Years ago when XFS was thought to be much more simple, we introduced
m_ag_maxlevels to specify the maximum btree height of per-AG btrees for
a given filesystem mount. Then we observed that inode btrees don't
actually have the same height and split that off; and now we have rmap
and refcount btrees with much different geometries and separate
maxlevels variables.
The 'ag' part of the name doesn't make much sense anymore, so rename
this to m_alloc_maxlevels to reinforce that this is the maximum height
of the *free space* btrees. This sets us up for the next patch, which
will add a variable to track the maximum height of all AG btrees.
(Also take the opportunity to improve adjacent comments and fix minor
style problems.)
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Split out the btree level information into a separate struct and put it
at the end of the cursor structure as a VLA. Files with huge data forks
(and in the future, the realtime rmap btree) will require the ability to
support many more levels than a per-AG btree cursor, which means that
we're going to create per-btree type cursor caches to conserve memory
for the more common case.
Note that a subsequent patch actually introduces dynamic cursor heights.
This one merely rearranges the structure to prepare for that.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reorganize struct xchk_btree so that we can dynamically size the context
structure to fit the type of btree cursor that we have. This will
enable us to use memory more efficiently once we start adding very tall
btree types. Right-size the lastkey array to match the number of *node*
levels in the tree so that we stop wasting space.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
The btree scrubbing code checks that the records (or keys) that it finds
in a btree block are all in order by calling the btree cursor's
->recs_inorder function. This of course makes no sense for the first
item in the block, so we switch that off with a separate variable in
struct xchk_btree.
Christoph helped me figure out that the variable is unnecessary, since
we just accessed bc_ptrs[level] and can compare that against zero. Use
that, and save ourselves some memory space.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
During review of subsequent patches, Dave and I noticed that this
function doesn't work quite right -- accessing cur->bc_ino depends on
the ROOT_IN_INODE flag, not LONG_PTRS. Fix that and the parentheses
isssue. While we're at it, remove the piece that accesses cur->bc_ag,
because block 0 of an AG is never part of a btree.
Note: This changes the btree scrubber tracepoints behavior -- if the
cursor has no buffer for a certain level, it will always report
NULLFSBLOCK. It is assumed that anyone tracing the online fsck code
will also be tracing xchk_start/xchk_done or otherwise be aware of what
exactly is being scrubbed.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
When we're scanning for btree roots to rebuild the AG headers, make sure
that the proposed tree does not exceed the maximum height for that btree
type (and not just XFS_BTREE_MAXLEVELS).
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Since each btree type has its own precomputed maxlevels variable now,
use them instead of the generic XFS_BTREE_MAXLEVELS to check the level
of each per-AG btree.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Convert the on-stack scrub context, btree scrub context, and da btree
scrub context into a heap allocation so that we reduce stack usage and
gain the ability to handle tall btrees without issue.
Specifically, this saves us ~208 bytes for the dabtree scrub, ~464 bytes
for the btree scrub, and ~200 bytes for the main scrub context.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandan.babu@oracle.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The kernel test robot found the following bug when running xfs/355 to
scrub a bmap btree:
XFS: Assertion failed: !sa->pag, file: fs/xfs/scrub/common.c, line: 412
------------[ cut here ]------------
kernel BUG at fs/xfs/xfs_message.c:110!
invalid opcode: 0000 [#1] SMP PTI
CPU: 2 PID: 1415 Comm: xfs_scrub Not tainted 5.14.0-rc4-00021-g48c6615cc557 #1
Hardware name: Hewlett-Packard p6-1451cx/2ADA, BIOS 8.15 02/05/2013
RIP: 0010:assfail+0x23/0x28 [xfs]
RSP: 0018:ffffc9000aacb890 EFLAGS: 00010202
RAX: 0000000000000000 RBX: ffffc9000aacbcc8 RCX: 0000000000000000
RDX: 00000000ffffffc0 RSI: 000000000000000a RDI: ffffffffc09e7dcd
RBP: ffffc9000aacbc80 R08: ffff8881fdf17d50 R09: 0000000000000000
R10: 000000000000000a R11: f000000000000000 R12: 0000000000000000
R13: ffff88820c7ed000 R14: 0000000000000001 R15: ffffc9000aacb980
FS: 00007f185b955700(0000) GS:ffff8881fdf00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f7f6ef43000 CR3: 000000020de38002 CR4: 00000000001706e0
Call Trace:
xchk_ag_read_headers+0xda/0x100 [xfs]
xchk_ag_init+0x15/0x40 [xfs]
xchk_btree_check_block_owner+0x76/0x180 [xfs]
xchk_btree_get_block+0xd0/0x140 [xfs]
xchk_btree+0x32e/0x440 [xfs]
xchk_bmap_btree+0xd4/0x140 [xfs]
xchk_bmap+0x1eb/0x3c0 [xfs]
xfs_scrub_metadata+0x227/0x4c0 [xfs]
xfs_ioc_scrub_metadata+0x50/0xc0 [xfs]
xfs_file_ioctl+0x90c/0xc40 [xfs]
__x64_sys_ioctl+0x83/0xc0
do_syscall_64+0x3b/0xc0
The unusual handling of errors while initializing struct xchk_ag is the
root cause here. Since the beginning of xfs_scrub, the goal of
xchk_ag_read_headers has been to read all three AG header buffers and
attach them both to the xchk_ag structure and the scrub transaction.
