cma_init_reserved_mem uses IS_ALIGNED to check if the size represented by
one bit in the cma allocation bitmask is aligned with
CMA_MIN_ALIGNMENT_BYTES (pageblock size).
However, this is too strict, as this will fail if order_per_bit >
pageblock_order, which is a valid configuration.
We could check IS_ALIGNED both ways, but since both numbers are powers of
two, no check is needed at all.
Link: https://lkml.kernel.org/r/20240404162515.527802-1-fvdl@google.com
Fixes: de9e14eebf ("drivers: dma-contiguous: add initialization from device tree")
Signed-off-by: Frank van der Linden <fvdl@google.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This adds the following new sysfs file tracking the number of successfully
released pages from a given CMA heap area. This file will be available
via CONFIG_CMA_SYSFS and help in determining active CMA pages available on
the CMA heap area. This adds a new 'nr_pages_released' (CONFIG_CMA_SYSFS)
into 'struct cma' which gets updated during cma_release().
/sys/kernel/mm/cma/<cma-heap-area>/release_pages_success
After this change, an user will be able to find active CMA pages available
in a given CMA heap area via the following method.
Active pages = alloc_pages_success - release_pages_success
That's valuable information for both software designers, and system admins
as it allows them to tune the number of CMA pages available in the system.
This increases user visibility for allocated CMA area and its
utilization.
Link: https://lkml.kernel.org/r/20240206045731.472759-1-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
All pr_debug() prints in (mm/cma.c) could be enabled via standard Makefile
based method. Besides cma_debug_show_areas() should always be called
during cma_alloc() failure path. This seemingly redundant config,
CONFIG_CMA_DEBUG can be dropped without any problem.
[lukas.bulwahn@gmail.com: remove debug code to removed CONFIG_CMA_DEBUG]
Link: https://lkml.kernel.org/r/20240207143825.986-1-lukas.bulwahn@gmail.com
Link: https://lkml.kernel.org/r/20240205031647.283510-1-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Signed-off-by: Lukas Bulwahn <lukas.bulwahn@gmail.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Invalid cma_alloc() input scenarios - including excess allocation request
should neither be counted as CMA_ALLOC_FAIL nor 'cma->nr_pages_failed' be
updated when applicable with CONFIG_CMA_SYSFS. This also drops 'out' jump
label which has become redundant.
Link: https://lkml.kernel.org/r/20240201023714.3871061-1-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Kalesh Singh <kaleshsingh@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The current placement of trace_cma_alloc_start/finish misses the fail
cases: !cma || !cma->count || !cma->bitmap.
trace_cma_alloc_finish is also not emitted for the failure case
where bitmap_count > bitmap_maxno.
Fix these missed cases by moving the start event before the failure
checks and moving the finish event to the out label.
Link: https://lkml.kernel.org/r/20240110012234.3793639-1-kaleshsingh@google.com
Fixes: 7bc1aec5e2 ("mm: cma: add trace events for CMA alloc perf testing")
Signed-off-by: Kalesh Singh <kaleshsingh@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Liam Mark <lmark@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The ret variable can be defined without assigning a value, as it is
assigned before use.
Link: https://lkml.kernel.org/r/20231205021751.100459-1-zeming@nfschina.com
Signed-off-by: Li zeming <zeming@nfschina.com>
Reviewed-by: Andrew Morton <akpm@linux-foudation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Use nth_page() in place of direct struct page manipulation",
v3.
On SPARSEMEM without VMEMMAP, struct page is not guaranteed to be
contiguous, since each memory section's memmap might be allocated
independently. hugetlb pages can go beyond a memory section size, thus
direct struct page manipulation on hugetlb pages/subpages might give wrong
struct page. Kernel provides nth_page() to do the manipulation properly.
Use that whenever code can see hugetlb pages.
This patch (of 5):
When dealing with hugetlb pages, manipulating struct page pointers
directly can get to wrong struct page, since struct page is not guaranteed
to be contiguous on SPARSEMEM without VMEMMAP. Use nth_page() to handle
it properly.
Without the fix, page_kasan_tag_reset() could reset wrong page tags,
causing a wrong kasan result. No related bug is reported. The fix
comes from code inspection.
Link: https://lkml.kernel.org/r/20230913201248.452081-1-zi.yan@sent.com
Link: https://lkml.kernel.org/r/20230913201248.452081-2-zi.yan@sent.com
Fixes: 2813b9c029 ("kasan, mm, arm64: tag non slab memory allocated via pagealloc")
Signed-off-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
- allow dynamic sizing of the swiotlb buffer, to cater for secure
virtualization workloads that require all I/O to be bounce buffered
(Petr Tesarik)
- move a declaration to a header (Arnd Bergmann)
- check for memory region overlap in dma-contiguous (Binglei Wang)
- remove the somewhat dangerous runtime swiotlb-xen enablement and
unexport is_swiotlb_active (Christoph Hellwig, Juergen Gross)
- per-node CMA improvements (Yajun Deng)
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAmTuDHkLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYOqvhAApMk2/ceTgVH17sXaKE822+xKvgv377O6TlggMeGG
W4zA0KD69DNz0AfaaCc5U5f7n8Ld/YY1RsvkHW4b3jgw+KRTeQr0jjitBgP5kP2M
A1+qxdyJpCTwiPt9s2+JFVPeyZ0s52V6OJODKRG3s0ore55R+U09VySKtASON+q3
GMKfWqQteKC+thg7NkrQ7JUixuo84oICws+rZn4K9ifsX2O0HYW6aMW0feRfZjJH
r0TgqZc4RdPTSaF22oapR9Ls39+7hp/pBvoLm5sBNA3cl5C3X4VWo9ERMU1jW9h+
VYQv39NycUspgskWJmpbU06/+ooYqQlwHSR/vdNusmFIvxo4tf6/UX72YO5F8Dar
ap0wYGauiEwTjSnhVxPTXk3obWyWEsgFAeRnPdTlH2CNmv38QZU2HLb8eU1pcXxX
j+WI2Ewy9z22uBVYiPOKpdW1jkSfmlmfPp/8SbAdua7I3YQ90rQN6AvU06zAi/cL
NQTgO81E4jPkygqAVgS/LeYziWAQ73yM7m9ExThtTgqFtHortwhJ4Fd8XKtvtvEb
viXAZ/WZtQBv/CIKAW98NhgIDP/SPOT8ym6V35WK+kkNFMS6LMSQUfl9GgbHGyFa
n9icMm7BmbDtT1+AKNafG9En4DtAf9M9QNidAVOyfrsIk6S0gZoZwvIStkA7on8a
cNY=
=kVVr
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-6.6-2023-08-29' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-maping updates from Christoph Hellwig:
- allow dynamic sizing of the swiotlb buffer, to cater for secure
virtualization workloads that require all I/O to be bounce buffered
(Petr Tesarik)
- move a declaration to a header (Arnd Bergmann)
- check for memory region overlap in dma-contiguous (Binglei Wang)
- remove the somewhat dangerous runtime swiotlb-xen enablement and
unexport is_swiotlb_active (Christoph Hellwig, Juergen Gross)
- per-node CMA improvements (Yajun Deng)
* tag 'dma-mapping-6.6-2023-08-29' of git://git.infradead.org/users/hch/dma-mapping:
swiotlb: optimize get_max_slots()
swiotlb: move slot allocation explanation comment where it belongs
swiotlb: search the software IO TLB only if the device makes use of it
swiotlb: allocate a new memory pool when existing pools are full
swiotlb: determine potential physical address limit
swiotlb: if swiotlb is full, fall back to a transient memory pool
swiotlb: add a flag whether SWIOTLB is allowed to grow
swiotlb: separate memory pool data from other allocator data
swiotlb: add documentation and rename swiotlb_do_find_slots()
swiotlb: make io_tlb_default_mem local to swiotlb.c
swiotlb: bail out of swiotlb_init_late() if swiotlb is already allocated
dma-contiguous: check for memory region overlap
dma-contiguous: support numa CMA for specified node
dma-contiguous: support per-numa CMA for all architectures
dma-mapping: move arch_dma_set_mask() declaration to header
swiotlb: unexport is_swiotlb_active
x86: always initialize xen-swiotlb when xen-pcifront is enabling
xen/pci: add flag for PCI passthrough being possible
CMA allocation can happen either from global cma or from dedicated cma
region.
