[ Upstream commit 7561551e7b ]
Currently we allow a block group not to be marked read-only for scrub.
But for RAID56 block groups if we require the block group to be
read-only, then we're allowed to use cached content from scrub stripe to
reduce unnecessary RAID56 reads.
So this patch would:
- Make btrfs_inc_block_group_ro() try harder
During my tests, for cases like btrfs/061 and btrfs/064, we can hit
ENOSPC from btrfs_inc_block_group_ro() calls during scrub.
The reason is if we only have one single data chunk, and trying to
scrub it, we won't have any space left for any newer data writes.
But this check should be done by the caller, especially for scrub
cases we only temporarily mark the chunk read-only.
And newer data writes would always try to allocate a new data chunk
when needed.
- Return error for scrub if we failed to mark a RAID56 chunk read-only
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit f9eab5f0bb ]
[BUG]
The following script shows that, although scrub can detect super block
errors, it never tries to fix it:
mkfs.btrfs -f -d raid1 -m raid1 $dev1 $dev2
xfs_io -c "pwrite 67108864 4k" $dev2
mount $dev1 $mnt
btrfs scrub start -B $dev2
btrfs scrub start -Br $dev2
umount $mnt
The first scrub reports the super error correctly:
scrub done for f3289218-abd3-41ac-a630-202f766c0859
Scrub started: Tue Aug 2 14:44:11 2022
Status: finished
Duration: 0:00:00
Total to scrub: 1.26GiB
Rate: 0.00B/s
Error summary: super=1
Corrected: 0
Uncorrectable: 0
Unverified: 0
But the second read-only scrub still reports the same super error:
Scrub started: Tue Aug 2 14:44:11 2022
Status: finished
Duration: 0:00:00
Total to scrub: 1.26GiB
Rate: 0.00B/s
Error summary: super=1
Corrected: 0
Uncorrectable: 0
Unverified: 0
[CAUSE]
The comments already shows that super block can be easily fixed by
committing a transaction:
/*
* If we find an error in a super block, we just report it.
* They will get written with the next transaction commit
* anyway
*/
But the truth is, such assumption is not always true, and since scrub
should try to repair every error it found (except for read-only scrub),
we should really actively commit a transaction to fix this.
[FIX]
Just commit a transaction if we found any super block errors, after
everything else is done.
We cannot do this just after scrub_supers(), as
btrfs_commit_transaction() will try to pause and wait for the running
scrub, thus we can not call it with scrub_lock hold.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 4c66461179 ]
The structure btrfs_bio is used by two different sites:
- bio->bi_private for mirror based profiles
For those profiles (SINGLE/DUP/RAID1*/RAID10), this structures records
how many mirrors are still pending, and save the original endio
function of the bio.
- RAID56 code
In that case, RAID56 only utilize the stripes info, and no long uses
that to trace the pending mirrors.
So btrfs_bio is not always bind to a bio, and contains more info for IO
context, thus renaming it will make the naming less confusing.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 562d7b1512 ]
We have a lot of device lookup functions that all do something slightly
different. Clean this up by adding a struct to hold the different
lookup criteria, and then pass this around to btrfs_find_device() so it
can do the proper matching based on the lookup criteria.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit d08e38b623 ]
The bitfields have_csum and io_error are currently signed which is not
recommended as the representation is an implementation defined
behaviour. Fix this by making the bit-fields unsigned ints.
Fixes: 2c36395430 ("btrfs: scrub: remove the anonymous structure from scrub_page")
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[BUG]
For the following file layout, scrub will not be able to repair all
these two repairable error, but in fact make one corruption even
unrepairable:
inode offset 0 4k 8K
Mirror 1 |XXXXXX| |
Mirror 2 | |XXXXXX|
[CAUSE]
The root cause is the hard coded PAGE_SIZE, which makes scrub repair to
go crazy for subpage.
For above case, when reading the first sector, we use PAGE_SIZE other
than sectorsize to read, which makes us to read the full range [0, 64K).
In fact, after 8K there may be no data at all, we can just get some
garbage.
Then when doing the repair, we also writeback a full page from mirror 2,
this means, we will also writeback the corrupted data in mirror 2 back
to mirror 1, leaving the range [4K, 8K) unrepairable.
[FIX]
This patch will modify the following PAGE_SIZE use with sectorsize:
- scrub_print_warning_inode()
Remove the min() and replace PAGE_SIZE with sectorsize.
The min() makes no sense, as csum is done for the full sector with
padding.
This fixes a bug that subpage report extra length like:
checksum error at logical 298844160 on dev /dev/mapper/arm_nvme-test,
physical 575668224, root 5, inode 257, offset 0, length 12288, links 1 (path: file)
Where the error is only 1 sector.
- scrub_handle_errored_block()
Comments with PAGE|page involved, all changed to sector.
- scrub_setup_recheck_block()
- scrub_repair_page_from_good_copy()
- scrub_add_page_to_wr_bio()
- scrub_wr_submit()
- scrub_add_page_to_rd_bio()
- scrub_block_complete()
Replace PAGE_SIZE with sectorsize.
This solves several problems where we read/write extra range for
subpage case.
RAID56 code is excluded intentionally, as RAID56 has extra PAGE_SIZE
usage, and is not really safe enough.
Thus we will reject RAID56 for subpage in later commit.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are common values set for the stripe constraints, some of them
are already factored out. Do that for increment and mirror_num as well.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add sysfs interface to limit io during scrub. We relied on the ionice
interface to do that, eg. the idle class let the system usable while
scrub was running. This has changed when mq-deadline got widespread and
did not implement the scheduling classes. That was a CFQ thing that got
deleted. We've got numerous complaints from users about degraded
performance.
Currently only BFQ supports that but it's not a common scheduler and we
can't ask everybody to switch to it.
