calculate_alignment() function is only used inside slab_common.c. So
make it static and let the compiler do more optimizations.
After this patch there's a small improvement in text and data size.
$ gcc --version
gcc (GCC) 7.2.1 20171128
Before:
text data bss dec hex filename
9890457 3828702 1212364 14931523 e3d643 vmlinux
After:
text data bss dec hex filename
9890437 3828670 1212364 14931471 e3d60f vmlinux
Also I fixed a style problem reported by checkpatch.
WARNING: Missing a blank line after declarations
#53: FILE: mm/slab_common.c:286:
+ unsigned long ralign = cache_line_size();
+ while (size <= ralign / 2)
Link: http://lkml.kernel.org/r/20171210080132.406-1-bhlee.kernel@gmail.com
Signed-off-by: Byongho Lee <bhlee.kernel@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Mark the kmalloc slab caches as entirely whitelisted. These caches
are frequently used to fulfill kernel allocations that contain data
to be copied to/from userspace. Internal-only uses are also common,
but are scattered in the kernel. For now, mark all the kmalloc caches
as whitelisted.
This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY
whitelisting code in the last public patch of grsecurity/PaX based on my
understanding of the code. Changes or omissions from the original code are
mine and don't reflect the original grsecurity/PaX code.
Signed-off-by: David Windsor <dave@nullcore.net>
[kees: merged in moved kmalloc hunks, adjust commit log]
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Cc: linux-xfs@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Christoph Lameter <cl@linux.com>
This patch prepares the slab allocator to handle caches having annotations
(useroffset and usersize) defining usercopy regions.
This patch is modified from Brad Spengler/PaX Team's PAX_USERCOPY
whitelisting code in the last public patch of grsecurity/PaX based on
my understanding of the code. Changes or omissions from the original
code are mine and don't reflect the original grsecurity/PaX code.
Currently, hardened usercopy performs dynamic bounds checking on slab
cache objects. This is good, but still leaves a lot of kernel memory
available to be copied to/from userspace in the face of bugs. To further
restrict what memory is available for copying, this creates a way to
whitelist specific areas of a given slab cache object for copying to/from
userspace, allowing much finer granularity of access control. Slab caches
that are never exposed to userspace can declare no whitelist for their
objects, thereby keeping them unavailable to userspace via dynamic copy
operations. (Note, an implicit form of whitelisting is the use of constant
sizes in usercopy operations and get_user()/put_user(); these bypass
hardened usercopy checks since these sizes cannot change at runtime.)
To support this whitelist annotation, usercopy region offset and size
members are added to struct kmem_cache. The slab allocator receives a
new function, kmem_cache_create_usercopy(), that creates a new cache
with a usercopy region defined, suitable for declaring spans of fields
within the objects that get copied to/from userspace.
In this patch, the default kmem_cache_create() marks the entire allocation
as whitelisted, leaving it semantically unchanged. Once all fine-grained
whitelists have been added (in subsequent patches), this will be changed
to a usersize of 0, making caches created with kmem_cache_create() not
copyable to/from userspace.
After the entire usercopy whitelist series is applied, less than 15%
of the slab cache memory remains exposed to potential usercopy bugs
after a fresh boot:
Total Slab Memory: 48074720
Usercopyable Memory: 6367532 13.2%
task_struct 0.2% 4480/1630720
RAW 0.3% 300/96000
RAWv6 2.1% 1408/64768
ext4_inode_cache 3.0% 269760/8740224
dentry 11.1% 585984/5273856
mm_struct 29.1% 54912/188448
kmalloc-8 100.0% 24576/24576
kmalloc-16 100.0% 28672/28672
kmalloc-32 100.0% 81920/81920
kmalloc-192 100.0% 96768/96768
kmalloc-128 100.0% 143360/143360
names_cache 100.0% 163840/163840
kmalloc-64 100.0% 167936/167936
kmalloc-256 100.0% 339968/339968
kmalloc-512 100.0% 350720/350720
kmalloc-96 100.0% 455616/455616
kmalloc-8192 100.0% 655360/655360
kmalloc-1024 100.0% 812032/812032
kmalloc-4096 100.0% 819200/819200
kmalloc-2048 100.0% 1310720/1310720
After some kernel build workloads, the percentage (mainly driven by
dentry and inode caches expanding) drops under 10%:
Total Slab Memory: 95516184
Usercopyable Memory: 8497452 8.8%
task_struct 0.2% 4000/1456000
RAW 0.3% 300/96000
RAWv6 2.1% 1408/64768
ext4_inode_cache 3.0% 1217280/39439872
dentry 11.1% 1623200/14608800
mm_struct 29.1% 73216/251264
kmalloc-8 100.0% 24576/24576
kmalloc-16 100.0% 28672/28672
kmalloc-32 100.0% 94208/94208
kmalloc-192 100.0% 96768/96768
kmalloc-128 100.0% 143360/143360
names_cache 100.0% 163840/163840
kmalloc-64 100.0% 245760/245760
kmalloc-256 100.0% 339968/339968
kmalloc-512 100.0% 350720/350720
kmalloc-96 100.0% 563520/563520
kmalloc-8192 100.0% 655360/655360
kmalloc-1024 100.0% 794624/794624
kmalloc-4096 100.0% 819200/819200
kmalloc-2048 100.0% 1257472/1257472
Signed-off-by: David Windsor <dave@nullcore.net>
[kees: adjust commit log, split out a few extra kmalloc hunks]
[kees: add field names to function declarations]
[kees: convert BUGs to WARNs and fail closed]
[kees: add attack surface reduction analysis to commit log]
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Cc: linux-xfs@vger.kernel.org
Signed-off-by: Kees Cook <keescook@chromium.org>
Acked-by: Christoph Lameter <cl@linux.com>
Convert all allocations that used a NOTRACK flag to stop using it.
Link: http://lkml.kernel.org/r/20171007030159.22241-3-alexander.levin@verizon.com
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tim Hansen <devtimhansen@gmail.com>
Cc: Vegard Nossum <vegardno@ifi.uio.no>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "kmemcheck: kill kmemcheck", v2.
As discussed at LSF/MM, kill kmemcheck.
KASan is a replacement that is able to work without the limitation of
kmemcheck (single CPU, slow). KASan is already upstream.
We are also not aware of any users of kmemcheck (or users who don't
consider KASan as a suitable replacement).
The only objection was that since KASAN wasn't supported by all GCC
versions provided by distros at that time we should hold off for 2
years, and try again.
Now that 2 years have passed, and all distros provide gcc that supports
KASAN, kill kmemcheck again for the very same reasons.
This patch (of 4):
Remove kmemcheck annotations, and calls to kmemcheck from the kernel.
[alexander.levin@verizon.com: correctly remove kmemcheck call from dma_map_sg_attrs]
Link: http://lkml.kernel.org/r/20171012192151.26531-1-alexander.levin@verizon.com
Link: http://lkml.kernel.org/r/20171007030159.22241-2-alexander.levin@verizon.com
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Tim Hansen <devtimhansen@gmail.com>
Cc: Vegard Nossum <vegardno@ifi.uio.no>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add sparse-checked slab_flags_t for struct kmem_cache::flags (SLAB_POISON,
etc).
SLAB is bloated temporarily by switching to "unsigned long", but only
temporarily.
Link: http://lkml.kernel.org/r/20171021100225.GA22428@avx2
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kernel may panic when an oom happens without killable process
sometimes it is caused by huge unreclaimable slabs used by kernel.
Although kdump could help debug such problem, however, kdump is not
available on all architectures and it might be malfunction sometime.
And, since kernel already panic it is worthy capturing such information
in dmesg to aid touble shooting.
Print out unreclaimable slab info (used size and total size) which
actual memory usage is not zero (num_objs * size != 0) when
unreclaimable slabs amount is greater than total user memory (LRU
pages).