Thus it is helpful to print cma name as well during initial
debugging to confirm cma regions were getting initialized or not.
Link: https://lkml.kernel.org/r/1688668414-12350-1-git-send-email-quic_pintu@quicinc.com
Signed-off-by: Pintu Kumar <quic_pintu@quicinc.com>
Signed-off-by: Pintu Agarwal <pintu.ping@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The kernel parameter 'cma_pernuma=' only supports reserving the same
size of CMA area for each node. We need to reserve different sizes of
CMA area for specified nodes if these devices belong to different nodes.
Adding another kernel parameter 'numa_cma=' to reserve CMA area for
the specified node. If we want to use one of these parameters, we need to
enable DMA_NUMA_CMA.
At the same time, print the node id in cma_declare_contiguous_nid() if
CONFIG_NUMA is enabled.
Signed-off-by: Yajun Deng <yajun.deng@linux.dev>
Signed-off-by: Christoph Hellwig <hch@lst.de>
cma: display pfn as well as pfn_to_page(pfn)
page_owner: display pfn in hex rather than decimal
Link: https://lkml.kernel.org/r/20230613092533.15449-1-quic_yingangl@quicinc.com
Signed-off-by: Kassey Li <quic_yingangl@quicinc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The bulk of memory management initialization code is spread all over
mm/page_alloc.c and makes navigating through page allocator functionality
difficult.
Move most of the functions marked __init and __meminit to mm/mm_init.c to
make it better localized and allow some more spare room before
mm/page_alloc.c reaches 10k lines.
No functional changes.
Link: https://lkml.kernel.org/r/20230321170513.2401534-4-rppt@kernel.org
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Doug Berger <opendmb@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Suppose memblock_alloc_range_nid() with highmem_start succeeds when
cma_declare_contiguous_nid is called with !fixed on a 32-bit system with
PHYS_ADDR_T_64BIT enabled with memblock.bottom_up == false.
But the next trial to memblock_alloc_range_nid() to allocate in [SIZE_4G,
limits) nullifies former successfully allocated addr and it retries
memblock_alloc_ragne_nid().
In this situation, the first successfully allocated address area is lost.
Change the order of allocation (SIZE_4G, high_memory and base) and check
whether the allocated succeeded to prevent potential memory loss.
Link: https://lkml.kernel.org/r/20230118080523.44522-1-ppbuk5246@gmail.com
Signed-off-by: Levi Yun <ppbuk5246@gmail.com>
Cc: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The result of the allocation attempt is not printed in
trace_cma_alloc_finish, but it's important to do it so we can set filters
to catch specific errors on allocation or to trigger some operations on
specific errors.
We have printed the result in log, but the log is conditional and could
not be filtered by tracing events.
It introduces little overhead to print this result. The result of
allocation is named `errorno' in the trace.
Link: https://lkml.kernel.org/r/20221208142130.1501195-1-haowenchao@huawei.com
Signed-off-by: Wenchao Hao <haowenchao@huawei.com>
Cc: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Cc: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This reverts commit a4efc174b3 which introduced a regression issue
that when there're multiple processes allocating dma memory in parallel by
calling dma_alloc_coherent(), it may fail sometimes as follows:
Error log:
cma: cma_alloc: linux,cma: alloc failed, req-size: 148 pages, ret: -16
cma: number of available pages:
3@125+20@172+12@236+4@380+32@736+17@2287+23@2473+20@36076+99@40477+108@40852+44@41108+20@41196+108@41364+108@41620+
108@42900+108@43156+483@44061+1763@45341+1440@47712+20@49324+20@49388+5076@49452+2304@55040+35@58141+20@58220+20@58284+
7188@58348+84@66220+7276@66452+227@74525+6371@75549=> 33161 free of 81920 total pages
When issue happened, we saw there were still 33161 pages (129M) free CMA
memory and a lot available free slots for 148 pages in CMA bitmap that we
want to allocate.
When dumping memory info, we found that there was also ~342M normal
memory, but only 1352K CMA memory left in buddy system while a lot of
pageblocks were isolated.