Corruption errors on any of the three headers doesn't necessarily
trigger an immediate return to userspace, because xfs_scrub can also
tell us to /fix/ the problem.
In other words, it's possible for the xchk_ag init functions to return
an error code and a partially filled out structure so that scrub can use
however much information it managed to pull. Before 5.15, it was
sufficient to cancel (or commit) the scrub transaction on the way out of
the scrub code to release the buffers.
Ccommit 48c6615cc5 added a reference to the perag structure to struct
xchk_ag. Since perag structures are not attached to transactions like
buffers are, this adds the requirement that the perag ref be released
explicitly. The scrub teardown function xchk_teardown was amended to do
this for the xchk_ag embedded in struct xfs_scrub.
Unfortunately, I forgot that certain parts of the scrub code probe
multiple AGs and therefore handle the initialization and cleanup on
their own. Specifically, the bmbt scrubber will initialize it long
enough to cross-reference AG metadata for btree blocks and for the
extent mappings in the bmbt.
If one of the AG headers is corrupt, the init function returns with a
live perag structure reference and some of the AG header buffers. If an
error occurs, the cross referencing will be noted as XCORRUPTion and
skipped, but the main scrub process will move on to the next record.
It is now necessary to release the perag reference before we try to
analyze something from a different AG, or else we'll trip over the
assertion noted above.
Fixes: 48c6615cc5 ("xfs: grab active perag ref when reading AG headers")
Reported-by: kernel test robot <oliver.sang@intel.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Stop directly referencing b_bn in code outside the buffer cache, as
b_bn is supposed to be used only as an internal cache index.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Introduce a helper function xfs_buf_daddr() to extract the disk
address of the buffer from the struct xfs_buf. This will replace
direct accesses to bp->b_bn and bp->b_maps[0].bm_bn, as well as
the XFS_BUF_ADDR() macro.
This patch introduces the helper function and replaces all uses of
XFS_BUF_ADDR() as this is just a simple sed replacement.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Rather than open coding XFS_SB_VERSION_NUM(sbp) == XFS_SB_VERSION_5
checks everywhere, add a simple wrapper to encapsulate this and make
the code easier to read.
This allows us to remove the xfs_sb_version_has_v3inode() wrapper
which is only used in xfs_format.h now and is just a version number
check.
There are a couple of places where we should be checking the mount
feature bits rather than the superblock version (e.g. remount), so
those are converted to use xfs_has_crc(mp) instead.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
This is a conversion of the remaining xfs_sb_version_has..(sbp)
checks to use xfs_has_..(mp) feature checks.
This was largely done with a vim replacement macro that did:
:0,$s/xfs_sb_version_has\(.*\)&\(.*\)->m_sb/xfs_has_\1\2/g<CR>
A couple of other variants were also used, and the rest touched up
by hand.
$ size -t fs/xfs/built-in.a
text data bss dec hex filename
before 1127533 311352 484 1439369 15f689 (TOTALS)
after 1125360 311352 484 1437196 15ee0c (TOTALS)
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The scrub feature checks are the last place that the superblock
feature checks are used. Convert them to mount based feature checks.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Remove the shouty macro and instead use the inline function that
matches other state/feature check wrapper naming. This conversion
was done with sed.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
The remaining mount flags kept in m_flags are actually runtime state
flags. These change dynamically, so they really should be updated
atomically so we don't potentially lose an update due to racing
modifications.