Alternatively the cgroup io limiting can be used but that also a
non-trivial setup (v2 required, the controller must be enabled on the
system). This can still be used if desired.
Other ideas that have been explored: piggy-back on ionice (that is set
per-process and is accessible) and interpret the class and classdata as
bandwidth limits, but this does not have enough flexibility as there are
only 8 allowed and we'd have to map fixed limits to each value. Also
adjusting the value would need to lookup the process that currently runs
scrub on the given device, and the value is not sticky so would have to
be adjusted each time scrub runs.
Running out of options, sysfs does not look that bad:
- it's accessible from scripts, or udev rules
- the name is similar to what MD-RAID has
(/proc/sys/dev/raid/speed_limit_max or /sys/block/mdX/md/sync_speed_max)
- the value is sticky at least for filesystem mount time
- adjusting the value has immediate effect
- sysfs is available in constrained environments (eg. system rescue)
- the limit also applies to device replace
Sysfs:
- raw value is in bytes
- values written to the file accept suffixes like K, M
- file is in the per-device directory /sys/fs/btrfs/FSID/devinfo/DEVID/scrub_speed_max
- 0 means use default priority of IO
The scheduler is a simple deadline one and the accuracy is up to nearest
128K.
Signed-off-by: David Sterba <dsterba@suse.com>
When doing a device replace on a zoned filesystem, if we find a block
group with ->to_copy == 0, we jump to the label 'done', which will result
in later calling btrfs_unfreeze_block_group(), even though at this point
we never called btrfs_freeze_block_group().
Since at this point we have neither turned the block group to RO mode nor
made any progress, we don't need to jump to the label 'done'. So fix this
by jumping instead to the label 'skip' and dropping our reference on the
block group before the jump.
Fixes: 78ce9fc269 ("btrfs: zoned: mark block groups to copy for device-replace")
CC: stable@vger.kernel.org # 5.12
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Drop function declarations at the beginning of the file scrub.c. These
functions are defined before they are used in the same file and don't
need forward declaration.
No functional changes.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmBLzKsQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpi0ID/9djN1db0OrAjQgWdOQsKwzcPG4fmVRHJAu
Zi8SPRj0ByonWGaPWjiSi297/j00dfYFFIXaB1Pfo4j0wX0IK8bJINl0G8SN6Dag
WYBBrT/5rCQgD8fjQ1XhuzuqLwxwcZfYXAnCAlqABG18nPk532D4dX2CMEasl8F7
XWTTj5PqHDN4bCcriH1GEA5S+2nmoz5YXjNZEDcY3/pQMdyb8Jo9mRfZubkrnRxK
c9fz2LjUz0IRaSb+9PILY5qDLOSIh+vHOIk/3BKW9DoqU/S3kTTr4twqnOclfVPH
VgJM9b+sHveVCztCJ9bnNGkW7HWjUQa8gb/B40NBxKEhw7w/HCjykhhxd+QTUQTM
GJVMRGYWhzuUEuU1M1hArPua0GLmPKSvC0CRgbKRmgPNjshTquZPJnBBFwv2wZKQ
GkrwktdK9ihE1ya4gu20MupST3PIpT3jtc6NAizr6DCy0wJ0Z1X5KYnFdbtS79No
I9qPC8lu3AcZq6NXdBfTO9ngIdiUwi9AfSYj7koS/4dmnVccVJmaj0/NNmVp2Ro3
HtaObanBnTi9v8YHl8WgX6lq5RjuQ204fXmd0No4mHFvgxsl7YaX+JBts7S3A2Nf
PoQLqmulcLmzT3EVuEg279aXw2rbnyWHARbF/5/tIr4JcugtLJhwFnBA5YgFreq9
lSbqgoKSHw==
=qHyO
-----END PGP SIGNATURE-----
Merge tag 'block-5.12-2021-03-12-v2' of git://git.kernel.dk/linux-block
Pull block fixes from Jens Axboe:
"Mostly just random fixes all over the map.
The only odd-one-out change is finally getting the rename of
BIO_MAX_PAGES to BIO_MAX_VECS done. This should've been done with the
multipage bvec change, but it's been left.
Do it now to avoid hassles around changes piling up for the next merge
window.
Summary:
- NVMe pull request:
- one more quirk (Dmitry Monakhov)
- fix max_zone_append_sectors initialization (Chaitanya Kulkarni)
- nvme-fc reset/create race fix (James Smart)
- fix status code on aborts/resets (Hannes Reinecke)
- fix the CSS check for ZNS namespaces (Chaitanya Kulkarni)
- fix a use after free in a debug printk in nvme-rdma (Lv Yunlong)
- Follow-up NVMe error fix for NULL 'id' (Christoph)
- Fixup for the bd_size_lock being IRQ safe, now that the offending
driver has been dropped (Damien).
