Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Convert to struct mnt_idmap.
Last cycle we merged the necessary infrastructure in
256c8aed2b ("fs: introduce dedicated idmap type for mounts").
This is just the conversion to struct mnt_idmap.
Currently we still pass around the plain namespace that was attached to a
mount. This is in general pretty convenient but it makes it easy to
conflate namespaces that are relevant on the filesystem with namespaces
that are relevent on the mount level. Especially for non-vfs developers
without detailed knowledge in this area this can be a potential source for
bugs.
Once the conversion to struct mnt_idmap is done all helpers down to the
really low-level helpers will take a struct mnt_idmap argument instead of
two namespace arguments. This way it becomes impossible to conflate the two
eliminating the possibility of any bugs. All of the vfs and all filesystems
only operate on struct mnt_idmap.
Acked-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>
Due to several bugs caused by timers being re-armed after they are
shutdown and just before they are freed, a new state of timers was added
called "shutdown". After a timer is set to this state, then it can no
longer be re-armed.
The following script was run to find all the trivial locations where
del_timer() or del_timer_sync() is called in the same function that the
object holding the timer is freed. It also ignores any locations where
the timer->function is modified between the del_timer*() and the free(),
as that is not considered a "trivial" case.
This was created by using a coccinelle script and the following
commands:
$ cat timer.cocci
@@
expression ptr, slab;
identifier timer, rfield;
@@
(
- del_timer(&ptr->timer);
+ timer_shutdown(&ptr->timer);
|
- del_timer_sync(&ptr->timer);
+ timer_shutdown_sync(&ptr->timer);
)
... when strict
when != ptr->timer
(
kfree_rcu(ptr, rfield);
|
kmem_cache_free(slab, ptr);
|
kfree(ptr);
)
$ spatch timer.cocci . > /tmp/t.patch
$ patch -p1 < /tmp/t.patch
Link: https://lore.kernel.org/lkml/20221123201306.823305113@linutronix.de/
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Acked-by: Pavel Machek <pavel@ucw.cz> [ LED ]
Acked-by: Kalle Valo <kvalo@kernel.org> [ wireless ]
Acked-by: Paolo Abeni <pabeni@redhat.com> [ networking ]
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- More userfaultfs work from Peter Xu.
- Several convert-to-folios series from Sidhartha Kumar and Huang Ying.
- Some filemap cleanups from Vishal Moola.
- David Hildenbrand added the ability to selftest anon memory COW handling.
- Some cpuset simplifications from Liu Shixin.
- Addition of vmalloc tracing support by Uladzislau Rezki.
- Some pagecache folioifications and simplifications from Matthew Wilcox.
- A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use it.
- Miguel Ojeda contributed some cleanups for our use of the
__no_sanitize_thread__ gcc keyword. This series shold have been in the
non-MM tree, my bad.
- Naoya Horiguchi improved the interaction between memory poisoning and
memory section removal for huge pages.
- DAMON cleanups and tuneups from SeongJae Park
- Tony Luck fixed the handling of COW faults against poisoned pages.
- Peter Xu utilized the PTE marker code for handling swapin errors.
- Hugh Dickins reworked compound page mapcount handling, simplifying it
and making it more efficient.
- Removal of the autonuma savedwrite infrastructure from Nadav Amit and
David Hildenbrand.
- zram support for multiple compression streams from Sergey Senozhatsky.
- David Hildenbrand reworked the GUP code's R/O long-term pinning so
that drivers no longer need to use the FOLL_FORCE workaround which
didn't work very well anyway.
- Mel Gorman altered the page allocator so that local IRQs can remnain
enabled during per-cpu page allocations.
- Vishal Moola removed the try_to_release_page() wrapper.
- Stefan Roesch added some per-BDI sysfs tunables which are used to
prevent network block devices from dirtying excessive amounts of
pagecache.
- David Hildenbrand did some cleanup and repair work on KSM COW
breaking.
- Nhat Pham and Johannes Weiner have implemented writeback in zswap's
zsmalloc backend.