Convert these remaining flags to be stored in m_opstate and use
atomic bitops to set and clear the flags. This also adds a couple of
simple wrappers for common state checks - read only and shutdown.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Replace m_flags feature checks with xfs_has_<feature>() calls and
rework the setup code to set flags in m_features.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Convert the xfs_sb_version_hasfoo() to checks against
mp->m_features. Checks of the superblock itself during disk
operations (e.g. in the read/write verifiers and the to/from disk
formatters) are not converted - they operate purely on the
superblock state. Everything else should use the mount features.
Large parts of this conversion were done with sed with commands like
this:
for f in `git grep -l xfs_sb_version_has fs/xfs/*.c`; do
sed -i -e 's/xfs_sb_version_has\(.*\)(&\(.*\)->m_sb)/xfs_has_\1(\2)/' $f
done
With manual cleanups for things like "xfs_has_extflgbit" and other
little inconsistencies in naming.
The result is ia lot less typing to check features and an XFS binary
size reduced by a bit over 3kB:
$ size -t fs/xfs/built-in.a
text data bss dec hex filenam
before 1130866 311352 484 1442702 16038e (TOTALS)
after 1127727 311352 484 1439563 15f74b (TOTALS)
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Because there are a lot of tracepoints that express numeric data with
an associated unit and tag, document what they are to help everyone else
keep these thigns straight.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
When using pretty-printed scrub tracepoints, decode the meaning of the
scrub flags as strings for easier reading.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Always print inode generation in hexadecimal and preceded with the unit
"gen".
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Emit whichfork values as text strings in the ftrace output.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Some of our tracepoints have a field known as "len". That name doesn't
describe any units, which makes the fields not very useful. Rename the
fields to capture units and ensure the format is hexadecimal.
"fsbcount" are in units of fs blocks
"bbcount" are in units of 512b blocks
"ireccount" are in units of inodes
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Some of our tracepoints describe fields as "offset". That name doesn't
describe any units, which makes the fields not very useful. Rename the
fields to capture units and ensure the format is hexadecimal.
"fileoff" means file offset, in units of fs blocks
"pos" means file offset, in bytes
"forkoff" means inode fork offset, in bytes
The one remaining "offset" value is for iclogs, since that's the byte
offset of the end of where we've written into the current iclog.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Always print rmap owner number in hexadecimal and preceded with the unit
"owner".
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Always print allocation group block numbers in hexadecimal and preceded
with the unit "agbno".
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Always print allocation group numbers in hexadecimal and preceded with
the unit "agno".
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Always print inode numbers in hexadecimal and preceded with the unit
"ino" or "agino", as apropriate. Fix one tracepoint that used "ino %u"
for an inode btree block count to reduce confusion.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
XFS_DADDR_TO_FSB converts a raw disk address (in units of 512b blocks)
to a raw disk address (in units of fs blocks). Unfortunately, the
xchk_block_error_class tracepoints incorrectly uses this to decode
xfs_daddr_t into segmented AG number and AG block addresses. Use the
correct translation code.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
xchk_btree calls a user-supplied function to validate each btree record
that it finds. Those functions are not supposed to change the record
data, so mark the parameter const.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
The query_range functions are supposed to call a caller-supplied
function on each record found in the dataset. These functions don't
own the memory storing the record, so don't let them change the record.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Now that we always grab an active reference to a perag structure when
dealing with perag metadata, we can remove this unnecessary variable.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
There is no reason for this wrapper existing anymore. All the places
that use KM_NOFS allocation are within transaction contexts and
hence covered by memalloc_nofs_save/restore contexts. Hence we don't
need any special handling of vmalloc for large IOs anymore and
so special casing this code isn't necessary.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
This patch prepares scrub to deal with the possibility of tearing down
entire AGs by changing the order of resource acquisition to match the
rest of the XFS codebase. In other words, scrub now grabs AG resources
in order of: perag structure, then AGI/AGF/AGFL buffers, then btree
cursors; and releases them in reverse order.
This requires us to distinguish xchk_ag_init callers -- some are
responding to a user request to check AG metadata, in which case we can
return ENOENT to userspace; but other callers have an ondisk reference
to an AG that they're trying to cross-reference. In this second case,
the lack of an AG means there's ondisk corruption, since ondisk metadata
cannot point into nonexistent space.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
Now that we have the infrastructure to switch background workers on and
off at will, fix the block gc worker code so that we don't actually run
the worker when the filesystem is frozen, same as we do for deferred
inactivation.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Move inode inactivation to background work contexts so that it no
longer runs in the context that releases the final reference to an
inode. This will allow process work that ends up blocking on
inactivation to continue doing work while the filesytem processes
the inactivation in the background.
