The Kconfig currently controlling compilation of this code is:
arch/x86/Kconfig:config GEOS
arch/x86/Kconfig: bool "Traverse Technologies GEOS System Support (LEDS, GPIO, etc)"
...meaning that it currently is not being built as a module by anyone.
Lets remove the couple traces of modularity, so that when reading
the code there is no doubt it is builtin-only.
Since module_init translates to device_initcall in the non-modular
case, the init ordering remains unchanged with this commit.
We also delete the MODULE_LICENSE tag etc. since all that information
is already contained at the top of the file in the comments.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Philip Prindeville <philipp@redfish-solutions.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1455491396-30977-4-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The Kconfig currently controlling compilation of this code is:
arch/x86/Kconfig.debug:config DEBUG_IMR_SELFTEST
arch/x86/Kconfig.debug: bool "Isolated Memory Region self test"
...meaning that it currently is not being built as a module by anyone.
Lets remove the modular code that is essentially orphaned, so that
when reading the driver there is no doubt it is builtin-only.
Since module_init translates to device_initcall in the non-modular
case, the init ordering remains unchanged with this commit.
Also note that MODULE_DEVICE_TABLE is a no-op for non-modular code.
We also delete the MODULE_LICENSE tag etc. since all that information
was (or is now) contained at the top of the file in the comments.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Reviewed-by: Bryan O'Donoghue <pure.logic@nexus-software.ie>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1455491396-30977-3-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The Kconfig currently controlling compilation of this code is:
drivers/platform/x86/Kconfig:config INTEL_IMR
drivers/platform/x86/Kconfig: bool "Intel Isolated Memory Region support"
...meaning that it currently is not being built as a module by anyone.
Lets remove the modular code that is essentially orphaned, so that
when reading the driver there is no doubt it is builtin-only.
Since module_init translates to device_initcall in the non-modular
case, the init ordering remains unchanged with this commit.
Also note that MODULE_DEVICE_TABLE is a no-op for non-modular code.
We also delete the MODULE_LICENSE tag etc. since all that information
was (or is now) contained at the top of the file in the comments.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Reviewed-by: Bryan O'Donoghue <pure.logic@nexus-software.ie>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1455491396-30977-2-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Pull x86 fixes from Thomas Gleixner:
"A bit on the largish side due to a series of fixes for a regression in
the x86 vector management which was introduced in 4.3. This work was
started in December already, but it took some time to fix all corner
cases and a couple of older bugs in that area which were detected
while at it
Aside of that a few platform updates for intel-mid, quark and UV and
two fixes for in the mm code:
- Use proper types for pgprot values to avoid truncation
- Prevent a size truncation in the pageattr code when setting page
attributes for large mappings"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
x86/mm/pat: Avoid truncation when converting cpa->numpages to address
x86/mm: Fix types used in pgprot cacheability flags translations
x86/platform/quark: Print boundaries correctly
x86/platform/UV: Remove EFI memmap quirk for UV2+
x86/platform/intel-mid: Join string and fix SoC name
x86/platform/intel-mid: Enable 64-bit build
x86/irq: Plug vector cleanup race
x86/irq: Call irq_force_move_complete with irq descriptor
x86/irq: Remove outgoing CPU from vector cleanup mask
x86/irq: Remove the cpumask allocation from send_cleanup_vector()
x86/irq: Clear move_in_progress before sending cleanup IPI
x86/irq: Remove offline cpus from vector cleanup
x86/irq: Get rid of code duplication
x86/irq: Copy vectormask instead of an AND operation
x86/irq: Check vector allocation early
x86/irq: Reorganize the search in assign_irq_vector
x86/irq: Reorganize the return path in assign_irq_vector
x86/irq: Do not use apic_chip_data.old_domain as temporary buffer
x86/irq: Validate that irq descriptor is still active
x86/irq: Fix a race in x86_vector_free_irqs()
...
When we print values, such as @size, we have to understand that
it's derived from [begin .. end] as:
size = end - begin + 1
On the opposite the @end is derived from the rest as:
end = begin + size - 1
Correct the IMR code to print values correctly.
Note that @__end_rodata actually points to the next address
after the aligned .rodata section.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Ong, Boon Leong <boon.leong.ong@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1453320821-64328-1-git-send-email-andriy.shevchenko@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Commit a5d90c923b ("x86/efi: Quirk out SGI UV") added a quirk
to efi_apply_memmap_quirks to force SGI UV systems to fall back
to the old EFI memmap mechanism. We have a BIOS fix for this
issue on all systems except for UV1. This commit fixes up the
EFI quirk/MMR mapping code so that we only apply the special
case to UV1 hardware.
Signed-off-by: Alex Thorlton <athorlton@sgi.com>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Hedi Berriche <hedi@sgi.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Travis <travis@sgi.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-efi@vger.kernel.org
Link: http://lkml.kernel.org/r/1449867585-189233-2-git-send-email-athorlton@sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Join string back to make grepping a bit easier. While here,
lowering case for Penwell SoC name in one case to be aligned
with the rest messages.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mika Westerberg <mika.westerberg@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1452888668-147116-2-git-send-email-andriy.shevchenko@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
- Add a debugfs-based interface for interacting with the ACPICA's
AML debugger introduced in the previous cycle and a new user
space tool for that, fix some bugs related to the AML debugger
and clean up the code in question (Lv Zheng, Dan Carpenter,
Colin Ian King, Markus Elfring).
- Update ACPICA to upstream revision 20151218 including a number
of fixes and cleanups in the ACPICA core (Bob Moore, Lv Zheng,
Labbe Corentin, Prarit Bhargava, Colin Ian King, David E Box,
Rafael Wysocki).
In particular, the previously added erroneous support for the
_SUB object is dropped, the concatenate operator will support
all ACPI objects now, the Debug Object handling is improved,
the SuperName handling of parameters being control methods is
fixed, the ObjectType operator handling is updated to follow
ACPI 5.0A and the handling of CondRefOf and RefOf is updated
accordingly, module-level code will be executed after loading
each ACPI table now (instead of being run once after all tables
containing AML have been loaded), the Operation Region handlers
management is updated to fix some reported problems and a the
ACPICA code in the kernel is more in line with the upstream
now.
- Update the ACPI backlight driver to provide information on
whether or not it will generate key-presses for brightness
change hotkeys and update some platform drivers (dell-wmi,
thinkpad_acpi) to use that information to avoid sending double
key-events to users pace for these, add new ACPI backlight
quirks (Hans de Goede, Aaron Lu, Adrien Schildknecht).
- Improve the ACPI handling of interrupt GPIOs (Christophe Ricard).
- Fix the handling of the list of device IDs of device objects
found in the ACPI namespace and add a helper for checking if
there is a device object for a given device ID (Lukas Wunner).
- Change the logic in the ACPI namespace scanning code to create
struct acpi_device objects for all ACPI device objects found in
the namespace even if _STA fails for them which helps to avoid
device enumeration problems on Microsoft Surface 3 (Aaron Lu).
- Add support for the APM X-Gene ACPI I2C device to the ACPI
driver for AMD SoCs (Loc Ho).
- Fix the long-standing issue with the DMA controller on Intel
SoCs where ACPI tables have no power management support for
the DMA controller itself, but it can be powered off automatically
when the last (other) device on the SoC is powered off via ACPI
and clean up the ACPI driver for Intel SoCs (acpi-lpss) after
previous attempts to fix that problem (Andy Shevchenko).
- Assorted ACPI fixes and cleanups (Andy Lutomirski, Colin Ian King,
Javier Martinez Canillas, Ken Xue, Mathias Krause, Rafael Wysocki,
Sinan Kaya).
- Update the device properties framework for better handling of
built-in properties, add support for built-in properties to
the platform bus type, update the MFD subsystem's handling
of device properties and add support for passing default
configuration data as device properties to the intel-lpss MFD
drivers, convert the designware I2C driver to use the unified
device properties API and add a fallback mechanism for using
default built-in properties if the platform firmware fails
to provide the properties as expected by drivers (Andy Shevchenko,
Mika Westerberg, Heikki Krogerus, Andrew Morton).
- Add new Device Tree bindings to the Operating Performance Points
(OPP) framework and update the exynos4412 DT binding accordingly,
introduce debugfs support for the OPP framework (Viresh Kumar,
Bartlomiej Zolnierkiewicz).
- Migrate the mt8173 cpufreq driver to the new OPP bindings
(Pi-Cheng Chen).