The output looks like:
Unreclaimable slab info:
Name Used Total
rpc_buffers 31KB 31KB
rpc_tasks 7KB 7KB
ebitmap_node 1964KB 1964KB
avtab_node 5024KB 5024KB
xfs_buf 1402KB 1402KB
xfs_ili 134KB 134KB
xfs_efi_item 115KB 115KB
xfs_efd_item 115KB 115KB
xfs_buf_item 134KB 134KB
xfs_log_item_desc 342KB 342KB
xfs_trans 1412KB 1412KB
xfs_ifork 212KB 212KB
[yang.s@alibaba-inc.com: v11]
Link: http://lkml.kernel.org/r/1507656303-103845-4-git-send-email-yang.s@alibaba-inc.com
Link: http://lkml.kernel.org/r/1507152550-46205-4-git-send-email-yang.s@alibaba-inc.com
Signed-off-by: Yang Shi <yang.s@alibaba-inc.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
READ_ONCE() now has an implicit smp_read_barrier_depends() call, so it
can be used instead of lockless_dereference() without any change in
semantics.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1508840570-22169-4-git-send-email-will.deacon@arm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
A while ago someone, and I cannot find the email just now, asked if we
could not implement the RECLAIM_FS inversion stuff with a 'fake' lock
like we use for other things like workqueues etc. I think this should
be possible which allows reducing the 'irq' states and will reduce the
amount of __bfs() lookups we do.
Removing the 1 IRQ state results in 4 less __bfs() walks per
dependency, improving lockdep performance. And by moving this
annotation out of the lockdep code it becomes easier for the mm people
to extend.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Byungchul Park <byungchul.park@lge.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Nikolay Borisov <nborisov@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akpm@linux-foundation.org
Cc: boqun.feng@gmail.com
Cc: iamjoonsoo.kim@lge.com
Cc: kernel-team@lge.com
Cc: kirill@shutemov.name
Cc: npiggin@gmail.com
Cc: walken@google.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Josef's redesign of the balancing between slab caches and the page cache
requires slab cache statistics at the lruvec level.
Link: http://lkml.kernel.org/r/20170530181724.27197-7-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kmem-specific functions do the same thing. Switch and drop.
Link: http://lkml.kernel.org/r/20170530181724.27197-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Now that the slab counters are moved from the zone to the node level we
can drop the private memcg node stats and use the official ones.
Link: http://lkml.kernel.org/r/20170530181724.27197-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Josef Bacik <josef@toxicpanda.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A group of Linux kernel hackers reported chasing a bug that resulted
from their assumption that SLAB_DESTROY_BY_RCU provided an existence
guarantee, that is, that no block from such a slab would be reallocated
during an RCU read-side critical section. Of course, that is not the
case. Instead, SLAB_DESTROY_BY_RCU only prevents freeing of an entire
slab of blocks.
However, there is a phrase for this, namely "type safety". This commit
therefore renames SLAB_DESTROY_BY_RCU to SLAB_TYPESAFE_BY_RCU in order
to avoid future instances of this sort of confusion.
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <linux-mm@kvack.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
[ paulmck: Add comments mentioning the old name, as requested by Eric
Dumazet, in order to help people familiar with the old name find
the new one. ]
Acked-by: David Rientjes <rientjes@google.com>
With kmem cgroup support enabled, kmem_caches can be created and
destroyed frequently and a great number of near empty kmem_caches can
accumulate if there are a lot of transient cgroups and the system is not
under memory pressure. When memory reclaim starts under such
conditions, it can lead to consecutive deactivation and destruction of
many kmem_caches, easily hundreds of thousands on moderately large
systems, exposing scalability issues in the current slab management
code. This is one of the patches to address the issue.
slub uses synchronize_sched() to deactivate a memcg cache.
synchronize_sched() is an expensive and slow operation and doesn't scale
when a huge number of caches are destroyed back-to-back. While there
used to be a simple batching mechanism, the batching was too restricted
to be helpful.
This patch implements slab_deactivate_memcg_cache_rcu_sched() which slub
can use to schedule sched RCU callback instead of performing
synchronize_sched() synchronously while holding cgroup_mutex. While
this adds online cpus, mems and slab_mutex operations, operating on
these locks back-to-back from the same kworker, which is what's gonna
happen when there are many to deactivate, isn't expensive at all and
this gets rid of the scalability problem completely.
Link: http://lkml.kernel.org/r/20170117235411.9408-9-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jay Vana <jsvana@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__kmem_cache_shrink() is called with %true @deactivate only for memcg
caches. Remove @deactivate from __kmem_cache_shrink() and introduce
__kmemcg_cache_deactivate() instead. Each memcg-supporting allocator
should implement it and it should deactivate and drain the cache.
This is to allow memcg cache deactivation behavior to further deviate
from simple shrinking without messing up __kmem_cache_shrink().
This is pure reorganization and doesn't introduce any observable
behavior changes.
v2: Dropped unnecessary ifdef in mm/slab.h as suggested by Vladimir.
Link: http://lkml.kernel.org/r/20170117235411.9408-8-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With kmem cgroup support enabled, kmem_caches can be created and
destroyed frequently and a great number of near empty kmem_caches can
accumulate if there are a lot of transient cgroups and the system is not
under memory pressure. When memory reclaim starts under such
conditions, it can lead to consecutive deactivation and destruction of
many kmem_caches, easily hundreds of thousands on moderately large
systems, exposing scalability issues in the current slab management
code. This is one of the patches to address the issue.
slab_caches currently lists all caches including root and memcg ones.
This is the only data structure which lists the root caches and
iterating root caches can only be done by walking the list while
skipping over memcg caches. As there can be a huge number of memcg
caches, this can become very expensive.
This also can make /proc/slabinfo behave very badly. seq_file processes
reads in 4k chunks and seeks to the previous Nth position on slab_caches
list to resume after each chunk. With a lot of memcg cache churns on
the list, reading /proc/slabinfo can become very slow and its content
often ends up with duplicate and/or missing entries.
This patch adds a new list slab_root_caches which lists only the root
caches. When memcg is not enabled, it becomes just an alias of
slab_caches. memcg specific list operations are collected into
memcg_[un]link_cache().
Link: http://lkml.kernel.org/r/20170117235411.9408-7-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jay Vana <jsvana@fb.com>
Acked-by: Vladimir Davydov <vdavydov@tarantool.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
With kmem cgroup support enabled, kmem_caches can be created and
destroyed frequently and a great number of near empty kmem_caches can
accumulate if there are a lot of transient cgroups and the system is not
under memory pressure. When memory reclaim starts under such
conditions, it can lead to consecutive deactivation and destruction of
many kmem_caches, easily hundreds of thousands on moderately large
systems, exposing scalability issues in the current slab management
code. This is one of the patches to address the issue.
While a memcg kmem_cache is listed on its root cache's ->children list,
there is no direct way to iterate all kmem_caches which are assocaited
with a memory cgroup. The only way to iterate them is walking all
caches while filtering out caches which don't match, which would be most
of them.
This makes memcg destruction operations O(N^2) where N is the total
number of slab caches which can be huge. This combined with the
synchronous RCU operations can tie up a CPU and affect the whole machine
for many hours when memory reclaim triggers offlining and destruction of
the stale memcgs.
This patch adds mem_cgroup->kmem_caches list which goes through
memcg_cache_params->kmem_caches_node of all kmem_caches which are
associated with the memcg. All memcg specific iterations, including
stat file access, are updated to use the new list instead.
Link: http://lkml.kernel.org/r/20170117235411.9408-6-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jay Vana <jsvana@fb.com>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We're going to change how memcg caches are iterated. In preparation,
clean up and reorganize memcg_cache_params.
* The shared ->list is replaced by ->children in root and
->children_node in children.
* ->is_root_cache is removed. Instead ->root_cache is moved out of
the child union and now used by both root and children. NULL
indicates root cache. Non-NULL a memcg one.
This patch doesn't cause any observable behavior changes.
Link: http://lkml.kernel.org/r/20170117235411.9408-5-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "slab: make memcg slab destruction scalable", v3.
With kmem cgroup support enabled, kmem_caches can be created and
destroyed frequently and a great number of near empty kmem_caches can
accumulate if there are a lot of transient cgroups and the system is not
under memory pressure. When memory reclaim starts under such
conditions, it can lead to consecutive deactivation and destruction of
many kmem_caches, easily hundreds of thousands on moderately large
systems, exposing scalability issues in the current slab management
code.
I've seen machines which end up with hundred thousands of caches and
many millions of kernfs_nodes. The current code is O(N^2) on the total
number of caches and has synchronous rcu_barrier() and
synchronize_sched() in cgroup offline / release path which is executed
while holding cgroup_mutex. Combined, this leads to very expensive and
slow cache destruction operations which can easily keep running for half
a day.
