-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmKZmkoQHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpqyrD/4iyg2ULBPyljLoM3Ed8AONbrFBApenKDFN
FjiFRZNll8zvJLTtP0GQqJIrljPuRlqb0IkbgqXl+yvPZ+wpB9HgIe2aohkOaqqJ
KS49UNR/aIHwC2y7lwlcsdgVqqoPdc4wnZeaQvCsWPCBhCca/k0kR7s3uEhHMK92
OWpV9osl/thLfOBwwt4IEaO1Koz8PM/fCR4XA2KLbs8E4P8EcSFglqi0ap7foLNr
pQAJIlPjkmF6nw4xg5fdBjVBo//kVcuf9IBMi5/XinmUL1taFAcn5WyeOvBbi0Fs
Sqp/pKkveM8xWZKrDyA/wf8nzRNpBBl6TOQEMFtV6FkZrij3pbKHlCiyL2gBR13e
5gkbVvXgtdqDVlnqlvIV/Swfh5YQFtn7+vlHFOUjP+iObsBRo4fTvDhPTLoO/VCf
tIAA7xnq/pquRKS/QGGC7ZxRVc3T1r+EpvbBP5Dc4CDGbbbyZLCSrOh5HWIb0I3k
95GSiipTtf54KqZ9HiG/u+xNAFIdapXgU4Xm+JyDRWLdxSs5Nmy8VgpdflvxBfuo
hCvJJw3vtDusjyHc7IafxaZlJVQT9tPgPshs8GfrCMCP19RCALD/5irspFh6dD35
BQTIkhC68XNa0iNn/NTP3uxir/JwRoovxQkA9eD+r1NHsAbL8GTypfr5kKJxDaIK
UhawfyZE3Q==
=YqhC
-----END PGP SIGNATURE-----
Merge tag 'for-5.19/drivers-2022-06-02' of git://git.kernel.dk/linux-block
Pull more block driver updates from Jens Axboe:
"A collection of stragglers that were late on sending in their changes
and just followup fixes.
- NVMe fixes pull request via Christoph:
- set controller enable bit in a separate write (Niklas Cassel)
- disable namespace identifiers for the MAXIO MAP1001 (Christoph)
- fix a comment typo (Julia Lawall)"
- MD fixes pull request via Song:
- Remove uses of bdevname (Christoph Hellwig)
- Bug fixes (Guoqing Jiang, and Xiao Ni)
- bcache fixes series (Coly)
- null_blk zoned write fix (Damien)
- nbd fixes (Yu, Zhang)
- Fix for loop partition scanning (Christoph)"
* tag 'for-5.19/drivers-2022-06-02' of git://git.kernel.dk/linux-block: (23 commits)
block: null_blk: Fix null_zone_write()
nvmet: fix typo in comment
nvme: set controller enable bit in a separate write
nvme-pci: disable namespace identifiers for the MAXIO MAP1001
bcache: avoid unnecessary soft lockup in kworker update_writeback_rate()
nbd: use pr_err to output error message
nbd: fix possible overflow on 'first_minor' in nbd_dev_add()
nbd: fix io hung while disconnecting device
nbd: don't clear 'NBD_CMD_INFLIGHT' flag if request is not completed
nbd: fix race between nbd_alloc_config() and module removal
nbd: call genl_unregister_family() first in nbd_cleanup()
md: bcache: check the return value of kzalloc() in detached_dev_do_request()
bcache: memset on stack variables in bch_btree_check() and bch_sectors_dirty_init()
block, loop: support partitions without scanning
bcache: avoid journal no-space deadlock by reserving 1 journal bucket
bcache: remove incremental dirty sector counting for bch_sectors_dirty_init()
bcache: improve multithreaded bch_sectors_dirty_init()
bcache: improve multithreaded bch_btree_check()
md: fix double free of io_acct_set bioset
md: Don't set mddev private to NULL in raid0 pers->free
...
The journal no-space deadlock was reported time to time. Such deadlock
can happen in the following situation.
When all journal buckets are fully filled by active jset with heavy
write I/O load, the cache set registration (after a reboot) will load
all active jsets and inserting them into the btree again (which is
called journal replay). If a journaled bkey is inserted into a btree
node and results btree node split, new journal request might be
triggered. For example, the btree grows one more level after the node
split, then the root node record in cache device super block will be
upgrade by bch_journal_meta() from bch_btree_set_root(). But there is no
space in journal buckets, the journal replay has to wait for new journal
bucket to be reclaimed after at least one journal bucket replayed. This
is one example that how the journal no-space deadlock happens.
The solution to avoid the deadlock is to reserve 1 journal bucket in
run time, and only permit the reserved journal bucket to be used during
cache set registration procedure for things like journal replay. Then
the journal space will never be fully filled, there is no chance for
journal no-space deadlock to happen anymore.