- Update the cpufreq core to make the handling of governors
more efficient, especially on systems where policy objects
are shared between multiple CPUs (Viresh Kumar, Rafael Wysocki).
- Fix cpufreq governor handling on configurations with
CONFIG_HZ_PERIODIC set (Chen Yu).
- Clean up the cpufreq core code related to the boost sysfs knob
support and update the ACPI cpufreq driver accordingly (Rafael
Wysocki).
- Add a new cpufreq driver for ST platforms and corresponding
Device Tree bindings (Lee Jones).
- Update the intel_pstate driver to allow the P-state selection
algorithm used by it to depend on the CPU ID of the processor it
is running on, make it use a special P-state selection algorithm
(with an IO wait time compensation tweak) on Atom CPUs based on
the Airmont and Silvermont cores so as to reduce their energy
consumption and improve intel_pstate documentation (Philippe
Longepe, Srinivas Pandruvada).
- Update the cpufreq-dt driver to support registering cooling
devices that use the (P * V^2 * f) dynamic power draw formula
where V is the voltage, f is the frequency and P is a constant
coefficient provided by Device Tree and update the arm_big_little
cpufreq driver to use that support (Punit Agrawal).
- Assorted cpufreq driver (cpufreq-dt, qoriq, pcc-cpufreq,
blackfin-cpufreq) updates (Andrzej Hajda, Hongtao Jia,
Jacob Tanenbaum, Markus Elfring).
- cpuidle core tweaks related to polling and measured_us
calculation (Rik van Riel).
- Removal of modularity from a few cpuidle drivers (clps711x,
ux500, exynos) that cannot be built as modules in practice
(Paul Gortmaker).
- PM core update to prevent devices from being probed during
system suspend/resume which is generally problematic and may
lead to inconsistent behavior (Grygorii Strashko).
- Assorted updates of the PM core and related code (Julia Lawall,
Manuel Pégourié-Gonnard, Maruthi Bayyavarapu, Rafael Wysocki,
Ulf Hansson).
- PNP bus type updates (Christophe Le Roy, Heiner Kallweit).
- PCI PM code cleanups (Jarkko Nikula, Julia Lawall).
- cpupower tool updates (Jacob Tanenbaum, Thomas Renninger).
/
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQIcBAABCAAGBQJWlZOmAAoJEILEb/54YlRxxtEP/ioR0xMOJQcWd5F6Oyj1PZsx
vJeXsmL3fXFAlr6riaE966QqclhUTDhhex3kbFmNQvM8WukxOmBWy5UMSjRg2UmM
PHrogc/KrrE+xb8hjGZPgqVr+/L9O3C6lZmM+AUciT0hWZJckYgRh5TpHb1xN/Kx
MptvtSXRBM62LWytug+EwA4SHt7OFS0yJ/CI1pKvODVtLaYDIPI5k+4ilPU7y6Be
vfoysvmUozNTEYxgPOPXfoQqW2P5t2df32Re31uKtLenLXbc8KW0wIYm24DXgSK6
V/TyDVZTNaZk6OpTqWrjqFbedpGvcBpViwYEY7yv33GDCpXGdHQl3ga+Jy6PAUem
7oGDZtA+5Di/8szhH/wSdpXwSaKEeUdFiaj6Uw2MAwiY4wzv5+WmLRcuIjQFDAxT
elrTbQhAgaMlMsUkQ9NV4GC7ByUeeQX2NpCielsHngOQgKdYRQHyYUgGXc2Wgjdq
UnVrIWRHzXSED0RtPI7IT0Y4PSxkM9UoSEiVUwt3srCue2CFzuENs23qaDgAzeDa
5uwnDl4RhI2BrLVT1WhioIFgFE5Yh5Xx6dSGC+jcU2ss8r2oN6DdUbqOzWAa1iR4
sFhgwwwizpCCfB6pSqEuDdg8W56HjvE9kQY9kcTPPNPbktL0VImC+iiSN/CgZJv9
MH9NbQM8uHkfNcpjsN7V
=OlYA
-----END PGP SIGNATURE-----
Merge tag 'pm+acpi-4.5-rc1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull oower management and ACPI updates from Rafael Wysocki:
"As far as the number of commits goes, ACPICA takes the lead this time,
followed by cpufreq and the device properties framework changes.
The most significant new feature is the debugfs-based interface to the
ACPICA's AML debugger added in the previous cycle and a new user space
tool for accessing it.
On the cpufreq front, the core is updated to handle governors more
efficiently, particularly on systems where a single cpufreq policy
object is shared between multiple CPUs, and there are quite a few
changes in drivers (intel_pstate, cpufreq-dt etc).
The device properties framework is updated to handle built-in (ie
included in the kernel itself) device properties better, among other
things by adding a fallback mechanism that will allow drivers to
provide default properties to be used in case the plaform firmware
doesn't provide the properties expected by them.
The Operating Performance Points (OPP) framework gets new DT bindings
and debugfs support.
A new cpufreq driver for ST platforms is added and the ACPI driver for
AMD SoCs will now support the APM X-Gene ACPI I2C device.
The rest is mostly fixes and cleanups all over.
Specifics:
- Add a debugfs-based interface for interacting with the ACPICA's AML
debugger introduced in the previous cycle and a new user space tool
for that, fix some bugs related to the AML debugger and clean up
the code in question (Lv Zheng, Dan Carpenter, Colin Ian King,
Markus Elfring).
- Update ACPICA to upstream revision 20151218 including a number of
fixes and cleanups in the ACPICA core (Bob Moore, Lv Zheng, Labbe
Corentin, Prarit Bhargava, Colin Ian King, David E Box, Rafael
Wysocki).
In particular, the previously added erroneous support for the _SUB
object is dropped, the concatenate operator will support all ACPI
objects now, the Debug Object handling is improved, the SuperName
handling of parameters being control methods is fixed, the
ObjectType operator handling is updated to follow ACPI 5.0A and the
handling of CondRefOf and RefOf is updated accordingly, module-
level code will be executed after loading each ACPI table now
(instead of being run once after all tables containing AML have
been loaded), the Operation Region handlers management is updated
to fix some reported problems and a the ACPICA code in the kernel
is more in line with the upstream now.
- Update the ACPI backlight driver to provide information on whether
or not it will generate key-presses for brightness change hotkeys
and update some platform drivers (dell-wmi, thinkpad_acpi) to use
that information to avoid sending double key-events to users pace
for these, add new ACPI backlight quirks (Hans de Goede, Aaron Lu,
Adrien Schildknecht).
- Improve the ACPI handling of interrupt GPIOs (Christophe Ricard).
- Fix the handling of the list of device IDs of device objects found
in the ACPI namespace and add a helper for checking if there is a
device object for a given device ID (Lukas Wunner).
- Change the logic in the ACPI namespace scanning code to create
struct acpi_device objects for all ACPI device objects found in the
namespace even if _STA fails for them which helps to avoid device
enumeration problems on Microsoft Surface 3 (Aaron Lu).
- Add support for the APM X-Gene ACPI I2C device to the ACPI driver
for AMD SoCs (Loc Ho).
- Fix the long-standing issue with the DMA controller on Intel SoCs
where ACPI tables have no power management support for the DMA
controller itself, but it can be powered off automatically when the
last (other) device on the SoC is powered off via ACPI and clean up
the ACPI driver for Intel SoCs (acpi-lpss) after previous attempts
to fix that problem (Andy Shevchenko).
- Assorted ACPI fixes and cleanups (Andy Lutomirski, Colin Ian King,
Javier Martinez Canillas, Ken Xue, Mathias Krause, Rafael Wysocki,
Sinan Kaya).
- Update the device properties framework for better handling of
built-in properties, add support for built-in properties to the
platform bus type, update the MFD subsystem's handling of device
properties and add support for passing default configuration data
as device properties to the intel-lpss MFD drivers, convert the
designware I2C driver to use the unified device properties API and
add a fallback mechanism for using default built-in properties if
the platform firmware fails to provide the properties as expected
by drivers (Andy Shevchenko, Mika Westerberg, Heikki Krogerus,
Andrew Morton).
- Add new Device Tree bindings to the Operating Performance Points
(OPP) framework and update the exynos4412 DT binding accordingly,
introduce debugfs support for the OPP framework (Viresh Kumar,
Bartlomiej Zolnierkiewicz).
- Migrate the mt8173 cpufreq driver to the new OPP bindings (Pi-Cheng
Chen).
- Update the cpufreq core to make the handling of governors more
efficient, especially on systems where policy objects are shared
between multiple CPUs (Viresh Kumar, Rafael Wysocki).