This also messes up /proc/slabinfo along with other cache iterating
operations. seq_file operates on 4k chunks and on each 4k boundary
tries to seek to the last position in the list. With a huge number of
caches on the list, this becomes very slow and very prone to the list
content changing underneath it leading to a lot of missing and/or
duplicate entries.
This patchset addresses the scalability problem.
* Add root and per-memcg lists. Update each user to use the
appropriate list.
* Make rcu_barrier() for SLAB_DESTROY_BY_RCU caches globally batched
and asynchronous.
* For dying empty slub caches, remove the sysfs files after
deactivation so that we don't end up with millions of sysfs files
without any useful information on them.
This patchset contains the following nine patches.
0001-Revert-slub-move-synchronize_sched-out-of-slab_mutex.patch
0002-slub-separate-out-sysfs_slab_release-from-sysfs_slab.patch
0003-slab-remove-synchronous-rcu_barrier-call-in-memcg-ca.patch
0004-slab-reorganize-memcg_cache_params.patch
0005-slab-link-memcg-kmem_caches-on-their-associated-memo.patch
0006-slab-implement-slab_root_caches-list.patch
0007-slab-introduce-__kmemcg_cache_deactivate.patch
0008-slab-remove-synchronous-synchronize_sched-from-memcg.patch
0009-slab-remove-slub-sysfs-interface-files-early-for-emp.patch
0010-slab-use-memcg_kmem_cache_wq-for-slab-destruction-op.patch
0001 reverts an existing optimization to prepare for the following
changes. 0002 is a prep patch. 0003 makes rcu_barrier() in release
path batched and asynchronous. 0004-0006 separate out the lists.
0007-0008 replace synchronize_sched() in slub destruction path with
call_rcu_sched(). 0009 removes sysfs files early for empty dying
caches. 0010 makes destruction work items use a workqueue with limited
concurrency.
This patch (of 10):
Revert 89e364db71 ("slub: move synchronize_sched out of slab_mutex on
shrink").
With kmem cgroup support enabled, kmem_caches can be created and destroyed
frequently and a great number of near empty kmem_caches can accumulate if
there are a lot of transient cgroups and the system is not under memory
pressure. When memory reclaim starts under such conditions, it can lead
to consecutive deactivation and destruction of many kmem_caches, easily
hundreds of thousands on moderately large systems, exposing scalability
issues in the current slab management code. This is one of the patches to
address the issue.
Moving synchronize_sched() out of slab_mutex isn't enough as it's still
inside cgroup_mutex. The whole deactivation / release path will be
updated to avoid all synchronous RCU operations. Revert this insufficient
optimization in preparation to ease future changes.
Link: http://lkml.kernel.org/r/20170117235411.9408-2-tj@kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
Reported-by: Jay Vana <jsvana@fb.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rather than tracking the number of active slabs for each node, track the
total number of slabs. This is a minor improvement that avoids active
slab tracking when a slab goes from free to partial or partial to free.
For slab debugging, this also removes an explicit free count since it
can easily be inferred by the difference in number of total objects and
number of active objects.
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1612042020110.115755@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Aruna Ramakrishna <aruna.ramakrishna@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reading /proc/slabinfo or monitoring slabtop(1) can become very
expensive if there are many slab caches and if there are very lengthy
per-node partial and/or free lists.
Commit 07a63c41fa ("mm/slab: improve performance of gathering slabinfo
stats") addressed the per-node full lists which showed a significant
improvement when no objects were freed. This patch has the same
motivation and optimizes the remainder of the usecases where there are
very lengthy partial and free lists.
This patch maintains per-node active_slabs (full and partial) and
free_slabs rather than iterating the lists at runtime when reading
/proc/slabinfo.
When allocating 100GB of slab from a test cache where every slab page is
on the partial list, reading /proc/slabinfo (includes all other slab
caches on the system) takes ~247ms on average with 48 samples.
As a result of this patch, the same read takes ~0.856ms on average.
[rientjes@google.com: changelog]
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1611081505240.13403@chino.kir.corp.google.com
Signed-off-by: Greg Thelen <gthelen@google.com>
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Verify that kmem_create_cache flags are not allocator specific. It is
done before removing flags that are not available with the current
configuration.
The current kmem_cache_create removes incorrect flags but do not
validate the callers are using them right. This change will ensure that
callers are not trying to create caches with flags that won't be used
because allocator specific.
Link: http://lkml.kernel.org/r/1478553075-120242-2-git-send-email-thgarnie@google.com
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
synchronize_sched() is a heavy operation and calling it per each cache
owned by a memory cgroup being destroyed may take quite some time. What
is worse, it's currently called under the slab_mutex, stalling all works
doing cache creation/destruction.
Actually, there isn't much point in calling synchronize_sched() for each
cache - it's enough to call it just once - after setting cpu_partial for
all caches and before shrinking them. This way, we can also move it out
of the slab_mutex, which we have to hold for iterating over the slab
cache list.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=172991
Link: http://lkml.kernel.org/r/0a10d71ecae3db00fb4421bcd3f82bcc911f4be4.1475329751.git.vdavydov.dev@gmail.com
Signed-off-by: Vladimir Davydov <vdavydov.dev@gmail.com>
Reported-by: Doug Smythies <dsmythies@telus.net>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
On large systems, when some slab caches grow to millions of objects (and
many gigabytes), running 'cat /proc/slabinfo' can take up to 1-2
seconds. During this time, interrupts are disabled while walking the
slab lists (slabs_full, slabs_partial, and slabs_free) for each node,
and this sometimes causes timeouts in other drivers (for instance,
Infiniband).
This patch optimizes 'cat /proc/slabinfo' by maintaining a counter for
total number of allocated slabs per node, per cache. This counter is
updated when a slab is created or destroyed. This enables us to skip
traversing the slabs_full list while gathering slabinfo statistics, and
since slabs_full tends to be the biggest list when the cache is large,
it results in a dramatic performance improvement. Getting slabinfo
statistics now only requires walking the slabs_free and slabs_partial
lists, and those lists are usually much smaller than slabs_full.
We tested this after growing the dentry cache to 70GB, and the
performance improved from 2s to 5ms.
Link: http://lkml.kernel.org/r/1472517876-26814-1-git-send-email-aruna.ramakrishna@oracle.com
Signed-off-by: Aruna Ramakrishna <aruna.ramakrishna@oracle.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For KASAN builds:
- switch SLUB allocator to using stackdepot instead of storing the
allocation/deallocation stacks in the objects;
- change the freelist hook so that parts of the freelist can be put
into the quarantine.
[aryabinin@virtuozzo.com: fixes]
Link: http://lkml.kernel.org/r/1468601423-28676-1-git-send-email-aryabinin@virtuozzo.com
Link: http://lkml.kernel.org/r/1468347165-41906-3-git-send-email-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Steven Rostedt (Red Hat) <rostedt@goodmis.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Kuthonuzo Luruo <kuthonuzo.luruo@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Handle memcg_kmem_enabled check out to the caller. This reduces the
number of function definitions making the code easier to follow. At
the same time it doesn't result in code bloat, because all of these
functions are used only in one or two places.
- Move __GFP_ACCOUNT check to the caller as well so that one wouldn't
have to dive deep into memcg implementation to see which allocations
are charged and which are not.
- Refresh comments.
Link: http://lkml.kernel.org/r/52882a28b542c1979fd9a033b4dc8637fc347399.1464079537.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The kernel heap allocators are using a sequential freelist making their
allocation predictable. This predictability makes kernel heap overflow
easier to exploit. An attacker can careful prepare the kernel heap to
control the following chunk overflowed.
For example these attacks exploit the predictability of the heap:
- Linux Kernel CAN SLUB overflow (https://goo.gl/oMNWkU)
- Exploiting Linux Kernel Heap corruptions (http://goo.gl/EXLn95)
***Problems that needed solving:
- Randomize the Freelist (singled linked) used in the SLUB allocator.
- Ensure good performance to encourage usage.
- Get best entropy in early boot stage.
***Parts:
- 01/02 Reorganize the SLAB Freelist randomization to share elements
with the SLUB implementation.
- 02/02 The SLUB Freelist randomization implementation. Similar approach
than the SLAB but tailored to the singled freelist used in SLUB.