A typical demonstration of this is unlinking an inode with lots of
extents. The extents are removed during inactivation, so this blocks
the process that unlinked the inode from the directory structure. By
moving the inactivation to the background process, the userspace
applicaiton can keep working (e.g. unlinking the next inode in the
directory) while the inactivation work on the previous inode is
done by a different CPU.
The implementation of the queue is relatively simple. We use a
per-cpu lockless linked list (llist) to queue inodes for
inactivation without requiring serialisation mechanisms, and a work
item to allow the queue to be processed by a CPU bound worker
thread. We also keep a count of the queue depth so that we can
trigger work after a number of deferred inactivations have been
queued.
The use of a bound workqueue with a single work depth allows the
workqueue to run one work item per CPU. We queue the work item on
the CPU we are currently running on, and so this essentially gives
us affine per-cpu worker threads for the per-cpu queues. THis
maintains the effective CPU affinity that occurs within XFS at the
AG level due to all objects in a directory being local to an AG.
Hence inactivation work tends to run on the same CPU that last
accessed all the objects that inactivation accesses and this
maintains hot CPU caches for unlink workloads.
A depth of 32 inodes was chosen to match the number of inodes in an
inode cluster buffer. This hopefully allows sequential
allocation/unlink behaviours to defering inactivation of all the
inodes in a single cluster buffer at a time, further helping
maintain hot CPU and buffer cache accesses while running
inactivations.
A hard per-cpu queue throttle of 256 inode has been set to avoid
runaway queuing when inodes that take a long to time inactivate are
being processed. For example, when unlinking inodes with large
numbers of extents that can take a lot of processing to free.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
[djwong: tweak comments and tracepoints, convert opflags to state bits]
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
These only made a difference when quotaoff supported disabling quota
accounting on a mounted file system, so we can switch everyone to use
a single set of flags and helpers now. Note that the *QUOTA_ON naming
for the helpers is kept as it was the much more commonly used one.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
If we encounter a directory that has been configured to pass on an
extent size hint to a new realtime file and the hint isn't an integer
multiple of the rt extent size, we should flag the hint for
administrative review because that is a misconfiguration (that other
parts of the kernel will fix automatically).
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
- Refactor the buffer cache to use bulk page allocation
- Convert agnumber-based AG iteration to walk per-AG structures
- Clean up some unit conversions and other code warts
- Reduce spinlock contention in the directio fastpath
- Collapse all the inode cache walks into a single function
- Remove indirect function calls from the inode cache walk code
- Dramatically reduce the number of cache flushes sent when writing log
buffers
- Preserve inode sickness reports for longer
- Rename xfs_eofblocks since it controls inode cache walks
- Refactor the extended attribute code to prepare it for the addition
of log intent items to make xattrs fully transactional
- A few fixes to earlier large patchsets
- Log recovery fixes so that we don't accidentally mark the log clean
when log intent recovery fails
- Fix some latent SOB errors
- Clean up shutdown messages that get logged to dmesg
- Fix a regression in the online shrink code
- Fix a UAF in the buffer logging code if the fs goes offline
- Fix uninitialized error variables
- Fix a UAF in the CIL when commited log item callbacks race with a
shutdown
- Fix a bug where the CIL could hang trying to push part of the log ring
buffer that hasn't been filled yet
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEUzaAxoMeQq6m2jMV+H93GTRKtOsFAmDXP38ACgkQ+H93GTRK
tOsKzw//eHvEgeyBo7ek06GDsUph2kQVR9AJWE7MNMiBFxlmL8R9H225xJK7Qmcr
YswcyEeDq8cNXbXDA249ueuMb+DxhZPY68hPK5BJ3KsbvL2RZV0lJCbk492l4cgb
IvBJiG/MDo55km83tdr81AlmFYQM7rSQz5MbVogGxxsnp0ul3VpIrJZba8kPRDQ1
mZzH2fdlnE9Ozw/CfvjSgT1pySyFpxNeTRucYXUQil1hL1AGTBw7rGGNnccS090y
u/EawQ4WJ131m8O3+WomUmaGyZFlWvTpHzukKxvrEvZ6AG+HpIhMcbZ5J6nkRTY4
xxhUBG2qNKIcgPmPwAGmx1cylcsOCNKQgp+fko9tAZjEkgT5cbCpqpjGgjNB0RCf
pB0PY6idCFl9hmBpVgMWz2AZ9IsDmK54qufmLtzq/zN8cThzt6A95UUR0rGu5Kd8
CUmmdQTYl0GqlTTszCO2rw1+zRtcasMpBVmeYHDxy00bd1dHLUJ6o8DuXRYTTQti
J/6CZVVD56jieRb+uvrOq4mhiPR2kynciiu1dXdY5kx79kKom6HMBBvtTl8b9kmh
smWihfip7BTpz5vFzcwFmMxFwzW3K4LnDZl7qEGqXDEIHOL+pRWazU2yN3JZRGyd
z4SQMJuER0HTTA0yO09c3/CX9onorhjUIMgQ9U25l1hdyFna0+o=
=08Q9
-----END PGP SIGNATURE-----
Merge tag 'xfs-5.14-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
Pull xfs updates from Darrick Wong:
"Most of the work this cycle has been on refactoring various parts of
the codebase. The biggest non-cleanup changes are (1) reducing the
number of cache flushes sent when writing the log; (2) a substantial
number of log recovery fixes; and (3) I started accepting pull
requests from contributors if the commits in their branches match
what's been sent to the list.