This patch adds a new member "bool do_reserve" in struct journal, it is
inititalized to 0 (false) when struct journal is allocated, and set to
1 (true) by bch_journal_space_reserve() when all initialization done in
run_cache_set(). In the run time when journal_reclaim() tries to
allocate a new journal bucket, free_journal_buckets() is called to check
whether there are enough free journal buckets to use. If there is only
1 free journal bucket and journal->do_reserve is 1 (true), the last
bucket is reserved and free_journal_buckets() will return 0 to indicate
no free journal bucket. Then journal_reclaim() will give up, and try
next time to see whetheer there is free journal bucket to allocate. By
this method, there is always 1 jouranl bucket reserved in run time.
During the cache set registration, journal->do_reserve is 0 (false), so
the reserved journal bucket can be used to avoid the no-space deadlock.
Reported-by: Nikhil Kshirsagar <nkshirsagar@gmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20220524102336.10684-5-colyli@suse.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Commit a7c50c9404 ("block: pass a block_device and opf to bio_reset")
moves bch_bio_map() inside journal_write_unlocked() next to the location
where the modified bio_reset() was called.
This change is wrong because calling bch_bio_map() immediately after
bio_reset(), a BUG_ON(!bio->bi_iter.bi_size) inside bch_bio_map() will
be triggered and panic the kernel.
This patch puts bch_bio_map() back to its original correct location in
journal_write_unlocked() and avoid the BUG_ON().
Fixes: a7c50c9404 ("block: pass a block_device and opf to bio_reset")
Signed-off-by: Coly Li <colyli@suse.de>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Chaitanya Kulkarni <kch@nvidia.com>
Link: https://lore.kernel.org/r/20220419160425.4148-2-colyli@suse.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Pass the block_device that we plan to use this bio for and the
operation to bio_reset to optimize the assigment. A NULL block_device
can be passed, both for the passthrough case on a raw request_queue and
to temporarily avoid refactoring some nasty code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Link: https://lore.kernel.org/r/20220124091107.642561-20-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Pass the block_device that we plan to use this bio for and the
operation to bio_init to optimize the assignment. A NULL block_device
can be passed, both for the passthrough case on a raw request_queue and
to temporarily avoid refactoring some nasty code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Link: https://lore.kernel.org/r/20220124091107.642561-19-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Remove the PTR_CACHE inline and replace it with a direct dereference
of c->cache.
(Coly Li: fix the typo from PTR_BUCKET to PTR_CACHE in commit log)
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Coly Li <colyli@suse.de>
Link: https://lore.kernel.org/r/20210411134316.80274-3-colyli@suse.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This is potentially long running and not latency sensitive, let's get
it out of the way of other latency sensitive events.
As observed in the previous commit, the `system_wq` comes easily
congested by bcache, and this fixes a few more stalls I was observing
every once in a while.
Let's not make this `WQ_MEM_RECLAIM` as it showed to reduce performance
of boot and file system operations in my tests. Also, without
`WQ_MEM_RECLAIM`, I no longer see desktop stalls. This matches the
previous behavior as `system_wq` also does no memory reclaim:
> // workqueue.c:
> system_wq = alloc_workqueue("events", 0, 0);
Cc: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org # 5.4+
Signed-off-by: Kai Krakow <kai@kaishome.de>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Since bcache code was merged into mainline kerrnel, each cache set only
as one single cache in it. The multiple caches framework is here but the
code is far from completed. Considering the multiple copies of cached
data can also be stored on e.g. md raid1 devices, it is unnecessary to
support multiple caches in one cache set indeed.
The previous preparation patches fix the dependencies of explicitly
making a cache set only have single cache. Now we don't have to maintain
an embedded partial super block in struct cache_set, the in-memory super
block can be directly referenced from struct cache.
This patch removes the embedded struct cache_sb from struct cache_set,
and fixes all locations where the superb lock was referenced from this
removed super block by referencing the in-memory super block of struct
cache.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Currently the cache's sync status is checked and set on cache set's in-
memory partial super block. After removing the embedded struct cache_sb
from cache set and reference cache's in-memory super block from struct
cache_set, the sync status can set and check directly on cache's super
block.
This patch checks and sets the cache sync status directly on cache's
in-memory super block. This is a preparation for later removing embedded
struct cache_sb from struct cache_set.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Because struct cache_set and struct cache both have struct cache_sb,
therefore macro block_bytes() can be used on both of them. When removing
the embedded struct cache_sb from struct cache_set, this macro won't be
used on struct cache_set anymore.
This patch unifies all block_bytes() usage only on struct cache, this is
one of the preparation to remove the embedded struct cache_sb from
struct cache_set.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Since now each cache_set explicitly has single cache, for_each_cache()
is unnecessary. This patch removes this macro, and update all locations
where it is used, and makes sure all code logic still being consistent.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Using for_each_clear_bit() to simplify the code.