***Performance data:
slab_test impact is between 3% to 4% on average for 100000 attempts
without smp. It is a very focused testing, kernbench show the overall
impact on the system is way lower.
Before:
Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
100000 times kmalloc(8) -> 49 cycles kfree -> 77 cycles
100000 times kmalloc(16) -> 51 cycles kfree -> 79 cycles
100000 times kmalloc(32) -> 53 cycles kfree -> 83 cycles
100000 times kmalloc(64) -> 62 cycles kfree -> 90 cycles
100000 times kmalloc(128) -> 81 cycles kfree -> 97 cycles
100000 times kmalloc(256) -> 98 cycles kfree -> 121 cycles
100000 times kmalloc(512) -> 95 cycles kfree -> 122 cycles
100000 times kmalloc(1024) -> 96 cycles kfree -> 126 cycles
100000 times kmalloc(2048) -> 115 cycles kfree -> 140 cycles
100000 times kmalloc(4096) -> 149 cycles kfree -> 171 cycles
2. Kmalloc: alloc/free test
100000 times kmalloc(8)/kfree -> 70 cycles
100000 times kmalloc(16)/kfree -> 70 cycles
100000 times kmalloc(32)/kfree -> 70 cycles
100000 times kmalloc(64)/kfree -> 70 cycles
100000 times kmalloc(128)/kfree -> 70 cycles
100000 times kmalloc(256)/kfree -> 69 cycles
100000 times kmalloc(512)/kfree -> 70 cycles
100000 times kmalloc(1024)/kfree -> 73 cycles
100000 times kmalloc(2048)/kfree -> 72 cycles
100000 times kmalloc(4096)/kfree -> 71 cycles
After:
Single thread testing
=====================
1. Kmalloc: Repeatedly allocate then free test
100000 times kmalloc(8) -> 57 cycles kfree -> 78 cycles
100000 times kmalloc(16) -> 61 cycles kfree -> 81 cycles
100000 times kmalloc(32) -> 76 cycles kfree -> 93 cycles
100000 times kmalloc(64) -> 83 cycles kfree -> 94 cycles
100000 times kmalloc(128) -> 106 cycles kfree -> 107 cycles
100000 times kmalloc(256) -> 118 cycles kfree -> 117 cycles
100000 times kmalloc(512) -> 114 cycles kfree -> 116 cycles
100000 times kmalloc(1024) -> 115 cycles kfree -> 118 cycles
100000 times kmalloc(2048) -> 147 cycles kfree -> 131 cycles
100000 times kmalloc(4096) -> 214 cycles kfree -> 161 cycles
2. Kmalloc: alloc/free test
100000 times kmalloc(8)/kfree -> 66 cycles
100000 times kmalloc(16)/kfree -> 66 cycles
100000 times kmalloc(32)/kfree -> 66 cycles
100000 times kmalloc(64)/kfree -> 66 cycles
100000 times kmalloc(128)/kfree -> 65 cycles
100000 times kmalloc(256)/kfree -> 67 cycles
100000 times kmalloc(512)/kfree -> 67 cycles
100000 times kmalloc(1024)/kfree -> 64 cycles
100000 times kmalloc(2048)/kfree -> 67 cycles
100000 times kmalloc(4096)/kfree -> 67 cycles
Kernbench, before:
Average Optimal load -j 12 Run (std deviation):
Elapsed Time 101.873 (1.16069)
User Time 1045.22 (1.60447)
System Time 88.969 (0.559195)
Percent CPU 1112.9 (13.8279)
Context Switches 189140 (2282.15)
Sleeps 99008.6 (768.091)
After:
Average Optimal load -j 12 Run (std deviation):
Elapsed Time 102.47 (0.562732)
User Time 1045.3 (1.34263)
System Time 88.311 (0.342554)
Percent CPU 1105.8 (6.49444)
Context Switches 189081 (2355.78)
Sleeps 99231.5 (800.358)
This patch (of 2):
This commit reorganizes the previous SLAB freelist randomization to
prepare for the SLUB implementation. It moves functions that will be
shared to slab_common.
The entropy functions are changed to align with the SLUB implementation,
now using get_random_(int|long) functions. These functions were chosen
because they provide a bit more entropy early on boot and better
performance when specific arch instructions are not available.
[akpm@linux-foundation.org: fix build]
Link: http://lkml.kernel.org/r/1464295031-26375-2-git-send-email-thgarnie@google.com
Signed-off-by: Thomas Garnier <thgarnie@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Quarantine isolates freed objects in a separate queue. The objects are
returned to the allocator later, which helps to detect use-after-free
errors.
When the object is freed, its state changes from KASAN_STATE_ALLOC to
KASAN_STATE_QUARANTINE. The object is poisoned and put into quarantine
instead of being returned to the allocator, therefore every subsequent
access to that object triggers a KASAN error, and the error handler is
able to say where the object has been allocated and deallocated.
When it's time for the object to leave quarantine, its state becomes
KASAN_STATE_FREE and it's returned to the allocator. From now on the
allocator may reuse it for another allocation. Before that happens,
it's still possible to detect a use-after free on that object (it
retains the allocation/deallocation stacks).
When the allocator reuses this object, the shadow is unpoisoned and old
allocation/deallocation stacks are wiped. Therefore a use of this
object, even an incorrect one, won't trigger ASan warning.
Without the quarantine, it's not guaranteed that the objects aren't
reused immediately, that's why the probability of catching a
use-after-free is lower than with quarantine in place.
Quarantine isolates freed objects in a separate queue. The objects are
returned to the allocator later, which helps to detect use-after-free
errors.
Freed objects are first added to per-cpu quarantine queues. When a
cache is destroyed or memory shrinking is requested, the objects are
moved into the global quarantine queue. Whenever a kmalloc call allows
memory reclaiming, the oldest objects are popped out of the global queue
until the total size of objects in quarantine is less than 3/4 of the
maximum quarantine size (which is a fraction of installed physical
memory).
As long as an object remains in the quarantine, KASAN is able to report
accesses to it, so the chance of reporting a use-after-free is
increased. Once the object leaves quarantine, the allocator may reuse
it, in which case the object is unpoisoned and KASAN can't detect
incorrect accesses to it.
Right now quarantine support is only enabled in SLAB allocator.
Unification of KASAN features in SLAB and SLUB will be done later.
This patch is based on the "mm: kasan: quarantine" patch originally
prepared by Dmitry Chernenkov. A number of improvements have been
suggested by Andrey Ryabinin.
[glider@google.com: v9]
Link: http://lkml.kernel.org/r/1462987130-144092-1-git-send-email-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add GFP flags to KASAN hooks for future patches to use.
This patch is based on the "mm: kasan: unified support for SLUB and SLAB
allocators" patch originally prepared by Dmitry Chernenkov.
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Show how much memory is used for storing reclaimable and unreclaimable
in-kernel data structures allocated from slab caches.
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
SLAB_DEBUG_FREE allows expensive consistency checks at free to be turned
on or off. Expand its use to be able to turn off all consistency
checks. This gives a nice speed up if you only want features such as
poisoning or tracing.
Credit to Mathias Krause for the original work which inspired this
series
Signed-off-by: Laura Abbott <labbott@fedoraproject.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mathias Krause <minipli@googlemail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix up trivial spelling errors, noticed while reading the code.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove the SLAB specific function slab_should_failslab(), by moving the
check against fault-injection for the bootstrap slab, into the shared
function should_failslab() (used by both SLAB and SLUB).
This is a step towards sharing alloc_hook's between SLUB and SLAB.
This bootstrap slab "kmem_cache" is used for allocating struct
kmem_cache objects to the allocator itself.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
First step towards sharing alloc_hook's between SLUB and SLAB
allocators. Move the SLUB allocators *_alloc_hook to the common
mm/slab.h for internal slab definitions.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When slub_debug alloc_calls_show is enabled we will try to track
location and user of slab object on each online node, kmem_cache_node
structure and cpu_cache/cpu_slub shouldn't be freed till there is the
last reference to sysfs file.