- Brian Foster has fixed a longstanding corner-case oddity in
file[map]_write_and_wait_range().
- sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
Chen.
- Shiyang Ruan has done some work on fsdax, to make its reflink mode
work better under xfstests. Better, but still not perfect.
- Christoph Hellwig has removed the .writepage() method from several
filesystems. They only need .writepages().
- Yosry Ahmed wrote a series which fixes the memcg reclaim target
beancounting.
- David Hildenbrand has fixed some of our MM selftests for 32-bit
machines.
- Many singleton patches, as usual.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY5j6ZwAKCRDdBJ7gKXxA
jkDYAP9qNeVqp9iuHjZNTqzMXkfmJPsw2kmy2P+VdzYVuQRcJgEAgoV9d7oMq4ml
CodAgiA51qwzId3GRytIo/tfWZSezgA=
=d19R
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- More userfaultfs work from Peter Xu
- Several convert-to-folios series from Sidhartha Kumar and Huang Ying
- Some filemap cleanups from Vishal Moola
- David Hildenbrand added the ability to selftest anon memory COW
handling
- Some cpuset simplifications from Liu Shixin
- Addition of vmalloc tracing support by Uladzislau Rezki
- Some pagecache folioifications and simplifications from Matthew
Wilcox
- A pagemap cleanup from Kefeng Wang: we have VM_ACCESS_FLAGS, so use
it
- Miguel Ojeda contributed some cleanups for our use of the
__no_sanitize_thread__ gcc keyword.
This series should have been in the non-MM tree, my bad
- Naoya Horiguchi improved the interaction between memory poisoning and
memory section removal for huge pages
- DAMON cleanups and tuneups from SeongJae Park
- Tony Luck fixed the handling of COW faults against poisoned pages
- Peter Xu utilized the PTE marker code for handling swapin errors
- Hugh Dickins reworked compound page mapcount handling, simplifying it
and making it more efficient
- Removal of the autonuma savedwrite infrastructure from Nadav Amit and
David Hildenbrand
- zram support for multiple compression streams from Sergey Senozhatsky
- David Hildenbrand reworked the GUP code's R/O long-term pinning so
that drivers no longer need to use the FOLL_FORCE workaround which
didn't work very well anyway
- Mel Gorman altered the page allocator so that local IRQs can remnain
enabled during per-cpu page allocations
- Vishal Moola removed the try_to_release_page() wrapper
- Stefan Roesch added some per-BDI sysfs tunables which are used to
prevent network block devices from dirtying excessive amounts of
pagecache
- David Hildenbrand did some cleanup and repair work on KSM COW
breaking
- Nhat Pham and Johannes Weiner have implemented writeback in zswap's
zsmalloc backend
- Brian Foster has fixed a longstanding corner-case oddity in
file[map]_write_and_wait_range()
- sparse-vmemmap changes for MIPS, LoongArch and NIOS2 from Feiyang
Chen
- Shiyang Ruan has done some work on fsdax, to make its reflink mode
work better under xfstests. Better, but still not perfect
- Christoph Hellwig has removed the .writepage() method from several
filesystems. They only need .writepages()
- Yosry Ahmed wrote a series which fixes the memcg reclaim target
beancounting
- David Hildenbrand has fixed some of our MM selftests for 32-bit
machines
- Many singleton patches, as usual
* tag 'mm-stable-2022-12-13' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (313 commits)
mm/hugetlb: set head flag before setting compound_order in __prep_compound_gigantic_folio
mm: mmu_gather: allow more than one batch of delayed rmaps
mm: fix typo in struct pglist_data code comment
kmsan: fix memcpy tests
mm: add cond_resched() in swapin_walk_pmd_entry()
mm: do not show fs mm pc for VM_LOCKONFAULT pages
selftests/vm: ksm_functional_tests: fixes for 32bit
selftests/vm: cow: fix compile warning on 32bit
selftests/vm: madv_populate: fix missing MADV_POPULATE_(READ|WRITE) definitions
mm/gup_test: fix PIN_LONGTERM_TEST_READ with highmem
mm,thp,rmap: fix races between updates of subpages_mapcount
mm: memcg: fix swapcached stat accounting
mm: add nodes= arg to memory.reclaim
mm: disable top-tier fallback to reclaim on proactive reclaim
selftests: cgroup: make sure reclaim target memcg is unprotected
selftests: cgroup: refactor proactive reclaim code to reclaim_until()
mm: memcg: fix stale protection of reclaim target memcg
mm/mmap: properly unaccount memory on mas_preallocate() failure
omfs: remove ->writepage
jfs: remove ->writepage
...