Memory info log:
Normal free:351096kB min:30000kB low:37500kB high:45000kB reserved_highatomic:0KB
active_anon:98060kB inactive_anon:98948kB active_file:60864kB inactive_file:31776kB
unevictable:0kB writepending:0kB present:1048576kB managed:1018328kB mlocked:0kB
bounce:0kB free_pcp:220kB local_pcp:192kB free_cma:1352kB lowmem_reserve[]: 0 0 0
Normal: 78*4kB (UECI) 1772*8kB (UMECI) 1335*16kB (UMECI) 360*32kB (UMECI) 65*64kB (UMCI)
36*128kB (UMECI) 16*256kB (UMCI) 6*512kB (EI) 8*1024kB (UEI) 4*2048kB (MI) 8*4096kB (EI)
8*8192kB (UI) 3*16384kB (EI) 8*32768kB (M) = 489288kB
The root cause of this issue is that since commit a4efc174b3 ("mm/cma.c:
remove redundant cma_mutex lock"), CMA supports concurrent memory
allocation. It's possible that the memory range process A trying to alloc
has already been isolated by the allocation of process B during memory
migration.
The problem here is that the memory range isolated during one allocation
by start_isolate_page_range() could be much bigger than the real size we
want to alloc due to the range is aligned to MAX_ORDER_NR_PAGES.
Taking an ARMv7 platform with 1G memory as an example, when
MAX_ORDER_NR_PAGES is big (e.g. 32M with max_order 14) and CMA memory is
relatively small (e.g. 128M), there're only 4 MAX_ORDER slot, then it's
very easy that all CMA memory may have already been isolated by other
processes when one trying to allocate memory using dma_alloc_coherent().
Since current CMA code will only scan one time of whole available CMA
memory, then dma_alloc_coherent() may easy fail due to contention with
other processes.
This patch simply falls back to the original method that using cma_mutex
to make alloc_contig_range() run sequentially to avoid the issue.
Link: https://lkml.kernel.org/r/20220509094551.3596244-1-aisheng.dong@nxp.com
Link: https://lore.kernel.org/all/20220315144521.3810298-2-aisheng.dong@nxp.com/
Fixes: a4efc174b3 ("mm/cma.c: remove redundant cma_mutex lock")
Signed-off-by: Dong Aisheng <aisheng.dong@nxp.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org> [5.11+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "powerpc/fadump: handle CMA activation failure appropriately", v3.
Commit 072355c1cf ("mm/cma: expose all pages to the buddy if
activation of an area fails") started exposing all pages to buddy
allocator on CMA activation failure. But there can be CMA users that
want to handle the reserved memory differently on CMA allocation
failure.
Provide an option to opt out from exposing pages to buddy for such
cases.
Link: https://lkml.kernel.org/r/20220117075246.36072-1-hbathini@linux.ibm.com
Link: https://lkml.kernel.org/r/20220117075246.36072-2-hbathini@linux.ibm.com
Signed-off-by: Hari Bathini <hbathini@linux.ibm.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mahesh Salgaonkar <mahesh@linux.ibm.com>
Cc: Sourabh Jain <sourabhjain@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: enforce pageblock_order < MAX_ORDER".
Having pageblock_order >= MAX_ORDER seems to be able to happen in corner
cases and some parts of the kernel are not prepared for it.
For example, Aneesh has shown [1] that such kernels can be compiled on
ppc64 with 64k base pages by setting FORCE_MAX_ZONEORDER=8, which will
run into a WARN_ON_ONCE(order >= MAX_ORDER) in comapction code right
during boot.
We can get pageblock_order >= MAX_ORDER when the default hugetlb size is
bigger than the maximum allocation granularity of the buddy, in which
case we are no longer talking about huge pages but instead gigantic
pages.
Having pageblock_order >= MAX_ORDER can only make alloc_contig_range()
of such gigantic pages more likely to succeed.
Reliable use of gigantic pages either requires boot time allcoation or
CMA, no need to overcomplicate some places in the kernel to optimize for
corner cases that are broken in other areas of the kernel.
This patch (of 2):
Let's enforce pageblock_order < MAX_ORDER and simplify.
Especially patch #1 can be regarded a cleanup before:
[PATCH v5 0/6] Use pageblock_order for cma and alloc_contig_range
alignment. [2]
[1] https://lkml.kernel.org/r/87r189a2ks.fsf@linux.ibm.com
[2] https://lkml.kernel.org/r/20220211164135.1803616-1-zi.yan@sent.com
Link: https://lkml.kernel.org/r/20220214174132.219303-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Acked-by: Rob Herring <robh@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Frank Rowand <frowand.list@gmail.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: John Garry via iommu <iommu@lists.linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since memblock_free() operates on a physical range, make its name
reflect it and rename it to memblock_phys_free(), so it will be a
logical counterpart to memblock_phys_alloc().
The callers are updated with the below semantic patch:
@@
expression addr;
expression size;
@@
- memblock_free(addr, size);
+ memblock_phys_free(addr, size);
Link: https://lkml.kernel.org/r/20210930185031.18648-6-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Juergen Gross <jgross@suse.com>
Cc: Shahab Vahedi <Shahab.Vahedi@synopsys.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add new interface cma_pages_valid() which indicates if the specified
pages are part of a CMA region. This interface will be used in a
subsequent patch by hugetlb code.
In order to keep the same amount of DEBUG information, a pr_debug() call
was added to cma_pages_valid(). In the case where the page passed to
cma_release is not in cma region, the debug message will be printed from
cma_pages_valid as opposed to cma_release.
Link: https://lkml.kernel.org/r/20211007181918.136982-3-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Nghia Le <nghialm78@gmail.com>
Cc: Zi Yan <ziy@nvidia.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
size_t in cma_alloc is confusing since it makes people think it's byte
count, not pages. Change it to unsigned long[1].
The unsigned int in cma_release is also not right so change it. Since we
have unsigned long in cma_release, free_contig_range should also respect
it.
[1] 67a2e213e7, mm: cma: fix incorrect type conversion for size during dma allocation
Link: https://lore.kernel.org/linux-mm/20210324043434.GP1719932@casper.infradead.org/
Link: https://lkml.kernel.org/r/20210331164018.710560-1-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: David Hildenbrand <david@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There were missing places to add cma instance name. To identify each CMA
instance, let's add the name for every cma trace. This patch also changes
the existing cma_trace_alloc to cma_trace_finish since we have
cma_alloc_start[1].
[1] https://lore.kernel.org/linux-mm/20210324160740.15901-1-georgi.djakov@linaro.org
Link: https://lkml.kernel.org/r/20210330220237.748899-1-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Liam Mark <lmark@codeaurora.org>
Cc: Georgi Djakov <georgi.djakov@linaro.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since CMA is getting used more widely, it's more important to keep
monitoring CMA statistics for system health since it's directly related to
user experience.
This patch introduces sysfs statistics for CMA, in order to provide some
basic monitoring of the CMA allocator.