Signed-off-by: Xu Wang <vulab@iscas.ac.cn>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There are some meta data of bcache are allocated by multiple pages,
and they are used as bio bv_page for I/Os to the cache device. for
example cache_set->uuids, cache->disk_buckets, journal_write->data,
bset_tree->data.
For such meta data memory, all the allocated pages should be treated
as a single memory block. Then the memory management and underlying I/O
code can treat them more clearly.
This patch adds __GFP_COMP flag to all the location allocating >0 order
pages for the above mentioned meta data. Then their pages are treated
as compound pages now.
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Remove the trailing newline from the define of pr_fmt and add newlines
to the uses.
Miscellanea:
o Convert bch_bkey_dump from multiple uses of pr_err to pr_cont
as the earlier conversion was inappropriate done causing multiple
lines to be emitted where only a single output line was desired
o Use vsprintf extension %pV in bch_cache_set_error to avoid multiple
line output where only a single line output was desired
o Coalesce formats
Fixes: 6ae63e3501 ("bcache: replace printk() by pr_*() routines")
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Macro nr_to_fifo_front() is only used once in btree_flush_write(),
it is unncessary indeed. This patch removes this macro and does
calculation directly in place.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Dan Carpenter points out that from commit 2aa8c52938 ("bcache: avoid
unnecessary btree nodes flushing in btree_flush_write()"), there is a
incorrect data type usage which leads to the following static checker
warning:
drivers/md/bcache/journal.c:444 btree_flush_write()
warn: 'ref_nr' unsigned <= 0
drivers/md/bcache/journal.c
422 static void btree_flush_write(struct cache_set *c)
423 {
424 struct btree *b, *t, *btree_nodes[BTREE_FLUSH_NR];
425 unsigned int i, nr, ref_nr;
^^^^^^
426 atomic_t *fifo_front_p, *now_fifo_front_p;
427 size_t mask;
428
429 if (c->journal.btree_flushing)
430 return;
431
432 spin_lock(&c->journal.flush_write_lock);
433 if (c->journal.btree_flushing) {
434 spin_unlock(&c->journal.flush_write_lock);
435 return;
436 }
437 c->journal.btree_flushing = true;
438 spin_unlock(&c->journal.flush_write_lock);
439
440 /* get the oldest journal entry and check its refcount */
441 spin_lock(&c->journal.lock);
442 fifo_front_p = &fifo_front(&c->journal.pin);
443 ref_nr = atomic_read(fifo_front_p);
444 if (ref_nr <= 0) {
^^^^^^^^^^^
Unsigned can't be less than zero.
445 /*
446 * do nothing if no btree node references
447 * the oldest journal entry
448 */
449 spin_unlock(&c->journal.lock);
450 goto out;
451 }
452 spin_unlock(&c->journal.lock);
As the warning information indicates, local varaible ref_nr in unsigned
int type is wrong, which does not matche atomic_read() and the "<= 0"
checking.
This patch fixes the above error by defining local variable ref_nr as
int type.
Fixes: 2aa8c52938 ("bcache: avoid unnecessary btree nodes flushing in btree_flush_write()")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
the commit 91be66e131 ("bcache: performance improvement for
btree_flush_write()") was an effort to flushing btree node with oldest
btree node faster in following methods,
- Only iterate dirty btree nodes in c->btree_cache, avoid scanning a lot
of clean btree nodes.
- Take c->btree_cache as a LRU-like list, aggressively flushing all
dirty nodes from tail of c->btree_cache util the btree node with
oldest journal entry is flushed. This is to reduce the time of holding
c->bucket_lock.
Guoju Fang and Shuang Li reported that they observe unexptected extra
write I/Os on cache device after applying the above patch. Guoju Fang
provideed more detailed diagnose information that the aggressive
btree nodes flushing may cause 10x more btree nodes to flush in his
workload. He points out when system memory is large enough to hold all
btree nodes in memory, c->btree_cache is not a LRU-like list any more.
Then the btree node with oldest journal entry is very probably not-
close to the tail of c->btree_cache list. In such situation much more
dirty btree nodes will be aggressively flushed before the target node
is flushed. When slow SATA SSD is used as cache device, such over-
aggressive flushing behavior will cause performance regression.
After spending a lot of time on debug and diagnose, I find the real
condition is more complicated, aggressive flushing dirty btree nodes
from tail of c->btree_cache list is not a good solution.
- When all btree nodes are cached in memory, c->btree_cache is not
a LRU-like list, the btree nodes with oldest journal entry won't
be close to the tail of the list.
- There can be hundreds dirty btree nodes reference the oldest journal
entry, before flushing all the nodes the oldest journal entry cannot
be reclaimed.
When the above two conditions mixed together, a simply flushing from
tail of c->btree_cache list is really NOT a good idea.