The main change this cycle is to stop using the PG_error flag to track
verity failures, and instead just track failures at the bio level. This
follows a similar fscrypt change that went into 6.1, and it is a step
towards freeing up PG_error for other uses.
There's also one other small cleanup.
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQSacvsUNc7UX4ntmEPzXCl4vpKOKwUCY5anyRQcZWJpZ2dlcnNA
Z29vZ2xlLmNvbQAKCRDzXCl4vpKOK1IPAP0SMSKJRgehpXHKp5QZxHSpAjkFlcGa
2y8Lc+DlHOrfLQEAmpGAxewowkMzpYVXmlAVVHRgUPWLjoMQQELEUQ8mWgU=
=M+pB
-----END PGP SIGNATURE-----
Merge tag 'fsverity-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt
Pull fsverity updates from Eric Biggers:
"The main change this cycle is to stop using the PG_error flag to track
verity failures, and instead just track failures at the bio level.
This follows a similar fscrypt change that went into 6.1, and it is a
step towards freeing up PG_error for other uses.
There's also one other small cleanup"
* tag 'fsverity-for-linus' of git://git.kernel.org/pub/scm/fs/fscrypt/fscrypt:
fsverity: simplify fsverity_get_digest()
fsverity: stop using PG_error to track error status
found by Syzbot and fuzzing. (Many of the bug fixes involve less-used
ext4 features such as fast_commit, inline_data and bigalloc.)
In addition, remove the writepage function for ext4, since the
medium-term plan is to remove ->writepage() entirely. (The VM doesn't
need or want writepage() for writeback, since it is fine with
->writepages() so long as ->migrate_folio() is implemented.)
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEK2m5VNv+CHkogTfJ8vlZVpUNgaMFAmOWqrMACgkQ8vlZVpUN
gaMvmgf+P2C6vzjn13ZdF+GwFTi4fx4TJ5BZT78LQqvTZqhkfk4k1q2SFfHI7nXT
ZWdu1KUQ0SYLo64oaSU9W+2B2pmGi/KgUlrwNhy8DFeGStogPuDVfmGWB63p1UQL
ld42mE9q7bjY6nCZSKYXPp2jfSwsHuliHBJ4UfzVNAIwjiUEJ7pGeIrMFdLAEkVm
TVNzvlUZaHUnVxhpsP6hs+5WNhHQ2IhWz4rwX01ussNgHTijYac4iaL05wpTvF5e
6NtvfmpOEMAbYrmIkJX4RVss4JNsHNOC0E8fjEHlgXJxBiAI6w8GxTxrS52Y4ELH
nHXl/pc0L+I8+yh9B9+s0LBaSuPuTg==
=lezv
-----END PGP SIGNATURE-----
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 updates from Ted Ts'o:
"A large number of cleanups and bug fixes, with many of the bug fixes
found by Syzbot and fuzzing. (Many of the bug fixes involve less-used
ext4 features such as fast_commit, inline_data and bigalloc)
In addition, remove the writepage function for ext4, since the
medium-term plan is to remove ->writepage() entirely. (The VM doesn't
need or want writepage() for writeback, since it is fine with
->writepages() so long as ->migrate_folio() is implemented)"
* tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (58 commits)
ext4: fix reserved cluster accounting in __es_remove_extent()
ext4: fix inode leak in ext4_xattr_inode_create() on an error path
ext4: allocate extended attribute value in vmalloc area
ext4: avoid unaccounted block allocation when expanding inode
ext4: initialize quota before expanding inode in setproject ioctl
ext4: stop providing .writepage hook
mm: export buffer_migrate_folio_norefs()
ext4: switch to using write_cache_pages() for data=journal writeout
jbd2: switch jbd2_submit_inode_data() to use fs-provided hook for data writeout
ext4: switch to using ext4_do_writepages() for ordered data writeout
ext4: move percpu_rwsem protection into ext4_writepages()
ext4: provide ext4_do_writepages()
ext4: add support for writepages calls that cannot map blocks
ext4: drop pointless IO submission from ext4_bio_write_page()
ext4: remove nr_submitted from ext4_bio_write_page()
ext4: move keep_towrite handling to ext4_bio_write_page()