* the number of CMA page successful allocations
* the number of CMA page allocation failures
These two values allow the user to calcuate the allocation
failure rate for each CMA area.
e.g.)
/sys/kernel/mm/cma/WIFI/alloc_pages_[success|fail]
/sys/kernel/mm/cma/SENSOR/alloc_pages_[success|fail]
/sys/kernel/mm/cma/BLUETOOTH/alloc_pages_[success|fail]
The cma_stat was intentionally allocated by dynamic allocation
to harmonize with kobject lifetime management.
https://lore.kernel.org/linux-mm/YCOAmXqt6dZkCQYs@kroah.com/
Link: https://lkml.kernel.org/r/20210324230759.2213957-1-minchan@kernel.org
Link: https://lore.kernel.org/linux-mm/20210316100433.17665-1-colin.king@canonical.com/
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Tested-by: Dmitry Osipenko <digetx@gmail.com>
Reviewed-by: Dmitry Osipenko <digetx@gmail.com>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Tested-by: Anders Roxell <anders.roxell@linaro.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Cc: John Dias <joaodias@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add cma and migrate trace events to enable CMA allocation performance to
be measured via ftrace.
[georgi.djakov@linaro.org: add the CMA instance name to the cma_alloc_start trace event]
Link: https://lkml.kernel.org/r/20210326155414.25006-1-georgi.djakov@linaro.org
Link: https://lkml.kernel.org/r/20210324160740.15901-1-georgi.djakov@linaro.org
Signed-off-by: Liam Mark <lmark@codeaurora.org>
Signed-off-by: Georgi Djakov <georgi.djakov@linaro.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If we did not reserve extra CMA memory, the log buffer can be easily
filled up by CMA failure warning when the devices calling
dmam_alloc_coherent() to alloc DMA memory. Thus we can use
pr_err_ratelimited() instead to reduce the duplicate CMA warning.
Link: https://lkml.kernel.org/r/ce2251ef49e1727a9a40531d1996660b05462bd2.1615279825.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Since CMA is used more widely, it's worth to have CMA allocation
statistics into vmstat. With it, we could know how agressively system
uses cma allocation and how often it fails.
Link: https://lkml.kernel.org/r/20210302183346.3707237-1-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Cc: John Dias <joaodias@google.com>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "make hugetlb put_page safe for all calling contexts", v5.
This effort is the result a recent bug report [1]. Syzbot found a
potential deadlock in the hugetlb put_page/free_huge_page_path. WARNING:
SOFTIRQ-safe -> SOFTIRQ-unsafe lock order detected Since the
free_huge_page_path already has code to 'hand off' page free requests to a
workqueue, a suggestion was proposed to make the in_irq() detection
accurate by always enabling PREEMPT_COUNT [2]. The outcome of that
discussion was that the hugetlb put_page path (free_huge_page) path should
be properly fixed and safe for all calling contexts.
[1] https://lore.kernel.org/linux-mm/000000000000f1c03b05bc43aadc@google.com/
[2] http://lkml.kernel.org/r/20210311021321.127500-1-mike.kravetz@oracle.com
This patch (of 8):
cma_release is currently a sleepable operatation because the bitmap
manipulation is protected by cma->lock mutex. Hugetlb code which relies
on cma_release for CMA backed (giga) hugetlb pages, however, needs to be
irq safe.
The lock doesn't protect any sleepable operation so it can be changed to a
(irq aware) spin lock. The bitmap processing should be quite fast in
typical case but if cma sizes grow to TB then we will likely need to
replace the lock by a more optimized bitmap implementation.
Link: https://lkml.kernel.org/r/20210409205254.242291-1-mike.kravetz@oracle.com
Link: https://lkml.kernel.org/r/20210409205254.242291-2-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com>
Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com>
Cc: Waiman Long <longman@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Barry Song <song.bao.hua@hisilicon.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Print the name of the CMA region for convenience. This is useful
information to have when cma_alloc() fails.
[pdaly@codeaurora.org: print the "count" variable]
Link: https://lkml.kernel.org/r/20210209142414.12768-1-georgi.djakov@linaro.org
Link: https://lkml.kernel.org/r/20210208115200.20286-1-georgi.djakov@linaro.org
Signed-off-by: Patrick Daly <pdaly@codeaurora.org>
Signed-off-by: Georgi Djakov <georgi.djakov@linaro.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Right now, if activation fails, we might already have exposed some pages
to the buddy for CMA use (although they will never get actually used by
CMA), and some pages won't be exposed to the buddy at all.
Let's check for "single zone" early and on error, don't expose any pages
for CMA use - instead, expose them to the buddy available for any use.
Simply call free_reserved_page() on every single page - easier than going
via free_reserved_area(), converting back and forth between pfns and virt
addresses.
In addition, make sure to fixup totalcma_pages properly.
Example: 6 GiB QEMU VM with "... hugetlb_cma=2G movablecore=20% ...":
[ 0.006891] hugetlb_cma: reserve 2048 MiB, up to 2048 MiB per node
[ 0.006893] cma: Reserved 2048 MiB at 0x0000000100000000
[ 0.006893] hugetlb_cma: reserved 2048 MiB on node 0
...
[ 0.175433] cma: CMA area hugetlb0 could not be activated
Before this patch:
# cat /proc/meminfo
MemTotal: 5867348 kB
MemFree: 5692808 kB
MemAvailable: 5542516 kB
...
CmaTotal: 2097152 kB
CmaFree: 1884160 kB
After this patch:
# cat /proc/meminfo
MemTotal: 6077308 kB
MemFree: 5904208 kB
MemAvailable: 5747968 kB
...
CmaTotal: 0 kB
CmaFree: 0 kB
Note: cma_init_reserved_mem() makes sure that we always cover full
pageblocks / MAX_ORDER - 1 pages.
Link: https://lkml.kernel.org/r/20210127101813.6370-2-david@redhat.com
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Zi Yan <ziy@nvidia.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "Peter Zijlstra (Intel)" <peterz@infradead.org>
Cc: Mike Rapoport <rppt@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Wei Yang <richard.weiyang@linux.alibaba.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently cma areas without a fixed base are allocated close to the end of
the node. This placement is sub-optimal because of compaction: it brings
pages into the cma area. In particular, it can bring in hot executable
pages, even if there is a plenty of free memory on the machine. This
results in cma allocation failures.
Instead let's place cma areas close to the beginning of a node. In this
case the compaction will help to free cma areas, resulting in better cma
allocation success rates.