Fortunately there is still chance to make btree_flush_write() work
better. Here is how this patch avoids unnecessary btree nodes flushing,
- Only acquire c->journal.lock when getting oldest journal entry of
fifo c->journal.pin. In rested locations check the journal entries
locklessly, so their values can be changed on other cores
in parallel.
- In loop list_for_each_entry_safe_reverse(), checking latest front
point of fifo c->journal.pin. If it is different from the original
point which we get with locking c->journal.lock, it means the oldest
journal entry is reclaim on other cores. At this moment, all selected
dirty nodes recorded in array btree_nodes[] are all flushed and clean
on other CPU cores, it is unncessary to iterate c->btree_cache any
longer. Just quit the list_for_each_entry_safe_reverse() loop and
the following for-loop will skip all the selected clean nodes.
- Find a proper time to quit the list_for_each_entry_safe_reverse()
loop. Check the refcount value of orignial fifo front point, if the
value is larger than selected node number of btree_nodes[], it means
more matching btree nodes should be scanned. Otherwise it means no
more matching btee nodes in rest of c->btree_cache list, the loop
can be quit. If the original oldest journal entry is reclaimed and
fifo front point is updated, the refcount of original fifo front point
will be 0, then the loop will be quit too.
- Not hold c->bucket_lock too long time. c->bucket_lock is also required
for space allocation for cached data, hold it for too long time will
block regular I/O requests. When iterating list c->btree_cache, even
there are a lot of maching btree nodes, in order to not holding
c->bucket_lock for too long time, only BTREE_FLUSH_NR nodes are
selected and to flush in following for-loop.
With this patch, only btree nodes referencing oldest journal entry
are flushed to cache device, no aggressive flushing for unnecessary
btree node any more. And in order to avoid blocking regluar I/O
requests, each time when btree_flush_write() called, at most only
BTREE_FLUSH_NR btree nodes are selected to flush, even there are more
maching btree nodes in list c->btree_cache.
At last, one more thing to explain: Why it is safe to read front point
of c->journal.pin without holding c->journal.lock inside the
list_for_each_entry_safe_reverse() loop ?
Here is my answer: When reading the front point of fifo c->journal.pin,
we don't need to know the exact value of front point, we just want to
check whether the value is different from the original front point
(which is accurate value because we get it while c->jouranl.lock is
held). For such purpose, it works as expected without holding
c->journal.lock. Even the front point is changed on other CPU core and
not updated to local core, and current iterating btree node has
identical journal entry local as original fetched fifo front point, it
is still safe. Because after holding mutex b->write_lock (with memory
barrier) this btree node can be found as clean and skipped, the loop
will quite latter when iterate on next node of list c->btree_cache.
Fixes: 91be66e131 ("bcache: performance improvement for btree_flush_write()")
Reported-by: Guoju Fang <fangguoju@gmail.com>
Reported-by: Shuang Li <psymon@bonuscloud.io>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Now we have counters for how many times jouranl is reclaimed, how many
times cached dirty btree nodes are flushed, but we don't know how many
jouranl buckets are really reclaimed.
This patch adds reclaimed_journal_buckets into struct cache_set, this
is an increasing only counter, to tell how many journal buckets are
reclaimed since cache set runs. From all these three counters (reclaim,
reclaimed_journal_buckets, flush_write), we can have idea how well
current journal space reclaim code works.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch improves performance for btree_flush_write() in following
ways,
- Use another spinlock journal.flush_write_lock to replace the very
hot journal.lock. We don't have to use journal.lock here, selecting
candidate btree nodes takes a lot of time, hold journal.lock here will
block other jouranling threads and drop the overall I/O performance.
- Only select flushing btree node from c->btree_cache list. When the
machine has a large system memory, mca cache may have a huge number of
cached btree nodes. Iterating all the cached nodes will take a lot
of CPU time, and most of the nodes on c->btree_cache_freeable and
c->btree_cache_freed lists are cleared and have need to flush. So only
travel mca list c->btree_cache to select flushing btree node should be
enough for most of the cases.
- Don't iterate whole c->btree_cache list, only reversely select first
BTREE_FLUSH_NR btree nodes to flush. Iterate all btree nodes from
c->btree_cache and select the oldest journal pin btree nodes consumes
huge number of CPU cycles if the list is huge (push and pop a node
into/out of a heap is expensive). The last several dirty btree nodes
on the tail of c->btree_cache list are earlest allocated and cached
btree nodes, they are relative to the oldest journal pin btree nodes.
Therefore only flushing BTREE_FLUSH_NR btree nodes from tail of
c->btree_cache probably includes the oldest journal pin btree nodes.
In my testing, the above change decreases 50%+ CPU consumption when
journal space is full. Some times IOPS drops to 0 for 5-8 seconds,
comparing blocking I/O for 120+ seconds in previous code, this is much
better. Maybe there is room to improve in future, but at this momment
the fix looks fine and performs well in my testing.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There is a race between mca_reap(), btree_node_free() and journal code
btree_flush_write(), which results very rare and strange deadlock or
panic and are very hard to reproduce.