For a week or so I /had/ staged a major cleanup of the logging code
from Dave Chinner, but it exposed so many lurking bugs in other parts
of the logging and log recovery code that I decided to defer that
patchset until we can address those latent bugs.
Larger cleanups this time include walking the incore inode cache (me)
and rework of the extended attribute code (Allison) to prepare it for
adding logged xattr updates (and directory tree parent pointers) in
future releases.
Summary:
- Refactor the buffer cache to use bulk page allocation
- Convert agnumber-based AG iteration to walk per-AG structures
- Clean up some unit conversions and other code warts
- Reduce spinlock contention in the directio fastpath
- Collapse all the inode cache walks into a single function
- Remove indirect function calls from the inode cache walk code
- Dramatically reduce the number of cache flushes sent when writing
log buffers
- Preserve inode sickness reports for longer
- Rename xfs_eofblocks since it controls inode cache walks
- Refactor the extended attribute code to prepare it for the addition
of log intent items to make xattrs fully transactional
- A few fixes to earlier large patchsets
- Log recovery fixes so that we don't accidentally mark the log clean
when log intent recovery fails
- Fix some latent SOB errors
- Clean up shutdown messages that get logged to dmesg
- Fix a regression in the online shrink code
- Fix a UAF in the buffer logging code if the fs goes offline
- Fix uninitialized error variables
- Fix a UAF in the CIL when commited log item callbacks race with a
shutdown
- Fix a bug where the CIL could hang trying to push part of the log
ring buffer that hasn't been filled yet"
* tag 'xfs-5.14-merge-6' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (102 commits)
xfs: don't wait on future iclogs when pushing the CIL
xfs: Fix a CIL UAF by getting get rid of the iclog callback lock
xfs: remove callback dequeue loop from xlog_state_do_iclog_callbacks
xfs: don't nest icloglock inside ic_callback_lock
xfs: Initialize error in xfs_attr_remove_iter
xfs: fix endianness issue in xfs_ag_shrink_space
xfs: remove dead stale buf unpin handling code
xfs: hold buffer across unpin and potential shutdown processing
xfs: force the log offline when log intent item recovery fails
xfs: fix log intent recovery ENOSPC shutdowns when inactivating inodes
xfs: shorten the shutdown messages to a single line
xfs: print name of function causing fs shutdown instead of hex pointer
xfs: fix type mismatches in the inode reclaim functions
xfs: separate primary inode selection criteria in xfs_iget_cache_hit
xfs: refactor the inode recycling code
xfs: add iclog state trace events
xfs: xfs_log_force_lsn isn't passed a LSN
xfs: Fix CIL throttle hang when CIL space used going backwards
xfs: journal IO cache flush reductions
xfs: remove need_start_rec parameter from xlog_write()
...
Hi Linus,
Please, pull the following patches that fix many fall-through warnings
when building with Clang 12.0.0 and this[1] change reverted. Notice
that in order to enable -Wimplicit-fallthrough for Clang, such change[1]
is meant to be reverted at some point. So, these patches help to move
in that direction.
Thanks!