- rsxx probe failure error return (Jia-Ju)
- umem probe failure error return (Wei)
- s390/dasd unbind fixes (Stefan)
- blk-cgroup stats summing fix (Xunlei)
- zone reset handling fix (Damien)
- Rename BIO_MAX_PAGES to BIO_MAX_VECS (Christoph)
- Suppress uevent trigger for hidden devices (Daniel)
- Fix handling of discard on busy device (Jan)
- Fix stale cache issue with zone reset (Shin'ichiro)"
* tag 'block-5.12-2021-03-12-v2' of git://git.kernel.dk/linux-block:
nvme: fix the nsid value to print in nvme_validate_or_alloc_ns
block: Discard page cache of zone reset target range
block: Suppress uevent for hidden device when removed
block: rename BIO_MAX_PAGES to BIO_MAX_VECS
nvme-pci: add the DISABLE_WRITE_ZEROES quirk for a Samsung PM1725a
nvme-rdma: Fix a use after free in nvmet_rdma_write_data_done
nvme-core: check ctrl css before setting up zns
nvme-fc: fix racing controller reset and create association
nvme-fc: return NVME_SC_HOST_ABORTED_CMD when a command has been aborted
nvme-fc: set NVME_REQ_CANCELLED in nvme_fc_terminate_exchange()
nvme: add NVME_REQ_CANCELLED flag in nvme_cancel_request()
nvme: simplify error logic in nvme_validate_ns()
nvme: set max_zone_append_sectors nvme_revalidate_zones
block: rsxx: fix error return code of rsxx_pci_probe()
block: Fix REQ_OP_ZONE_RESET_ALL handling
umem: fix error return code in mm_pci_probe()
blk-cgroup: Fix the recursive blkg rwstat
s390/dasd: fix hanging IO request during DASD driver unbind
s390/dasd: fix hanging DASD driver unbind
block: Try to handle busy underlying device on discard
Ever since the addition of multipage bio_vecs BIO_MAX_PAGES has been
horribly confusingly misnamed. Rename it to BIO_MAX_VECS to stop
confusing users of the bio API.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Link: https://lore.kernel.org/r/20210311110137.1132391-2-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE8rQSAMVO+zA4DBdWxWXV+ddtWDsFAmA85UwACgkQxWXV+ddt
WDsdeA/8DXM6pMGaLkYcvkGvR53/vWwQlKq+i+3zuc41fYFJ7k+DQ7/K5hDbEMoM
E7YsksoRlNVruH/ZvSdtx1exQ/tNrTdqPuds/UR31lIvS2NX9OZZToGWoC8VmrNw
eS9yAwz/7JKUBA6MlMxZFv89OJoHUX9brPSeZVA8hOo3jDr5LXVm0IBskYOBUDRx
JIvt+lkJLKMXPWxwUt3hbkbFPAUQVxYYavhJhWiXT9gdxF+eRgjMI0EN43vBMN2y
kZtoZGeWR64heo9ehFzYMDlAVyph/loGovQ7m6XVzkk5DQGitg0vs3iAG46WjEXt
jxt0ZKmJQwJb3/zNPd8VlLMhULGc56jcq8uhaC2pXjhy18p7EAXml+fH51BExLYK
11hiWtWsrbTsZuYgr6fpqVFukkL/yyH/s7iCWT8Wn+AoPg2fUD99F5nkKT2T0Sso
t7MyJVlTdq8avWbTB+8kFx8+Hy1TsRz3Ic2Zpm8+F3KeVflrb31jJIp3cxPCdfUp
fWX+7VDjKVt00Ti7uP0fAaFO4hn2FjYcWzR3KOjomWox+8LVxB8PbD4H8jD7As2a
5gGGOULmkiZej7hcP6J6zvnmgZIVAGPsSGSVfZtPh4VGiycL3DozcD0x5QerLchR
NZDyIBh2KGE0cRr+cjkPxDyeqfGXQ7VUjp13CBriCkER8SOmBdw=
=QJEy
-----END PGP SIGNATURE-----
Merge tag 'for-5.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux
Pull btrfs fixes from David Sterba:
"This is the first batch of fixes that usually arrive during the merge
window code freeze. Regressions and stable material.
Regressions:
- fix deadlock in log sync in zoned mode
- fix bugs in subpage mode still wrongly assuming sectorsize == page
size
Fixes:
- fix missing kunmap of the Q stripe in RAID6
- block group fixes:
- fix race between extent freeing/allocation when using bitmaps
- avoid double put of block group when emptying cluster
- swapfile fixes:
- fix swapfile writes vs running scrub
- fix swapfile activation vs snapshot creation
- fix stale data exposure after cloning a hole with NO_HOLES enabled
- remove tree-checker check that does not work in case information
from other leaves is necessary"
* tag 'for-5.12-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave/linux:
btrfs: zoned: fix deadlock on log sync
btrfs: avoid double put of block group when emptying cluster
btrfs: fix stale data exposure after cloning a hole with NO_HOLES enabled
btrfs: tree-checker: do not error out if extent ref hash doesn't match
btrfs: fix race between swap file activation and snapshot creation
btrfs: fix race between writes to swap files and scrub
btrfs: avoid checking for RO block group twice during nocow writeback
btrfs: fix race between extent freeing/allocation when using bitmaps
btrfs: make check_compressed_csum() to be subpage compatible
btrfs: make btrfs_submit_compressed_read() subpage compatible
btrfs: fix raid6 qstripe kmap
When we active a swap file, at btrfs_swap_activate(), we acquire the
exclusive operation lock to prevent the physical location of the swap
file extents to be changed by operations such as balance and device
replace/resize/remove. We also call there can_nocow_extent() which,
among other things, checks if the block group of a swap file extent is
currently RO, and if it is we can not use the extent, since a write
into it would result in COWing the extent.
However we have no protection against a scrub operation running after we
activate the swap file, which can result in the swap file extents to be
COWed while the scrub is running and operating on the respective block
group, because scrub turns a block group into RO before it processes it
and then back again to RW mode after processing it. That means an attempt
to write into a swap file extent while scrub is processing the respective
block group, will result in COWing the extent, changing its physical
location on disk.
Fix this by making sure that block groups that have extents that are used
by active swap files can not be turned into RO mode, therefore making it
not possible for a scrub to turn them into RO mode. When a scrub finds a
block group that can not be turned to RO due to the existence of extents
used by swap files, it proceeds to the next block group and logs a warning
message that mentions the block group was skipped due to active swap
files - this is the same approach we currently use for balance.