Let me explain how the race happens. In btree_flush_write() one btree
node with oldest journal pin is selected, then it is flushed to cache
device, the select-and-flush is a two steps operation. Between these two
steps, there are something may happen inside the race window,
- The selected btree node was reaped by mca_reap() and allocated to
other requesters for other btree node.
- The slected btree node was selected, flushed and released by mca
shrink callback bch_mca_scan().
When btree_flush_write() tries to flush the selected btree node, firstly
b->write_lock is held by mutex_lock(). If the race happens and the
memory of selected btree node is allocated to other btree node, if that
btree node's write_lock is held already, a deadlock very probably
happens here. A worse case is the memory of the selected btree node is
released, then all references to this btree node (e.g. b->write_lock)
will trigger NULL pointer deference panic.
This race was introduced in commit cafe563591 ("bcache: A block layer
cache"), and enlarged by commit c4dc2497d5 ("bcache: fix high CPU
occupancy during journal"), which selected 128 btree nodes and flushed
them one-by-one in a quite long time period.
Such race is not easy to reproduce before. On a Lenovo SR650 server with
48 Xeon cores, and configure 1 NVMe SSD as cache device, a MD raid0
device assembled by 3 NVMe SSDs as backing device, this race can be
observed around every 10,000 times btree_flush_write() gets called. Both
deadlock and kernel panic all happened as aftermath of the race.
The idea of the fix is to add a btree flag BTREE_NODE_journal_flush. It
is set when selecting btree nodes, and cleared after btree nodes
flushed. Then when mca_reap() selects a btree node with this bit set,
this btree node will be skipped. Since mca_reap() only reaps btree node
without BTREE_NODE_journal_flush flag, such race is avoided.
Once corner case should be noticed, that is btree_node_free(). It might
be called in some error handling code path. For example the following
code piece from btree_split(),
2149 err_free2:
2150 bkey_put(b->c, &n2->key);
2151 btree_node_free(n2);
2152 rw_unlock(true, n2);
2153 err_free1:
2154 bkey_put(b->c, &n1->key);
2155 btree_node_free(n1);
2156 rw_unlock(true, n1);
At line 2151 and 2155, the btree node n2 and n1 are released without
mac_reap(), so BTREE_NODE_journal_flush also needs to be checked here.
If btree_node_free() is called directly in such error handling path,
and the selected btree node has BTREE_NODE_journal_flush bit set, just
delay for 1 us and retry again. In this case this btree node won't
be skipped, just retry until the BTREE_NODE_journal_flush bit cleared,
and free the btree node memory.
Fixes: cafe563591 ("bcache: A block layer cache")
Signed-off-by: Coly Li <colyli@suse.de>
Reported-and-tested-by: kbuild test robot <lkp@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In struct cache_set, retry_flush_write is added for commit c4dc2497d5
("bcache: fix high CPU occupancy during journal") which is reverted in
previous patch.
Now it is useless anymore, and this patch removes it from bcache code.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This reverts commit c4dc2497d5.
This patch enlarges a race between normal btree flush code path and
flush_btree_write(), which causes deadlock when journal space is
exhausted. Reverts this patch makes the race window from 128 btree
nodes to only 1 btree nodes.
Fixes: c4dc2497d5 ("bcache: fix high CPU occupancy during journal")
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Cc: Tang Junhui <tang.junhui.linux@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This reverts commit 6268dc2c47.
This patch depends on commit c4dc2497d5 ("bcache: fix high CPU
occupancy during journal") which is reverted in previous patch. So
revert this one too.
Fixes: 6268dc2c47 ("bcache: free heap cache_set->flush_btree in bch_journal_free")
Signed-off-by: Coly Li <colyli@suse.de>
Cc: stable@vger.kernel.org
Cc: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In journal_read_bucket() when setting ja->seq[bucket_index], there might
be potential case that a later non-maximum overwrites a better sequence
number to ja->seq[bucket_index]. This patch adds a check to make sure
that ja->seq[bucket_index] will be only set a new value if it is bigger
then current value.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch adds more code comments in journal_read_bucket(), this is an
effort to make the code to be more understandable.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When too many I/O errors happen on cache set and CACHE_SET_IO_DISABLE
bit is set, bch_journal() may continue to work because the journaling
bkey might be still in write set yet. The caller of bch_journal() may
believe the journal still work but the truth is in-memory journal write
set won't be written into cache device any more. This behavior may
introduce potential inconsistent metadata status.
