb891 mm: vmscan: reclaim highmem zone if buffer_heads is over limit
We have been reclaimed highmem zone if buffer_heads is over limit but
commit 6b4f7799c6 ("mm: vmscan: invoke slab shrinkers from
shrink_zone()") changed the behavior so it doesn't reclaim highmem zone
although buffer_heads is over the limit.  This patch restores the logic.

Fixes: 6b4f7799c6 ("mm: vmscan: invoke slab shrinkers from shrink_zone()")
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-04-28 19:34:04 -07:00
Joonsoo Kim
fe896d1878 mm: introduce page reference manipulation functions
The success of CMA allocation largely depends on the success of
migration and key factor of it is page reference count.  Until now, page
reference is manipulated by direct calling atomic functions so we cannot
follow up who and where manipulate it.  Then, it is hard to find actual
reason of CMA allocation failure.  CMA allocation should be guaranteed
to succeed so finding offending place is really important.

In this patch, call sites where page reference is manipulated are
converted to introduced wrapper function.  This is preparation step to
add tracepoint to each page reference manipulation function.  With this
facility, we can easily find reason of CMA allocation failure.  There is
no functional change in this patch.

In addition, this patch also converts reference read sites.  It will
help a second step that renames page._count to something else and
prevents later attempt to direct access to it (Suggested by Andrew).

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vladimir Davydov
0fc9f58a90 mm: vmscan: pass root_mem_cgroup instead of NULL to memcg aware shrinker
It's just convenient to implement a memcg aware shrinker when you know
that shrink_control->memcg != NULL unless memcg_kmem_enabled() returns
false.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vlastimil Babka
accf62422b mm, kswapd: replace kswapd compaction with waking up kcompactd
Similarly to direct reclaim/compaction, kswapd attempts to combine
reclaim and compaction to attempt making memory allocation of given
order available.

The details differ from direct reclaim e.g. in having high watermark as
a goal.  The code involved in kswapd's reclaim/compaction decisions has
evolved to be quite complex.

Testing reveals that it doesn't actually work in at least one scenario,
and closer inspection suggests that it could be greatly simplified
without compromising on the goal (make high-order page available) or
efficiency (don't reclaim too much).  The simplification relieas of
doing all compaction in kcompactd, which is simply woken up when high
watermarks are reached by kswapd's reclaim.

The scenario where kswapd compaction doesn't work was found with mmtests
test stress-highalloc configured to attempt order-9 allocations without
direct reclaim, just waking up kswapd.  There was no compaction attempt
from kswapd during the whole test.  Some added instrumentation shows
what happens:

 - balance_pgdat() sets end_zone to Normal, as it's not balanced
 - reclaim is attempted on DMA zone, which sets nr_attempted to 99, but
   it cannot reclaim anything, so sc.nr_reclaimed is 0
 - for zones DMA32 and Normal, kswapd_shrink_zone uses testorder=0, so
   it merely checks if high watermarks were reached for base pages.
   This is true, so no reclaim is attempted.  For DMA, testorder=0
   wasn't used, as compaction_suitable() returned COMPACT_SKIPPED
 - even though the pgdat_needs_compaction flag wasn't set to false, no
   compaction happens due to the condition sc.nr_reclaimed >
   nr_attempted being false (as 0 < 99)
 - priority-- due to nr_reclaimed being 0, repeat until priority reaches
   0 pgdat_balanced() is false as only the small zone DMA appears
   balanced (curiously in that check, watermark appears OK and
   compaction_suitable() returns COMPACT_PARTIAL, because a lower
   classzone_idx is used there)

Now, even if it was decided that reclaim shouldn't be attempted on the
DMA zone, the scenario would be the same, as (sc.nr_reclaimed=0 >
nr_attempted=0) is also false.  The condition really should use >= as
the comment suggests.  Then there is a mismatch in the check for setting
pgdat_needs_compaction to false using low watermark, while the rest uses
high watermark, and who knows what other subtlety.  Hopefully this
demonstrates that this is unsustainable.

Luckily we can simplify this a lot.  The reclaim/compaction decisions
make sense for direct reclaim scenario, but in kswapd, our primary goal
is to reach high watermark in order-0 pages.  Afterwards we can attempt
compaction just once.  Unlike direct reclaim, we don't reclaim extra
pages (over the high watermark), the current code already disallows it
for good reasons.

After this patch, we simply wake up kcompactd to process the pgdat,
after we have either succeeded or failed to reach the high watermarks in
kswapd, which goes to sleep.  We pass kswapd's order and classzone_idx,
so kcompactd can apply the same criteria to determine which zones are
worth compacting.  Note that we use the classzone_idx from
wakeup_kswapd(), not balanced_classzone_idx which can include higher
zones that kswapd tried to balance too, but didn't consider them in
pgdat_balanced().

Since kswapd now cannot create high-order pages itself, we need to
adjust how it determines the zones to be balanced.  The key element here
is adding a "highorder" parameter to zone_balanced, which, when set to
false, makes it consider only order-0 watermark instead of the desired
higher order (this was done previously by kswapd_shrink_zone(), but not
elsewhere).  This false is passed for example in pgdat_balanced().
Importantly, wakeup_kswapd() uses true to make sure kswapd and thus
kcompactd are woken up for a high-order allocation failure.

The last thing is to decide what to do with pageblock_skip bitmap
handling.  Compaction maintains a pageblock_skip bitmap to record
pageblocks where isolation recently failed.  This bitmap can be reset by
three ways:

1) direct compaction is restarting after going through the full deferred cycle

2) kswapd goes to sleep, and some other direct compaction has previously
   finished scanning the whole zone and set zone->compact_blockskip_flush.
   Note that a successful direct compaction clears this flag.

3) compaction was invoked manually via trigger in /proc

The case 2) is somewhat fuzzy to begin with, but after introducing
kcompactd we should update it.  The check for direct compaction in 1),
and to set the flush flag in 2) use current_is_kswapd(), which doesn't
work for kcompactd.  Thus, this patch adds bool direct_compaction to
compact_control to use in 2).  For the case 1) we remove the check
completely - unlike the former kswapd compaction, kcompactd does use the
deferred compaction functionality, so flushing tied to restarting from
deferred compaction makes sense here.

Note that when kswapd goes to sleep, kcompactd is woken up, so it will
see the flushed pageblock_skip bits.  This is different from when the
former kswapd compaction observed the bits and I believe it makes more
sense.  Kcompactd can afford to be more thorough than a direct
compaction trying to limit allocation latency, or kswapd whose primary
goal is to reclaim.

For testing, I used stress-highalloc configured to do order-9
allocations with GFP_NOWAIT|__GFP_HIGH|__GFP_COMP, so they relied just
on kswapd/kcompactd reclaim/compaction (the interfering kernel builds in
phases 1 and 2 work as usual):

stress-highalloc
                        4.5-rc1+before          4.5-rc1+after
                             -nodirect              -nodirect
Success 1 Min          1.00 (  0.00%)         5.00 (-66.67%)
Success 1 Mean         1.40 (  0.00%)         6.20 (-55.00%)
Success 1 Max          2.00 (  0.00%)         7.00 (-16.67%)
Success 2 Min          1.00 (  0.00%)         5.00 (-66.67%)
Success 2 Mean         1.80 (  0.00%)         6.40 (-52.38%)
Success 2 Max          3.00 (  0.00%)         7.00 (-16.67%)
Success 3 Min         34.00 (  0.00%)        62.00 (  1.59%)
Success 3 Mean        41.80 (  0.00%)        63.80 (  1.24%)
Success 3 Max         53.00 (  0.00%)        65.00 (  2.99%)

User                          3166.67        3181.09
System                        1153.37        1158.25
Elapsed                       1768.53        1799.37

                            4.5-rc1+before   4.5-rc1+after
                                 -nodirect    -nodirect
Direct pages scanned                32938        32797
Kswapd pages scanned              2183166      2202613
Kswapd pages reclaimed            2152359      2143524
Direct pages reclaimed              32735        32545
Percentage direct scans                1%           1%
THP fault alloc                       579          612
THP collapse alloc                    304          316
THP splits                              0            0
THP fault fallback                    793          778
THP collapse fail                      11           16
Compaction stalls                    1013         1007
Compaction success                     92           67
Compaction failures                   920          939
Page migrate success               238457       721374
Page migrate failure                23021        23469
Compaction pages isolated          504695      1479924
Compaction migrate scanned         661390      8812554
Compaction free scanned          13476658     84327916
Compaction cost                       262          838

After this patch we see improvements in allocation success rate
(especially for phase 3) along with increased compaction activity.  The
compaction stalls (direct compaction) in the interfering kernel builds
(probably THP's) also decreased somewhat thanks to kcompactd activity,
yet THP alloc successes improved a bit.