- Fix cpufreq governor handling on configurations with
CONFIG_HZ_PERIODIC set (Chen Yu).
- Clean up the cpufreq core code related to the boost sysfs knob
support and update the ACPI cpufreq driver accordingly (Rafael
Wysocki).
- Add a new cpufreq driver for ST platforms and corresponding Device
Tree bindings (Lee Jones).
- Update the intel_pstate driver to allow the P-state selection
algorithm used by it to depend on the CPU ID of the processor it is
running on, make it use a special P-state selection algorithm (with
an IO wait time compensation tweak) on Atom CPUs based on the
Airmont and Silvermont cores so as to reduce their energy
consumption and improve intel_pstate documentation (Philippe
Longepe, Srinivas Pandruvada).
- Update the cpufreq-dt driver to support registering cooling devices
that use the (P * V^2 * f) dynamic power draw formula where V is
the voltage, f is the frequency and P is a constant coefficient
provided by Device Tree and update the arm_big_little cpufreq
driver to use that support (Punit Agrawal).
- Assorted cpufreq driver (cpufreq-dt, qoriq, pcc-cpufreq,
blackfin-cpufreq) updates (Andrzej Hajda, Hongtao Jia, Jacob
Tanenbaum, Markus Elfring).
- cpuidle core tweaks related to polling and measured_us calculation
(Rik van Riel).
- Removal of modularity from a few cpuidle drivers (clps711x, ux500,
exynos) that cannot be built as modules in practice (Paul
Gortmaker).
- PM core update to prevent devices from being probed during system
suspend/resume which is generally problematic and may lead to
inconsistent behavior (Grygorii Strashko).
- Assorted updates of the PM core and related code (Julia Lawall,
Manuel Pégourié-Gonnard, Maruthi Bayyavarapu, Rafael Wysocki, Ulf
Hansson).
- PNP bus type updates (Christophe Le Roy, Heiner Kallweit).
- PCI PM code cleanups (Jarkko Nikula, Julia Lawall).
- cpupower tool updates (Jacob Tanenbaum, Thomas Renninger)"
* tag 'pm+acpi-4.5-rc1-1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (177 commits)
PM / clk: don't leave clocks enabled when driver not bound
i2c: dw: Add APM X-Gene ACPI I2C device support
ACPI / APD: Add APM X-Gene ACPI I2C device support
ACPI / LPSS: change 'does not have' to 'has' in comment
Revert "dmaengine: dw: platform: provide platform data for Intel"
dmaengine: dw: return immediately from IRQ when DMA isn't in use
dmaengine: dw: platform: power on device on shutdown
ACPI / LPSS: override power state for LPSS DMA device
PM / OPP: Use snprintf() instead of sprintf()
Documentation: cpufreq: intel_pstate: enhance documentation
ACPI, PCI, irq: remove redundant check for null string pointer
ACPI / video: driver must be registered before checking for keypresses
cpufreq-dt: fix handling regulator_get_voltage() result
cpufreq: governor: Fix negative idle_time when configured with CONFIG_HZ_PERIODIC
PM / sleep: Add support for read-only sysfs attributes
ACPI: Fix white space in a structure definition
ACPI / SBS: fix inconsistent indenting inside if statement
PNP: respect PNP_DRIVER_RES_DO_NOT_CHANGE when detaching
ACPI / PNP: constify device IDs
ACPI / PCI: Simplify acpi_penalize_isa_irq()
...
This build failure triggers on 64-bit allmodconfig:
arch/x86/platform/uv/uv_nmi.c:493:2: error: implicit declaration of function ‘clocksource_touch_watchdog’ [-Werror=implicit-function-declaration]
which is caused by recent changes exposing a missing clocksource.h include
in uv_nmi.c:
cc1e24fdb0 x86/vdso: Remove pvclock fixmap machinery
this file got clocksource.h indirectly via fixmap.h - that stealth route
of header inclusion is now gone.
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The read and write opcodes are global for all units on SoC and even across
Intel SoCs. Remove duplication of corresponding constants. At the same time
convert all current users.
No functional change.
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Boon Leong Ong <boon.leong.ong@intel.com>
Acked-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Pull x86 platform changes from Ingo Molnar:
"Misc updates to the Intel MID and SGI UV platforms"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/intel-mid: Make intel_mid_ops static
arch/x86/intel-mid: Use kmemdup rather than duplicating its implementation
x86/platform/uv: Implement simple dump failover if kdump fails
x86/platform/uv: Insert per_cpu accessor function on uv_hub_nmi
We have been getting away with using a void* for the physical
address of the UEFI memory map, since, even on 32-bit platforms
with 64-bit physical addresses, no truncation takes place if the
memory map has been allocated by the firmware (which only uses
1:1 virtually addressable memory), which is usually the case.
However, commit:
0f96a99dab ("efi: Add "efi_fake_mem" boot option")
adds code that clones and modifies the UEFI memory map, and the
clone may live above 4 GB on 32-bit platforms.
This means our use of void* for struct efi_memory_map::phys_map has
graduated from 'incorrect but working' to 'incorrect and
broken', and we need to fix it.
So redefine struct efi_memory_map::phys_map as phys_addr_t, and
get rid of a bunch of casts that are now unneeded.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: izumi.taku@jp.fujitsu.com
Cc: kamezawa.hiroyu@jp.fujitsu.com
Cc: linux-efi@vger.kernel.org
Cc: matt.fleming@intel.com
Link: http://lkml.kernel.org/r/1445593697-1342-1-git-send-email-ard.biesheuvel@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
non-modular by ripping out the module_* code since Kconfig doesn't
allow it to be built as a module anyway - Paul Gortmaker
* Make the x86 efi=debug kernel parameter, which enables EFI debug
code and output, generic and usable by arm64 - Leif Lindholm
* Add support to the x86 EFI boot stub for 64-bit Graphics Output
Protocol frame buffer addresses - Matt Fleming
* Detect when the UEFI v2.5 EFI_PROPERTIES_TABLE feature is enabled
in the firmware and set an efi.flags bit so the kernel knows when
it can apply more strict runtime mapping attributes - Ard Biesheuvel
* Auto-load the efi-pstore module on EFI systems, just like we
currently do for the efivars module - Ben Hutchings
* Add "efi_fake_mem" kernel parameter which allows the system's EFI
memory map to be updated with additional attributes for specific
memory ranges. This is useful for testing the kernel code that handles
the EFI_MEMORY_MORE_RELIABLE memmap bit even if your firmware
doesn't include support - Taku Izumi
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJWG7OwAAoJEC84WcCNIz1VEEEP/0SsdrwJ66B4MfP5YNjqHYWm
+OTHR6Ovv2i10kc+NjOV/GN8sWPndnkLfIfJ4EqJ9BoQ9PDEYZilV2aleSQ4DrPm
H7uGwBXQkfd76tZKX9pMToK76mkhg6M7M2LR3Suv3OGfOEzuozAOt3Ez37lpksTN
2ByhHr/oGbhu99jC2ki5+k0ySH8PMqDBRxqrPbBzTD+FfB7bM11vAJbSNbSMQ21R
ZwX0acZBLqb9J2Vf7tDsW+fCfz0TFo8JHW8jdLRFm/y2dpquzxswkkBpODgA8+VM
0F5UbiUdkaIRug75I6N/OJ8+yLwdzuxm7ul+tbS3JrXGLAlK3850+dP2Pr5zQ2Ce
zaYGRUy+tD5xMXqOKgzpu+Ia8XnDRLhOlHabiRd5fG6ZC9nR8E9uK52g79voSN07
pADAJnVB03CGV/HdduDOI4C4UykUKubuArbQVkqWJcecV1Jic/tYI0gjeACmU1VF
v8FzXpBUe3U3A0jauOz8PBz8M+k5qky/GbIrnEvXreBtKdt999LN9fykTN7rBOpo
dk/6vTR1Jyv3aYc9EXHmRluktI6KmfWCqmRBOIgQveX1VhdRM+1w2LKC0+8co3dF
v/DBh19KDyfPI8eOvxKykhn164UeAt03EXqDa46wFGr2nVOm/JiShL/d+QuyYU4G
8xb/rET4JrhCG4gFMUZ7
=1Oee
-----END PGP SIGNATURE-----
Merge tag 'efi-next' of git://git.kernel.org/pub/scm/linux/kernel/git/mfleming/efi into core/efi
Pull v4.4 EFI updates from Matt Fleming:
- Make the EFI System Resource Table (ESRT) driver explicitly
non-modular by ripping out the module_* code since Kconfig doesn't
allow it to be built as a module anyway. (Paul Gortmaker)
- Make the x86 efi=debug kernel parameter, which enables EFI debug
code and output, generic and usable by arm64. (Leif Lindholm)
- Add support to the x86 EFI boot stub for 64-bit Graphics Output
Protocol frame buffer addresses. (Matt Fleming)
- Detect when the UEFI v2.5 EFI_PROPERTIES_TABLE feature is enabled
in the firmware and set an efi.flags bit so the kernel knows when
it can apply more strict runtime mapping attributes - Ard Biesheuvel
- Auto-load the efi-pstore module on EFI systems, just like we
currently do for the efivars module. (Ben Hutchings)
- Add "efi_fake_mem" kernel parameter which allows the system's EFI
memory map to be updated with additional attributes for specific
memory ranges. This is useful for testing the kernel code that handles
the EFI_MEMORY_MORE_RELIABLE memmap bit even if your firmware
doesn't include support. (Taku Izumi)
Note: there is a semantic conflict between the following two commits:
8a53554e12 ("x86/efi: Fix multiple GOP device support")
ae2ee627dc ("efifb: Add support for 64-bit frame buffer addresses")
I fixed up the interaction in the merge commit, changing the type of
current_fb_base from u32 to u64.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch renames print_efi_memmap() to efi_print_memmap() and
make it global function so that we can invoke it outside of
arch/x86/platform/efi/efi.c
Signed-off-by: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
fed6cefe3b ("x86/efi: Add a "debug" option to the efi= cmdline")
adds the DBG flag, but does so for x86 only. Move this early param
parsing to core code.