This patch checks CACHE_SET_IO_DISABLE bit at the head of bch_journal(),
if the bit is set, bch_journal() returns NULL immediately to notice
caller to know journal does not work.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When everything is OK in bch_journal_read(), finally the return value
is returned by,
return ret;
which assumes ret will be 0 here. This assumption is wrong when all
journal buckets as are full and filled with valid journal entries. In
such cache the last location referencess read_bucket() sets 'ret' to
1, which means new jset added into jset list. The jset list is list
'journal' in caller run_cache_set().
Return 1 to run_cache_set() means something wrong and the cache set
won't start, but indeed everything is OK.
This patch changes the line at end of bch_journal_read() to directly
return 0 since everything if verything is good. Then a bogus error
is fixed.
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
journal replay failed with messages:
Sep 10 19:10:43 ceph kernel: bcache: error on
bb379a64-e44e-4812-b91d-a5599871a3b1: bcache: journal entries
2057493-2057567 missing! (replaying 2057493-2076601), disabling
caching
The reason is in journal_reclaim(), when discard is enabled, we send
discard command and reclaim those journal buckets whose seq is old
than the last_seq_now, but before we write a journal with last_seq_now,
the machine is restarted, so the journal with the last_seq_now is not
written to the journal bucket, and the last_seq_wrote in the newest
journal is old than last_seq_now which we expect to be, so when we doing
replay, journals from last_seq_wrote to last_seq_now are missing.
It's hard to write a journal immediately after journal_reclaim(),
and it harmless if those missed journal are caused by discarding
since those journals are already wrote to btree node. So, if miss
seqs are started from the beginning journal, we treat it as normal,
and only print a message to show the miss journal, and point out
it maybe caused by discarding.
Patch v2 add a judgement condition to ignore the missed journal
only when discard enabled as Coly suggested.
(Coly Li: rebase the patch with other changes in bch_journal_replay())
Signed-off-by: Tang Junhui <tang.junhui.linux@gmail.com>
Tested-by: Dennis Schridde <devurandom@gmx.net>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When failure happens inside bch_journal_replay(), calling
cache_set_err_on() and handling the failure in async way is not a good
idea. Because after bch_journal_replay() returns, registering code will
continue to execute following steps, and unregistering code triggered
by cache_set_err_on() is running in same time. First it is unnecessary
to handle failure and unregister cache set in an async way, second there
might be potential race condition to run register and unregister code
for same cache set.
So in this patch, if failure happens in bch_journal_replay(), we don't
call cache_set_err_on(), and just print out the same error message to
kernel message buffer, then return -EIO immediately caller. Then caller
can detect such failure and handle it in synchrnozied way.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
In journal_reclaim() ja->cur_idx of each cache will be update to
reclaim available journal buckets. Variable 'int n' is used to count how
many cache is successfully reclaimed, then n is set to c->journal.key
by SET_KEY_PTRS(). Later in journal_write_unlocked(), a for_each_cache()
loop will write the jset data onto each cache.
The problem is, if all jouranl buckets on each cache is full, the
following code in journal_reclaim(),
529 for_each_cache(ca, c, iter) {
530 struct journal_device *ja = &ca->journal;
531 unsigned int next = (ja->cur_idx + 1) % ca->sb.njournal_buckets;
532
533 /* No space available on this device */
534 if (next == ja->discard_idx)
535 continue;
536
537 ja->cur_idx = next;
538 k->ptr[n++] = MAKE_PTR(0,
539 bucket_to_sector(c, ca->sb.d[ja->cur_idx]),
540 ca->sb.nr_this_dev);
541 }
542
543 bkey_init(k);
544 SET_KEY_PTRS(k, n);
If there is no available bucket to reclaim, the if() condition at line
534 will always true, and n remains 0. Then at line 544, SET_KEY_PTRS()
will set KEY_PTRS field of c->journal.key to 0.
Setting KEY_PTRS field of c->journal.key to 0 is wrong. Because in
journal_write_unlocked() the journal data is written in following loop,
649 for (i = 0; i < KEY_PTRS(k); i++) {
650-671 submit journal data to cache device
672 }
If KEY_PTRS field is set to 0 in jouranl_reclaim(), the journal data
won't be written to cache device here. If system crahed or rebooted
before bkeys of the lost journal entries written into btree nodes, data
corruption will be reported during bcache reload after rebooting the
system.
Indeed there is only one cache in a cache set, there is no need to set
KEY_PTRS field in journal_reclaim() at all. But in order to keep the
for_each_cache() logic consistent for now, this patch fixes the above
problem by not setting 0 KEY_PTRS of journal key, if there is no bucket
available to reclaim.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Cc: stable@vger.kernel.org
Signed-off-by: Jens Axboe <axboe@kernel.dk>
'int ret' is defined as a local variable inside macro read_bucket().
Since this macro is called multiple times, and following patches will
use a 'int ret' variable in bch_journal_read(), this patch moves
definition of 'int ret' from macro read_bucket() to range of function
bch_journal_read().
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Sometimes flush journal may be very frequent, so it's useful to dump
number of keys every time write journal.