[1] commit e2079e93f5 ("kbuild: Do not enable -Wimplicit-fallthrough for clang for now")
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEkmRahXBSurMIg1YvRwW0y0cG2zEFAmDaNe8ACgkQRwW0y0cG
2zFfGA/9G1A/Hrf261/P9olyYe2TRBwLnO1tUDREm3qtJ2JdKpf+7EM3VDm+Ue/A
qhNmwp5G7nmp7Nqq8MfbdFjeo/rPS67voXiOfO8b0pU+E4XlOc+B1BXL0BWtnP7b
xvuauklQU6dmCp2u44vsxdBIO6ooR0uQh+7/+1la+mPyEk9mlooQ4lyFcpfA53yt
zxEGrx0tZBrDXghEI1CkHxOaJaX3qhw4EUYvxe8n2L7Dgx+o2djL/G4/SRYH/xoq
MZa8TLyCuR3J0Ph4TfDONhMmf8ZLn+j70xBhewcVfZ1JfvGSVw4DQNN44KZCDnrK
tGsBo5VFksjbmX83LmT8UlqB1rTP4nVQtRmtOPvbQA9kd19yy+Y64Y58FcGU2FHl
PWt3rQJ1JzBo3TtzQoz7HSJCt9QTil4U7hFbNtcp5BbWQfUPkRgpWcL3FOchZbZ6
FnLMqHanw2lrKMzZEoyHvg6G7BT67k3rrFgtd/xGSn8ohtfKXaZBYa9PKrQ0LwuG
o8tQtIX1owj4rbdI1t6Ob4X/tT6Y7DzH8nsF+TsJQ4XeSCD2rURUcYltBMIlEr16
DFj7iWKIrrX80/JRsBXu7a9h8nn5YptxV12SGRq/Cu/2jfRwjDye4IzsCyqMf67n
oEN6YC1XYaEUmKXTnI8Z0CxY0qwSTcNjeH5Ci9jWepinsqD3Jxw=
=Kt2q
-----END PGP SIGNATURE-----
Merge tag 'fallthrough-fixes-clang-5.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gustavoars/linux
Pull fallthrough fixes from Gustavo Silva:
"Fix many fall-through warnings when building with Clang 12.0.0 and
'-Wimplicit-fallthrough' so that we at some point will be able to
enable that warning by default"
* tag 'fallthrough-fixes-clang-5.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gustavoars/linux: (26 commits)
rxrpc: Fix fall-through warnings for Clang
drm/nouveau/clk: Fix fall-through warnings for Clang
drm/nouveau/therm: Fix fall-through warnings for Clang
drm/nouveau: Fix fall-through warnings for Clang
xfs: Fix fall-through warnings for Clang
xfrm: Fix fall-through warnings for Clang
tipc: Fix fall-through warnings for Clang
sctp: Fix fall-through warnings for Clang
rds: Fix fall-through warnings for Clang
net/packet: Fix fall-through warnings for Clang
net: netrom: Fix fall-through warnings for Clang
ide: Fix fall-through warnings for Clang
hwmon: (max6621) Fix fall-through warnings for Clang
hwmon: (corsair-cpro) Fix fall-through warnings for Clang
firewire: core: Fix fall-through warnings for Clang
braille_console: Fix fall-through warnings for Clang
ipv4: Fix fall-through warnings for Clang
qlcnic: Fix fall-through warnings for Clang
bnxt_en: Fix fall-through warnings for Clang
netxen_nic: Fix fall-through warnings for Clang
...
If we want to use active references to the perag to be able to gate
shrink removing AGs and hence perags safely, we've got a fair bit of
work to do actually use perags in all the places we need to.
There's a lot of code that iterates ag numbers and then
looks up perags from that, often multiple times for the same perag
in the one operation. If we want to use reference counted perags for
access control, then we need to convert all these uses to perag
iterators, not agno iterators.
[Patches 1-4]
The first step of this is consolidating all the perag management -
init, free, get, put, etc into a common location. THis is spread all
over the place right now, so move it all into libxfs/xfs_ag.[ch].
This does expose kernel only bits of the perag to libxfs and hence
userspace, so the structures and code is rearranged to minimise the
number of ifdefs that need to be added to the userspace codebase.
The perag iterator in xfs_icache.c is promoted to a first class API
and expanded to the needs of the code as required.
[Patches 5-10]
These are the first basic perag iterator conversions and changes to
pass the perag down the stack from those iterators where
appropriate. A lot of this is obvious, simple changes, though in
some places we stop passing the perag down the stack because the
code enters into an as yet unconverted subsystem that still uses raw
AGs.