ext4: handle redirtying in ext4_bio_write_page()
ext4: fix kernel BUG in 'ext4_write_inline_data_end()'
ext4: make ext4_mb_initialize_context return void
ext4: fix deadlock due to mbcache entry corruption
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCY5bwTgAKCRCRxhvAZXjc
ovd2AQCK00NAtGjQCjQPQGyTa4GAPqvWgq1ef0lnhv+TL5US5gD9FncQ8UofeMXt
pBfjtAD6ettTPCTxUQfnTwWEU4rc7Qg=
=27Wm
-----END PGP SIGNATURE-----
Merge tag 'fs.acl.rework.v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping
Pull VFS acl updates from Christian Brauner:
"This contains the work that builds a dedicated vfs posix acl api.
The origins of this work trace back to v5.19 but it took quite a while
to understand the various filesystem specific implementations in
sufficient detail and also come up with an acceptable solution.
As we discussed and seen multiple times the current state of how posix
acls are handled isn't nice and comes with a lot of problems: The
current way of handling posix acls via the generic xattr api is error
prone, hard to maintain, and type unsafe for the vfs until we call
into the filesystem's dedicated get and set inode operations.
It is already the case that posix acls are special-cased to death all
the way through the vfs. There are an uncounted number of hacks that
operate on the uapi posix acl struct instead of the dedicated vfs
struct posix_acl. And the vfs must be involved in order to interpret
and fixup posix acls before storing them to the backing store, caching
them, reporting them to userspace, or for permission checking.
Currently a range of hacks and duct tape exist to make this work. As
with most things this is really no ones fault it's just something that
happened over time. But the code is hard to understand and difficult
to maintain and one is constantly at risk of introducing bugs and
regressions when having to touch it.
Instead of continuing to hack posix acls through the xattr handlers
this series builds a dedicated posix acl api solely around the get and
set inode operations.
Going forward, the vfs_get_acl(), vfs_remove_acl(), and vfs_set_acl()
helpers must be used in order to interact with posix acls. They
operate directly on the vfs internal struct posix_acl instead of
abusing the uapi posix acl struct as we currently do. In the end this
removes all of the hackiness, makes the codepaths easier to maintain,
and gets us type safety.
This series passes the LTP and xfstests suites without any
regressions. For xfstests the following combinations were tested:
- xfs
- ext4
- btrfs
- overlayfs
- overlayfs on top of idmapped mounts
- orangefs
- (limited) cifs
There's more simplifications for posix acls that we can make in the
future if the basic api has made it.
A few implementation details:
- The series makes sure to retain exactly the same security and
integrity module permission checks. Especially for the integrity
modules this api is a win because right now they convert the uapi
posix acl struct passed to them via a void pointer into the vfs
struct posix_acl format to perform permission checking on the mode.
There's a new dedicated security hook for setting posix acls which
passes the vfs struct posix_acl not a void pointer. Basing checking
on the posix acl stored in the uapi format is really unreliable.
The vfs currently hacks around directly in the uapi struct storing
values that frankly the security and integrity modules can't
correctly interpret as evidenced by bugs we reported and fixed in
this area. It's not necessarily even their fault it's just that the
format we provide to them is sub optimal.