Signed-off-by: Guoju Fang <fangguoju@gmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
After write SSD completed, bcache schedules journal_write work to
system_wq, which is a public workqueue in system, without WQ_MEM_RECLAIM
flag. system_wq is also a bound wq, and there may be no idle kworker on
current processor. Creating a new kworker may unfortunately need to
reclaim memory first, by shrinking cache and slab used by vfs, which
depends on bcache device. That's a deadlock.
This patch create a new workqueue for journal_write with WQ_MEM_RECLAIM
flag. It's rescuer thread will work to avoid the deadlock.
Signed-off-by: Guoju Fang <fangguoju@gmail.com>
Cc: stable@vger.kernel.org
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch fixes the lines over 80 characters into more lines, to minimize
warnings by checkpatch.pl. There are still some lines exceed 80 characters,
but it is better to be a single line and I don't change them.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
There are many function definitions do not have identifier argument names,
scripts/checkpatch.pl complains warnings like this,
WARNING: function definition argument 'struct bcache_device *' should
also have an identifier name
#16735: FILE: writeback.h:120:
+void bch_sectors_dirty_init(struct bcache_device *);
This patch adds identifier argument names to all bcache function
definitions to fix such warnings.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch fixes warning reported by checkpatch.pl by replacing 'unsigned'
with 'unsigned int'.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Shenghui Wang <shhuiw@foxmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Free the cache_set->flush_bree heap memory on journal free.
Signed-off-by: Wang Sheng-Hui <shhuiw@foxmail.com>
Signed-off-by: Coly Li <colyli@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Add more annotations for sparse to inform it about which functions do
not have the same number of spin_lock() and spin_unlock() calls.
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch does not change any functionality.
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Reviewed-by: Coly Li <colyli@suse.de>
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
When too many I/Os failed on cache device, bch_cache_set_error() is called
in the error handling code path to retire whole problematic cache set. If
new I/O requests continue to come and take refcount dc->count, the cache
set won't be retired immediately, this is a problem.
Further more, there are several kernel thread and self-armed kernel work
may still running after bch_cache_set_error() is called. It needs to wait
quite a while for them to stop, or they won't stop at all. They also
prevent the cache set from being retired.
The solution in this patch is, to add per cache set flag to disable I/O
request on this cache and all attached backing devices. Then new coming I/O
requests can be rejected in *_make_request() before taking refcount, kernel
threads and self-armed kernel worker can stop very fast when flags bit
CACHE_SET_IO_DISABLE is set.
Because bcache also do internal I/Os for writeback, garbage collection,
bucket allocation, journaling, this kind of I/O should be disabled after
bch_cache_set_error() is called. So closure_bio_submit() is modified to
check whether CACHE_SET_IO_DISABLE is set on cache_set->flags. If set,
closure_bio_submit() will set bio->bi_status to BLK_STS_IOERR and
return, generic_make_request() won't be called.
A sysfs interface is also added to set or clear CACHE_SET_IO_DISABLE bit
from cache_set->flags, to disable or enable cache set I/O for debugging. It
is helpful to trigger more corner case issues for failed cache device.
Changelog
v4, add wait_for_kthread_stop(), and call it before exits writeback and gc
kernel threads.
v3, change CACHE_SET_IO_DISABLE from 4 to 3, since it is bit index.
remove "bcache: " prefix when printing out kernel message.
v2, more changes by previous review,
- Use CACHE_SET_IO_DISABLE of cache_set->flags, suggested by Junhui.
- Check CACHE_SET_IO_DISABLE in bch_btree_gc() to stop a while-loop, this
is reported and inspired from origal patch of Pavel Vazharov.
v1, initial version.