This fixes the following panic:
BUG: unable to handle kernel NULL pointer dereference at 0000000000000020
IP: list_locations+0x169/0x4e0
PGD 257304067 PUD 438456067 PMD 0
Oops: 0000 [#1] SMP
CPU: 3 PID: 973074 Comm: cat ve: 0 Not tainted 3.10.0-229.7.2.ovz.9.30-00007-japdoll-dirty #2 9.30
Hardware name: DEPO Computers To Be Filled By O.E.M./H67DE3, BIOS L1.60c 07/14/2011
task: ffff88042a5dc5b0 ti: ffff88037f8d8000 task.ti: ffff88037f8d8000
RIP: list_locations+0x169/0x4e0
Call Trace:
alloc_calls_show+0x1d/0x30
slab_attr_show+0x1b/0x30
sysfs_read_file+0x9a/0x1a0
vfs_read+0x9c/0x170
SyS_read+0x58/0xb0
system_call_fastpath+0x16/0x1b
Code: 5e 07 12 00 b9 00 04 00 00 3d 00 04 00 00 0f 4f c1 3d 00 04 00 00 89 45 b0 0f 84 c3 00 00 00 48 63 45 b0 49 8b 9c c4 f8 00 00 00 <48> 8b 43 20 48 85 c0 74 b6 48 89 df e8 46 37 44 00 48 8b 53 10
CR2: 0000000000000020
Separated __kmem_cache_release from __kmem_cache_shutdown which now
called on slab_kmem_cache_release (after the last reference to sysfs
file object has dropped).
Reintroduced locking in free_partial as sysfs file might access cache's
partial list after shutdowning - partial revert of the commit
69cb8e6b7c ("slub: free slabs without holding locks"). Zap
__remove_partial and use remove_partial (w/o underscores) as
free_partial now takes list_lock which s partial revert for commit
1e4dd9461f ("slub: do not assert not having lock in removing freed
partial")
Signed-off-by: Dmitry Safonov <dsafonov@virtuozzo.com>
Suggested-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The cgroup2 memory controller will account important in-kernel memory
consumers per default. Move all necessary components to CONFIG_MEMCG.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, if we want to account all objects of a particular kmem cache,
we have to pass __GFP_ACCOUNT to each kmem_cache_alloc call, which is
inconvenient. This patch introduces SLAB_ACCOUNT flag which if passed
to kmem_cache_create will force accounting for every allocation from
this cache even if __GFP_ACCOUNT is not passed.
This patch does not make any of the existing caches use this flag - it
will be done later in the series.
Note, a cache with SLAB_ACCOUNT cannot be merged with a cache w/o
SLAB_ACCOUNT, because merged caches share the same kmem_cache struct and
hence cannot have different sets of SLAB_* flags. Thus using this flag
will probably reduce the number of merged slabs even if kmem accounting
is not used (only compiled in).
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Suggested-by: Tejun Heo <tj@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Adjust kmem_cache_alloc_bulk API before we have any real users.
Adjust API to return type 'int' instead of previously type 'bool'. This
is done to allow future extension of the bulk alloc API.
A future extension could be to allow SLUB to stop at a page boundary, when
specified by a flag, and then return the number of objects.
The advantage of this approach, would make it easier to make bulk alloc
run without local IRQs disabled. With an approach of cmpxchg "stealing"
the entire c->freelist or page->freelist. To avoid overshooting we would
stop processing at a slab-page boundary. Else we always end up returning
some objects at the cost of another cmpxchg.
To keep compatible with future users of this API linking against an older
kernel when using the new flag, we need to return the number of allocated
objects with this API change.
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have memcg_kmem_charge and memcg_kmem_uncharge methods for charging and
uncharging kmem pages to memcg, but currently they are not used for
charging slab pages (i.e. they are only used for charging pages allocated
with alloc_kmem_pages). The only reason why the slab subsystem uses
special helpers, memcg_charge_slab and memcg_uncharge_slab, is that it
needs to charge to the memcg of kmem cache while memcg_charge_kmem charges
to the memcg that the current task belongs to.
To remove this diversity, this patch adds an extra argument to
__memcg_kmem_charge that can be a pointer to a memcg or NULL. If it is
not NULL, the function tries to charge to the memcg it points to,
otherwise it charge to the current context. Next, it makes the slab
subsystem use this function to charge slab pages.
Since memcg_charge_kmem and memcg_uncharge_kmem helpers are now used only
in __memcg_kmem_charge and __memcg_kmem_uncharge, they are inlined. Since
__memcg_kmem_charge stores a pointer to the memcg in the page struct, we
don't need memcg_uncharge_slab anymore and can use free_kmem_pages.
Besides, one can now detect which memcg a slab page belongs to by reading
/proc/kpagecgroup.
Note, this patch switches slab to charge-after-alloc design. Since this
design is already used for all other memcg charges, it should not make any
difference.
[hannes@cmpxchg.org: better to have an outer function than a magic parameter for the memcg lookup]
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, we do not clear pointers to per memcg caches in the
memcg_params.memcg_caches array when a global cache is destroyed with
kmem_cache_destroy.
This is fine if the global cache does get destroyed. However, a cache can
be left on the list if it still has active objects when kmem_cache_destroy
is called (due to a memory leak). If this happens, the entries in the
array will point to already freed areas, which is likely to result in data
corruption when the cache is reused (via slab merging).
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
While debugging a networking issue, I hit a condition that triggered an
object to be freed into the wrong kmem cache, and thus triggered the
warning in cache_from_obj().
The arguments in the error message are in wrong order: the location
of the object's kmem cache is in cachep, not s.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add the basic infrastructure for alloc/free operations on pointer arrays.
It includes a generic function in the common slab code that is used in
this infrastructure patch to create the unoptimized functionality for slab
bulk operations.
Allocators can then provide optimized allocation functions for situations
in which large numbers of objects are needed. These optimization may
avoid taking locks repeatedly and bypass metadata creation if all objects
in slab pages can be used to provide the objects required.
Allocators can extend the skeletons provided and add their own code to the
bulk alloc and free functions. They can keep the generic allocation and
freeing and just fall back to those if optimizations would not work (like
for example when debugging is on).
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch moves the initialization of the size_index table slightly
earlier so that the first few kmem_cache_node's can be safely allocated
when KMALLOC_MIN_SIZE is large.
There are currently two ways to generate indices into kmalloc_caches (via
kmalloc_index() and via the size_index table in slab_common.c) and on some
arches (possibly only MIPS) they potentially disagree with each other
until create_kmalloc_caches() has been called. It seems that the
intention is that the size_index table is a fast equivalent to
kmalloc_index() and that create_kmalloc_caches() patches the table to
return the correct value for the cases where kmalloc_index()'s
if-statements apply.
The failing sequence was:
* kmalloc_caches contains NULL elements
* kmem_cache_init initialises the element that 'struct
kmem_cache_node' will be allocated to. For 32-bit Mips, this is a
56-byte struct and kmalloc_index returns KMALLOC_SHIFT_LOW (7).
* init_list is called which calls kmalloc_node to allocate a 'struct
kmem_cache_node'.
* kmalloc_slab selects the kmem_caches element using
size_index[size_index_elem(size)]. For MIPS, size is 56, and the
expression returns 6.
* This element of kmalloc_caches is NULL and allocation fails.
* If it had not already failed, it would have called
create_kmalloc_caches() at this point which would have changed
size_index[size_index_elem(size)] to 7.
I don't believe the bug to be LLVM specific but GCC doesn't normally
encounter the problem. I haven't been able to identify exactly what GCC
is doing better (probably inlining) but it seems that GCC is managing to
optimize to the point that it eliminates the problematic allocations.
This theory is supported by the fact that GCC can be made to fail in the
same way by changing inline, __inline, __inline__, and __always_inline in
include/linux/compiler-gcc.h such that they don't actually inline things.
Signed-off-by: Daniel Sanders <daniel.sanders@imgtec.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To speed up further allocations SLUB may store empty slabs in per cpu/node
partial lists instead of freeing them immediately. This prevents per
memcg caches destruction, because kmem caches created for a memory cgroup
are only destroyed after the last page charged to the cgroup is freed.
To fix this issue, this patch resurrects approach first proposed in [1].
It forbids SLUB to cache empty slabs after the memory cgroup that the
cache belongs to was destroyed. It is achieved by setting kmem_cache's
cpu_partial and min_partial constants to 0 and tuning put_cpu_partial() so
that it would drop frozen empty slabs immediately if cpu_partial = 0.