Signed-off-by: Leif Lindholm <leif.lindholm@linaro.org>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Mark Salter <msalter@redhat.com>
Cc: Borislav Petkov <bp@suse.de>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
The following warning is issued on unfixed code.
arch/x86/platform/intel-mid/intel-mid.c:64:22: warning: symbol 'intel_mid_ops' was not declared. Should it be static?
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: http://lkml.kernel.org/r/1444400741-98669-1-git-send-email-andriy.shevchenko@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Beginning with UEFI v2.5 EFI_PROPERTIES_TABLE was introduced
that signals that the firmware PE/COFF loader supports splitting
code and data sections of PE/COFF images into separate EFI
memory map entries. This allows the kernel to map those regions
with strict memory protections, e.g. EFI_MEMORY_RO for code,
EFI_MEMORY_XP for data, etc.
Unfortunately, an unwritten requirement of this new feature is
that the regions need to be mapped with the same offsets
relative to each other as observed in the EFI memory map. If
this is not done crashes like this may occur,
BUG: unable to handle kernel paging request at fffffffefe6086dd
IP: [<fffffffefe6086dd>] 0xfffffffefe6086dd
Call Trace:
[<ffffffff8104c90e>] efi_call+0x7e/0x100
[<ffffffff81602091>] ? virt_efi_set_variable+0x61/0x90
[<ffffffff8104c583>] efi_delete_dummy_variable+0x63/0x70
[<ffffffff81f4e4aa>] efi_enter_virtual_mode+0x383/0x392
[<ffffffff81f37e1b>] start_kernel+0x38a/0x417
[<ffffffff81f37495>] x86_64_start_reservations+0x2a/0x2c
[<ffffffff81f37582>] x86_64_start_kernel+0xeb/0xef
Here 0xfffffffefe6086dd refers to an address the firmware
expects to be mapped but which the OS never claimed was mapped.
The issue is that included in these regions are relative
addresses to other regions which were emitted by the firmware
toolchain before the "splitting" of sections occurred at
runtime.
Needless to say, we don't satisfy this unwritten requirement on
x86_64 and instead map the EFI memory map entries in reverse
order. The above crash is almost certainly triggerable with any
kernel newer than v3.13 because that's when we rewrote the EFI
runtime region mapping code, in commit d2f7cbe7b2 ("x86/efi:
Runtime services virtual mapping"). For kernel versions before
v3.13 things may work by pure luck depending on the
fragmentation of the kernel virtual address space at the time we
map the EFI regions.
Instead of mapping the EFI memory map entries in reverse order,
where entry N has a higher virtual address than entry N+1, map
them in the same order as they appear in the EFI memory map to
preserve this relative offset between regions.
This patch has been kept as small as possible with the intention
that it should be applied aggressively to stable and
distribution kernels. It is very much a bugfix rather than
support for a new feature, since when EFI_PROPERTIES_TABLE is
enabled we must map things as outlined above to even boot - we
have no way of asking the firmware not to split the code/data
regions.
In fact, this patch doesn't even make use of the more strict
memory protections available in UEFI v2.5. That will come later.
Suggested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reported-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Cc: <stable@vger.kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Chun-Yi <jlee@suse.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: James Bottomley <JBottomley@Odin.com>
Cc: Lee, Chun-Yi <jlee@suse.com>
Cc: Leif Lindholm <leif.lindholm@linaro.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Jones <pjones@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1443218539-7610-2-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The ability to trigger a kdump using the system NMI command
was added by
commit 12ba6c990f ("x86/UV: Add kdump to UV NMI handler")
Author: Mike Travis <travis@sgi.com>
Date: Mon Sep 23 16:25:03 2013 -0500
This is useful because when kdump is working the information
gathered is more informative than the original per CPU stack
traces or "dump" option. However a number of things can go
wrong with kdump and then the stack traces are more useful than
nothing.
The two most common reasons for kdump to not be available are:
1) if a problem occurs during boot before the kdump service is
started, or
2) the kdump daemon failed to start.
In either case the call to crash_kexec() returns unexpectedly.
When this happens uv_nmi_kdump() also sets the
uv_nmi_kexec_failed flag which causes the slave CPU's to also
return to the NMI handler. Upon this unexpected return to the
NMI handler, the NMI handler will revert to the "dump" action
which uses show_regs() to obtain a process trace dump for all
the CPU's.
Other minor changes:
The "dump" action now generates both the show_regs() stack trace
and show instruction pointer information. Whereas the "ips"
action only shows instruction pointers for non-idle CPU's. This
is more like an abbreviated "ps" display.
Change printk(KERN_DEFAULT...) --> pr_info()
Signed-off-by: Mike Travis <travis@sgi.com>
Signed-off-by: George Beshers <gbeshers@sgi.com>
Cc: Alex Thorlton <athorlton@sgi.com>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Hedi Berriche <hedi@sgi.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russ Anderson <rja@sgi.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There are two kexec load syscalls, kexec_load another and kexec_file_load.
kexec_file_load has been splited as kernel/kexec_file.c. In this patch I
split kexec_load syscall code to kernel/kexec.c.
And add a new kconfig option KEXEC_CORE, so we can disable kexec_load and
use kexec_file_load only, or vice verse.
The original requirement is from Ted Ts'o, he want kexec kernel signature
being checked with CONFIG_KEXEC_VERIFY_SIG enabled. But kexec-tools use
kexec_load syscall can bypass the checking.
Vivek Goyal proposed to create a common kconfig option so user can compile
in only one syscall for loading kexec kernel. KEXEC/KEXEC_FILE selects
KEXEC_CORE so that old config files still work.
Because there's general code need CONFIG_KEXEC_CORE, so I updated all the
architecture Kconfig with a new option KEXEC_CORE, and let KEXEC selects
KEXEC_CORE in arch Kconfig. Also updated general kernel code with to
kexec_load syscall.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Dave Young <dyoung@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Petr Tesarik <ptesarik@suse.cz>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Josh Boyer <jwboyer@fedoraproject.org>
Cc: David Howells <dhowells@redhat.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 apic updates from Thomas Gleixner:
"This udpate contains:
- rework the irq vector array to store a pointer to the irq
descriptor instead of the irq number to avoid a lookup of the irq
descriptor in the irq entry path
- lguest interrupt handling cleanups
- conversion of the local apic timer to the new clockevent callbacks
- preparatory changes for the irq argument removal of interrupt flow
handlers"
* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/irq: Do not dereference irq descriptor before checking it
tools/lguest: Clean up include dir
tools/lguest: Fix redefinition of struct virtio_pci_cfg_cap
x86/irq: Store irq descriptor in vector array
genirq: Provide irq_desc_has_action
x86/irq: Get rid of an indentation level
x86/irq: Rename VECTOR_UNDEFINED to VECTOR_UNUSED
x86/irq: Replace numeric constant
x86/irq: Protect smp_cleanup_move
x86/lguest: Do not setup unused irq vectors
x86/lguest: Clean up lguest_setup_irq
x86/apic: Drop local_irq_save/restore in timer callbacks
x86/apic: Migrate apic timer to new set_state interface
x86/irq: Use access helper irq_data_get_affinity_mask()
x86/irq: Use accessor irq_data_get_irq_handler_data()
x86/irq: Use accessor irq_data_get_node()
Pull x86 core platform updates from Ingo Molnar:
"The main changes are:
- Intel Atom platform updates. (Andy Shevchenko)
- modularity fixlets. (Paul Gortmaker)
- x86 platform clockevents driver updates for lguest, uv and Xen.