Note that elapsed and user time isn't so useful for this benchmark,
because of the background interference being unpredictable.  It's just
to quickly spot some major unexpected differences.  System time is
somewhat more useful and that didn't increase.

Also (after adjusting mmtests' ftrace monitor):

Time kswapd awake               2547781     2269241
Time kcompactd awake                  0      119253
Time direct compacting           939937      557649
Time kswapd compacting                0           0
Time kcompactd compacting             0      119099

The decrease of overal time spent compacting appears to not match the
increased compaction stats.  I suspect the tasks get rescheduled and
since the ftrace monitor doesn't see that, the reported time is wall
time, not CPU time.  But arguably direct compactors care about overall
latency anyway, whether busy compacting or waiting for CPU doesn't
matter.  And that latency seems to almost halved.

It's also interesting how much time kswapd spent awake just going
through all the priorities and failing to even try compacting, over and
over.

We can also configure stress-highalloc to perform both direct
reclaim/compaction and wakeup kswapd/kcompactd, by using
GFP_KERNEL|__GFP_HIGH|__GFP_COMP:

stress-highalloc
                        4.5-rc1+before         4.5-rc1+after
                               -direct               -direct
Success 1 Min          4.00 (  0.00%)        9.00 (-50.00%)
Success 1 Mean         8.00 (  0.00%)       10.00 (-19.05%)
Success 1 Max         12.00 (  0.00%)       11.00 ( 15.38%)
Success 2 Min          4.00 (  0.00%)        9.00 (-50.00%)
Success 2 Mean         8.20 (  0.00%)       10.00 (-16.28%)
Success 2 Max         13.00 (  0.00%)       11.00 (  8.33%)
Success 3 Min         75.00 (  0.00%)       74.00 (  1.33%)
Success 3 Mean        75.60 (  0.00%)       75.20 (  0.53%)
Success 3 Max         77.00 (  0.00%)       76.00 (  0.00%)

User                          3344.73       3246.04
System                        1194.24       1172.29
Elapsed                       1838.04       1836.76

                            4.5-rc1+before  4.5-rc1+after
                                   -direct     -direct
Direct pages scanned               125146      120966
Kswapd pages scanned              2119757     2135012
Kswapd pages reclaimed            2073183     2108388
Direct pages reclaimed             124909      120577
Percentage direct scans                5%          5%
THP fault alloc                       599         652
THP collapse alloc                    323         354
THP splits                              0           0
THP fault fallback                    806         793
THP collapse fail                      17          16
Compaction stalls                    2457        2025
Compaction success                    906         518
Compaction failures                  1551        1507
Page migrate success              2031423     2360608
Page migrate failure                32845       40852
Compaction pages isolated         4129761     4802025
Compaction migrate scanned       11996712    21750613
Compaction free scanned         214970969   344372001
Compaction cost                      2271        2694

In this scenario, this patch doesn't change the overall success rate as
direct compaction already tries all it can.  There's however significant
reduction in direct compaction stalls (that is, the number of
allocations that went into direct compaction).  The number of successes
(i.e.  direct compaction stalls that ended up with successful
allocation) is reduced by the same number.  This means the offload to
kcompactd is working as expected, and direct compaction is reduced
either due to detecting contention, or compaction deferred by kcompactd.
In the previous version of this patchset there was some apparent
reduction of success rate, but the changes in this version (such as
using sync compaction only), new baseline kernel, and/or averaging
results from 5 executions (my bet), made this go away.

Ftrace-based stats seem to roughly agree:

Time kswapd awake               2532984     2326824
Time kcompactd awake                  0      257916
Time direct compacting           864839      735130
Time kswapd compacting                0           0
Time kcompactd compacting             0      257585

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vlastimil Babka
81c5857b27 mm, kswapd: remove bogus check of balance_classzone_idx
During work on kcompactd integration I have spotted a confusing check of
balance_classzone_idx, which I believe is bogus.

The balanced_classzone_idx is filled by balance_pgdat() as the highest
zone it attempted to balance.  This was introduced by commit dc83edd941
("mm: kswapd: use the classzone idx that kswapd was using for
sleeping_prematurely()").

The intention is that (as expressed in today's function names), the
value used for kswapd_shrink_zone() calls in balance_pgdat() is the same
as for the decisions in kswapd_try_to_sleep().

An unwanted side-effect of that commit was breaking the checks in
kswapd() whether there was another kswapd_wakeup with a tighter (=lower)
classzone_idx.  Commits 215ddd6664 ("mm: vmscan: only read
new_classzone_idx from pgdat when reclaiming successfully") and
d2ebd0f6b8 ("kswapd: avoid unnecessary rebalance after an unsuccessful
balancing") tried to fixed, but apparently introduced a bogus check that
this patch removes.

Consider zone indexes X < Y < Z, where:
- Z is the value used for the first kswapd wakeup.
- Y is returned as balanced_classzone_idx, which means zones with index higher
  than Y (including Z) were found to be unreclaimable.
- X is the value used for the second kswapd wakeup

The new wakeup with value X means that kswapd is now supposed to balance
harder all zones with index <= X.  But instead, due to Y < Z, it will go
sleep and won't read the new value X.  This is subtly wrong.

The effect of this patch is that kswapd will react better in some
situations, where e.g.  the first wakeup is for ZONE_DMA32, the second is
for ZONE_DMA, and due to unreclaimable ZONE_NORMAL.  Before this patch,
kswapd would go sleep instead of reclaiming ZONE_DMA harder.  I expect
these situations are very rare, and more value is in better
maintainability due to the removal of confusing and bogus check.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Johannes Weiner
fdf1cdb91b mm: remove unnecessary uses of lock_page_memcg()
There are several users that nest lock_page_memcg() inside lock_page()
to prevent page->mem_cgroup from changing.  But the page lock prevents
pages from moving between cgroups, so that is unnecessary overhead.

Remove lock_page_memcg() in contexts with locked contexts and fix the
debug code in the page stat functions to be okay with the page lock.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Johannes Weiner
62cccb8c8e mm: simplify lock_page_memcg()
Now that migration doesn't clear page->mem_cgroup of live pages anymore,
it's safe to make lock_page_memcg() and the memcg stat functions take
pages, and spare the callers from memcg objects.

[akpm@linux-foundation.org: fix warnings]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Johannes Weiner
23047a96d7 mm: workingset: per-cgroup cache thrash detection
Cache thrash detection (see a528910e12 "mm: thrash detection-based
file cache sizing" for details) currently only works on the system
level, not inside cgroups.  Worse, as the refaults are compared to the
global number of active cache, cgroups might wrongfully get all their
refaults activated when their pages are hotter than those of others.

Move the refault machinery from the zone to the lruvec, and then tag
eviction entries with the memcg ID.  This makes the thrash detection
work correctly inside cgroups.

[sergey.senozhatsky@gmail.com: do not return from workingset_activation() with locked rcu and page]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Johannes Weiner
81f8c3a461 mm: memcontrol: generalize locking for the page->mem_cgroup binding
These patches tag the page cache radix tree eviction entries with the
memcg an evicted page belonged to, thus making per-cgroup LRU reclaim
work properly and be as adaptive to new cache workingsets as global
reclaim already is.

This should have been part of the original thrash detection patch
series, but was deferred due to the complexity of those patches.

This patch (of 5):

So far the only sites that needed to exclude charge migration to
stabilize page->mem_cgroup have been per-cgroup page statistics, hence
the name mem_cgroup_begin_page_stat().  But per-cgroup thrash detection
will add another site that needs to ensure page->mem_cgroup lifetime.

Rename these locking functions to the more generic lock_page_memcg() and
unlock_page_memcg().  Since charge migration is a cgroup1 feature only,
we might be able to delete it at some point, and these now easy to
identify locking sites along with it.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Michal Hocko
0db2cb8da8 mm, vmscan: make zone_reclaimable_pages more precise
zone_reclaimable_pages() is used in should_reclaim_retry() which uses it
to calculate the target for the watermark check.  This means that
precise numbers are important for the correct decision.
zone_reclaimable_pages uses zone_page_state which can contain stale data
with per-cpu diffs not synced yet (the last vmstat_update might have run
1s in the past).