Fixes: ed46ff3d42 ("Btrfs: support swap files")
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmAtmIwQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgplzLEAC5O+3rBM8QuiJdo39Yppmuw4hDJ6hOKynP
EJQLKQQi0VfXgU+MprGvcbpFYmNbgICvUICQkEzJuk++kPCu/BJtJz0yErQeLgS+
RdXiPV6enbF7iRML5TVRTr1q/z7sJMXcIIJ8Pz/rU/JNfGYExVd0WfnEY9mp1jOt
Bl9V+qyTazdP+Ma4+uEPatSayqcdi1rxB5I+7v/sLiOvKZZWkaRZjUZ/mxAjUfvK
dBOOPjMygEo3tCLkIyyA6lpLvr1r+SUZhLuebRLEKa3To3TW6RtoG0qwpKmI2iKw
ylLeVLB60nM9RUxjflVOfBsHxz1bDg5Ve86y5nCjQd4Jo8x1c4DnecyGE5/Tu8Rg
rgbsfD6nFWzhDCvcZT0XrfQ4ZAjIL2IfT+ypQiQ6UlRd3hvIKRmzWMkjuH2svr0u
ey9Kq+lYerI4cM0F3W73gzUKdIQOuCzBCYxQuSQQomscBa7FCInyU192dAI9Aj6l
Yd06mgKu6qCx6zLv6JfpBqaBHZMwyGE4dmZgPQFuuwO+b4N+Ck3Jm5fzEzw/xIxQ
wdo/DlsAl60BXentB6FByGBJaCjVdSymRqN/xNCAbFKCjmr6TLBuXPfg1gYYO7xC
VOcVjWe8iN3wWHZab3t2mxMKH9B9B/KKzIhu6TNHSmgtQ5paZPRCBx995pDyRw26
WC22RGC2MA==
=os1E
-----END PGP SIGNATURE-----
Merge tag 'for-5.12/block-2021-02-17' of git://git.kernel.dk/linux-block
Pull core block updates from Jens Axboe:
"Another nice round of removing more code than what is added, mostly
due to Christoph's relentless pursuit of tech debt removal/cleanups.
This pull request contains:
- Two series of BFQ improvements (Paolo, Jan, Jia)
- Block iov_iter improvements (Pavel)
- bsg error path fix (Pan)
- blk-mq scheduler improvements (Jan)
- -EBUSY discard fix (Jan)
- bvec allocation improvements (Ming, Christoph)
- bio allocation and init improvements (Christoph)
- Store bdev pointer in bio instead of gendisk + partno (Christoph)
- Block trace point cleanups (Christoph)
- hard read-only vs read-only split (Christoph)
- Block based swap cleanups (Christoph)
- Zoned write granularity support (Damien)
- Various fixes/tweaks (Chunguang, Guoqing, Lei, Lukas, Huhai)"
* tag 'for-5.12/block-2021-02-17' of git://git.kernel.dk/linux-block: (104 commits)
mm: simplify swapdev_block
sd_zbc: clear zone resources for non-zoned case
block: introduce blk_queue_clear_zone_settings()
zonefs: use zone write granularity as block size
block: introduce zone_write_granularity limit
block: use blk_queue_set_zoned in add_partition()
nullb: use blk_queue_set_zoned() to setup zoned devices
nvme: cleanup zone information initialization
block: document zone_append_max_bytes attribute
block: use bi_max_vecs to find the bvec pool
md/raid10: remove dead code in reshape_request
block: mark the bio as cloned in bio_iov_bvec_set
block: set BIO_NO_PAGE_REF in bio_iov_bvec_set
block: remove a layer of indentation in bio_iov_iter_get_pages
block: turn the nr_iovecs argument to bio_alloc* into an unsigned short
block: remove the 1 and 4 vec bvec_slabs entries
block: streamline bvec_alloc
block: factor out a bvec_alloc_gfp helper
block: move struct biovec_slab to bio.c
block: reuse BIO_INLINE_VECS for integrity bvecs
...
When a bad checksum is found and if the filesystem has a mirror of the
damaged data, we read the correct data from the mirror and writes it to
damaged blocks. This however, violates the sequential write constraints
of a zoned block device.
We can consider three methods to repair an IO failure in zoned filesystems:
(1) Reset and rewrite the damaged zone
(2) Allocate new device extent and replace the damaged device extent to
the new extent
(3) Relocate the corresponding block group
Method (1) is most similar to a behavior done with regular devices.
However, it also wipes non-damaged data in the same device extent, and
so it unnecessary degrades non-damaged data.
Method (2) is much like device replacing but done in the same device. It
is safe because it keeps the device extent until the replacing finish.
However, extending device replacing is non-trivial. It assumes
"src_dev->physical == dst_dev->physical". Also, the extent mapping
replacing function should be extended to support replacing device extent
position in one device.
Method (3) invokes relocation of the damaged block group and is
straightforward to implement. It relocates all the mirrored device
extents, so it potentially is a more costly operation than method (1) or
(2). But it relocates only used extents which reduce the total IO size.
Let's apply method (3) for now. In the future, we can extend device-replace
and apply method (2).
For protecting a block group gets relocated multiple time with multiple
IO errors, this commit introduces "relocating_repair" bit to show it's
now relocating to repair IO failures. Also it uses a new kthread
"btrfs-relocating-repair", not to block IO path with relocating process.
This commit also supports repairing in the scrub process.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is 4/4 patch to implement device-replace on zoned filesystems.
Even after the copying is done, the write pointers of the source device
and the destination device may not be synchronized. For example, when
the last allocated extent is freed before device-replace process, the
extent is not copied, leaving a hole there.
Synchronize the write pointers by writing zeroes to the destination
device.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is 3/4 patch to implement device-replace on zoned filesystems.
This commit implements copying. To do this, it tracks the write pointer
during the device replace process. As device-replace's copy process is
smart enough to only copy used extents on the source device, we have to
fill the gap to honor the sequential write requirement in the target
device.
The device-replace process on zoned filesystems must copy or clone all
the extents in the source device exactly once. So, we need to ensure
allocations started just before the dev-replace process to have their
corresponding extent information in the B-trees.
finish_extent_writes_for_zoned() implements that functionality, which
basically is the removed code in the commit 042528f8d8 ("Btrfs: fix
block group remaining RO forever after error during device replace").