- Some filesystems like 9p and cifs need access to the dentry in
order to get and set posix acls which is why they either only
partially or not even at all implement get and set inode
operations. For example, cifs allows setxattr() and getxattr()
operations but doesn't allow permission checking based on posix
acls because it can't implement a get acl inode operation.
Thus, this patch series updates the set acl inode operation to take
a dentry instead of an inode argument. However, for the get acl
inode operation we can't do this as the old get acl method is
called in e.g., generic_permission() and inode_permission(). These
helpers in turn are called in various filesystem's permission inode
operation. So passing a dentry argument to the old get acl inode
operation would amount to passing a dentry to the permission inode
operation which we shouldn't and probably can't do.
So instead of extending the existing inode operation Christoph
suggested to add a new one. He also requested to ensure that the
get and set acl inode operation taking a dentry are consistently
named. So for this version the old get acl operation is renamed to
->get_inode_acl() and a new ->get_acl() inode operation taking a
dentry is added. With this we can give both 9p and cifs get and set
acl inode operations and in turn remove their complex custom posix
xattr handlers.
In the future I hope to get rid of the inode method duplication but
it isn't like we have never had this situation. Readdir is just one
example. And frankly, the overall gain in type safety and the more
pleasant api wise are simply too big of a benefit to not accept
this duplication for a while.
- We've done a full audit of every codepaths using variant of the
current generic xattr api to get and set posix acls and
surprisingly it isn't that many places. There's of course always a
chance that we might have missed some and if so I'm sure we'll find
them soon enough.
The crucial codepaths to be converted are obviously stacking
filesystems such as ecryptfs and overlayfs.
For a list of all callers currently using generic xattr api helpers
see [2] including comments whether they support posix acls or not.
- The old vfs generic posix acl infrastructure doesn't obey the
create and replace semantics promised on the setxattr(2) manpage.
This patch series doesn't address this. It really is something we
should revisit later though.
The patches are roughly organized as follows:
(1) Change existing set acl inode operation to take a dentry
argument (Intended to be a non-functional change)
(2) Rename existing get acl method (Intended to be a non-functional
change)
(3) Implement get and set acl inode operations for filesystems that
couldn't implement one before because of the missing dentry.
That's mostly 9p and cifs (Intended to be a non-functional
change)
(4) Build posix acl api, i.e., add vfs_get_acl(), vfs_remove_acl(),
and vfs_set_acl() including security and integrity hooks
(Intended to be a non-functional change)
(5) Implement get and set acl inode operations for stacking
filesystems (Intended to be a non-functional change)
(6) Switch posix acl handling in stacking filesystems to new posix
acl api now that all filesystems it can stack upon support it.
(7) Switch vfs to new posix acl api (semantical change)
(8) Remove all now unused helpers
(9) Additional regression fixes reported after we merged this into
linux-next
Thanks to Seth for a lot of good discussion around this and
encouragement and input from Christoph"
* tag 'fs.acl.rework.v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/idmapping: (36 commits)
posix_acl: Fix the type of sentinel in get_acl
orangefs: fix mode handling
ovl: call posix_acl_release() after error checking
evm: remove dead code in evm_inode_set_acl()
cifs: check whether acl is valid early
acl: make vfs_posix_acl_to_xattr() static
acl: remove a slew of now unused helpers
9p: use stub posix acl handlers
cifs: use stub posix acl handlers