Use zone_page_state_snapshot() in zone_reclaimable_pages() instead.
None of the current callers is in a hot path where getting the precise
value (which involves per-cpu iteration) would cause an unreasonable
overhead.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Suggested-by: David Rientjes <rientjes@google.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Vladimir Davydov
cecf257b62 mm: vmscan: do not clear SHRINKER_NUMA_AWARE if nr_node_ids == 1
Currently, on shrinker registration we clear SHRINKER_NUMA_AWARE if
there's the only NUMA node present.  The comment states that this will
allow us to save some small loop time later.  It used to be true when
this code was added (see commit 1d3d4437ea ("vmscan: per-node
deferred work")), but since commit 6b4f7799c6 ("mm: vmscan: invoke
slab shrinkers from shrink_zone()") it doesn't make any difference.
Anyway, running on non-NUMA machine shouldn't make a shrinker NUMA
unaware, so zap this hunk.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Kirill A. Shutemov
cf2a82ee43 mm: downgrade VM_BUG in isolate_lru_page() to warning
Calling isolate_lru_page() is wrong and shouldn't happen, but it not
nessesary fatal: the page just will not be isolated if it's not on LRU.

Let's downgrade the VM_BUG_ON_PAGE() to WARN_RATELIMIT().

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-05 18:10:40 -08:00
Ross Zwisler
f9fe48bece dax: support dirty DAX entries in radix tree
Add support for tracking dirty DAX entries in the struct address_space
radix tree.  This tree is already used for dirty page writeback, and it
already supports the use of exceptional (non struct page*) entries.

In order to properly track dirty DAX pages we will insert new
exceptional entries into the radix tree that represent dirty DAX PTE or
PMD pages.  These exceptional entries will also contain the writeback
addresses for the PTE or PMD faults that we can use at fsync/msync time.

There are currently two types of exceptional entries (shmem and shadow)
that can be placed into the radix tree, and this adds a third.  We rely
on the fact that only one type of exceptional entry can be found in a
given radix tree based on its usage.  This happens for free with DAX vs
shmem but we explicitly prevent shadow entries from being added to radix
trees for DAX mappings.

The only shadow entries that would be generated for DAX radix trees
would be to track zero page mappings that were created for holes.  These
pages would receive minimal benefit from having shadow entries, and the
choice to have only one type of exceptional entry in a given radix tree
makes the logic simpler both in clear_exceptional_entry() and in the
rest of DAX.

Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: "Theodore Ts'o" <tytso@mit.edu>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jan Kara <jack@suse.com>
Cc: Jeff Layton <jlayton@poochiereds.net>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-22 17:02:18 -08:00
Vladimir Davydov
5ccc5abaaf mm: free swap cache aggressively if memcg swap is full
Swap cache pages are freed aggressively if swap is nearly full (>50%
currently), because otherwise we are likely to stop scanning anonymous
when we near the swap limit even if there is plenty of freeable swap cache
pages.  We should follow the same trend in case of memory cgroup, which
has its own swap limit.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Vladimir Davydov
d8b38438a0 mm: vmscan: do not scan anon pages if memcg swap limit is hit
We don't scan anonymous memory if we ran out of swap, neither should we do
it in case memcg swap limit is hit, because swap out is impossible anyway.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Vladimir Davydov
eb01aaab43 mm: memcontrol: replace mem_cgroup_lruvec_online with mem_cgroup_online
mem_cgroup_lruvec_online() takes lruvec, but it only needs memcg.  Since
get_scan_count(), which is the only user of this function, now possesses
pointer to memcg, let's pass memcg directly to mem_cgroup_online() instead
of picking it out of lruvec and rename the function accordingly.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Vladimir Davydov
3337767850 mm: vmscan: pass memcg to get_scan_count()
memcg will come in handy in get_scan_count().  It can already be used for
getting swappiness immediately in get_scan_count() instead of passing it
around.  The following patches will add more memcg-related values, which
will be used there.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Johannes Weiner
567e9ab2e6 mm: memcontrol: give the kmem states more descriptive names
On any given memcg, the kmem accounting feature has three separate
states: not initialized, structures allocated, and actively accounting
slab memory.  These are represented through a combination of the
kmem_acct_activated and kmem_acct_active flags, which is confusing.

Convert to a kmem_state enum with the states NONE, ALLOCATED, and
ONLINE.  Then rename the functions to modify the state accordingly.
This follows the nomenclature of css object states more closely.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-20 17:09:18 -08:00
Minchan Kim
854e9ed09d mm: support madvise(MADV_FREE)
Linux doesn't have an ability to free pages lazy while other OS already
have been supported that named by madvise(MADV_FREE).

The gain is clear that kernel can discard freed pages rather than
swapping out or OOM if memory pressure happens.

Without memory pressure, freed pages would be reused by userspace
without another additional overhead(ex, page fault + allocation +
zeroing).

Jason Evans said:

: Facebook has been using MAP_UNINITIALIZED
: (https://lkml.org/lkml/2012/1/18/308) in some of its applications for
: several years, but there are operational costs to maintaining this
: out-of-tree in our kernel and in jemalloc, and we are anxious to retire it
: in favor of MADV_FREE.  When we first enabled MAP_UNINITIALIZED it
: increased throughput for much of our workload by ~5%, and although the
: benefit has decreased using newer hardware and kernels, there is still
: enough benefit that we cannot reasonably retire it without a replacement.
:
: Aside from Facebook operations, there are numerous broadly used
: applications that would benefit from MADV_FREE.  The ones that immediately
: come to mind are redis, varnish, and MariaDB.  I don't have much insight
: into Android internals and development process, but I would hope to see
: MADV_FREE support eventually end up there as well to benefit applications
: linked with the integrated jemalloc.
:
: jemalloc will use MADV_FREE once it becomes available in the Linux kernel.
: In fact, jemalloc already uses MADV_FREE or equivalent everywhere it's
: available: *BSD, OS X, Windows, and Solaris -- every platform except Linux
: (and AIX, but I'm not sure it even compiles on AIX).  The lack of
: MADV_FREE on Linux forced me down a long series of increasingly
: sophisticated heuristics for madvise() volume reduction, and even so this
: remains a common performance issue for people using jemalloc on Linux.
: Please integrate MADV_FREE; many people will benefit substantially.

How it works:

When madvise syscall is called, VM clears dirty bit of ptes of the
range.  If memory pressure happens, VM checks dirty bit of page table
and if it found still "clean", it means it's a "lazyfree pages" so VM
could discard the page instead of swapping out.  Once there was store
operation for the page before VM peek a page to reclaim, dirty bit is
set so VM can swap out the page instead of discarding.

One thing we should notice is that basically, MADV_FREE relies on dirty
bit in page table entry to decide whether VM allows to discard the page
or not.  IOW, if page table entry includes marked dirty bit, VM
shouldn't discard the page.

However, as a example, if swap-in by read fault happens, page table
entry doesn't have dirty bit so MADV_FREE could discard the page
wrongly.

For avoiding the problem, MADV_FREE did more checks with PageDirty and
PageSwapCache.  It worked out because swapped-in page lives on swap
cache and since it is evicted from the swap cache, the page has PG_dirty
flag.  So both page flags check effectively prevent wrong discarding by
MADV_FREE.

However, a problem in above logic is that swapped-in page has PG_dirty
still after they are removed from swap cache so VM cannot consider the
page as freeable any more even if madvise_free is called in future.

Look at below example for detail.

    ptr = malloc();
    memset(ptr);
    ..
    ..
    .. heavy memory pressure so all of pages are swapped out
    ..
    ..
    var = *ptr; -> a page swapped-in and could be removed from
                   swapcache. Then, page table doesn't mark
                   dirty bit and page descriptor includes PG_dirty
    ..
    ..
    madvise_free(ptr); -> It doesn't clear PG_dirty of the page.
    ..
    ..
    ..
    .. heavy memory pressure again.
    .. In this time, VM cannot discard the page because the page
    .. has *PG_dirty*

To solve the problem, this patch clears PG_dirty if only the page is
owned exclusively by current process when madvise is called because
PG_dirty represents ptes's dirtiness in several processes so we could
clear it only if we own it exclusively.