If there is enough memory let's try to allocate bottom-up starting with
4GB to exclude any possible interference with DMA32. On smaller machines
or in a case of a failure, stick with the old behavior.
16GB vm, 2GB cma area:
With this patch:
[ 0.000000] Command line: root=/dev/vda3 rootflags=subvol=/root systemd.unified_cgroup_hierarchy=1 enforcing=0 console=ttyS0,115200 hugetlb_cma=2G
[ 0.002928] hugetlb_cma: reserve 2048 MiB, up to 2048 MiB per node
[ 0.002930] cma: Reserved 2048 MiB at 0x0000000100000000
[ 0.002931] hugetlb_cma: reserved 2048 MiB on node 0
Without this patch:
[ 0.000000] Command line: root=/dev/vda3 rootflags=subvol=/root systemd.unified_cgroup_hierarchy=1 enforcing=0 console=ttyS0,115200 hugetlb_cma=2G
[ 0.002930] hugetlb_cma: reserve 2048 MiB, up to 2048 MiB per node
[ 0.002933] cma: Reserved 2048 MiB at 0x00000003c0000000
[ 0.002934] hugetlb_cma: reserved 2048 MiB on node 0
v2:
- switched to memblock_set_bottom_up(true), by Mike
- start with 4GB, by Mike
[guro@fb.com: whitespace fix, per Mike]
Link: https://lkml.kernel.org/r/20201221170551.GB3428478@carbon.DHCP.thefacebook.com
[guro@fb.com: fix 32-bit warnings]
Link: https://lkml.kernel.org/r/20201223163537.GA4011967@carbon.DHCP.thefacebook.com
[guro@fb.com: fix 32-bit systems]
[akpm@linux-foundation.org: build fix]
Link: https://lkml.kernel.org/r/20201217201214.3414100-1-guro@fb.com
Signed-off-by: Roman Gushchin <guro@fb.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Wonhyuk Yang <vvghjk1234@gmail.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
It is required to print 'count' of pages, along with the pages, passed to
cma_release to debug the cases of mismatched count value passed between
cma_alloc() and cma_release() from a code path.
As an example, consider the below scenario:
1) CMA pool size is 4MB and
2) User doing the erroneous step of allocating 2 pages but freeing 1
page in a loop from this CMA pool. The step 2 causes cma_alloc() to
return NULL at one point of time because of -ENOMEM condition.
And the current pr_debug logs is not giving the info about these types of
allocation patterns because of count value not being printed in
cma_release().
We are printing the count value in the trace logs, just extend the same to
pr_debug logs too.
[akpm@linux-foundation.org: fix printk warning]
Link: https://lkml.kernel.org/r/1606318341-29521-1-git-send-email-charante@codeaurora.org
Signed-off-by: Charan Teja Reddy <charante@codeaurora.org>
Reviewed-by: Souptick Joarder <jrdr.linux@gmail.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Vinayak Menon <vinmenon@codeaurora.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The cma_mutex which protects alloc_contig_range() was first appeared in
commit 7ee793a62f ("cma: Remove potential deadlock situation"), at that
time, there is no guarantee the behavior of concurrency inside
alloc_contig_range().
After commit 2c7452a075 ("mm/page_isolation.c: make
start_isolate_page_range() fail if already isolated")
> However, two subsystems (CMA and gigantic
> huge pages for example) could attempt operations on the same range. If
> this happens, one thread may 'undo' the work another thread is doing.
> This can result in pageblocks being incorrectly left marked as
> MIGRATE_ISOLATE and therefore not available for page allocation.
The concurrency inside alloc_contig_range() was clarified.
Now we can find that hugepage and virtio call alloc_contig_range() without
any lock, thus cma_mutex is "redundant" in cma_alloc() now.
Link: https://lkml.kernel.org/r/20201020102241.3729-1-lecopzer.chen@mediatek.com
Signed-off-by: Lecopzer Chen <lecopzer.chen@mediatek.com>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Matthias Brugger <matthias.bgg@gmail.com>
Cc: YJ Chiang <yj.chiang@mediatek.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The routine cma_init_reserved_areas is designed to activate all
reserved cma areas. It quits when it first encounters an error.
This can leave some areas in a state where they are reserved but
not activated. There is no feedback to code which performed the
reservation. Attempting to allocate memory from areas in such a
state will result in a BUG.
Modify cma_init_reserved_areas to always attempt to activate all
areas. The called routine, cma_activate_area is responsible for
leaving the area in a valid state. No one is making active use
of returned error codes, so change the routine to void.
How to reproduce: This example uses kernelcore, hugetlb and cma
as an easy way to reproduce. However, this is a more general cma
issue.
Two node x86 VM 16GB total, 8GB per node
Kernel command line parameters, kernelcore=4G hugetlb_cma=8G
Related boot time messages,
hugetlb_cma: reserve 8192 MiB, up to 4096 MiB per node
cma: Reserved 4096 MiB at 0x0000000100000000
hugetlb_cma: reserved 4096 MiB on node 0
cma: Reserved 4096 MiB at 0x0000000300000000
hugetlb_cma: reserved 4096 MiB on node 1
cma: CMA area hugetlb could not be activated
# echo 8 > /sys/kernel/mm/hugepages/hugepages-1048576kB/nr_hugepages
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] SMP PTI
...
Call Trace:
bitmap_find_next_zero_area_off+0x51/0x90
cma_alloc+0x1a5/0x310
alloc_fresh_huge_page+0x78/0x1a0
alloc_pool_huge_page+0x6f/0xf0
set_max_huge_pages+0x10c/0x250
nr_hugepages_store_common+0x92/0x120
? __kmalloc+0x171/0x270
kernfs_fop_write+0xc1/0x1a0
vfs_write+0xc7/0x1f0
ksys_write+0x5f/0xe0
do_syscall_64+0x4d/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Fixes: c64be2bb1c ("drivers: add Contiguous Memory Allocator")
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Roman Gushchin <guro@fb.com>
Acked-by: Barry Song <song.bao.hua@hisilicon.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200730163123.6451-1-mike.kravetz@oracle.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm: fix the names of general cma and hugetlb cma", v2.
The current code of CMA can only work when users pass a const string as
name parameter. we need to fix the way to handle names in CMA. On the
other hand, to avoid name conflicts after enabling CMA_DEBUGFS, each
hugetlb should get a different CMA name.
This patch (of 2):
If users give a name saved in stack, the current code will generate magic
pointer. if users don't give a name(NULL), kasprintf() will always return
NULL as we are at the early stage. that means cma_init_reserved_mem()
will return -ENOMEM if users set name parameter as NULL.