Signed-off-by: Coly Li <colyli@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Cc: Junhui Tang <tang.junhui@zte.com.cn>
Cc: Michael Lyle <mlyle@lyle.org>
Cc: Pavel Vazharov <freakpv@gmail.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
After long time small writing I/O running, we found the occupancy of CPU
is very high and I/O performance has been reduced by about half:
[root@ceph151 internal]# top
top - 15:51:05 up 1 day,2:43, 4 users, load average: 16.89, 15.15, 16.53
Tasks: 2063 total, 4 running, 2059 sleeping, 0 stopped, 0 zombie
%Cpu(s):4.3 us, 17.1 sy 0.0 ni, 66.1 id, 12.0 wa, 0.0 hi, 0.5 si, 0.0 st
KiB Mem : 65450044 total, 24586420 free, 38909008 used, 1954616 buff/cache
KiB Swap: 65667068 total, 65667068 free, 0 used. 25136812 avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
2023 root 20 0 0 0 0 S 55.1 0.0 0:04.42 kworker/11:191
14126 root 20 0 0 0 0 S 42.9 0.0 0:08.72 kworker/10:3
9292 root 20 0 0 0 0 S 30.4 0.0 1:10.99 kworker/6:1
8553 ceph 20 0 4242492 1.805g 18804 S 30.0 2.9 410:07.04 ceph-osd
12287 root 20 0 0 0 0 S 26.7 0.0 0:28.13 kworker/7:85
31019 root 20 0 0 0 0 S 26.1 0.0 1:30.79 kworker/22:1
1787 root 20 0 0 0 0 R 25.7 0.0 5:18.45 kworker/8:7
32169 root 20 0 0 0 0 S 14.5 0.0 1:01.92 kworker/23:1
21476 root 20 0 0 0 0 S 13.9 0.0 0:05.09 kworker/1:54
2204 root 20 0 0 0 0 S 12.5 0.0 1:25.17 kworker/9:10
16994 root 20 0 0 0 0 S 12.2 0.0 0:06.27 kworker/5:106
15714 root 20 0 0 0 0 R 10.9 0.0 0:01.85 kworker/19:2
9661 ceph 20 0 4246876 1.731g 18800 S 10.6 2.8 403:00.80 ceph-osd
11460 ceph 20 0 4164692 2.206g 18876 S 10.6 3.5 360:27.19 ceph-osd
9960 root 20 0 0 0 0 S 10.2 0.0 0:02.75 kworker/2:139
11699 ceph 20 0 4169244 1.920g 18920 S 10.2 3.1 355:23.67 ceph-osd
6843 ceph 20 0 4197632 1.810g 18900 S 9.6 2.9 380:08.30 ceph-osd
The kernel work consumed a lot of CPU, and I found they are running journal
work, The journal is reclaiming source and flush btree node with surprising
frequency.
Through further analysis, we found that in btree_flush_write(), we try to
get a btree node with the smallest fifo idex to flush by traverse all the
btree nodein c->bucket_hash, after we getting it, since no locker protects
it, this btree node may have been written to cache device by other works,
and if this occurred, we retry to traverse in c->bucket_hash and get
another btree node. When the problem occurrd, the retry times is very high,
and we consume a lot of CPU in looking for a appropriate btree node.
In this patch, we try to record 128 btree nodes with the smallest fifo idex
in heap, and pop one by one when we need to flush btree node. It greatly
reduces the time for the loop to find the appropriate BTREE node, and also
reduce the occupancy of CPU.
[note by mpl: this triggers a checkpatch error because of adjacent,
pre-existing style violations]
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Sometimes, Journal takes up a lot of CPU, we need statistics
to know what's the journal is doing. So this patch provide
some journal statistics:
1) reclaim: how many times the journal try to reclaim resource,
usually the journal bucket or/and the pin are exhausted.
2) flush_write: how many times the journal try to flush btree node
to cache device, usually the journal bucket are exhausted.
3) retry_flush_write: how many times the journal retry to flush
the next btree node, usually the previous tree node have been
flushed by other thread.
we show these statistic by sysfs interface. Through these statistics
We can totally see the status of journal module when the CPU is too
high.
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
This patch try to fix the building error on MIPS. The reason is MIPS
has already defined the PTR macro, which conflicts with the PTR macro
in include/uapi/linux/bcache.h.
[fixed by mlyle: corrected a line-length issue]
Cc: stable@vger.kernel.org
Signed-off-by: Huacai Chen <chenhc@lemote.com>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Journal bucket is a circular buffer, the bucket
can be like YYYNNNYY, which means the first valid journal in
the 7th bucket, and the latest valid journal in third bucket, in
this case, if we do not try we the zero index first, We
may get a valid journal in the 7th bucket, then we call
find_next_bit(bitmap,ca->sb.njournal_buckets, l + 1) to get the
first invalid bucket after the 7th bucket, because all these
buckets is valid, so no bit 1 in bitmap, thus find_next_bit()
function would return with ca->sb.njournal_buckets (8). So, after
that, bcache only read journal in 7th and 8the bucket,
the first to the third buckets are lost.
So, it is important to let developer know that, we need to try
the zero index at first in the hash-search, and avoid any breaks
in future's code modification.
[ML: Fixed whitespace & formatting & file permissions]
Signed-off-by: Tang Junhui <tang.junhui@zte.com.cn>
Signed-off-by: Michael Lyle <mlyle@lyle.org>
Reviewed-by: Michael Lyle <mlyle@lyle.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This way we don't need a block_device structure to submit I/O. The
block_device has different life time rules from the gendisk and
request_queue and is usually only available when the block device node
is open. Other callers need to explicitly create one (e.g. the lightnvm
passthrough code, or the new nvme multipathing code).
For the actual I/O path all that we need is the gendisk, which exists
once per block device. But given that the block layer also does
partition remapping we additionally need a partition index, which is
used for said remapping in generic_make_request.
Note that all the block drivers generally want request_queue or
sometimes the gendisk, so this removes a layer of indirection all
over the stack.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>