Firstly, heavy users would be general allocators(ex, jemalloc, tcmalloc
and hope glibc supports it) and jemalloc/tcmalloc already have supported
the feature for other OS(ex, FreeBSD)

  barrios@blaptop:~/benchmark/ebizzy$ lscpu
  Architecture:          x86_64
  CPU op-mode(s):        32-bit, 64-bit
  Byte Order:            Little Endian
  CPU(s):                12
  On-line CPU(s) list:   0-11
  Thread(s) per core:    1
  Core(s) per socket:    1
  Socket(s):             12
  NUMA node(s):          1
  Vendor ID:             GenuineIntel
  CPU family:            6
  Model:                 2
  Stepping:              3
  CPU MHz:               3200.185
  BogoMIPS:              6400.53
  Virtualization:        VT-x
  Hypervisor vendor:     KVM
  Virtualization type:   full
  L1d cache:             32K
  L1i cache:             32K
  L2 cache:              4096K
  NUMA node0 CPU(s):     0-11
  ebizzy benchmark(./ebizzy -S 10 -n 512)

  Higher avg is better.

   vanilla-jemalloc             MADV_free-jemalloc

  1 thread
  records: 10                   records: 10
  avg:   2961.90                avg:  12069.70
  std:     71.96(2.43%)         std:    186.68(1.55%)
  max:   3070.00                max:  12385.00
  min:   2796.00                min:  11746.00

  2 thread
  records: 10                   records: 10
  avg:   5020.00                avg:  17827.00
  std:    264.87(5.28%)         std:    358.52(2.01%)
  max:   5244.00                max:  18760.00
  min:   4251.00                min:  17382.00

  4 thread
  records: 10                   records: 10
  avg:   8988.80                avg:  27930.80
  std:   1175.33(13.08%)        std:   3317.33(11.88%)
  max:   9508.00                max:  30879.00
  min:   5477.00                min:  21024.00

  8 thread
  records: 10                   records: 10
  avg:  13036.50                avg:  33739.40
  std:    170.67(1.31%)         std:   5146.22(15.25%)
  max:  13371.00                max:  40572.00
  min:  12785.00                min:  24088.00

  16 thread
  records: 10                   records: 10
  avg:  11092.40                avg:  31424.20
  std:    710.60(6.41%)         std:   3763.89(11.98%)
  max:  12446.00                max:  36635.00
  min:   9949.00                min:  25669.00

  32 thread
  records: 10                   records: 10
  avg:  11067.00                avg:  34495.80
  std:    971.06(8.77%)         std:   2721.36(7.89%)
  max:  12010.00                max:  38598.00
  min:   9002.00                min:  30636.00

In summary, MADV_FREE is about much faster than MADV_DONTNEED.

This patch (of 12):

Add core MADV_FREE implementation.

[akpm@linux-foundation.org: small cleanups]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Mika Penttil <mika.penttila@nextfour.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Jason Evans <je@fb.com>
Cc: Daniel Micay <danielmicay@gmail.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Shaohua Li <shli@kernel.org>
Cc: <yalin.wang2010@gmail.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: "Shaohua Li" <shli@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen Gang <gang.chen.5i5j@gmail.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: David S. Miller <davem@davemloft.net>
Cc: Helge Deller <deller@gmx.de>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Roland Dreier <roland@kernel.org>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Shaohua Li <shli@kernel.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
48c935ad88 page-flags: define PG_locked behavior on compound pages
lock_page() must operate on the whole compound page.  It doesn't make
much sense to lock part of compound page.  Change code to use head
page's PG_locked, if tail page is passed.

This patch also gets rid of custom helper functions --
__set_page_locked() and __clear_page_locked().  They are replaced with
helpers generated by __SETPAGEFLAG/__CLEARPAGEFLAG.  Tail pages to these
helper would trigger VM_BUG_ON().

SLUB uses PG_locked as a bit spin locked.  IIUC, tail pages should never
appear there.  VM_BUG_ON() is added to make sure that this assumption is
correct.

[akpm@linux-foundation.org: fix fs/cifs/file.c]
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Steve Capper <steve.capper@linaro.org>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-15 17:56:32 -08:00
Kirill A. Shutemov
bb5b858976 mm: make sure isolate_lru_page() is never called for tail page
The VM_BUG_ON_PAGE() would catch such cases if any still exists.

Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Johannes Weiner
8e8ae64524 mm: memcontrol: hook up vmpressure to socket pressure
Let the networking stack know when a memcg is under reclaim pressure so
that it can clamp its transmit windows accordingly.

Whenever the reclaim efficiency of a cgroup's LRU lists drops low enough
for a MEDIUM or HIGH vmpressure event to occur, assert a pressure state
in the socket and tcp memory code that tells it to curb consumption
growth from sockets associated with said control group.

Traditionally, vmpressure reports for the entire subtree of a memcg
under pressure, which drops useful information on the individual groups
reclaimed.  However, it's too late to change the userinterface, so add a
second reporting mode that reports on the level of reclaim instead of at
the level of pressure, and use that report for sockets.

vmpressure events are naturally edge triggered, so for hysteresis assert
socket pressure for a second to allow for subsequent vmpressure events
to occur before letting the socket code return to normal.

This will likely need finetuning for a wider variety of workloads, but
for now stick to the vmpressure presets and keep hysteresis simple.

Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: David S. Miller <davem@davemloft.net>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Geliang Tang
c8ad6302c2 mm/readahead.c, mm/vmscan.c: use lru_to_page instead of list_to_page
list_to_page() in readahead.c is the same as lru_to_page() in vmscan.c.
So I move lru_to_page to internal.h and drop list_to_page().

Signed-off-by: Geliang Tang <geliangtang@163.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Michal Hocko
9f6c399ddc mm, vmscan: consider isolated pages in zone_reclaimable_pages
zone_reclaimable_pages counts how many pages are reclaimable in the
given zone.  This currently includes all pages on file lrus and anon
lrus if there is an available swap storage.  We do not consider
NR_ISOLATED_{ANON,FILE} counters though which is not correct because
these counters reflect temporarily isolated pages which are still
reclaimable because they either get back to their LRU or get freed
either by the page reclaim or page migration.

The number of these pages might be sufficiently high to confuse users of
zone_reclaimable_pages (e.g.  mbind can migrate large ranges of memory
at once).

Signed-off-by: Michal Hocko <mhocko@suse.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Vladimir Davydov
316bda0e6c vmscan: do not force-scan file lru if its absolute size is small
We assume there is enough inactive page cache if the size of inactive
file lru is greater than the size of active file lru, in which case we
force-scan file lru ignoring anonymous pages.  While this logic works
fine when there are plenty of page cache pages, it fails if the size of
file lru is small (several MB): in this case (lru_size >> prio) will be
0 for normal scan priorities, as a result, if inactive file lru happens
to be larger than active file lru, anonymous pages of a cgroup will
never get evicted unless the system experiences severe memory pressure,
even if there are gigabytes of unused anonymous memory there, which is
unfair in respect to other cgroups, whose workloads might be page cache
oriented.

This patch attempts to fix this by elaborating the "enough inactive page
cache" check: it makes it not only check that inactive lru size > active
lru size, but also that we will scan something from the cgroup at the
current scan priority.  If these conditions do not hold, we proceed to
SCAN_FRACT as usual.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
yalin wang
ba5e957943 mm: change mm_vmscan_lru_shrink_inactive() proto types
Move node_id zone_idx shrink flags into trace function, so thay we don't
need caculate these args if the trace is disabled, and will make this
function have less arguments.

Signed-off-by: yalin wang <yalin.wang2010@gmail.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
yalin wang
3aa2385111 mm/vmscan.c: change trace_mm_vmscan_writepage() proto type
Move trace_reclaim_flags() into trace function, so that we don't need
caculate these flags if the trace is disabled.

Signed-off-by: yalin wang <yalin.wang2010@gmail.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Mel Gorman
d0164adc89 mm, page_alloc: distinguish between being unable to sleep, unwilling to sleep and avoiding waking kswapd
__GFP_WAIT has been used to identify atomic context in callers that hold
spinlocks or are in interrupts.  They are expected to be high priority and
have access one of two watermarks lower than "min" which can be referred
to as the "atomic reserve".  __GFP_HIGH users get access to the first
lower watermark and can be called the "high priority reserve".