The runtime overhead is minimal. From all the hot functions, we only
touch relatively cold put_cpu_partial(): we make it call
unfreeze_partials() after freezing a slab that belongs to an offline
memory cgroup. Since slab freezing exists to avoid moving slabs from/to a
partial list on free/alloc, and there can't be allocations from dead
caches, it shouldn't cause any overhead. We do have to disable preemption
for put_cpu_partial() to achieve that though.
The original patch was accepted well and even merged to the mm tree.
However, I decided to withdraw it due to changes happening to the memcg
core at that time. I had an idea of introducing per-memcg shrinkers for
kmem caches, but now, as memcg has finally settled down, I do not see it
as an option, because SLUB shrinker would be too costly to call since SLUB
does not keep free slabs on a separate list. Besides, we currently do not
even call per-memcg shrinkers for offline memcgs. Overall, it would
introduce much more complexity to both SLUB and memcg than this small
patch.
Regarding to SLAB, there's no problem with it, because it shrinks
per-cpu/node caches periodically. Thanks to list_lru reparenting, we no
longer keep entries for offline cgroups in per-memcg arrays (such as
memcg_cache_params->memcg_caches), so we do not have to bother if a
per-memcg cache will be shrunk a bit later than it could be.
[1] http://thread.gmane.org/gmane.linux.kernel.mm/118649/focus=118650
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Sometimes, we need to iterate over all memcg copies of a particular root
kmem cache. Currently, we use memcg_cache_params->memcg_caches array for
that, because it contains all existing memcg caches.
However, it's a bad practice to keep all caches, including those that
belong to offline cgroups, in this array, because it will be growing
beyond any bounds then. I'm going to wipe away dead caches from it to
save space. To still be able to perform iterations over all memcg caches
of the same kind, let us link them into a list.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, kmem_cache stores a pointer to struct memcg_cache_params
instead of embedding it. The rationale is to save memory when kmem
accounting is disabled. However, the memcg_cache_params has shrivelled
drastically since it was first introduced:
* Initially:
struct memcg_cache_params {
bool is_root_cache;
union {
struct kmem_cache *memcg_caches[0];
struct {
struct mem_cgroup *memcg;
struct list_head list;
struct kmem_cache *root_cache;
bool dead;
atomic_t nr_pages;
struct work_struct destroy;
};
};
};
* Now:
struct memcg_cache_params {
bool is_root_cache;
union {
struct {
struct rcu_head rcu_head;
struct kmem_cache *memcg_caches[0];
};
struct {
struct mem_cgroup *memcg;
struct kmem_cache *root_cache;
};
};
};
So the memory saving does not seem to be a clear win anymore.
OTOH, keeping a pointer to memcg_cache_params struct instead of embedding
it results in touching one more cache line on kmem alloc/free hot paths.
Besides, it makes linking kmem caches in a list chained by a field of
struct memcg_cache_params really painful due to a level of indirection,
while I want to make them linked in the following patch. That said, let
us embed it.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Tejun Heo <tj@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
They are simple wrappers around memcg_{charge,uncharge}_kmem, so let's
zap them and call these functions directly.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Let's use generic slab_start/next/stop for showing memcg caches info. In
contrast to the current implementation, this will work even if all memcg
caches' info doesn't fit into a seq buffer (a page), plus it simply looks
neater.
Actually, the main reason I do this isn't mere cleanup. I'm going to zap
the memcg_slab_caches list, because I find it useless provided we have the
slab_caches list, and this patch is a step in this direction.
It should be noted that before this patch an attempt to read
memory.kmem.slabinfo of a cgroup that doesn't have kmem limit set resulted
in -EIO, while after this patch it will silently show nothing except the
header, but I don't think it will frustrate anyone.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Recently lockless_dereference() was added which can be used in place of
hard-coding smp_read_barrier_depends(). The following PATCH makes the
change.
Signed-off-by: Pranith Kumar <bobby.prani@gmail.com>
Cc: "Paul E. McKenney" <paulmck@us.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we print the slabinfo header in the seq start method, which
makes it unusable for showing leaks, so we have leaks_show, which does
practically the same as s_show except it doesn't show the header.
However, we can print the header in the seq show method - we only need
to check if the current element is the first on the list. This will
allow us to use the same set of seq iterators for both leaks and
slabinfo reporting, which is nice.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Because of chicken and egg problem, initialization of SLAB is really
complicated. We need to allocate cpu cache through SLAB to make the
kmem_cache work, but before initialization of kmem_cache, allocation
through SLAB is impossible.
On the other hand, SLUB does initialization in a more simple way. It uses
percpu allocator to allocate cpu cache so there is no chicken and egg
problem.
So, this patch try to use percpu allocator in SLAB. This simplifies the
initialization step in SLAB so that we could maintain SLAB code more
easily.
In my testing there is no performance difference.
This implementation relies on percpu allocator. Because percpu allocator
uses vmalloc address space, vmalloc address space could be exhausted by
this change on many cpu system with *32 bit* kernel. This implementation
can cover 1024 cpus in worst case by following calculation.
Worst: 1024 cpus * 4 bytes for pointer * 300 kmem_caches *
120 objects per cpu_cache = 140 MB
Normal: 1024 cpus * 4 bytes for pointer * 150 kmem_caches(slab merge) *
80 objects per cpu_cache = 46 MB
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Jeremiah Mahler <jmmahler@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Slab merge is good feature to reduce fragmentation. If new creating slab
have similar size and property with exsitent slab, this feature reuse it
rather than creating new one. As a result, objects are packed into fewer
slabs so that fragmentation is reduced.
Below is result of my testing.
* After boot, sleep 20; cat /proc/meminfo | grep Slab
<Before>
Slab: 25136 kB
<After>
Slab: 24364 kB
We can save 3% memory used by slab.
For supporting this feature in SLAB, we need to implement SLAB specific
kmem_cache_flag() and __kmem_cache_alias(), because SLUB implements some
SLUB specific processing related to debug flag and object size change on
these functions.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Slab merge is good feature to reduce fragmentation. Now, it is only
applied to SLUB, but, it would be good to apply it to SLAB. This patch is
preparation step to apply slab merge to SLAB by commonizing slab merge
logic.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix a bug (discovered with kmemcheck) in for_each_kmem_cache_node(). The
for loop reads the array "node" before verifying that the index is within
the range. This results in kmemcheck warning.
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We don't need to keep kmem_cache definition in include/linux/slab.h if we
don't need to inline kmem_cache_size(). According to my code inspection,
this function is only called at lc_create() in lib/lru_cache.c which may
be called at initialization phase of something, so we don't need to inline
it. Therfore, move it to slab_common.c and move kmem_cache definition to
internal header.
After this change, we can change kmem_cache definition easily without full
kernel build. For instance, we can turn on/off CONFIG_SLUB_STATS without
full kernel build.
[akpm@linux-foundation.org: export kmem_cache_size() to modules]
[rdunlap@infradead.org: add header files to fix kmemcheck.c build errors]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Just about all of these have been converted to __func__, so convert the
last use.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, we use array_cache for alien_cache. Although they are mostly
similar, there is one difference, that is, need for spinlock. We don't
need spinlock for array_cache itself, but to use array_cache for
alien_cache, array_cache structure should have spinlock. This is
needless overhead, so removing it would be better. This patch prepare
it by introducing alien_cache and using it. In the following patch, we
remove spinlock in array_cache.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Guarding section:
#ifndef MM_SLAB_H
#define MM_SLAB_H
...
#endif
currently doesn't cover the whole mm/slab.h. It seems like it was
done unintentionally.
Wrap the whole file by moving closing #endif to the end of it.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Reviewed-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The patchset provides two new functions in mm/slab.h and modifies SLAB
and SLUB to use these. The kmem_cache_node structure is shared between
both allocators and the use of common accessors will allow us to move
more code into slab_common.c in the future.
This patch (of 3):
These functions allow to eliminate repeatedly used code in both SLAB and
SLUB and also allow for the insertion of debugging code that may be
needed in the development process.
Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently we have two pairs of kmemcg-related functions that are called on
slab alloc/free. The first is memcg_{bind,release}_pages that count the
total number of pages allocated on a kmem cache. The second is
memcg_{un}charge_slab that {un}charge slab pages to kmemcg resource
counter. Let's just merge them to keep the code clean.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patchset is a part of preparations for kmemcg re-parenting. It
targets at simplifying kmemcg work-flows and synchronization.
First, it removes async per memcg cache destruction (see patches 1, 2).