(Viresh Kumar)
- Microsoft Hyper-V TSC fixlet. (Vitaly Kuznetsov)"
* 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/platform: Make atom/pmc_atom.c explicitly non-modular
x86/hyperv: Mark the Hyper-V TSC as unstable
x86/xen/time: Migrate to new set-state interface
x86/uv/time: Migrate to new set-state interface
x86/lguest/timer: Migrate to new set-state interface
x86/pci/intel_mid_pci: Use proper constants for irq polarity
x86/pci/intel_mid_pci: Make intel_mid_pci_ops static
x86/pci/intel_mid_pci: Propagate actual return code
x86/pci/intel_mid_pci: Work around for IRQ0 assignment
x86/platform/iosf_mbi: Add Intel Tangier PCI id
x86/platform/iosf_mbi: Source cleanup
x86/platform/iosf_mbi: Remove NULL pointer checks for pci_dev_put()
x86/platform/iosf_mbi: Check return value of debugfs_create properly
x86/platform/iosf_mbi: Move to dedicated folder
x86/platform/intel/pmc_atom: Move the PMC-Atom code to arch/x86/platform/atom
x86/platform/intel/pmc_atom: Add Cherrytrail PMC interface
x86/platform/intel/pmc_atom: Supply register mappings via PMC object
x86/platform/intel/pmc_atom: Print index of device in loop
x86/platform/intel/pmc_atom: Export accessors to PMC registers
The Kconfig currently controlling compilation of this code is:
config PMC_ATOM
def_bool y
...meaning that it currently is not being built as a module by
anyone.
Lets remove the couple traces of modularity so that when reading
the driver there is no doubt it is builtin-only.
Since module_init() translates to device_initcall() in the
non-modular case, the init ordering remains unchanged with this
commit.
We leave some tags like MODULE_AUTHOR() for documentation
purposes.
Also note that MODULE_DEVICE_TABLE() is a no-op for non-modular
code. We correct a comment that indicates the data was only used
by that macro, as it actually is used by the code directly.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1440459295-21814-2-git-send-email-paul.gortmaker@windriver.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
x86 and ia64 implement efi_mem_attributes() differently. This
function needs to be available for other architectures
(such as arm64) as well, such as for the purpose of ACPI/APEI.
ia64 EFI does not set up a 'memmap' variable and does not set
the EFI_MEMMAP flag, so it needs to have its unique implementation
of efi_mem_attributes().
Move efi_mem_attributes() implementation from x86 to the core
EFI code, and declare it with __weak.
It is recommended that other architectures should not override
the default implementation.
Signed-off-by: Jonathan (Zhixiong) Zhang <zjzhang@codeaurora.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Reviewed-by: Matt Fleming <matt.fleming@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1438936621-5215-4-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
It's totally legitimate, per the ACPI spec, for the firmware to
set the BGRT 'status' field to zero to indicate that the BGRT
image isn't being displayed, and we shouldn't be printing an
error message in that case because it's just noise for users. So
swap pr_err() for pr_debug().
However, Josh points that out it still makes sense to test the
validity of the upper 7 bits of the 'status' field, since
they're marked as "reserved" in the spec and must be zero. If
firmware violates this it really *is* an error.
Reported-by: Tom Yan <tom.ty89@gmail.com>
Tested-by: Tom Yan <tom.ty89@gmail.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Garrett <mjg59@srcf.ucam.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1438936621-5215-2-git-send-email-matt@codeblueprint.co.uk
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Migrate uv driver to the new 'set-state' interface provided by
clockevents core, the earlier 'set-mode' interface is marked obsolete
now.
This also enables us to implement callbacks for new states of clockevent
devices, for example: ONESHOT_STOPPED.
We weren't doing anything while switching modes other than in shutdown
mode and so those are not implemented.
Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org>
Cc: linaro-kernel@lists.linaro.org
Cc: Christoph Lameter <cl@linux.com>
Cc: Tejun Heo <tj@kernel.org>
Link: http://lkml.kernel.org/r/52e04139746222a2e82a96d13953cbc306cfb59b.1437042675.git.viresh.kumar@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Even though it is documented how to specifiy efi parameters, it is
possible to cause a kernel panic due to a dereference of a NULL pointer when
parsing such parameters if "efi" alone is given:
PANIC: early exception 0e rip 10:ffffffff812fb361 error 0 cr2 0
[ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 4.2.0-rc1+ #450
[ 0.000000] ffffffff81fe20a9 ffffffff81e03d50 ffffffff8184bb0f 00000000000003f8
[ 0.000000] 0000000000000000 ffffffff81e03e08 ffffffff81f371a1 64656c62616e6520
[ 0.000000] 0000000000000069 000000000000005f 0000000000000000 0000000000000000
[ 0.000000] Call Trace:
[ 0.000000] [<ffffffff8184bb0f>] dump_stack+0x45/0x57
[ 0.000000] [<ffffffff81f371a1>] early_idt_handler_common+0x81/0xae
[ 0.000000] [<ffffffff812fb361>] ? parse_option_str+0x11/0x90
[ 0.000000] [<ffffffff81f4dd69>] arch_parse_efi_cmdline+0x15/0x42
[ 0.000000] [<ffffffff81f376e1>] do_early_param+0x50/0x8a
[ 0.000000] [<ffffffff8106b1b3>] parse_args+0x1e3/0x400
[ 0.000000] [<ffffffff81f37a43>] parse_early_options+0x24/0x28
[ 0.000000] [<ffffffff81f37691>] ? loglevel+0x31/0x31
[ 0.000000] [<ffffffff81f37a78>] parse_early_param+0x31/0x3d
[ 0.000000] [<ffffffff81f3ae98>] setup_arch+0x2de/0xc08
[ 0.000000] [<ffffffff8109629a>] ? vprintk_default+0x1a/0x20
[ 0.000000] [<ffffffff81f37b20>] start_kernel+0x90/0x423
[ 0.000000] [<ffffffff81f37495>] x86_64_start_reservations+0x2a/0x2c
[ 0.000000] [<ffffffff81f37582>] x86_64_start_kernel+0xeb/0xef
[ 0.000000] RIP 0xffffffff81ba2efc
This panic is not reproducible with "efi=" as this will result in a non-NULL
zero-length string.
Thus, verify that the pointer to the parameter string is not NULL. This is
consistent with other parameter-parsing functions which check for NULL pointers.
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
- Move the static variables to one place
- Fix indentations in the header
- Correct comments
No functional change.
[ tglx: Massaged changelog ]
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: David E . Box <david.e.box@linux.intel.com>
Link: http://lkml.kernel.org/r/1436366709-17683-5-git-send-email-andriy.shevchenko@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The code checks the result of the first debugfs_create call several
times and fails to check the result of the subsequent calls due to
missing assigments.
Add the missing assignments and check only for !res because
debugfs_create() returns only NULL on error and not an encoded error
code.
[ tglx: Massaged changelog ]
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: David E . Box <david.e.box@linux.intel.com>
Link: http://lkml.kernel.org/r/1436366709-17683-3-git-send-email-andriy.shevchenko@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Move the driver to arch/x86/platform/intel since it is not a core
kernel code and it is related to many Intel SoCs from different
groups: Atom, MID, etc.
There is no functional change.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: David E . Box <david.e.box@linux.intel.com>
Link: http://lkml.kernel.org/r/1436366709-17683-2-git-send-email-andriy.shevchenko@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Use accessor irq_data_get_node() to hide struct irq_data
implementation detail, so we can move node to irq_data_common later.
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
This is specific driver for Intel Atom SoCs like BayTrail and
Braswell. Let's move it to dedicated folder and alleviate a
arch/x86/kernel burden.