Over time, callers had a requirement to not block when fallback options
were available.  Some have abused __GFP_WAIT leading to a situation where
an optimisitic allocation with a fallback option can access atomic
reserves.

This patch uses __GFP_ATOMIC to identify callers that are truely atomic,
cannot sleep and have no alternative.  High priority users continue to use
__GFP_HIGH.  __GFP_DIRECT_RECLAIM identifies callers that can sleep and
are willing to enter direct reclaim.  __GFP_KSWAPD_RECLAIM to identify
callers that want to wake kswapd for background reclaim.  __GFP_WAIT is
redefined as a caller that is willing to enter direct reclaim and wake
kswapd for background reclaim.

This patch then converts a number of sites

o __GFP_ATOMIC is used by callers that are high priority and have memory
  pools for those requests. GFP_ATOMIC uses this flag.

o Callers that have a limited mempool to guarantee forward progress clear
  __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall
  into this category where kswapd will still be woken but atomic reserves
  are not used as there is a one-entry mempool to guarantee progress.

o Callers that are checking if they are non-blocking should use the
  helper gfpflags_allow_blocking() where possible. This is because
  checking for __GFP_WAIT as was done historically now can trigger false
  positives. Some exceptions like dm-crypt.c exist where the code intent
  is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to
  flag manipulations.

o Callers that built their own GFP flags instead of starting with GFP_KERNEL
  and friends now also need to specify __GFP_KSWAPD_RECLAIM.

The first key hazard to watch out for is callers that removed __GFP_WAIT
and was depending on access to atomic reserves for inconspicuous reasons.
In some cases it may be appropriate for them to use __GFP_HIGH.

The second key hazard is callers that assembled their own combination of
GFP flags instead of starting with something like GFP_KERNEL.  They may
now wish to specify __GFP_KSWAPD_RECLAIM.  It's almost certainly harmless
if it's missed in most cases as other activity will wake kswapd.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vitaly Wool <vitalywool@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 17:50:42 -08:00
Mel Gorman
e2b19197ff mm, page_alloc: remove unnecessary parameter from zone_watermark_ok_safe
Overall, the intent of this series is to remove the zonelist cache which
was introduced to avoid high overhead in the page allocator.  Once this is
done, it is necessary to reduce the cost of watermark checks.

The series starts with minor micro-optimisations.

Next it notes that GFP flags that affect watermark checks are abused.
__GFP_WAIT historically identified callers that could not sleep and could
access reserves.  This was later abused to identify callers that simply
prefer to avoid sleeping and have other options.  A patch distinguishes
between atomic callers, high-priority callers and those that simply wish
to avoid sleep.

The zonelist cache has been around for a long time but it is of dubious
merit with a lot of complexity and some issues that are explained.  The
most important issue is that a failed THP allocation can cause a zone to
be treated as "full".  This potentially causes unnecessary stalls, reclaim
activity or remote fallbacks.  The issues could be fixed but it's not
worth it.  The series places a small number of other micro-optimisations
on top before examining GFP flags watermarks.

High-order watermarks enforcement can cause high-order allocations to fail
even though pages are free.  The watermark checks both protect high-order
atomic allocations and make kswapd aware of high-order pages but there is
a much better way that can be handled using migrate types.  This series
uses page grouping by mobility to reserve pageblocks for high-order
allocations with the size of the reservation depending on demand.  kswapd
awareness is maintained by examining the free lists.  By patch 12 in this
series, there are no high-order watermark checks while preserving the
properties that motivated the introduction of the watermark checks.

This patch (of 10):

No user of zone_watermark_ok_safe() specifies alloc_flags.  This patch
removes the unnecessary parameter.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Christoph Lameter <cl@linux.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06 17:50:42 -08:00
Linus Torvalds
2e3078af2c Merge branch 'akpm' (patches from Andrew)
Merge patch-bomb from Andrew Morton:

 - inotify tweaks

 - some ocfs2 updates (many more are awaiting review)

 - various misc bits

 - kernel/watchdog.c updates

 - Some of mm.  I have a huge number of MM patches this time and quite a
   lot of it is quite difficult and much will be held over to next time.

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (162 commits)
  selftests: vm: add tests for lock on fault
  mm: mlock: add mlock flags to enable VM_LOCKONFAULT usage
  mm: introduce VM_LOCKONFAULT
  mm: mlock: add new mlock system call
  mm: mlock: refactor mlock, munlock, and munlockall code
  kasan: always taint kernel on report
  mm, slub, kasan: enable user tracking by default with KASAN=y
  kasan: use IS_ALIGNED in memory_is_poisoned_8()
  kasan: Fix a type conversion error
  lib: test_kasan: add some testcases
  kasan: update reference to kasan prototype repo
  kasan: move KASAN_SANITIZE in arch/x86/boot/Makefile
  kasan: various fixes in documentation
  kasan: update log messages
  kasan: accurately determine the type of the bad access
  kasan: update reported bug types for kernel memory accesses
  kasan: update reported bug types for not user nor kernel memory accesses
  mm/kasan: prevent deadlock in kasan reporting
  mm/kasan: don't use kasan shadow pointer in generic functions
  mm/kasan: MODULE_VADDR is not available on all archs
  ...
2015-11-05 23:10:54 -08:00
Alexandru Moise
d031a15791 mm/vmscan.c: fix types of some locals
In zone_reclaimable_pages(), `nr' is returned by a function which is
declared as returning "unsigned long", so declare it such.  Negative
values are meaningless here.

In zone_pagecache_reclaimable() we should also declare `delta' and
`nr_pagecache_reclaimable' as being unsigned longs because they're used to
store the values returned by zone_page_state() and
zone_unmapped_file_pages() which also happen to return unsigned integers.

[akpm@linux-foundation.org: make zone_pagecache_reclaimable() return ulong rather than long]
Signed-off-by: Alexandru Moise <00moses.alexander00@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Yaowei Bai
42e2e45777 mm/vmscan: make inactive_anon/file_is_low return bool
Make inactive_anon/file_is_low return bool due to these particular
functions only using either one or zero as their return value.

No functional change.

Signed-off-by: Yaowei Bai <bywxiaobai@163.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Yaowei Bai
29d06bbb41 mm/vmscan: make inactive_anon_is_low_global return directly
Delete unnecessary if to let inactive_anon_is_low_global return
directly.

No functional changes.

Signed-off-by: Yaowei Bai <bywxiaobai@163.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Linus Torvalds
69234acee5 Merge branch 'for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
 "The cgroup core saw several significant updates this cycle:

   - percpu_rwsem for threadgroup locking is reinstated.  This was
     temporarily dropped due to down_write latency issues.  Oleg's
     rework of percpu_rwsem which is scheduled to be merged in this
     merge window resolves the issue.

   - On the v2 hierarchy, when controllers are enabled and disabled, all
     operations are atomic and can fail and revert cleanly.  This allows
     ->can_attach() failure which is necessary for cpu RT slices.

   - Tasks now stay associated with the original cgroups after exit
     until released.  This allows tracking resources held by zombies
     (e.g.  pids) and makes it easy to find out where zombies came from
     on the v2 hierarchy.  The pids controller was broken before these
     changes as zombies escaped the limits; unfortunately, updating this
     behavior required too many invasive changes and I don't think it's
     a good idea to backport them, so the pids controller on 4.3, the
     first version which included the pids controller, will stay broken
     at least until I'm sure about the cgroup core changes.

   - Optimization of a couple common tests using static_key"

* 'for-4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (38 commits)
  cgroup: fix race condition around termination check in css_task_iter_next()
  blkcg: don't create "io.stat" on the root cgroup
  cgroup: drop cgroup__DEVEL__legacy_files_on_dfl
  cgroup: replace error handling in cgroup_init() with WARN_ON()s
  cgroup: add cgroup_subsys->free() method and use it to fix pids controller
  cgroup: keep zombies associated with their original cgroups
  cgroup: make css_set_rwsem a spinlock and rename it to css_set_lock
  cgroup: don't hold css_set_rwsem across css task iteration
  cgroup: reorganize css_task_iter functions
  cgroup: factor out css_set_move_task()
  cgroup: keep css_set and task lists in chronological order
  cgroup: make cgroup_destroy_locked() test cgroup_is_populated()
  cgroup: make css_sets pin the associated cgroups
  cgroup: relocate cgroup_[try]get/put()
  cgroup: move check_for_release() invocation
  cgroup: replace cgroup_has_tasks() with cgroup_is_populated()
  cgroup: make cgroup->nr_populated count the number of populated css_sets
  cgroup: remove an unused parameter from cgroup_task_migrate()
  cgroup: fix too early usage of static_branch_disable()
  cgroup: make cgroup_update_dfl_csses() migrate all target processes atomically
  ...
2015-11-05 14:51:32 -08:00
Vladimir Davydov
d5028f9f7d vmscan: fix sane_reclaim helper for legacy memcg
The sane_reclaim() helper is supposed to return false for memcg reclaim
if the legacy hierarchy is used, because the latter lacks dirty
throttling mechanism, and so it did before it was accidentally broken by
commit 33398cf2f3 ("memcg: export struct mem_cgroup").  Fix it.