Now caches are only destroyed on memcg offline. That means the caches
that are not empty on memcg offline will be leaked. However, they are
already leaked, because memcg_cache_params::nr_pages normally never drops
to 0 so the destruction work is never scheduled except kmem_cache_shrink
is called explicitly. In the future I'm planning reaping such dead caches
on vmpressure or periodically.
Second, it substitutes per memcg slab_caches_mutex's with the global
memcg_slab_mutex, which should be taken during the whole per memcg cache
creation/destruction path before the slab_mutex (see patch 3). This
greatly simplifies synchronization among various per memcg cache
creation/destruction paths.
I'm still not quite sure about the end picture, in particular I don't know
whether we should reap dead memcgs' kmem caches periodically or try to
merge them with their parents (see https://lkml.org/lkml/2014/4/20/38 for
more details), but whichever way we choose, this set looks like a
reasonable change to me, because it greatly simplifies kmemcg work-flows
and eases further development.
This patch (of 3):
After a memcg is offlined, we mark its kmem caches that cannot be deleted
right now due to pending objects as dead by setting the
memcg_cache_params::dead flag, so that memcg_release_pages will schedule
cache destruction (memcg_cache_params::destroy) as soon as the last slab
of the cache is freed (memcg_cache_params::nr_pages drops to zero).
I guess the idea was to destroy the caches as soon as possible, i.e.
immediately after freeing the last object. However, it just doesn't work
that way, because kmem caches always preserve some pages for the sake of
performance, so that nr_pages never gets to zero unless the cache is
shrunk explicitly using kmem_cache_shrink. Of course, we could account
the total number of objects on the cache or check if all the slabs
allocated for the cache are empty on kmem_cache_free and schedule
destruction if so, but that would be too costly.
Thus we have a piece of code that works only when we explicitly call
kmem_cache_shrink, but complicates the whole picture a lot. Moreover,
it's racy in fact. For instance, kmem_cache_shrink may free the last slab
and thus schedule cache destruction before it finishes checking that the
cache is empty, which can lead to use-after-free.
So I propose to remove this async cache destruction from
memcg_release_pages, and check if the cache is empty explicitly after
calling kmem_cache_shrink instead. This will simplify things a lot w/o
introducing any functional changes.
And regarding dead memcg caches (i.e. those that are left hanging around
after memcg offline for they have objects), I suppose we should reap them
either periodically or on vmpressure as Glauber suggested initially. I'm
going to implement this later.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we create a sl[au]b cache, we allocate kmem_cache_node structures
for each online NUMA node. To handle nodes taken online/offline, we
register memory hotplug notifier and allocate/free kmem_cache_node
corresponding to the node that changes its state for each kmem cache.
To synchronize between the two paths we hold the slab_mutex during both
the cache creationg/destruction path and while tuning per-node parts of
kmem caches in memory hotplug handler, but that's not quite right,
because it does not guarantee that a newly created cache will have all
kmem_cache_nodes initialized in case it races with memory hotplug. For
instance, in case of slub:
CPU0 CPU1
---- ----
kmem_cache_create: online_pages:
__kmem_cache_create: slab_memory_callback:
slab_mem_going_online_callback:
lock slab_mutex
for each slab_caches list entry
allocate kmem_cache node
unlock slab_mutex
lock slab_mutex
init_kmem_cache_nodes:
for_each_node_state(node, N_NORMAL_MEMORY)
allocate kmem_cache node
add kmem_cache to slab_caches list
unlock slab_mutex
online_pages (continued):
node_states_set_node
As a result we'll get a kmem cache with not all kmem_cache_nodes
allocated.
To avoid issues like that we should hold get/put_online_mems() during
the whole kmem cache creation/destruction/shrink paths, just like we
deal with cpu hotplug. This patch does the trick.
Note, that after it's applied, there is no need in taking the slab_mutex
for kmem_cache_shrink any more, so it is removed from there.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Tang Chen <tangchen@cn.fujitsu.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Jiang Liu <liuj97@gmail.com>
Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Wen Congyang <wency@cn.fujitsu.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We have only a few places where we actually want to charge kmem so
instead of intruding into the general page allocation path with
__GFP_KMEMCG it's better to explictly charge kmem there. All kmem
charges will be easier to follow that way.
This is a step towards removing __GFP_KMEMCG. It removes __GFP_KMEMCG
from memcg caches' allocflags. Instead it makes slab allocation path
call memcg_charge_kmem directly getting memcg to charge from the cache's
memcg params.
This also eliminates any possibility of misaccounting an allocation
going from one memcg's cache to another memcg, because now we always
charge slabs against the memcg the cache belongs to. That's why this
patch removes the big comment to memcg_kmem_get_cache.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Christoph Lameter <cl@linux-foundation.org>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When a kmem cache is created (kmem_cache_create_memcg()), we first try to
find a compatible cache that already exists and can handle requests from
the new cache, i.e. has the same object size, alignment, ctor, etc. If
there is such a cache, we do not create any new caches, instead we simply
increment the refcount of the cache found and return it.
Currently we do this procedure not only when creating root caches, but
also for memcg caches. However, there is no point in that, because, as
every memcg cache has exactly the same parameters as its parent and cache
merging cannot be turned off in runtime (only on boot by passing
"slub_nomerge"), the root caches of any two potentially mergeable memcg
caches should be merged already, i.e. it must be the same root cache, and
therefore we couldn't even get to the memcg cache creation, because it
already exists.
The only exception is boot caches - they are explicitly forbidden to be
merged by setting their refcount to -1. There are currently only two of
them - kmem_cache and kmem_cache_node, which are used in slab internals (I
do not count kmalloc caches as their refcount is set to 1 immediately
after creation). Since they are prevented from merging preliminary I
guess we should avoid to merge their children too.
So let's remove the useless code responsible for merging memcg caches.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Glauber Costa <glommer@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We relocate root cache's memcg_params whenever we need to grow the
memcg_caches array to accommodate all kmem-active memory cgroups.
Currently on relocation we free the old version immediately, which can
lead to use-after-free, because the memcg_caches array is accessed
lock-free (see cache_from_memcg_idx()). This patch fixes this by making
memcg_params RCU-protected for root caches.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Each root kmem_cache has pointers to per-memcg caches stored in its
memcg_params::memcg_caches array. Whenever we want to allocate a slab
for a memcg, we access this array to get per-memcg cache to allocate
from (see memcg_kmem_get_cache()). The access must be lock-free for
performance reasons, so we should use barriers to assert the kmem_cache
is up-to-date.
First, we should place a write barrier immediately before setting the
pointer to it in the memcg_caches array in order to make sure nobody
will see a partially initialized object. Second, we should issue a read
barrier before dereferencing the pointer to conform to the write
barrier.
However, currently the barrier usage looks rather strange. We have a
write barrier *after* setting the pointer and a read barrier *before*
reading the pointer, which is incorrect. This patch fixes this.
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We can't see the relationship with memcg from the parameters,
so the name with memcg_idx would be more reasonable.
Signed-off-by: Qiang Huang <h.huangqiang@huawei.com>
Reviewed-by: Pekka Enberg <penberg@kernel.org>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If the system had a few memory groups and all of them were destroyed,
memcg_limited_groups_array_size has non-zero value, but all new caches
are created without memcg_params, because memcg_kmem_enabled() returns
false.
We try to enumirate child caches in a few places and all of them are
potentially dangerous.
For example my kernel is compiled with CONFIG_SLAB and it crashed when I
tryed to mount a NFS share after a few experiments with kmemcg.