[Patches 11-16]
These replace the agno passed in the btree cursor for per-ag btree
operations with a perag that is passed to the cursor init function.
The cursor takes it's own reference to the perag, and the reference
is dropped when the cursor is deleted. Hence we get reference
coverage for the entire time the cursor is active, even if the code
that initialised the cursor drops it's reference before the cursor
or any of it's children (duplicates) have been deleted.
The first patch adds the perag infrastructure for the cursor, the
next four patches convert a btree cursor at a time, and the last
removes the agno from the cursor once it is unused.
[Patches 17-21]
These patches are a demonstration of the simplifications and
cleanups that come from plumbing the perag through interfaces that
select and then operate on a specific AG. In this case the inode
allocation algorithm does up to three walks across all AGs before it
either allocates an inode or fails. Two of these walks are purely
just to select the AG, and even then it doesn't guarantee inode
allocation success so there's a third walk if the selected AG
allocation fails.
These patches collapse the selection and allocation into a single
loop, simplifies the error handling because xfs_dir_ialloc() always
returns ENOSPC if no AG was selected for inode allocation or we fail
to allocate an inode in any AG, gets rid of xfs_dir_ialloc()
wrapper, converts inode allocation to run entirely from a single
perag instance, and then factors xfs_dialloc() into a much, much
simpler loop which is easy to understand.
Hence we end up with the same inode allocation logic, but it only
needs two complete iterations at worst, makes AG selection and
allocation atomic w.r.t. shrink and chops out out over 100 lines of
code from this hot code path.
[Patch 22]
Converts the unlink path to pass perags through it.
There's more conversion work to be done, but this patchset gets
through a large chunk of it in one hit. Most of the iterators are
converted, so once this is solidified we can move on to converting
these to active references for being able to free perags while the
fs is still active.
-----BEGIN PGP SIGNATURE-----
iQJIBAABCgAyFiEEmJOoJ8GffZYWSjj/regpR/R1+h0FAmC3HUgUHGRhdmlkQGZy
b21vcmJpdC5jb20ACgkQregpR/R1+h2yaw/+P0JzpI+6n06Ei00mjgE/Du/WhMLi
0JQ93Grlj+miuGGT9DgGCiRpoZnefhEk+BH6JqoEw1DQ3T5ilmAzrHLUUHSQC3+S
dv85sJduheQ6yHuoO+4MzkaSq6JWKe7E9gZwAsVyBul5aSjdmaJaQdPwYMTXSXo0
5Uqq8ECFkMcaHVNjcBfasgR/fdyWy2Qe4PFTHTHdQpd+DNZ9UXgFKHW2og+1iry/
zDIvdIppJULA09TvVcZuFjd/1NzHQ/fLj5PAzz8GwagB4nz2x3s78Zevmo5yW/jK
3/+50vXa8ldhiHDYGTS3QXvS0xJRyqUyD47eyWOOiojZw735jEvAlCgjX6+0X1HC
k3gCkQLv8l96fRkvUpgnLf/fjrUnlCuNBkm9d1Eq2Tied8dvLDtiEzoC6L05Nqob
yd/nIUb1zwJFa9tsoheHhn0bblTGX1+zP0lbRJBje0LotpNO9DjGX5JoIK4GR7F8
y1VojcdgRI14HlxUnbF3p8wmQByN+M2tnp6GSdv9BA65bjqi05Rj/steFdZHBV6x
wiRs8Yh6BTvMwKgufHhRQHfRahjNHQ/T/vOE+zNbWqemS9wtEUDop+KvPhC36R/k
o/cmr23cF8ESX2eChk7XM4On3VEYpcvp2zSFgrFqZYl6RWOwEis3Htvce3KuSTPp
8Xq70te0gr2DVUU=
=YNzW
-----END PGP SIGNATURE-----
Merge tag 'xfs-perag-conv-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs into xfs-5.14-merge2
xfs: initial agnumber -> perag conversions for shrink
If we want to use active references to the perag to be able to gate
shrink removing AGs and hence perags safely, we've got a fair bit of
work to do actually use perags in all the places we need to.
There's a lot of code that iterates ag numbers and then
looks up perags from that, often multiple times for the same perag
in the one operation. If we want to use reference counted perags for
access control, then we need to convert all these uses to perag
iterators, not agno iterators.