There is no functional change.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Aubrey Li <aubrey.li@linux.intel.com>
Cc: Kumar P Mahesh <mahesh.kumar.p@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rafael J . Wysocki <rafael.j.wysocki@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1436192944-56496-6-git-send-email-andriy.shevchenko@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVkO5XAAoJEOvOhAQsB9HWe4cQAJcsmSXIDN2O6oxvgH8Wilof
EIEMvT13uwBdsjQdYUY6A6B3iUV9wzEEgoosg/JRgpz5/b1FTDMIO4arUPD3Lcak
5bmyVO2qAT+yaLAWSgn6I8DMplXrKiEuK+TkH/mW3p9TdvElLdG3Vg6UI407hSWv
W0QbVwkNtv8XmzshV9F2YdmflT8j1PgYxIu/tEkVOWn37DNW+Fp2OVBrdTIYp3AJ
X6bYZPEcQDCrWWW/s2GmIDrNgryiebasns+CAgGY21262jAYaRcFOJmR47AsTqW7
DSZXIlLc/gJca++hfxqV15RZ4NRHxrebCypTsPtZUV7ZiYHI726eeUZzxsp/9itu
mvhmi+aQUTTUP3dDhiv05f4syAKEb4zslT6SLwcna6oi09M97HfCeQsHqhcFq/MG
KnS2JJoJQToQtJvMUXMQzp5hyHjNlOclIvCxEiL32EZU54PeJOKasy/mptNGEctk
TxACWvoXBQglRaVN+1wIjjr0BaHJSuJa9CUnIfM4WZdSHiMQMx00XLTkZcTnSM6R
12pE54vVolrXswGPJhy4W/Sf1yPSW1tkWSVBbkKLyCIrlAWJtu68rXhvwhG/nz6E
3g6QrDEQGlk6bzUH4CJCEqXLPRN1bNS0XjdkEFh60Lury3Ns5yHKZXPW5vCQ5csr
FQNUyBs595CWbJNfbn1n
=0BDx
-----END PGP SIGNATURE-----
Merge tag 'module_init-device_initcall-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux
Pull module_init replacement part one from Paul Gortmaker:
"Replace module_init with equivalent device_initcall in non modules.
This series of commits converts non-modular code that is using the
module_init() call to hook itself into the system to instead use
device_initcall().
The conversion is a runtime no-op, since module_init actually becomes
__initcall in the non-modular case, and that in turn gets mapped onto
device_initcall. A couple files show a larger negative diffstat,
representing ones that had a module_exit function that we remove here
vs previously relying on the linker to dispose of it.
We make this conversion now, so that we can relocate module_init from
init.h into module.h in the future.
The files changed here are just limited to those that would otherwise
have to add module.h to obviously non-modular code, in order to avoid
a compile fail, as testing has shown"
* tag 'module_init-device_initcall-v4.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux:
MIPS: don't use module_init in non-modular cobalt/mtd.c file
drivers/leds: don't use module_init in non-modular leds-cobalt-raq.c
cris: don't use module_init for non-modular core eeprom.c code
tty/metag_da: Avoid module_init/module_exit in non-modular code
drivers/clk: don't use module_init in clk-nomadik.c which is non-modular
xtensa: don't use module_init for non-modular core network.c code
sh: don't use module_init in non-modular psw.c code
mn10300: don't use module_init in non-modular flash.c code
parisc64: don't use module_init for non-modular core perf code
parisc: don't use module_init for non-modular core pdc_cons code
cris: don't use module_init for non-modular core intmem.c code
ia64: don't use module_init in non-modular sim/simscsi.c code
ia64: don't use module_init for non-modular core kernel/mca.c code
arm: don't use module_init in non-modular mach-vexpress/spc.c code
powerpc: don't use module_init in non-modular 83xx suspend code
powerpc: use device_initcall for registering rtc devices
x86: don't use module_init in non-modular devicetree.c code
x86: don't use module_init in non-modular intel_mid_vrtc.c
Main excitement here is Peter Zijlstra's lockless rbtree optimization to
speed module address lookup. He found some abusers of the module lock
doing that too.
A little bit of parameter work here too; including Dan Streetman's breaking
up the big param mutex so writing a parameter can load another module (yeah,
really). Unfortunately that broke the usual suspects, !CONFIG_MODULES and
!CONFIG_SYSFS, so those fixes were appended too.
Cheers,
Rusty.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVkgKHAAoJENkgDmzRrbjxQpwQAJVmBN6jF3SnwbQXv9vRixjH
58V33sb1G1RW+kXxQ3/e8jLX/4VaN479CufruXQp+IJWXsN/CH0lbC3k8m7u50d7
b1Zeqd/Yrh79rkc11b0X1698uGCSMlzz+V54Z0QOTEEX+nSu2ZZvccFS4UaHkn3z
rqDo00lb7rxQz8U25qro2OZrG6D3ub2q20TkWUB8EO4AOHkPn8KWP2r429Axrr0K
wlDWDTTt8/IsvPbuPf3T15RAhq1avkMXWn9nDXDjyWbpLfTn8NFnWmtesgY7Jl4t
GjbXC5WYekX3w2ZDB9KaT/DAMQ1a7RbMXNSz4RX4VbzDl+yYeSLmIh2G9fZb1PbB
PsIxrOgy4BquOWsJPm+zeFPSC3q9Cfu219L4AmxSjiZxC3dlosg5rIB892Mjoyv4
qxmg6oiqtc4Jxv+Gl9lRFVOqyHZrTC5IJ+xgfv1EyP6kKMUKLlDZtxZAuQxpUyxR
HZLq220RYnYSvkWauikq4M8fqFM8bdt6hLJnv7bVqllseROk9stCvjSiE3A9szH5
OgtOfYV5GhOeb8pCZqJKlGDw+RoJ21jtNCgOr6DgkNKV9CX/kL/Puwv8gnA0B0eh
dxCeB7f/gcLl7Cg3Z3gVVcGlgak6JWrLf5ITAJhBZ8Lv+AtL2DKmwEWS/iIMRmek
tLdh/a9GiCitqS0bT7GE
=tWPQ
-----END PGP SIGNATURE-----
Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux
Pull module updates from Rusty Russell:
"Main excitement here is Peter Zijlstra's lockless rbtree optimization
to speed module address lookup. He found some abusers of the module
lock doing that too.
A little bit of parameter work here too; including Dan Streetman's
breaking up the big param mutex so writing a parameter can load
another module (yeah, really). Unfortunately that broke the usual
suspects, !CONFIG_MODULES and !CONFIG_SYSFS, so those fixes were
appended too"
* tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/rusty/linux: (26 commits)
modules: only use mod->param_lock if CONFIG_MODULES
param: fix module param locks when !CONFIG_SYSFS.
rcu: merge fix for Convert ACCESS_ONCE() to READ_ONCE() and WRITE_ONCE()
module: add per-module param_lock
module: make perm const
params: suppress unused variable error, warn once just in case code changes.
modules: clarify CONFIG_MODULE_COMPRESS help, suggest 'N'.
kernel/module.c: avoid ifdefs for sig_enforce declaration
kernel/workqueue.c: remove ifdefs over wq_power_efficient
kernel/params.c: export param_ops_bool_enable_only
kernel/params.c: generalize bool_enable_only
kernel/module.c: use generic module param operaters for sig_enforce
kernel/params: constify struct kernel_param_ops uses
sysfs: tightened sysfs permission checks
module: Rework module_addr_{min,max}
module: Use __module_address() for module_address_lookup()
module: Make the mod_tree stuff conditional on PERF_EVENTS || TRACING
module: Optimize __module_address() using a latched RB-tree
rbtree: Implement generic latch_tree
seqlock: Introduce raw_read_seqcount_latch()
...
4 drivers / enabling modules:
NFIT:
Instantiates an "nvdimm bus" with the core and registers memory devices
(NVDIMMs) enumerated by the ACPI 6.0 NFIT (NVDIMM Firmware Interface
table). After registering NVDIMMs the NFIT driver then registers
"region" devices. A libnvdimm-region defines an access mode and the
boundaries of persistent memory media. A region may span multiple
NVDIMMs that are interleaved by the hardware memory controller. In
turn, a libnvdimm-region can be carved into a "namespace" device and
bound to the PMEM or BLK driver which will attach a Linux block device
(disk) interface to the memory.
PMEM:
Initially merged in v4.1 this driver for contiguous spans of persistent
memory address ranges is re-worked to drive PMEM-namespaces emitted by
the libnvdimm-core. In this update the PMEM driver, on x86, gains the
ability to assert that writes to persistent memory have been flushed all
the way through the caches and buffers in the platform to persistent
media. See memcpy_to_pmem() and wmb_pmem().