Fixes: 33398cf2f3 ("memcg: export struct mem_cgroup")
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Tejun Heo <tj@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-22 15:09:53 -07:00
Hugh Dickins
7fadc82022 mm, vmscan: unlock page while waiting on writeback
This is merely a politeness: I've not found that shrink_page_list()
leads to deadlock with the page it holds locked across
wait_on_page_writeback(); but nevertheless, why hold others off by
keeping the page locked there?

And while we're at it: remove the mistaken "not " from the commentary on
this Case 3 (and a distracting blank line from Case 2, if I may).

Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Jaewon Kim
c54839a722 vmscan: fix increasing nr_isolated incurred by putback unevictable pages
reclaim_clean_pages_from_list() assumes that shrink_page_list() returns
number of pages removed from the candidate list.  But shrink_page_list()
puts back mlocked pages without passing it to caller and without
counting as nr_reclaimed.  This increases nr_isolated.

To fix this, this patch changes shrink_page_list() to pass unevictable
pages back to caller.  Caller will take care those pages.

Minchan said:

It fixes two issues.

1. With unevictable page, cma_alloc will be successful.

Exactly speaking, cma_alloc of current kernel will fail due to
unevictable pages.

2. fix leaking of NR_ISOLATED counter of vmstat

With it, too_many_isolated works.  Otherwise, it could make hang until
the process get SIGKILL.

Signed-off-by: Jaewon Kim <jaewon31.kim@samsung.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Vladimir Davydov
0b802f101d mm: vmscan: never isolate more pages than necessary
If transparent huge pages are enabled, we can isolate many more pages
than we actually need to scan, because we count both single and huge
pages equally in isolate_lru_pages().

Since commit 5bc7b8aca9 ("mm: thp: add split tail pages to shrink
page list in page reclaim"), we scan all the tail pages immediately
after a huge page split (see shrink_page_list()).  As a result, we can
reclaim up to SWAP_CLUSTER_MAX * HPAGE_PMD_NR (512 MB) in one run!

This is easy to catch on memcg reclaim with zswap enabled.  The latter
makes swapout instant so that if we happen to scan an unreferenced huge
page we will evict both its head and tail pages immediately, which is
likely to result in excessive reclaim.

Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Michal Hocko
33398cf2f3 memcg: export struct mem_cgroup
mem_cgroup structure is defined in mm/memcontrol.c currently which means
that the code outside of this file has to use external API even for
trivial access stuff.

This patch exports mm_struct with its dependencies and makes some of the
exported functions inlines.  This even helps to reduce the code size a bit
(make defconfig + CONFIG_MEMCG=y)

  text		data    bss     dec     	 hex 	filename
  12355346        1823792 1089536 15268674         e8fb42 vmlinux.before
  12354970        1823792 1089536 15268298         e8f9ca vmlinux.after

This is not much (370B) but better than nothing.

We also save a function call in some hot paths like callers of
mem_cgroup_count_vm_event which is used for accounting.

The patch doesn't introduce any functional changes.

[vdavykov@parallels.com: inline memcg_kmem_is_active]
[vdavykov@parallels.com: do not expose type outside of CONFIG_MEMCG]
[akpm@linux-foundation.org: memcontrol.h needs eventfd.h for eventfd_ctx]
[akpm@linux-foundation.org: export mem_cgroup_from_task() to modules]
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Mel Gorman
d950c9477d mm: defer flush of writable TLB entries
If a PTE is unmapped and it's dirty then it was writable recently.  Due to
deferred TLB flushing, it's best to assume a writable TLB cache entry
exists.  With that assumption, the TLB must be flushed before any IO can
start or the page is freed to avoid lost writes or data corruption.  This
patch defers flushing of potentially writable TLBs as long as possible.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-04 16:54:41 -07:00
Mel Gorman
72b252aed5 mm: send one IPI per CPU to TLB flush all entries after unmapping pages
An IPI is sent to flush remote TLBs when a page is unmapped that was
potentially accesssed by other CPUs.  There are many circumstances where
this happens but the obvious one is kswapd reclaiming pages belonging to a
running process as kswapd and the task are likely running on separate
CPUs.

On small machines, this is not a significant problem but as machine gets
larger with more cores and more memory, the cost of these IPIs can be
high.  This patch uses a simple structure that tracks CPUs that
potentially have TLB entries for pages being unmapped.  When the unmapping
is complete, the full TLB is flushed on the assumption that a refill cost
is lower than flushing individual entries.

Architectures wishing to do this must give the following guarantee.

        If a clean page is unmapped and not immediately flushed, the
        architecture must guarantee that a write to that linear address
        from a CPU with a cached TLB entry will trap a page fault.

This is essentially what the kernel already depends on but the window is
much larger with this patch applied and is worth highlighting.  The
architecture should consider whether the cost of the full TLB flush is
higher than sending an IPI to flush each individual entry.  An additional
architecture helper called flush_tlb_local is required.  It's a trivial
wrapper with some accounting in the x86 case.

The impact of this patch depends on the workload as measuring any benefit
requires both mapped pages co-located on the LRU and memory pressure.  The
case with the biggest impact is multiple processes reading mapped pages
taken from the vm-scalability test suite.  The test case uses NR_CPU
readers of mapped files that consume 10*RAM.

Linear mapped reader on a 4-node machine with 64G RAM and 48 CPUs

                                           4.2.0-rc1          4.2.0-rc1
                                             vanilla       flushfull-v7
Ops lru-file-mmap-read-elapsed      159.62 (  0.00%)   120.68 ( 24.40%)
Ops lru-file-mmap-read-time_range    30.59 (  0.00%)     2.80 ( 90.85%)
Ops lru-file-mmap-read-time_stddv     6.70 (  0.00%)     0.64 ( 90.38%)

           4.2.0-rc1    4.2.0-rc1
             vanilla flushfull-v7
User          581.00       611.43
System       5804.93      4111.76
Elapsed       161.03       122.12

This is showing that the readers completed 24.40% faster with 29% less
system CPU time.  From vmstats, it is known that the vanilla kernel was
interrupted roughly 900K times per second during the steady phase of the
test and the patched kernel was interrupts 180K times per second.

The impact is lower on a single socket machine.

                                           4.2.0-rc1          4.2.0-rc1
                                             vanilla       flushfull-v7
Ops lru-file-mmap-read-elapsed       25.33 (  0.00%)    20.38 ( 19.54%)
Ops lru-file-mmap-read-time_range     0.91 (  0.00%)     1.44 (-58.24%)
Ops lru-file-mmap-read-time_stddv     0.28 (  0.00%)     0.47 (-65.34%)

           4.2.0-rc1    4.2.0-rc1
             vanilla flushfull-v7
User           58.09        57.64
System        111.82        76.56
Elapsed        27.29        22.55

It's still a noticeable improvement with vmstat showing interrupts went
from roughly 500K per second to 45K per second.

The patch will have no impact on workloads with no memory pressure or have
relatively few mapped pages.  It will have an unpredictable impact on the
workload running on the CPU being flushed as it'll depend on how many TLB
entries need to be refilled and how long that takes.  Worst case, the TLB
will be completely cleared of active entries when the target PFNs were not
resident at all.