BUG: unable to handle kernel NULL pointer dereference at 0000000000000008
IP: [<ffffffff8118166a>] do_tune_cpucache+0x8a/0xd0
PGD b942a067 PUD b999f067 PMD 0
Oops: 0000 [#1] SMP
Modules linked in: fscache(+) ip6table_filter ip6_tables iptable_filter ip_tables i2c_piix4 pcspkr virtio_net virtio_balloon i2c_core floppy
CPU: 0 PID: 357 Comm: modprobe Not tainted 3.11.0-rc7+ #59
Hardware name: Bochs Bochs, BIOS Bochs 01/01/2011
task: ffff8800b9f98240 ti: ffff8800ba32e000 task.ti: ffff8800ba32e000
RIP: 0010:[<ffffffff8118166a>] [<ffffffff8118166a>] do_tune_cpucache+0x8a/0xd0
RSP: 0018:ffff8800ba32fb70 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000006
RDX: 0000000000000000 RSI: ffff8800b9f98910 RDI: 0000000000000246
RBP: ffff8800ba32fba0 R08: 0000000000000002 R09: 0000000000000004
R10: 0000000000000001 R11: 0000000000000001 R12: 0000000000000010
R13: 0000000000000008 R14: 00000000000000d0 R15: ffff8800375d0200
FS: 00007f55f1378740(0000) GS:ffff8800bfa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 00007f24feba57a0 CR3: 0000000037b51000 CR4: 00000000000006f0
Call Trace:
enable_cpucache+0x49/0x100
setup_cpu_cache+0x215/0x280
__kmem_cache_create+0x2fa/0x450
kmem_cache_create_memcg+0x214/0x350
kmem_cache_create+0x2b/0x30
fscache_init+0x19b/0x230 [fscache]
do_one_initcall+0xfa/0x1b0
load_module+0x1c41/0x26d0
SyS_finit_module+0x86/0xb0
system_call_fastpath+0x16/0x1b
Signed-off-by: Andrey Vagin <avagin@openvz.org>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Christoph Lameter <cl@linux.com>
Cc: Glauber Costa <glommer@openvz.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Give s_next and s_stop slab-specific names instead of exporting
"s_next" and "s_stop".
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
This patch shares s_next and s_stop between slab and slub.
Acked-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Put the definitions for the kmem_cache_node structures together so that
we have one structure. That will allow us to create more common fields in
the future which could yield more opportunities to share code.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
The list3 or l3 pointers are pointing to per node structures. Reflect
that in the names of variables used.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Extract the optimized lookup functions from slub and put them into
slab_common.c. Then make slab use these functions as well.
Joonsoo notes that this fixes some issues with constant folding which
also reduces the code size for slub.
https://lkml.org/lkml/2012/10/20/82
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
The kmalloc array is created in similar ways in both SLAB
and SLUB. Create a common function and have both allocators
call that function.
V1->V2:
Whitespace cleanup
Reviewed-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
SLAB allows us to tune a particular cache behavior with tunables. When
creating a new memcg cache copy, we'd like to preserve any tunables the
parent cache already had.
This could be done by an explicit call to do_tune_cpucache() after the
cache is created. But this is not very convenient now that the caches are
created from common code, since this function is SLAB-specific.
Another method of doing that is taking advantage of the fact that
do_tune_cpucache() is always called from enable_cpucache(), which is
called at cache initialization. We can just preset the values, and then
things work as expected.
It can also happen that a root cache has its tunables updated during
normal system operation. In this case, we will propagate the change to
all caches that are already active.
This change will require us to move the assignment of root_cache in
memcg_params a bit earlier. We need this to be already set - which
memcg_kmem_register_cache will do - when we reach __kmem_cache_create()
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we create caches in memcgs, we need to display their usage
information somewhere. We'll adopt a scheme similar to /proc/meminfo,
with aggregate totals shown in the global file, and per-group information
stored in the group itself.
For the time being, only reads are allowed in the per-group cache.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Implement destruction of memcg caches. Right now, only caches where our
reference counter is the last remaining are deleted. If there are any
other reference counters around, we just leave the caches lying around
until they go away.
When that happens, a destruction function is called from the cache code.
Caches are only destroyed in process context, so we queue them up for
later processing in the general case.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
struct page already has this information. If we start chaining caches,
this information will always be more trustworthy than whatever is passed
into the function.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Allow a memcg parameter to be passed during cache creation. When the slub
allocator is being used, it will only merge caches that belong to the same
memcg. We'll do this by scanning the global list, and then translating
the cache to a memcg-specific cache
Default function is created as a wrapper, passing NULL to the memcg
version. We only merge caches that belong to the same memcg.
A helper is provided, memcg_css_id: because slub needs a unique cache name
for sysfs. Since this is visible, but not the canonical location for slab
data, the cache name is not used, the css_id should suffice.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Suleiman Souhlal <suleiman@google.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
For the kmem slab controller, we need to record some extra information in
the kmem_cache structure.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Suleiman Souhlal <suleiman@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Frederic Weisbecker <fweisbec@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: JoonSoo Kim <js1304@gmail.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Pekka Enberg <penberg@cs.helsinki.fi>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Extract the code to do object alignment from the allocators.
Do the alignment calculations in slab_common so that the
__kmem_cache_create functions of the allocators do not have
to deal with alignment.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Use a special function to create kmalloc caches and use that function in
SLAB and SLUB.
Acked-by: Joonsoo Kim <js1304@gmail.com>
Reviewed-by: Glauber Costa <glommer@parallels.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Some flags are used internally by the allocators for management
purposes. One example of that is the CFLGS_OFF_SLAB flag that slab uses
to mark that the metadata for that cache is stored outside of the slab.
No cache should ever pass those as a creation flags. We can just ignore
this bit if it happens to be passed (such as when duplicating a cache in
the kmem memcg patches).
Because such flags can vary from allocator to allocator, we allow them
to make their own decisions on that, defining SLAB_AVAILABLE_FLAGS with
all flags that are valid at creation time. Allocators that doesn't have
any specific flag requirement should define that to mean all flags.
Common code will mask out all flags not belonging to that set.
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
With all the infrastructure in place, we can now have slabinfo_show
done from slab_common.c. A cache-specific function is called to grab
information about the cache itself, since that is still heavily
dependent on the implementation. But with the values produced by it, all
the printing and handling is done from common code.
Signed-off-by: Glauber Costa <glommer@parallels.com>
CC: Christoph Lameter <cl@linux.com>
CC: David Rientjes <rientjes@google.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
The header format is highly similar between slab and slub. The main
difference lays in the fact that slab may optionally have statistics
added here in case of CONFIG_SLAB_DEBUG, while the slub will stick them
somewhere else.
By making sure that information conditionally lives inside a
globally-visible CONFIG_DEBUG_SLAB switch, we can move the header
printing to a common location.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
CC: David Rientjes <rientjes@google.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
This patch moves all the common machinery to slabinfo processing
to slab_common.c. We can do better by noticing that the output is
heavily common, and having the allocators to just provide finished
information about this. But after this first step, this can be done
easier.
Signed-off-by: Glauber Costa <glommer@parallels.com>
Acked-by: Christoph Lameter <cl@linux.com>
CC: David Rientjes <rientjes@google.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Do the initial settings of the fields in common code. This will allow us
to push more processing into common code later and improve readability.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Shift the allocations to common code. That way the allocation and
freeing of the kmem_cache structures is handled by common code.
Reviewed-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Simplify locking by moving the slab_add_sysfs after all locks have been
dropped. Eases the upcoming move to provide sysfs support for all
allocators.
Reviewed-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
The slab aliasing logic causes some strange contortions in slub. So add
a call to deal with aliases to slab_common.c but disable it for other
slab allocators by providng stubs that fail to create aliases.
Full general support for aliases will require additional cleanup passes
and more standardization of fields in kmem_cache.
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
What is done there can be done in __kmem_cache_shutdown.
This affects RCU handling somewhat. On rcu free all slab allocators do
not refer to other management structures than the kmem_cache structure.
Therefore these other structures can be freed before the rcu deferred
free to the page allocator occurs.
Reviewed-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Make all allocators use the "kmem_cache" slabname for the "kmem_cache"
structure.
Reviewed-by: Glauber Costa <glommer@parallels.com>
Reviewed-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
kmem_cache_destroy does basically the same in all allocators.
Extract common code which is easy since we already have common mutex
handling.
Reviewed-by: Glauber Costa <glommer@parallels.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
Use the mutex definition from SLAB and make it the common way to take a sleeping lock.
This has the effect of using a mutex instead of a rw semaphore for SLUB.
SLOB gains the use of a mutex for kmem_cache_create serialization.
Not needed now but SLOB may acquire some more features later (like slabinfo
/ sysfs support) through the expansion of the common code that will
need this.
Reviewed-by: Glauber Costa <glommer@parallels.com>
Reviewed-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>
All allocators have some sort of support for the bootstrap status.
Setup a common definition for the boot states and make all slab
allocators use that definition.
Reviewed-by: Glauber Costa <glommer@parallels.com>
Reviewed-by: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Pekka Enberg <penberg@kernel.org>