BLK:
This new driver enables access to persistent memory media through "Block
Data Windows" as defined by the NFIT. The primary difference of this
driver to PMEM is that only a small window of persistent memory is
mapped into system address space at any given point in time. Per-NVDIMM
windows are reprogrammed at run time, per-I/O, to access different
portions of the media. BLK-mode, by definition, does not support DAX.
BTT:
This is a library, optionally consumed by either PMEM or BLK, that
converts a byte-accessible namespace into a disk with atomic sector
update semantics (prevents sector tearing on crash or power loss). The
sinister aspect of sector tearing is that most applications do not know
they have a atomic sector dependency. At least today's disk's rarely
ever tear sectors and if they do one almost certainly gets a CRC error
on access. NVDIMMs will always tear and always silently. Until an
application is audited to be robust in the presence of sector-tearing
the usage of BTT is recommended.
Thanks to: Ross Zwisler, Jeff Moyer, Vishal Verma, Christoph Hellwig,
Ingo Molnar, Neil Brown, Boaz Harrosh, Robert Elliott, Matthew Wilcox,
Andy Rudoff, Linda Knippers, Toshi Kani, Nicholas Moulin, Rafael
Wysocki, and Bob Moore.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJVjZGBAAoJEB7SkWpmfYgC4fkP/j+k6HmSRNU/yRYPyo7CAWvj
3P5P1i6R6nMZZbjQrQArAXaIyLlFk4sEQDYsciR6dmslhhFZAkR2eFwVO5rBOyx3
QN0yxEpyjJbroRFUrV/BLaFK4cq2oyJAFFHs0u7/pLHBJ4MDMqfRKAMtlnBxEkTE
LFcqXapSlvWitSbjMdIBWKFEvncaiJ2mdsFqT4aZqclBBTj00eWQvEG9WxleJLdv
+tj7qR/vGcwOb12X5UrbQXgwtMYos7A6IzhHbqwQL8IrOcJ6YB8NopJUpLDd7ZVq
KAzX6ZYMzNueN4uvv6aDfqDRLyVL7qoxM9XIjGF5R8SV9sF2LMspm1FBpfowo1GT
h2QMr0ky1nHVT32yspBCpE9zW/mubRIDtXxEmZZ53DIc4N6Dy9jFaNVmhoWtTAqG
b9pndFnjUzzieCjX5pCvo2M5U6N0AQwsnq76/CasiWyhSa9DNKOg8MVDRg0rbxb0
UvK0v8JwOCIRcfO3qiKcx+02nKPtjCtHSPqGkFKPySRvAdb+3g6YR26CxTb3VmnF
etowLiKU7HHalLvqGFOlDoQG6viWes9Zl+ZeANBOCVa6rL2O7ZnXJtYgXf1wDQee
fzgKB78BcDjXH4jHobbp/WBANQGN/GF34lse8yHa7Ym+28uEihDvSD1wyNLnefmo
7PJBbN5M5qP5tD0aO7SZ
=VtWG
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm
Pull libnvdimm subsystem from Dan Williams:
"The libnvdimm sub-system introduces, in addition to the
libnvdimm-core, 4 drivers / enabling modules:
NFIT:
Instantiates an "nvdimm bus" with the core and registers memory
devices (NVDIMMs) enumerated by the ACPI 6.0 NFIT (NVDIMM Firmware
Interface table).
After registering NVDIMMs the NFIT driver then registers "region"
devices. A libnvdimm-region defines an access mode and the
boundaries of persistent memory media. A region may span multiple
NVDIMMs that are interleaved by the hardware memory controller. In
turn, a libnvdimm-region can be carved into a "namespace" device and
bound to the PMEM or BLK driver which will attach a Linux block
device (disk) interface to the memory.
PMEM:
Initially merged in v4.1 this driver for contiguous spans of
persistent memory address ranges is re-worked to drive
PMEM-namespaces emitted by the libnvdimm-core.
In this update the PMEM driver, on x86, gains the ability to assert
that writes to persistent memory have been flushed all the way
through the caches and buffers in the platform to persistent media.
See memcpy_to_pmem() and wmb_pmem().
BLK:
This new driver enables access to persistent memory media through
"Block Data Windows" as defined by the NFIT. The primary difference
of this driver to PMEM is that only a small window of persistent
memory is mapped into system address space at any given point in
time.
Per-NVDIMM windows are reprogrammed at run time, per-I/O, to access
different portions of the media. BLK-mode, by definition, does not
support DAX.
BTT:
This is a library, optionally consumed by either PMEM or BLK, that
converts a byte-accessible namespace into a disk with atomic sector
update semantics (prevents sector tearing on crash or power loss).
The sinister aspect of sector tearing is that most applications do
not know they have a atomic sector dependency. At least today's
disk's rarely ever tear sectors and if they do one almost certainly
gets a CRC error on access. NVDIMMs will always tear and always
silently. Until an application is audited to be robust in the
presence of sector-tearing the usage of BTT is recommended.
Thanks to: Ross Zwisler, Jeff Moyer, Vishal Verma, Christoph Hellwig,
Ingo Molnar, Neil Brown, Boaz Harrosh, Robert Elliott, Matthew Wilcox,
Andy Rudoff, Linda Knippers, Toshi Kani, Nicholas Moulin, Rafael
Wysocki, and Bob Moore"
* tag 'libnvdimm-for-4.2' of git://git.kernel.org/pub/scm/linux/kernel/git/djbw/nvdimm: (33 commits)
arch, x86: pmem api for ensuring durability of persistent memory updates
libnvdimm: Add sysfs numa_node to NVDIMM devices
libnvdimm: Set numa_node to NVDIMM devices
acpi: Add acpi_map_pxm_to_online_node()
libnvdimm, nfit: handle unarmed dimms, mark namespaces read-only
pmem: flag pmem block devices as non-rotational
libnvdimm: enable iostat
pmem: make_request cleanups
libnvdimm, pmem: fix up max_hw_sectors
libnvdimm, blk: add support for blk integrity
libnvdimm, btt: add support for blk integrity
fs/block_dev.c: skip rw_page if bdev has integrity
libnvdimm: Non-Volatile Devices
tools/testing/nvdimm: libnvdimm unit test infrastructure
libnvdimm, nfit, nd_blk: driver for BLK-mode access persistent memory
nd_btt: atomic sector updates
libnvdimm: infrastructure for btt devices
libnvdimm: write blk label set
libnvdimm: write pmem label set
libnvdimm: blk labels and namespace instantiation
...
UEFI GetMemoryMap() uses a new attribute bit to mark mirrored memory
address ranges. See UEFI 2.5 spec pages 157-158:
http://www.uefi.org/sites/default/files/resources/UEFI%202_5.pdf
On EFI enabled systems scan the memory map and tell memblock about any
mirrored ranges.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Xiexiuqi <xiexiuqi@huawei.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Naoya Horiguchi <nao.horiguchi@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull x86 core updates from Ingo Molnar:
"There were so many changes in the x86/asm, x86/apic and x86/mm topics
in this cycle that the topical separation of -tip broke down somewhat -
so the result is a more traditional architecture pull request,
collected into the 'x86/core' topic.
The topics were still maintained separately as far as possible, so
bisectability and conceptual separation should still be pretty good -
but there were a handful of merge points to avoid excessive
dependencies (and conflicts) that would have been poorly tested in the
end.
The next cycle will hopefully be much more quiet (or at least will
have fewer dependencies).
The main changes in this cycle were:
* x86/apic changes, with related IRQ core changes: (Jiang Liu, Thomas
Gleixner)
- This is the second and most intrusive part of changes to the x86
interrupt handling - full conversion to hierarchical interrupt
domains:
[IOAPIC domain] -----
|
[MSI domain] --------[Remapping domain] ----- [ Vector domain ]
| (optional) |
[HPET MSI domain] ----- |
|
[DMAR domain] -----------------------------
|
[Legacy domain] -----------------------------
This now reflects the actual hardware and allowed us to distangle
the domain specific code from the underlying parent domain, which
can be optional in the case of interrupt remapping. It's a clear
separation of functionality and removes quite some duct tape
constructs which plugged the remap code between ioapic/msi/hpet
and the vector management.
- Intel IOMMU IRQ remapping enhancements, to allow direct interrupt
injection into guests (Feng Wu)
* x86/asm changes:
- Tons of cleanups and small speedups, micro-optimizations. This
is in preparation to move a good chunk of the low level entry
code from assembly to C code (Denys Vlasenko, Andy Lutomirski,
Brian Gerst)
- Moved all system entry related code to a new home under
arch/x86/entry/ (Ingo Molnar)
- Removal of the fragile and ugly CFI dwarf debuginfo annotations.