[natechancellor@gmail.com: return cma->name directly in cma_get_name]
Link: https://github.com/ClangBuiltLinux/linux/issues/1063
Link: http://lkml.kernel.org/r/20200623015840.621964-1-natechancellor@gmail.com
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Roman Gushchin <guro@fb.com>
Link: http://lkml.kernel.org/r/20200616223131.33828-2-song.bao.hua@hisilicon.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In some case the cma area could not be activated, but the cma_alloc be
used under this case, then the kernel will crash caused by NULL pointer
dereference.
Add bitmap valid check in cma_alloc to avoid this issue.
Signed-off-by: Jianqun Xu <jay.xu@rock-chips.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Link: http://lkml.kernel.org/r/20200615010123.15596-1-jay.xu@rock-chips.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Calling cma_declare_contiguous_nid() with false exact_nid for per-numa
reservation can easily cause cma leak and various confusion. For example,
mm/hugetlb.c is trying to reserve per-numa cma for gigantic pages. But it
can easily leak cma and make users confused when system has memoryless
nodes.
In case the system has 4 numa nodes, and only numa node0 has memory. if
we set hugetlb_cma=4G in bootargs, mm/hugetlb.c will get 4 cma areas for 4
different numa nodes. since exact_nid=false in current code, all 4 numa
nodes will get cma successfully from node0, but hugetlb_cma[1 to 3] will
never be available to hugepage will only allocate memory from
hugetlb_cma[0].
In case the system has 4 numa nodes, both numa node0&2 has memory, other
nodes have no memory. if we set hugetlb_cma=4G in bootargs, mm/hugetlb.c
will get 4 cma areas for 4 different numa nodes. since exact_nid=false in
current code, all 4 numa nodes will get cma successfully from node0 or 2,
but hugetlb_cma[1] and [3] will never be available to hugepage as
mm/hugetlb.c will only allocate memory from hugetlb_cma[0] and
hugetlb_cma[2]. This causes permanent leak of the cma areas which are
supposed to be used by memoryless node.
Of cource we can workaround the issue by letting mm/hugetlb.c scan all cma
areas in alloc_gigantic_page() even node_mask includes node0 only. that
means when node_mask includes node0 only, we can get page from
hugetlb_cma[1] to hugetlb_cma[3]. But this will cause kernel crash in
free_gigantic_page() while it wants to free page by:
cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order)
On the other hand, exact_nid=false won't consider numa distance, it might
be not that useful to leverage cma areas on remote nodes. I feel it is
much simpler to make exact_nid true to make everything clear. After that,
memoryless nodes won't be able to reserve per-numa CMA from other nodes
which have memory.
Fixes: cf11e85fc0 ("mm: hugetlb: optionally allocate gigantic hugepages using cma")
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Roman Gushchin <guro@fb.com>
Cc: Jonathan Cameron <Jonathan.Cameron@huawei.com>
Cc: Aslan Bakirov <aslan@fb.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Andreas Schaufler <andreas.schaufler@gmx.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/20200628074345.27228-1-song.bao.hua@hisilicon.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I've noticed that there is no interface exposed by CMA which would let
me to declare contigous memory on particular NUMA node.
This patchset adds the ability to try to allocate contiguous memory on a
specific node. It will fallback to other nodes if the specified one
doesn't work.
Implement a new method for declaring contigous memory on particular node
and keep cma_declare_contiguous() as a wrapper.
[akpm@linux-foundation.org: build fix]
Signed-off-by: Aslan Bakirov <aslan@fb.com>
Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Andreas Schaufler <andreas.schaufler@gmx.de>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Link: http://lkml.kernel.org/r/20200407163840.92263-2-guro@fb.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
kzalloc() is used for cma bitmap allocation in cma_activate_area(),
switch to bitmap_zalloc() for clarity.
Link: http://lkml.kernel.org/r/895d4627-f115-c77a-d454-c0a196116426@huawei.com
Signed-off-by: Yunfeng Ye <yeyunfeng@huawei.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Yue Hu <huyue2@yulong.com>
Cc: Peng Fan <peng.fan@nxp.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Ryohei Suzuki <ryh.szk.cmnty@gmail.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Cc: Doug Berger <opendmb@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The description of cma_declare_contiguous() indicates that if the
'fixed' argument is true the reserved contiguous area must be exactly at
the address of the 'base' argument.
However, the function currently allows the 'base', 'size', and 'limit'
arguments to be silently adjusted to meet alignment constraints. This
commit enforces the documented behavior through explicit checks that
return an error if the region does not fit within a specified region.
Link: http://lkml.kernel.org/r/1561422051-16142-1-git-send-email-opendmb@gmail.com
Fixes: 5ea3b1b2f8 ("cma: add placement specifier for "cma=" kernel parameter")
Signed-off-by: Doug Berger <opendmb@gmail.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Yue Hu <huyue2@yulong.com>
Cc: Mike Rapoport <rppt@linux.ibm.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Peng Fan <peng.fan@nxp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
A comment referred to a non-existent function alloc_cma(), which should
have been cma_alloc().
Link: http://lkml.kernel.org/r/20190712085549.5920-1-ryh.szk.cmnty@gmail.com
Signed-off-by: Ryohei Suzuki <ryh.szk.cmnty@gmail.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your optional any later version of the license
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Richard Fontana <rfontana@redhat.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520075212.713472955@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
f022d8cb7e ("mm: cma: Don't crash on allocation if CMA area can't be
activated") fixes the crash issue when activation fails via setting
cma->count as 0, same logic exists if bitmap allocation fails.
Link: http://lkml.kernel.org/r/20190325081309.6004-1-zbestahu@gmail.com
Signed-off-by: Yue Hu <huyue2@yulong.com>
Reviewed-by: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently one bit in cma bitmap represents number of pages rather than
one page, cma->count means cma size in pages. So to find available pages
via find_next_zero_bit()/find_next_bit() we should use cma size not in
pages but in bits although current free pages number is correct due to
zero value of order_per_bit. Once order_per_bit is changed the bitmap
status will be incorrect.
The size input in cma_debug_show_areas() is not correct. It will
affect the available pages at some position to debug the failure issue.