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is the 1/4 patch to support device-replace on zoned filesystems.
We have two types of IOs during the device replace process. One is an IO
to "copy" (by the scrub functions) all the device extents from the source
device to the destination device. The other one is an IO to "clone" (by
handle_ops_on_dev_replace()) new incoming write IOs from users to the
source device into the target device.
Cloning incoming IOs can break the sequential write rule in on target
device. When a write is mapped in the middle of a block group, the IO is
directed to the middle of a target device zone, which breaks the
sequential write requirement.
However, the cloning function cannot be disabled since incoming IOs
targeting already copied device extents must be cloned so that the IO is
executed on the target device.
We cannot use dev_replace->cursor_{left,right} to determine whether a bio
is going to a not yet copied region. Since we have a time gap between
finishing btrfs_scrub_dev() and rewriting the mapping tree in
btrfs_dev_replace_finishing(), we can have a newly allocated device extent
which is never cloned nor copied.
So the point is to copy only already existing device extents. This patch
introduces mark_block_group_to_copy() to mark existing block groups as a
target of copying. Then, handle_ops_on_dev_replace() and dev-replace can
check the flag to do their job.
Also, btrfs_finish_block_group_to_copy() will check if the copied stripe
is the last stripe in the block group. With the last stripe copied,
the to_copy flag is finally disabled. Afterwards we can safely clone
incoming IOs on this block group.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Replace the gendisk pointer in struct bio with a pointer to the newly
improved struct block device. From that the gendisk can be trivially
accessed with an extra indirection, but it also allows to directly
look up all information related to partition remapping.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Since btrfs scrub is utilizing its own infrastructure to submit
read/write, scrub is independent from all other routines.
This brings one very neat feature, allow us to read 4K data into offset
0 of a 64K page. So is the writeback routine.
This makes scrub on subpage sector size much easier to implement, and
thanks to previous commits which just changed the implementation to
always do scrub based on sector size, now scrub can handle subpage
filesystem without any problem.
This patch will just remove the restriction on
(sectorsize != PAGE_SIZE), to make scrub finally work on subpage
filesystems.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Btrfs scrub is more flexible than buffered data write path, as we can
read an unaligned subpage data into page offset 0.
This ability makes subpage support much easier, we just need to check
each scrub_page::page_len and ensure we only calculate hash for [0,
page_len) of a page.
There is a small thing to notice: for subpage case, we still do sector
by sector scrub. This means we will submit a read bio for each sector
to scrub, resulting in the same amount of read bios, just like on the 4K
page systems.
This behavior can be considered as a good thing, if we want everything
to be the same as 4K page systems. But this also means, we're wasting
the possibility to submit larger bio using 64K page size. This is
another problem to consider in the future.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
To support subpage tree block scrub, scrub_checksum_tree_block() only
needs to learn 2 new tricks:
- Follow sector size
Now scrub_page only represents one sector, we need to follow it
properly.
- Run checksum on all sectors
Since scrub_page only represents one sector, we need to run checksum
on all sectors, not only (nodesize >> PAGE_SIZE).
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For scrub_pages() and scrub_pages_for_parity(), we currently allocate
one scrub_page structure for one page.
This is fine if we only read/write one sector one time. But for cases
like scrubbing RAID56, we need to read/write the full stripe, which is
in 64K size for now.
For subpage size, we will submit the read in just one page, which is
normally a good thing, but for RAID56 case, it only expects to see one
sector, not the full stripe in its endio function.
This could lead to wrong parity checksum for RAID56 on subpage.
To make the existing code work well for subpage case, here we take a
shortcut by always allocating a full page for one sector.
This should provide the base to make RAID56 work for subpage case.
The cost is pretty obvious now, for one RAID56 stripe now we always need
16 pages. For support subpage situation (64K page size, 4K sector size),
this means we need full one megabyte to scrub just one RAID56 stripe.
And for data scrub, each 4K sector will also need one 64K page.
This is mostly just a workaround, the proper fix for this is a much
larger project, using scrub_block to replace scrub_page, and allow
scrub_block to handle multi pages, csums, and csum_bitmap to avoid
allocating one page for each sector.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Btrfs on-disk format chose to use u64 for almost everything, but there
are a other restrictions that won't let us use more than u32 for things
like extent length (the maximum length is 128MiB for non-hole extents),
or stripe length (we have device number limit).
This means if we don't have extra handling to convert u64 to u32, we
will always have some questionable operations like
"u32 = u64 >> sectorsize_bits" in the code.
This patch will try to address the problem by reducing the width for the
following members/parameters:
- scrub_parity::stripe_len
- @len of scrub_pages()
- @extent_len of scrub_remap_extent()
- @len of scrub_parity_mark_sectors_error()
- @len of scrub_parity_mark_sectors_data()
- @len of scrub_extent()
- @len of scrub_pages_for_parity()
- @len of scrub_extent_for_parity()
For members extracted from on-disk structure, like map->stripe_len, they
will be kept as is. Since that modification would require on-disk format
change.
There will be cases like "u32 = u64 - u64" or "u32 = u64", for such call
sites, extra ASSERT() is added to be extra safe for debug builds.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Superblock (and its copies) is the only data structure in btrfs which
has a fixed location on a device. Since we cannot overwrite in a
sequential write required zone, we cannot place superblock in the zone.
One easy solution is limiting superblock and copies to be placed only in
conventional zones. However, this method has two downsides: one is
reduced number of superblock copies. The location of the second copy of
superblock is 256GB, which is in a sequential write required zone on
typical devices in the market today. So, the number of superblock and
copies is limited to be two. Second downside is that we cannot support
devices which have no conventional zones at all.
To solve these two problems, we employ superblock log writing. It uses
two adjacent zones as a circular buffer to write updated superblocks.