[sasha.levin@oracle.com: trace tlb flush after disabling preemption in try_to_unmap_flush]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-04 16:54:41 -07:00
Michal Hocko
ecf5fc6e96 mm, vmscan: Do not wait for page writeback for GFP_NOFS allocations
Nikolay has reported a hang when a memcg reclaim got stuck with the
following backtrace:

PID: 18308  TASK: ffff883d7c9b0a30  CPU: 1   COMMAND: "rsync"
  #0 __schedule at ffffffff815ab152
  #1 schedule at ffffffff815ab76e
  #2 schedule_timeout at ffffffff815ae5e5
  #3 io_schedule_timeout at ffffffff815aad6a
  #4 bit_wait_io at ffffffff815abfc6
  #5 __wait_on_bit at ffffffff815abda5
  #6 wait_on_page_bit at ffffffff8111fd4f
  #7 shrink_page_list at ffffffff81135445
  #8 shrink_inactive_list at ffffffff81135845
  #9 shrink_lruvec at ffffffff81135ead
 #10 shrink_zone at ffffffff811360c3
 #11 shrink_zones at ffffffff81136eff
 #12 do_try_to_free_pages at ffffffff8113712f
 #13 try_to_free_mem_cgroup_pages at ffffffff811372be
 #14 try_charge at ffffffff81189423
 #15 mem_cgroup_try_charge at ffffffff8118c6f5
 #16 __add_to_page_cache_locked at ffffffff8112137d
 #17 add_to_page_cache_lru at ffffffff81121618
 #18 pagecache_get_page at ffffffff8112170b
 #19 grow_dev_page at ffffffff811c8297
 #20 __getblk_slow at ffffffff811c91d6
 #21 __getblk_gfp at ffffffff811c92c1
 #22 ext4_ext_grow_indepth at ffffffff8124565c
 #23 ext4_ext_create_new_leaf at ffffffff81246ca8
 #24 ext4_ext_insert_extent at ffffffff81246f09
 #25 ext4_ext_map_blocks at ffffffff8124a848
 #26 ext4_map_blocks at ffffffff8121a5b7
 #27 mpage_map_one_extent at ffffffff8121b1fa
 #28 mpage_map_and_submit_extent at ffffffff8121f07b
 #29 ext4_writepages at ffffffff8121f6d5
 #30 do_writepages at ffffffff8112c490
 #31 __filemap_fdatawrite_range at ffffffff81120199
 #32 filemap_flush at ffffffff8112041c
 #33 ext4_alloc_da_blocks at ffffffff81219da1
 #34 ext4_rename at ffffffff81229b91
 #35 ext4_rename2 at ffffffff81229e32
 #36 vfs_rename at ffffffff811a08a5
 #37 SYSC_renameat2 at ffffffff811a3ffc
 #38 sys_renameat2 at ffffffff811a408e
 #39 sys_rename at ffffffff8119e51e
 #40 system_call_fastpath at ffffffff815afa89

Dave Chinner has properly pointed out that this is a deadlock in the
reclaim code because ext4 doesn't submit pages which are marked by
PG_writeback right away.

The heuristic was introduced by commit e62e384e9d ("memcg: prevent OOM
with too many dirty pages") and it was applied only when may_enter_fs
was specified.  The code has been changed by c3b94f44fc ("memcg:
further prevent OOM with too many dirty pages") which has removed the
__GFP_FS restriction with a reasoning that we do not get into the fs
code.  But this is not sufficient apparently because the fs doesn't
necessarily submit pages marked PG_writeback for IO right away.

ext4_bio_write_page calls io_submit_add_bh but that doesn't necessarily
submit the bio.  Instead it tries to map more pages into the bio and
mpage_map_one_extent might trigger memcg charge which might end up
waiting on a page which is marked PG_writeback but hasn't been submitted
yet so we would end up waiting for something that never finishes.

Fix this issue by replacing __GFP_IO by may_enter_fs check (for case 2)
before we go to wait on the writeback.  The page fault path, which is
the only path that triggers memcg oom killer since 3.12, shouldn't
require GFP_NOFS and so we shouldn't reintroduce the premature OOM
killer issue which was originally addressed by the heuristic.

As per David Chinner the xfs is doing similar thing since 2.6.15 already
so ext4 is not the only affected filesystem.  Moreover he notes:

: For example: IO completion might require unwritten extent conversion
: which executes filesystem transactions and GFP_NOFS allocations. The
: writeback flag on the pages can not be cleared until unwritten
: extent conversion completes. Hence memory reclaim cannot wait on
: page writeback to complete in GFP_NOFS context because it is not
: safe to do so, memcg reclaim or otherwise.

Cc: stable@vger.kernel.org # 3.9+
[tytso@mit.edu: corrected the control flow]
Fixes: c3b94f44fc ("memcg: further prevent OOM with too many dirty pages")
Reported-by: Nikolay Borisov <kernel@kyup.com>
Signed-off-by: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-08-05 10:49:38 +02:00
Linus Torvalds
e4bc13adfd Merge branch 'for-4.2/writeback' of git://git.kernel.dk/linux-block
Pull cgroup writeback support from Jens Axboe:
 "This is the big pull request for adding cgroup writeback support.

  This code has been in development for a long time, and it has been
  simmering in for-next for a good chunk of this cycle too.  This is one
  of those problems that has been talked about for at least half a
  decade, finally there's a solution and code to go with it.

  Also see last weeks writeup on LWN:

        http://lwn.net/Articles/648292/"

* 'for-4.2/writeback' of git://git.kernel.dk/linux-block: (85 commits)
  writeback, blkio: add documentation for cgroup writeback support
  vfs, writeback: replace FS_CGROUP_WRITEBACK with SB_I_CGROUPWB
  writeback: do foreign inode detection iff cgroup writeback is enabled
  v9fs: fix error handling in v9fs_session_init()
  bdi: fix wrong error return value in cgwb_create()
  buffer: remove unusued 'ret' variable
  writeback: disassociate inodes from dying bdi_writebacks
  writeback: implement foreign cgroup inode bdi_writeback switching
  writeback: add lockdep annotation to inode_to_wb()
  writeback: use unlocked_inode_to_wb transaction in inode_congested()
  writeback: implement unlocked_inode_to_wb transaction and use it for stat updates
  writeback: implement [locked_]inode_to_wb_and_lock_list()
  writeback: implement foreign cgroup inode detection
  writeback: make writeback_control track the inode being written back
  writeback: relocate wb[_try]_get(), wb_put(), inode_{attach|detach}_wb()
  mm: vmscan: disable memcg direct reclaim stalling if cgroup writeback support is in use
  writeback: implement memcg writeback domain based throttling
  writeback: reset wb_domain->dirty_limit[_tstmp] when memcg domain size changes
  writeback: implement memcg wb_domain
  writeback: update wb_over_bg_thresh() to use wb_domain aware operations
  ...
2015-06-25 16:00:17 -07:00
Zhihui Zhang
95bbc0c721 mm: rename RECLAIM_SWAP to RECLAIM_UNMAP
The name SWAP implies that we are dealing with anonymous pages only.  In
fact, the original patch that introduced the min_unmapped_ratio logic
was to fix an issue related to file pages.  Rename it to RECLAIM_UNMAP
to match what does.

Historically, commit a6dc60f897 ("vmscan: rename sc.may_swap to
may_unmap") renamed .may_swap to .may_unmap, leaving RECLAIM_SWAP
behind.  commit 2e2e425989 ("vmscan,memcg: reintroduce sc->may_swap")
reintroduced .may_swap for memory controller.

Signed-off-by: Zhihui Zhang <zzhsuny@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Rik van Riel <riel@redhat.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:42 -07:00
Nishanth Aravamudan
f012a84aff mm: vmscan: do not throttle based on pfmemalloc reserves if node has no reclaimable pages
Based upon 675becce15 ("mm: vmscan: do not throttle based on pfmemalloc
reserves if node has no ZONE_NORMAL") from Mel.

We have a system with the following topology:

# numactl -H
available: 3 nodes (0,2-3)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29 30 31
node 0 size: 28273 MB
node 0 free: 27323 MB
node 2 cpus:
node 2 size: 16384 MB
node 2 free: 0 MB
node 3 cpus: 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
node 3 size: 30533 MB
node 3 free: 13273 MB
node distances:
node   0   2   3
  0:  10  20  20
  2:  20  10  20
  3:  20  20  10

Node 2 has no free memory, because:
# cat /sys/devices/system/node/node2/hugepages/hugepages-16777216kB/nr_hugepages
1

This leads to the following zoneinfo:

Node 2, zone      DMA
  pages free     0
        min      1840
        low      2300
        high     2760
        scanned  0
        spanned  262144
        present  262144
        managed  262144
...
  all_unreclaimable: 1

If one then attempts to allocate some normal 16M hugepages via

echo 37 > /proc/sys/vm/nr_hugepages

The echo never returns and kswapd2 consumes CPU cycles.