This is an example with order_per_bit = 1
Before this change:
[ 4.120060] cma: number of available pages: 1@93+4@108+7@121+7@137+7@153+7@169+7@185+7@201+3@213+3@221+3@229+3@237+3@245+3@253+3@261+3@269+3@277+3@285+3@293+3@301+3@309+3@317+3@325+19@333+15@369+512@512=> 638 free of 1024 total pages
After this change:
[ 4.143234] cma: number of available pages: 2@93+8@108+14@121+14@137+14@153+14@169+14@185+14@201+6@213+6@221+6@229+6@237+6@245+6@253+6@261+6@269+6@277+6@285+6@293+6@301+6@309+6@317+6@325+38@333+30@369=> 252 free of 1024 total pages
Obviously the bitmap status before is incorrect.
Link: http://lkml.kernel.org/r/20190320060829.9144-1-zbestahu@gmail.com
Signed-off-by: Yue Hu <huyue2@yulong.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Laura Abbott <labbott@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Rename memblock_alloc_range() to memblock_phys_alloc_range() to
emphasize that it returns a physical address.
While on it, remove the 'enum memblock_flags' parameter from this
function as its only user anyway sets it to MEMBLOCK_NONE, which is the
default for the most of memblock allocations.
Link: http://lkml.kernel.org/r/1548057848-15136-6-git-send-email-rppt@linux.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Christophe Leroy <christophe.leroy@c-s.fr>
Cc: Christoph Hellwig <hch@lst.de>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Guo Ren <ren_guo@c-sky.com> [c-sky]
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Juergen Gross <jgross@suse.com> [Xen]
Cc: Mark Salter <msalter@redhat.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Rob Herring <robh+dt@kernel.org>
Cc: Rob Herring <robh@kernel.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
In case cma_init_reserved_mem failed, need to free the memblock
allocated by memblock_reserve or memblock_alloc_range.
Quote Catalin's comments:
https://lkml.org/lkml/2019/2/26/482
Kmemleak is supposed to work with the memblock_{alloc,free} pair and it
ignores the memblock_reserve() as a memblock_alloc() implementation
detail. It is, however, tolerant to memblock_free() being called on
a sub-range or just a different range from a previous memblock_alloc().
So the original patch looks fine to me. FWIW:
Link: http://lkml.kernel.org/r/20190227144631.16708-1-peng.fan@nxp.com
Signed-off-by: Peng Fan <peng.fan@nxp.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Mike Rapoport <rppt@linux.ibm.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tag-based KASAN doesn't check memory accesses through pointers tagged with
0xff. When page_address is used to get pointer to memory that corresponds
to some page, the tag of the resulting pointer gets set to 0xff, even
though the allocated memory might have been tagged differently.
For slab pages it's impossible to recover the correct tag to return from
page_address, since the page might contain multiple slab objects tagged
with different values, and we can't know in advance which one of them is
going to get accessed. For non slab pages however, we can recover the tag
in page_address, since the whole page was marked with the same tag.
This patch adds tagging to non slab memory allocated with pagealloc. To
set the tag of the pointer returned from page_address, the tag gets stored
to page->flags when the memory gets allocated.
Link: http://lkml.kernel.org/r/d758ddcef46a5abc9970182b9137e2fbee202a2c.1544099024.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
cma_alloc() doesn't really support gfp flags other than __GFP_NOWARN, so
convert gfp_mask parameter to boolean no_warn parameter.
This will help to avoid giving false feeling that this function supports
standard gfp flags and callers can pass __GFP_ZERO to get zeroed buffer,
what has already been an issue: see commit dd65a941f6 ("arm64:
dma-mapping: clear buffers allocated with FORCE_CONTIGUOUS flag").
Link: http://lkml.kernel.org/r/20180709122019eucas1p2340da484acfcc932537e6014f4fd2c29~-sqTPJKij2939229392eucas1p2j@eucas1p2.samsung.com
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Michał Nazarewicz <mina86@mina86.com>
Acked-by: Laura Abbott <labbott@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts the following commits that change CMA design in MM.
3d2054ad8c ("ARM: CMA: avoid double mapping to the CMA area if CONFIG_HIGHMEM=y")
1d47a3ec09 ("mm/cma: remove ALLOC_CMA")
bad8c6c0b1 ("mm/cma: manage the memory of the CMA area by using the ZONE_MOVABLE")
Ville reported a following error on i386.
Inode-cache hash table entries: 65536 (order: 6, 262144 bytes)
microcode: microcode updated early to revision 0x4, date = 2013-06-28
Initializing CPU#0
Initializing HighMem for node 0 (000377fe:00118000)
Initializing Movable for node 0 (00000001:00118000)
BUG: Bad page state in process swapper pfn:377fe
page:f53effc0 count:0 mapcount:-127 mapping:00000000 index:0x0
flags: 0x80000000()
raw: 80000000 00000000 00000000 ffffff80 00000000 00000100 00000200 00000001
page dumped because: nonzero mapcount
Modules linked in:
CPU: 0 PID: 0 Comm: swapper Not tainted 4.17.0-rc5-elk+ #145
Hardware name: Dell Inc. Latitude E5410/03VXMC, BIOS A15 07/11/2013
Call Trace:
dump_stack+0x60/0x96
bad_page+0x9a/0x100
free_pages_check_bad+0x3f/0x60
free_pcppages_bulk+0x29d/0x5b0
free_unref_page_commit+0x84/0xb0
free_unref_page+0x3e/0x70
__free_pages+0x1d/0x20
free_highmem_page+0x19/0x40
add_highpages_with_active_regions+0xab/0xeb
set_highmem_pages_init+0x66/0x73
mem_init+0x1b/0x1d7
start_kernel+0x17a/0x363
i386_start_kernel+0x95/0x99
startup_32_smp+0x164/0x168
The reason for this error is that the span of MOVABLE_ZONE is extended
to whole node span for future CMA initialization, and, normal memory is
wrongly freed here. I submitted the fix and it seems to work, but,
another problem happened.
It's so late time to fix the later problem so I decide to reverting the
series.
Reported-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Acked-by: Laura Abbott <labbott@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Patch series "mm/cma: manage the memory of the CMA area by using the
ZONE_MOVABLE", v2.
0. History
This patchset is the follow-up of the discussion about the "Introduce
ZONE_CMA (v7)" [1]. Please reference it if more information is needed.
1. What does this patch do?
This patch changes the management way for the memory of the CMA area in
the MM subsystem. Currently the memory of the CMA area is managed by
the zone where their pfn is belong to. However, this approach has some
problems since MM subsystem doesn't have enough logic to handle the
situation that different characteristic memories are in a single zone.