Once the first zone is filled up, start writing into the second one.
Then, when both zones are filled up and before starting to write to the
first zone again, it reset the first zone.
We can determine the position of the latest superblock by reading write
pointer information from a device. One corner case is when both zones
are full. For this situation, we read out the last superblock of each
zone, and compare them to determine which zone is older.
The following zones are reserved as the circular buffer on ZONED btrfs.
- The primary superblock: zones 0 and 1
- The first copy: zones 16 and 17
- The second copy: zones 1024 or zone at 256GB which is minimum, and
next to it
If these reserved zones are conventional, superblock is written fixed at
the start of the zone without logging.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
That anonymous structure serve no special purpose, just replace it with
regular members.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Commit 343694eee8d8 ("btrfs: switch seed device to list api"), missed to
check if the parameter seed is true in the function btrfs_find_device().
This tells it whether to traverse the seed device list or not.
After this commit, the argument is unused and can be removed.
In device_list_add() it's not necessary because fs_devices always points
to the device's fs_devices. So with the devid+uuid matching, it will
find the right device and return, thus not needing to traverse seed
devices.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Function scrub_find_csum() is to locate the csum for bytenr @logical
from sctx->csum_list.
However it lacks a lot of comments to explain things like how the
csum_list is organized and why we need to drop csum range which is
before us.
Refactor the function by:
- Add more comments explaining the behavior
- Add comment explaining why we need to drop the csum range
- Put the csum copy in the main loop
This is mostly for the incoming patches to make scrub_find_csum() able
to find multiple checksums.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The @force parameter for scrub_pages() is to indicate whether we want to
force bio submission. Currently it's only used for the super block,
and it can be easily determined by the @flags, so we can remove the
parameter.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are several call sites where we declare something like
"struct scrub_page *page".
This is confusing as we also use regular page in this code,
rename it to 'spage' where applicable.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The context structure unnecessarily stores copy of the checksum size,
that can be now easily obtained from fs_info.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
btrfs_get_16 shows up in the system performance profiles (helper to read
16bit values from on-disk structures). This is partially because of the
checksum size that's frequently read along with data reads/writes, other
u16 uses are from item size or directory entries.
Replace all calls to btrfs_super_csum_size by the cached value from
fs_info.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We do a lot of calculations where we divide or multiply by sectorsize.
We also know and make sure that sectorsize is a power of two, so this
means all divisions can be turned to shifts and avoid eg. expensive
u64/u32 divisions.
The type is u32 as it's more register friendly on x86_64 compared to u8
and the resulting assembly is smaller (movzbl vs movl).
There's also superblock s_blocksize_bits but it's usually one more
pointer dereference farther than fs_info.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When scrubbing a stripe of a block group we always start readahead for the
checksums btree and wait for it to complete, however when the blockgroup is
not a data block group (or a mixed block group) it is a waste of time to do
it, since there are no checksums for metadata extents in that btree.
So skip that when the block group does not have the data flag set, saving
some time doing memory allocations, queueing a job in the readahead work
queue, waiting for it to complete and potentially avoiding some IO as well
(when csum tree extents are not in memory already).
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Based on user feedback update the message printed when scrub fails to
start due to write requirements. To make a distinction add a device id
to the messages.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There's already defined _rs within ctree.h:btrfs_printk_ratelimited,
local variables should not use _ to avoid such name clashes with
macro-local variables.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
I got the following lockdep splat while testing:
======================================================
WARNING: possible circular locking dependency detected
5.8.0-rc7-00172-g021118712e59 #932 Not tainted
------------------------------------------------------
btrfs/229626 is trying to acquire lock:
ffffffff828513f0 (cpu_hotplug_lock){++++}-{0:0}, at: alloc_workqueue+0x378/0x450
but task is already holding lock:
ffff889dd3889518 (&fs_info->scrub_lock){+.+.}-{3:3}, at: btrfs_scrub_dev+0x11c/0x630
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #7 (&fs_info->scrub_lock){+.+.}-{3:3}:
__mutex_lock+0x9f/0x930
btrfs_scrub_dev+0x11c/0x630