Conversion to C will reintroduce many of them - but meanwhile
they are only getting in the way, and the upstream kernel does
not rely on them (Ingo Molnar)
- NOP handling refinements. (Borislav Petkov)
* x86/mm changes:
- Big PAT and MTRR rework: making the code more robust and
preparing to phase out exposing direct MTRR interfaces to drivers -
in favor of using PAT driven interfaces (Toshi Kani, Luis R
Rodriguez, Borislav Petkov)
- New ioremap_wt()/set_memory_wt() interfaces to support
Write-Through cached memory mappings. This is especially
important for good performance on NVDIMM hardware (Toshi Kani)
* x86/ras changes:
- Add support for deferred errors on AMD (Aravind Gopalakrishnan)
This is an important RAS feature which adds hardware support for
poisoned data. That means roughly that the hardware marks data
which it has detected as corrupted but wasn't able to correct, as
poisoned data and raises an APIC interrupt to signal that in the
form of a deferred error. It is the OS's responsibility then to
take proper recovery action and thus prolonge system lifetime as
far as possible.
- Add support for Intel "Local MCE"s: upcoming CPUs will support
CPU-local MCE interrupts, as opposed to the traditional system-
wide broadcasted MCE interrupts (Ashok Raj)
- Misc cleanups (Borislav Petkov)
* x86/platform changes:
- Intel Atom SoC updates
... and lots of other cleanups, fixlets and other changes - see the
shortlog and the Git log for details"
* 'x86-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (222 commits)
x86/hpet: Use proper hpet device number for MSI allocation
x86/hpet: Check for irq==0 when allocating hpet MSI interrupts
x86/mm/pat, drivers/infiniband/ipath: Use arch_phys_wc_add() and require PAT disabled
x86/mm/pat, drivers/media/ivtv: Use arch_phys_wc_add() and require PAT disabled
x86/platform/intel/baytrail: Add comments about why we disabled HPET on Baytrail
genirq: Prevent crash in irq_move_irq()
genirq: Enhance irq_data_to_desc() to support hierarchy irqdomain
iommu, x86: Properly handle posted interrupts for IOMMU hotplug
iommu, x86: Provide irq_remapping_cap() interface
iommu, x86: Setup Posted-Interrupts capability for Intel iommu
iommu, x86: Add cap_pi_support() to detect VT-d PI capability
iommu, x86: Avoid migrating VT-d posted interrupts
iommu, x86: Save the mode (posted or remapped) of an IRTE
iommu, x86: Implement irq_set_vcpu_affinity for intel_ir_chip
iommu: dmar: Provide helper to copy shared irte fields
iommu: dmar: Extend struct irte for VT-d Posted-Interrupts
iommu: Add new member capability to struct irq_remap_ops
x86/asm/entry/64: Disentangle error_entry/exit gsbase/ebx/usermode code
x86/asm/entry/32: Shorten __audit_syscall_entry() args preparation
x86/asm/entry/32: Explain reloading of registers after __audit_syscall_entry()
...
The X86_INTEL_MID option is bool, and hence this code is either
present or absent. It will never be modular, so using
module_init as an alias for __initcall is rather misleading.
Fix this up now, so that we can relocate module_init from
init.h into module.h in the future. If we don't do this, we'd
have to add module.h to obviously non-modular code, and that
would be a worse thing.
Note that direct use of __initcall is discouraged, vs. one
of the priority categorized subgroups. As __initcall gets
mapped onto device_initcall, our use of device_initcall
directly in this change means that the runtime impact is
zero -- it will remain at level 6 in initcall ordering.
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Most code already uses consts for the struct kernel_param_ops,
sweep the kernel for the last offending stragglers. Other than
include/linux/moduleparam.h and kernel/params.c all other changes
were generated with the following Coccinelle SmPL patch. Merge
conflicts between trees can be handled with Coccinelle.
In the future git could get Coccinelle merge support to deal with
patch --> fail --> grammar --> Coccinelle --> new patch conflicts
automatically for us on patches where the grammar is available and
the patch is of high confidence. Consider this a feature request.
Test compiled on x86_64 against:
* allnoconfig
* allmodconfig
* allyesconfig
@ const_found @
identifier ops;
@@
const struct kernel_param_ops ops = {
};
@ const_not_found depends on !const_found @
identifier ops;
@@
-struct kernel_param_ops ops = {
+const struct kernel_param_ops ops = {
};
Generated-by: Coccinelle SmPL
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Junio C Hamano <gitster@pobox.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Kees Cook <keescook@chromium.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: cocci@systeme.lip6.fr
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Luis R. Rodriguez <mcgrof@suse.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
ACPI 6.0 formalizes e820-type-7 and efi-type-14 as persistent memory.
Mark it "reserved" and allow it to be claimed by a persistent memory
device driver.
This definition is in addition to the Linux kernel's existing type-12
definition that was recently added in support of shipping platforms with
NVDIMM support that predate ACPI 6.0 (which now classifies type-12 as
OEM reserved).
Note, /proc/iomem can be consulted for differentiating legacy
"Persistent Memory (legacy)" E820_PRAM vs standard "Persistent Memory"
E820_PMEM.
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jens Axboe <axboe@fb.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Jeff Moyer <jmoyer@redhat.com>
Acked-by: Andy Lutomirski <luto@amacapital.net>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Tested-by: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
The patch adds a debug driver, which dumps the power states
of all the North complex (NC) devices. This debug interface is
useful to figure out the devices, which blocks the S0ix
transitions on the platform. This is extremely useful during
enabling PM on customer platforms and derivatives.
This submission is based on the submission from Mahesh Kumar P:
https://lkml.org/lkml/2014/11/5/367
Signed-off-by: Srinivas Pandruvada <srinivas.pandruvada@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Mahesh Kumar P <mahesh.kumar.p@intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: pebolle@tiscali.nl
Link: http://lkml.kernel.org/r/1430939754-6900-2-git-send-email-srinivas.pandruvada@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Nothing changes those ops. Make the initializers readable while at it.
Reported-by: Krzysztof Kozlowski <k.kozlowski.k@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Add sysfs files for the EFI System Resource Table (ESRT) under
/sys/firmware/efi/esrt and for each EFI System Resource Entry under
entries/ as a subdir.
The EFI System Resource Table (ESRT) provides a read-only catalog of
system components for which the system accepts firmware upgrades via
UEFI's "Capsule Update" feature. This module allows userland utilities
to evaluate what firmware updates can be applied to this system, and
potentially arrange for those updates to occur.
The ESRT is described as part of the UEFI specification, in version 2.5
which should be available from http://uefi.org/specifications in early
2015. If you're a member of the UEFI Forum, information about its
addition to the standard is available as UEFI Mantis 1090.
For some hardware platforms, additional restrictions may be found at
http://msdn.microsoft.com/en-us/library/windows/hardware/jj128256.aspx ,
and additional documentation may be found at
http://download.microsoft.com/download/5/F/5/5F5D16CD-2530-4289-8019-94C6A20BED3C/windows-uefi-firmware-update-platform.docx
.
Signed-off-by: Peter Jones <pjones@redhat.com>
Signed-off-by: Matt Fleming <matt.fleming@intel.com>
Now we have dedicated asm/irqdomain.h, so move irqdomain specific
code into it.
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: David Cohen <david.a.cohen@linux.intel.com>
Cc: Sander Eikelenboom <linux@eikelenboom.it>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Joerg Roedel <jroedel@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Link: http://lkml.kernel.org/r/1428978610-28986-33-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
We have 3 identical copies of the ioapic domain ops for acpi, mpparse,
and sfi. Have a global one in the io_apic code and be done with it.
To avoid include hell in io_apic.h, create a private irqdomain header
and include the generic irqdomain header from there.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: David Cohen <david.a.cohen@linux.intel.com>
Cc: Sander Eikelenboom <linux@eikelenboom.it>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: sfi-devel@simplefirmware.org
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dimitri Sivanich <sivanich@sgi.com>
Cc: Len Brown <len.brown@intel.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Grant Likely <grant.likely@linaro.org>
Cc: Rob Herring <robh@kernel.org>
Cc: x86@kernel.org
Link: http://lkml.kernel.org/r/1428978610-28986-32-git-send-email-jiang.liu@linux.intel.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>