To solve this issue, this patch try to manage all the memory of the CMA
area by using the MOVABLE zone. In MM subsystem's point of view,
characteristic of the memory on the MOVABLE zone and the memory of the
CMA area are the same. So, managing the memory of the CMA area by using
the MOVABLE zone will not have any problem.
2. Motivation
There are some problems with current approach. See following. Although
these problem would not be inherent and it could be fixed without this
conception change, it requires many hooks addition in various code path
and it would be intrusive to core MM and would be really error-prone.
Therefore, I try to solve them with this new approach. Anyway,
following is the problems of the current implementation.
o CMA memory utilization
First, following is the freepage calculation logic in MM.
- For movable allocation: freepage = total freepage
- For unmovable allocation: freepage = total freepage - CMA freepage
Freepages on the CMA area is used after the normal freepages in the zone
where the memory of the CMA area is belong to are exhausted. At that
moment that the number of the normal freepages is zero, so
- For movable allocation: freepage = total freepage = CMA freepage
- For unmovable allocation: freepage = 0
If unmovable allocation comes at this moment, allocation request would
fail to pass the watermark check and reclaim is started. After reclaim,
there would exist the normal freepages so freepages on the CMA areas
would not be used.
FYI, there is another attempt [2] trying to solve this problem in lkml.
And, as far as I know, Qualcomm also has out-of-tree solution for this
problem.
Useless reclaim:
There is no logic to distinguish CMA pages in the reclaim path. Hence,
CMA page is reclaimed even if the system just needs the page that can be
usable for the kernel allocation.
Atomic allocation failure:
This is also related to the fallback allocation policy for the memory of
the CMA area. Consider the situation that the number of the normal
freepages is *zero* since the bunch of the movable allocation requests
come. Kswapd would not be woken up due to following freepage
calculation logic.
- For movable allocation: freepage = total freepage = CMA freepage
If atomic unmovable allocation request comes at this moment, it would
fails due to following logic.
- For unmovable allocation: freepage = total freepage - CMA freepage = 0
It was reported by Aneesh [3].
Useless compaction:
Usual high-order allocation request is unmovable allocation request and
it cannot be served from the memory of the CMA area. In compaction,
migration scanner try to migrate the page in the CMA area and make
high-order page there. As mentioned above, it cannot be usable for the
unmovable allocation request so it's just waste.
3. Current approach and new approach
Current approach is that the memory of the CMA area is managed by the
zone where their pfn is belong to. However, these memory should be
distinguishable since they have a strong limitation. So, they are
marked as MIGRATE_CMA in pageblock flag and handled specially. However,
as mentioned in section 2, the MM subsystem doesn't have enough logic to
deal with this special pageblock so many problems raised.
New approach is that the memory of the CMA area is managed by the
MOVABLE zone. MM already have enough logic to deal with special zone
like as HIGHMEM and MOVABLE zone. So, managing the memory of the CMA
area by the MOVABLE zone just naturally work well because constraints
for the memory of the CMA area that the memory should always be
migratable is the same with the constraint for the MOVABLE zone.
There is one side-effect for the usability of the memory of the CMA
area. The use of MOVABLE zone is only allowed for a request with
GFP_HIGHMEM && GFP_MOVABLE so now the memory of the CMA area is also
only allowed for this gfp flag. Before this patchset, a request with
GFP_MOVABLE can use them. IMO, It would not be a big issue since most
of GFP_MOVABLE request also has GFP_HIGHMEM flag. For example, file
cache page and anonymous page. However, file cache page for blockdev
file is an exception. Request for it has no GFP_HIGHMEM flag. There is
pros and cons on this exception. In my experience, blockdev file cache
pages are one of the top reason that causes cma_alloc() to fail
temporarily. So, we can get more guarantee of cma_alloc() success by
discarding this case.
Note that there is no change in admin POV since this patchset is just
for internal implementation change in MM subsystem. Just one minor
difference for admin is that the memory stat for CMA area will be
printed in the MOVABLE zone. That's all.
4. Result
Following is the experimental result related to utilization problem.
8 CPUs, 1024 MB, VIRTUAL MACHINE
make -j16
<Before>
CMA area: 0 MB 512 MB
Elapsed-time: 92.4 186.5
pswpin: 82 18647
pswpout: 160 69839
<After>
CMA : 0 MB 512 MB
Elapsed-time: 93.1 93.4
pswpin: 84 46
pswpout: 183 92
akpm: "kernel test robot" reported a 26% improvement in
vm-scalability.throughput:
http://lkml.kernel.org/r/20180330012721.GA3845@yexl-desktop
[1]: lkml.kernel.org/r/1491880640-9944-1-git-send-email-iamjoonsoo.kim@lge.com
[2]: https://lkml.org/lkml/2014/10/15/623
[3]: http://www.spinics.net/lists/linux-mm/msg100562.html
Link: http://lkml.kernel.org/r/1512114786-5085-2-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Tested-by: Tony Lindgren <tony@atomide.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently <linux/slab.h> #includes <linux/kmemleak.h> for no obvious
reason. It looks like it's only a convenience, so remove kmemleak.h
from slab.h and add <linux/kmemleak.h> to any users of kmemleak_* that
don't already #include it. Also remove <linux/kmemleak.h> from source
files that do not use it.
This is tested on i386 allmodconfig and x86_64 allmodconfig. It would
be good to run it through the 0day bot for other $ARCHes. I have
neither the horsepower nor the storage space for the other $ARCHes.
Update: This patch has been extensively build-tested by both the 0day
bot & kisskb/ozlabs build farms. Both of them reported 2 build failures
for which patches are included here (in v2).
[ slab.h is the second most used header file after module.h; kernel.h is
right there with slab.h. There could be some minor error in the
counting due to some #includes having comments after them and I didn't
combine all of those. ]
[akpm@linux-foundation.org: security/keys/big_key.c needs vmalloc.h, per sfr]
Link: http://lkml.kernel.org/r/e4309f98-3749-93e1-4bb7-d9501a39d015@infradead.org
Link: http://kisskb.ellerman.id.au/kisskb/head/13396/
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Reported-by: Michael Ellerman <mpe@ellerman.id.au> [2 build failures]
Reported-by: Fengguang Wu <fengguang.wu@intel.com> [2 build failures]
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Wei Yongjun <weiyongjun1@huawei.com>
Cc: Luis R. Rodriguez <mcgrof@kernel.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Mimi Zohar <zohar@linux.vnet.ibm.com>
Cc: John Johansen <john.johansen@canonical.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>