This is because throttle_direct_reclaim ends up calling
wait_event(pfmemalloc_wait, pfmemalloc_watermark_ok...).
pfmemalloc_watermark_ok() in turn checks all zones on the node if there
are any reserves, and if so, then indicates the watermarks are ok, by
seeing if there are sufficient free pages.

675becce15 added a condition already for memoryless nodes.  In this case,
though, the node has memory, it is just all consumed (and not
reclaimable).  Effectively, though, the result is the same on this call to
pfmemalloc_watermark_ok() and thus seems like a reasonable additional
condition.

With this change, the afore-mentioned 16M hugepage allocation attempt
succeeds and correctly round-robins between Nodes 1 and 3.

Signed-off-by: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Anton Blanchard <anton@samba.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-06-24 17:49:42 -07:00
Tejun Heo
97c9341f72 mm: vmscan: disable memcg direct reclaim stalling if cgroup writeback support is in use
Because writeback wasn't cgroup aware before, the usual dirty
throttling mechanism in balance_dirty_pages() didn't work for
processes under memcg limit.  The writeback path didn't know how much
memory is available or how fast the dirty pages are being written out
for a given memcg and balance_dirty_pages() didn't have any measure of
IO back pressure for the memcg.

To work around the issue, memcg implemented an ad-hoc dirty throttling
mechanism in the direct reclaim path by stalling on pages under
writeback which are encountered during direct reclaim scan.  This is
rather ugly and crude - none of the configurability, fairness, or
bandwidth-proportional distribution of the normal path.

The previous patches implemented proper memcg aware dirty throttling
when cgroup writeback is in use making the ad-hoc mechanism
unnecessary.  This patch disables direct reclaim stalling for such
case.

Note: I disabled the parts which seemed obvious and it behaves fine
      while testing but my understanding of this code path is
      rudimentary and it's quite possible that I got something wrong.
      Please let me know if I got some wrong or more global_reclaim()
      sites should be updated.

v2: The original patch removed the direct stalling mechanism which
    breaks legacy hierarchies.  Conditionalize instead of removing.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-06-02 08:38:13 -06:00
Tejun Heo
703c270887 writeback: implement and use inode_congested()
In several places, bdi_congested() and its wrappers are used to
determine whether more IOs should be issued.  With cgroup writeback
support, this question can't be answered solely based on the bdi
(backing_dev_info).  It's dependent on whether the filesystem and bdi
support cgroup writeback and the blkcg the inode is associated with.

This patch implements inode_congested() and its wrappers which take
@inode and determines the congestion state considering cgroup
writeback.  The new functions replace bdi_*congested() calls in places
where the query is about specific inode and task.

There are several filesystem users which also fit this criteria but
they should be updated when each filesystem implements cgroup
writeback support.

v2: Now that a given inode is associated with only one wb, congestion
    state can be determined independent from the asking task.  Drop
    @task.  Spotted by Vivek.  Also, converted to take @inode instead
    of @mapping and renamed to inode_congested().

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jan Kara <jack@suse.cz>
Cc: Vivek Goyal <vgoyal@redhat.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-06-02 08:33:35 -06:00
Greg Thelen
c4843a7593 memcg: add per cgroup dirty page accounting
When modifying PG_Dirty on cached file pages, update the new
MEM_CGROUP_STAT_DIRTY counter.  This is done in the same places where
global NR_FILE_DIRTY is managed.  The new memcg stat is visible in the
per memcg memory.stat cgroupfs file.  The most recent past attempt at
this was http://thread.gmane.org/gmane.linux.kernel.cgroups/8632

The new accounting supports future efforts to add per cgroup dirty
page throttling and writeback.  It also helps an administrator break
down a container's memory usage and provides evidence to understand
memcg oom kills (the new dirty count is included in memcg oom kill
messages).

The ability to move page accounting between memcg
(memory.move_charge_at_immigrate) makes this accounting more
complicated than the global counter.  The existing
mem_cgroup_{begin,end}_page_stat() lock is used to serialize move
accounting with stat updates.
Typical update operation:
	memcg = mem_cgroup_begin_page_stat(page)
	if (TestSetPageDirty()) {
		[...]
		mem_cgroup_update_page_stat(memcg)
	}
	mem_cgroup_end_page_stat(memcg)

Summary of mem_cgroup_end_page_stat() overhead:
- Without CONFIG_MEMCG it's a no-op
- With CONFIG_MEMCG and no inter memcg task movement, it's just
  rcu_read_lock()
- With CONFIG_MEMCG and inter memcg  task movement, it's
  rcu_read_lock() + spin_lock_irqsave()

A memcg parameter is added to several routines because their callers
now grab mem_cgroup_begin_page_stat() which returns the memcg later
needed by for mem_cgroup_update_page_stat().

Because mem_cgroup_begin_page_stat() may disable interrupts, some
adjustments are needed:
- move __mark_inode_dirty() from __set_page_dirty() to its caller.
  __mark_inode_dirty() locking does not want interrupts disabled.
- use spin_lock_irqsave(tree_lock) rather than spin_lock_irq() in
  __delete_from_page_cache(), replace_page_cache_page(),
  invalidate_complete_page2(), and __remove_mapping().

   text    data     bss      dec    hex filename
8925147 1774832 1785856 12485835 be84cb vmlinux-!CONFIG_MEMCG-before
8925339 1774832 1785856 12486027 be858b vmlinux-!CONFIG_MEMCG-after
                            +192 text bytes
8965977 1784992 1785856 12536825 bf4bf9 vmlinux-CONFIG_MEMCG-before
8966750 1784992 1785856 12537598 bf4efe vmlinux-CONFIG_MEMCG-after
                            +773 text bytes

Performance tests run on v4.0-rc1-36-g4f671fe2f952.  Lower is better for
all metrics, they're all wall clock or cycle counts.  The read and write
fault benchmarks just measure fault time, they do not include I/O time.

* CONFIG_MEMCG not set:
                            baseline                              patched
  kbuild                 1m25.030000(+-0.088% 3 samples)       1m25.426667(+-0.120% 3 samples)
  dd write 100 MiB          0.859211561 +-15.10%                  0.874162885 +-15.03%
  dd write 200 MiB          1.670653105 +-17.87%                  1.669384764 +-11.99%
  dd write 1000 MiB         8.434691190 +-14.15%                  8.474733215 +-14.77%
  read fault cycles       254.0(+-0.000% 10 samples)            253.0(+-0.000% 10 samples)
  write fault cycles     2021.2(+-3.070% 10 samples)           1984.5(+-1.036% 10 samples)

* CONFIG_MEMCG=y root_memcg:
                            baseline                              patched
  kbuild                 1m25.716667(+-0.105% 3 samples)       1m25.686667(+-0.153% 3 samples)
  dd write 100 MiB          0.855650830 +-14.90%                  0.887557919 +-14.90%
  dd write 200 MiB          1.688322953 +-12.72%                  1.667682724 +-13.33%
  dd write 1000 MiB         8.418601605 +-14.30%                  8.673532299 +-15.00%
  read fault cycles       266.0(+-0.000% 10 samples)            266.0(+-0.000% 10 samples)
  write fault cycles     2051.7(+-1.349% 10 samples)           2049.6(+-1.686% 10 samples)

* CONFIG_MEMCG=y non-root_memcg:
                            baseline                              patched
  kbuild                 1m26.120000(+-0.273% 3 samples)       1m25.763333(+-0.127% 3 samples)
  dd write 100 MiB          0.861723964 +-15.25%                  0.818129350 +-14.82%
  dd write 200 MiB          1.669887569 +-13.30%                  1.698645885 +-13.27%
  dd write 1000 MiB         8.383191730 +-14.65%                  8.351742280 +-14.52%
  read fault cycles       265.7(+-0.172% 10 samples)            267.0(+-0.000% 10 samples)
  write fault cycles     2070.6(+-1.512% 10 samples)           2084.4(+-2.148% 10 samples)

As expected anon page faults are not affected by this patch.

tj: Updated to apply on top of the recent cancel_dirty_page() changes.

Signed-off-by: Sha Zhengju <handai.szj@gmail.com>
Signed-off-by: Greg Thelen <gthelen@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@fb.com>
2015-06-02 08:33:33 -06:00