btrfs_dev_replace_by_ioctl.cold.21+0x10a/0x1d4
btrfs_ioctl+0x2799/0x30a0
ksys_ioctl+0x83/0xc0
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x50/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #6 (&fs_devs->device_list_mutex){+.+.}-{3:3}:
__mutex_lock+0x9f/0x930
btrfs_run_dev_stats+0x49/0x480
commit_cowonly_roots+0xb5/0x2a0
btrfs_commit_transaction+0x516/0xa60
sync_filesystem+0x6b/0x90
generic_shutdown_super+0x22/0x100
kill_anon_super+0xe/0x30
btrfs_kill_super+0x12/0x20
deactivate_locked_super+0x29/0x60
cleanup_mnt+0xb8/0x140
task_work_run+0x6d/0xb0
__prepare_exit_to_usermode+0x1cc/0x1e0
do_syscall_64+0x5c/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #5 (&fs_info->tree_log_mutex){+.+.}-{3:3}:
__mutex_lock+0x9f/0x930
btrfs_commit_transaction+0x4bb/0xa60
sync_filesystem+0x6b/0x90
generic_shutdown_super+0x22/0x100
kill_anon_super+0xe/0x30
btrfs_kill_super+0x12/0x20
deactivate_locked_super+0x29/0x60
cleanup_mnt+0xb8/0x140
task_work_run+0x6d/0xb0
__prepare_exit_to_usermode+0x1cc/0x1e0
do_syscall_64+0x5c/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #4 (&fs_info->reloc_mutex){+.+.}-{3:3}:
__mutex_lock+0x9f/0x930
btrfs_record_root_in_trans+0x43/0x70
start_transaction+0xd1/0x5d0
btrfs_dirty_inode+0x42/0xd0
touch_atime+0xa1/0xd0
btrfs_file_mmap+0x3f/0x60
mmap_region+0x3a4/0x640
do_mmap+0x376/0x580
vm_mmap_pgoff+0xd5/0x120
ksys_mmap_pgoff+0x193/0x230
do_syscall_64+0x50/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #3 (&mm->mmap_lock#2){++++}-{3:3}:
__might_fault+0x68/0x90
_copy_to_user+0x1e/0x80
perf_read+0x141/0x2c0
vfs_read+0xad/0x1b0
ksys_read+0x5f/0xe0
do_syscall_64+0x50/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xa9
-> #2 (&cpuctx_mutex){+.+.}-{3:3}:
__mutex_lock+0x9f/0x930
perf_event_init_cpu+0x88/0x150
perf_event_init+0x1db/0x20b
start_kernel+0x3ae/0x53c
secondary_startup_64+0xa4/0xb0
-> #1 (pmus_lock){+.+.}-{3:3}:
__mutex_lock+0x9f/0x930
perf_event_init_cpu+0x4f/0x150
cpuhp_invoke_callback+0xb1/0x900
_cpu_up.constprop.26+0x9f/0x130
cpu_up+0x7b/0xc0
bringup_nonboot_cpus+0x4f/0x60
smp_init+0x26/0x71
kernel_init_freeable+0x110/0x258
kernel_init+0xa/0x103
ret_from_fork+0x1f/0x30
-> #0 (cpu_hotplug_lock){++++}-{0:0}:
__lock_acquire+0x1272/0x2310
lock_acquire+0x9e/0x360
cpus_read_lock+0x39/0xb0
alloc_workqueue+0x378/0x450
__btrfs_alloc_workqueue+0x15d/0x200
btrfs_alloc_workqueue+0x51/0x160
scrub_workers_get+0x5a/0x170
btrfs_scrub_dev+0x18c/0x630
btrfs_dev_replace_by_ioctl.cold.21+0x10a/0x1d4
btrfs_ioctl+0x2799/0x30a0
ksys_ioctl+0x83/0xc0
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x50/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xa9
other info that might help us debug this:
Chain exists of:
cpu_hotplug_lock --> &fs_devs->device_list_mutex --> &fs_info->scrub_lock
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&fs_info->scrub_lock);
lock(&fs_devs->device_list_mutex);
lock(&fs_info->scrub_lock);
lock(cpu_hotplug_lock);
*** DEADLOCK ***
2 locks held by btrfs/229626:
#0: ffff88bfe8bb86e0 (&fs_devs->device_list_mutex){+.+.}-{3:3}, at: btrfs_scrub_dev+0xbd/0x630
#1: ffff889dd3889518 (&fs_info->scrub_lock){+.+.}-{3:3}, at: btrfs_scrub_dev+0x11c/0x630
stack backtrace:
CPU: 15 PID: 229626 Comm: btrfs Kdump: loaded Not tainted 5.8.0-rc7-00172-g021118712e59 #932
Hardware name: Quanta Tioga Pass Single Side 01-0030993006/Tioga Pass Single Side, BIOS F08_3A18 12/20/2018
Call Trace:
dump_stack+0x78/0xa0
check_noncircular+0x165/0x180
__lock_acquire+0x1272/0x2310
lock_acquire+0x9e/0x360
? alloc_workqueue+0x378/0x450
cpus_read_lock+0x39/0xb0
? alloc_workqueue+0x378/0x450
alloc_workqueue+0x378/0x450
? rcu_read_lock_sched_held+0x52/0x80
__btrfs_alloc_workqueue+0x15d/0x200
btrfs_alloc_workqueue+0x51/0x160
scrub_workers_get+0x5a/0x170
btrfs_scrub_dev+0x18c/0x630
? start_transaction+0xd1/0x5d0
btrfs_dev_replace_by_ioctl.cold.21+0x10a/0x1d4
btrfs_ioctl+0x2799/0x30a0
? do_sigaction+0x102/0x250
? lockdep_hardirqs_on_prepare+0xca/0x160
? _raw_spin_unlock_irq+0x24/0x30
? trace_hardirqs_on+0x1c/0xe0
? _raw_spin_unlock_irq+0x24/0x30
? do_sigaction+0x102/0x250
? ksys_ioctl+0x83/0xc0
ksys_ioctl+0x83/0xc0
__x64_sys_ioctl+0x16/0x20
do_syscall_64+0x50/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xa9
This happens because we're allocating the scrub workqueues under the
scrub and device list mutex, which brings in a whole host of other
dependencies.
Because the work queue allocation is done with GFP_KERNEL, it can
trigger reclaim, which can lead to a transaction commit, which in turns
needs the device_list_mutex, it can lead to a deadlock. A different
problem for which this fix is a solution.
Fix this by moving the actual allocation outside of the
scrub lock, and then only take the lock once we're ready to actually
assign them to the fs_info. We'll now have to cleanup the workqueues in
a few more places, so I've added a helper to do the refcount dance to
safely free the workqueues.
CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Eric reported seeing this message while running generic/475
BTRFS: error (device dm-3) in btrfs_sync_log:3084: errno=-117 Filesystem corrupted
Full stack trace:
BTRFS: error (device dm-0) in btrfs_commit_transaction:2323: errno=-5 IO failure (Error while writing out transaction)
BTRFS info (device dm-0): forced readonly
BTRFS warning (device dm-0): Skipping commit of aborted transaction.