[Patches 1-4]
The first step of this is consolidating all the perag management -
init, free, get, put, etc into a common location. THis is spread all
over the place right now, so move it all into libxfs/xfs_ag.[ch].
This does expose kernel only bits of the perag to libxfs and hence
userspace, so the structures and code is rearranged to minimise the
number of ifdefs that need to be added to the userspace codebase.
The perag iterator in xfs_icache.c is promoted to a first class API
and expanded to the needs of the code as required.
[Patches 5-10]
These are the first basic perag iterator conversions and changes to
pass the perag down the stack from those iterators where
appropriate. A lot of this is obvious, simple changes, though in
some places we stop passing the perag down the stack because the
code enters into an as yet unconverted subsystem that still uses raw
AGs.
[Patches 11-16]
These replace the agno passed in the btree cursor for per-ag btree
operations with a perag that is passed to the cursor init function.
The cursor takes it's own reference to the perag, and the reference
is dropped when the cursor is deleted. Hence we get reference
coverage for the entire time the cursor is active, even if the code
that initialised the cursor drops it's reference before the cursor
or any of it's children (duplicates) have been deleted.
The first patch adds the perag infrastructure for the cursor, the
next four patches convert a btree cursor at a time, and the last
removes the agno from the cursor once it is unused.
[Patches 17-21]
These patches are a demonstration of the simplifications and
cleanups that come from plumbing the perag through interfaces that
select and then operate on a specific AG. In this case the inode
allocation algorithm does up to three walks across all AGs before it
either allocates an inode or fails. Two of these walks are purely
just to select the AG, and even then it doesn't guarantee inode
allocation success so there's a third walk if the selected AG
allocation fails.
These patches collapse the selection and allocation into a single
loop, simplifies the error handling because xfs_dir_ialloc() always
returns ENOSPC if no AG was selected for inode allocation or we fail
to allocate an inode in any AG, gets rid of xfs_dir_ialloc()
wrapper, converts inode allocation to run entirely from a single
perag instance, and then factors xfs_dialloc() into a much, much
simpler loop which is easy to understand.
Hence we end up with the same inode allocation logic, but it only
needs two complete iterations at worst, makes AG selection and
allocation atomic w.r.t. shrink and chops out out over 100 lines of
code from this hot code path.
[Patch 22]
Converts the unlink path to pass perags through it.
There's more conversion work to be done, but this patchset gets
through a large chunk of it in one hit. Most of the iterators are
converted, so once this is solidified we can move on to converting
these to active references for being able to free perags while the
fs is still active.
* tag 'xfs-perag-conv-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/dgc/linux-xfs: (23 commits)
xfs: remove xfs_perag_t
xfs: use perag through unlink processing
xfs: clean up and simplify xfs_dialloc()
xfs: inode allocation can use a single perag instance
xfs: get rid of xfs_dir_ialloc()
xfs: collapse AG selection for inode allocation
xfs: simplify xfs_dialloc_select_ag() return values
xfs: remove agno from btree cursor
xfs: use perag for ialloc btree cursors
xfs: convert allocbt cursors to use perags
xfs: convert refcount btree cursor to use perags
xfs: convert rmap btree cursor to using a perag
xfs: add a perag to the btree cursor
xfs: pass perags around in fsmap data dev functions
xfs: push perags through the ag reservation callouts
xfs: pass perags through to the busy extent code
xfs: convert secondary superblock walk to use perags
xfs: convert xfs_iwalk to use perag references
xfs: convert raw ag walks to use for_each_perag
xfs: make for_each_perag... a first class citizen
...
Now that everything passes a perag, the agno is not needed anymore.
Convert all the users to use pag->pag_agno instead and remove the
agno from the cursor. This was largely done as an automated search
and replace.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Which will eventually completely replace the agno in it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Brian Foster <bfoster@redhat.com>
All of the callers of the busy extent API either have perag
references available to use so we can pass a perag to the busy
extent functions rather than having them have to do unnecessary
lookups.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Convert the raw walks to an iterator, pulling the current AG out of
pag->pag_agno instead of the loop iterator variable.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
for_each_perag_tag() is defined in xfs_icache.c for local use.
Promote this to xfs_ag.h and define equivalent iteration functions
so that we can use them to iterate AGs instead to replace open coded
perag walks and perag lookups.
We also convert as many of the straight forward open coded AG walks
to use these iterators as possible. Anything that is not a direct
conversion to an iterator is ignored and will be updated in future
commits.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Brian Foster <bfoster@redhat.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>