------------[ cut here ]------------
BTRFS: error (device dm-0) in cleanup_transaction:1894: errno=-5 IO failure
BTRFS: Transaction aborted (error -117)
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6480 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6488 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6490 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c6498 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64a0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64a8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64b0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64b8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3555 rw 0,0 sector 0x1c64c0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3572 rw 0,0 sector 0x1b85e8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3572 rw 0,0 sector 0x1b85f0 len 4096 err no 10
WARNING: CPU: 3 PID: 23985 at fs/btrfs/tree-log.c:3084 btrfs_sync_log+0xbc8/0xd60 [btrfs]
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d4288 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d4290 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d4298 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42a0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42a8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42b0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42b8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42c0 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42c8 len 4096 err no 10
BTRFS warning (device dm-0): direct IO failed ino 3548 rw 0,0 sector 0x1d42d0 len 4096 err no 10
CPU: 3 PID: 23985 Comm: fsstress Tainted: G W L 5.8.0-rc4-default+ #1181
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba527-rebuilt.opensuse.org 04/01/2014
RIP: 0010:btrfs_sync_log+0xbc8/0xd60 [btrfs]
RSP: 0018:ffff909a44d17bd0 EFLAGS: 00010286
RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000001
RDX: ffff8f3be41cb940 RSI: ffffffffb0108d2b RDI: ffffffffb0108ff7
RBP: ffff909a44d17e70 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000037988 R12: ffff8f3bd20e4000
R13: ffff8f3bd20e4428 R14: 00000000ffffff8b R15: ffff909a44d17c70
FS: 00007f6a6ed3fb80(0000) GS:ffff8f3c3dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f6a6ed3e000 CR3: 00000000525c0003 CR4: 0000000000160ee0
Call Trace:
? finish_wait+0x90/0x90
? __mutex_unlock_slowpath+0x45/0x2a0
? lock_acquire+0xa3/0x440
? lockref_put_or_lock+0x9/0x30
? dput+0x20/0x4a0
? dput+0x20/0x4a0
? do_raw_spin_unlock+0x4b/0xc0
? _raw_spin_unlock+0x1f/0x30
btrfs_sync_file+0x335/0x490 [btrfs]
do_fsync+0x38/0x70
__x64_sys_fsync+0x10/0x20
do_syscall_64+0x50/0xe0
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7f6a6ef1b6e3
Code: Bad RIP value.
RSP: 002b:00007ffd01e20038 EFLAGS: 00000246 ORIG_RAX: 000000000000004a
RAX: ffffffffffffffda RBX: 000000000007a120 RCX: 00007f6a6ef1b6e3
RDX: 00007ffd01e1ffa0 RSI: 00007ffd01e1ffa0 RDI: 0000000000000003
RBP: 0000000000000003 R08: 0000000000000001 R09: 00007ffd01e2004c
R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000009f
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
irq event stamp: 0
hardirqs last enabled at (0): [<0000000000000000>] 0x0
hardirqs last disabled at (0): [<ffffffffb007fe0b>] copy_process+0x67b/0x1b00
softirqs last enabled at (0): [<ffffffffb007fe0b>] copy_process+0x67b/0x1b00
softirqs last disabled at (0): [<0000000000000000>] 0x0
---[ end trace af146e0e38433456 ]---
BTRFS: error (device dm-0) in btrfs_sync_log:3084: errno=-117 Filesystem corrupted
This ret came from btrfs_write_marked_extents(). If we get an aborted
transaction via EIO before, we'll see it in btree_write_cache_pages()
and return EUCLEAN, which gets printed as "Filesystem corrupted".
Except we shouldn't be returning EUCLEAN here, we need to be returning
EROFS because EUCLEAN is reserved for actual corruption, not IO errors.
We are inconsistent about our handling of BTRFS_FS_STATE_ERROR
elsewhere, but we want to use EROFS for this particular case. The
original transaction abort has the real error code for why we ended up
with an aborted transaction, all subsequent actions just need to return
EROFS because they may not have a trans handle and have no idea about
the original cause of the abort.
After patch "btrfs: don't WARN if we abort a transaction with EROFS" the
stacktrace will not be dumped either.
Reported-by: Eric Sandeen <esandeen@redhat.com>
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add full test stacktrace ]
Signed-off-by: David Sterba <dsterba@suse.com>
Add proper variable for the scrub page and use it instead of repeatedly
dereferencing the other structures.
Signed-off-by: David Sterba <dsterba@suse.com>
Use a simpler iteration over tree block pages, same what csum_tree_block
does: first page always exists, loop over the rest.
Signed-off-by: David Sterba <dsterba@suse.com>
Add proper variable for the scrub page and use it instead of repeatedly
dereferencing the other structures.
Signed-off-by: David Sterba <dsterba@suse.com>
Add proper variable for the scrub page and use it instead of repeatedly
dereferencing the other structures.
Signed-off-by: David Sterba <dsterba@suse.com>
The page contents with the checksum is available during the entire
function so we don't need to make a copy.
Signed-off-by: David Sterba <dsterba@suse.com>
BTRFS_SUPER_INFO_SIZE is 4096, and fits to a page on all supported
architectures, so we can calculate the checksum in one go.
Signed-off-by: David Sterba <dsterba@suse.com>
As the page mapping has been removed, rename the variables to 'kaddr'
that we use everywhere else. The type is changed to 'char *' so pointer
arithmetic works without casts.
Signed-off-by: David Sterba <dsterba@suse.com>
All pages that scrub uses in the scrub_block::pagev array are allocated
with GFP_KERNEL and never part of any mapping, so kmap is not necessary,
we only need to know the page address.
In scrub_write_page_to_dev_replace we don't even need to call
flush_dcache_page because of the same reason as above.
Signed-off-by: David Sterba <dsterba@suse.com>
The main function to lookup a root by its id btrfs_get_fs_root takes the
whole key, while only using the objectid. The value of offset is preset
to (u64)-1 but not actually used until btrfs_find_root that does the
actual search.
Switch btrfs_get_fs_root to use only objectid and remove all local
variables that existed just for the lookup. The actual key for search is
set up in btrfs_get_fs_root, reusing another key variable.
Signed-off-by: David Sterba <dsterba@suse.com>