ovl: use stub posix acl handlers
ecryptfs: use stub posix acl handlers
evm: remove evm_xattr_acl_change()
xattr: use posix acl api
ovl: use posix acl api
ovl: implement set acl method
ovl: implement get acl method
ecryptfs: implement set acl method
ecryptfs: implement get acl method
ksmbd: use vfs_remove_acl()
acl: add vfs_remove_acl()
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEq5lC5tSkz8NBJiCnSfxwEqXeA64FAmOU+U8ACgkQSfxwEqXe
A67NnQ//Y5DltmvibyPd7r1TFT2gUYv+Rx3sUV9ZE1NYptd/SWhhcL8c5FZ70Fuw
bSKCa1uiWjOxosjXT1kGrWq3de7q7oUpAPSOGxgxzoaNURIt58N/ajItCX/4Au8I
RlGAScHy5e5t41/26a498kB6qJ441fBEqCYKQpPLINMBAhe8TQ+NVp0rlpUwNHFX
WrUGg4oKWxdBIW3HkDirQjJWDkkAiklRTifQh/Al4b6QDbOnRUGGCeckNOhixsvS
waHWTld+Td8jRrA4b82tUb2uVZ2/b8dEvj/A8CuTv4yC0lywoyMgBWmJAGOC+UmT
ZVNdGW02Jc2T+Iap8ZdsEmeLHNqbli4+IcbY5xNlov+tHJ2oz41H9TZoYKbudlr6
/ReAUPSn7i50PhbQlEruj3eg+M2gjOeh8OF8UKwwRK8PghvyWQ1ScW0l3kUhPIhI
PdIG6j4+D2mJc1FIj2rTVB+Bg933x6S+qx4zDxGlNp62AARUFYf6EgyD6aXFQVuX
RxcKb6cjRuFkzFiKc8zkqg5edZH+IJcPNuIBmABqTGBOxbZWURXzIQvK/iULqZa4
CdGAFIs6FuOh8pFHLI3R4YoHBopbHup/xKDEeAO9KZGyeVIuOSERDxxo5f/ITzcq
APvT77DFOEuyvanr8RMqqh0yUjzcddXqw9+ieufsAyDwjD9DTuE=
=QRhK
-----END PGP SIGNATURE-----
Merge tag 'random-6.2-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random
Pull random number generator updates from Jason Donenfeld:
- Replace prandom_u32_max() and various open-coded variants of it,
there is now a new family of functions that uses fast rejection
sampling to choose properly uniformly random numbers within an
interval:
get_random_u32_below(ceil) - [0, ceil)
get_random_u32_above(floor) - (floor, U32_MAX]
get_random_u32_inclusive(floor, ceil) - [floor, ceil]
Coccinelle was used to convert all current users of
prandom_u32_max(), as well as many open-coded patterns, resulting in
improvements throughout the tree.
I'll have a "late" 6.1-rc1 pull for you that removes the now unused
prandom_u32_max() function, just in case any other trees add a new
use case of it that needs to converted. According to linux-next,
there may be two trivial cases of prandom_u32_max() reintroductions
that are fixable with a 's/.../.../'. So I'll have for you a final
conversion patch doing that alongside the removal patch during the
second week.
This is a treewide change that touches many files throughout.
- More consistent use of get_random_canary().
- Updates to comments, documentation, tests, headers, and
simplification in configuration.
- The arch_get_random*_early() abstraction was only used by arm64 and
wasn't entirely useful, so this has been replaced by code that works
in all relevant contexts.
- The kernel will use and manage random seeds in non-volatile EFI
variables, refreshing a variable with a fresh seed when the RNG is
initialized. The RNG GUID namespace is then hidden from efivarfs to
prevent accidental leakage.
These changes are split into random.c infrastructure code used in the
EFI subsystem, in this pull request, and related support inside of
EFISTUB, in Ard's EFI tree. These are co-dependent for full
functionality, but the order of merging doesn't matter.
- Part of the infrastructure added for the EFI support is also used for
an improvement to the way vsprintf initializes its siphash key,
replacing an sleep loop wart.
- The hardware RNG framework now always calls its correct random.c
input function, add_hwgenerator_randomness(), rather than sometimes
going through helpers better suited for other cases.
- The add_latent_entropy() function has long been called from the fork
handler, but is a no-op when the latent entropy gcc plugin isn't
used, which is fine for the purposes of latent entropy.
But it was missing out on the cycle counter that was also being mixed
in beside the latent entropy variable. So now, if the latent entropy
gcc plugin isn't enabled, add_latent_entropy() will expand to a call
to add_device_randomness(NULL, 0), which adds a cycle counter,
without the absent latent entropy variable.
- The RNG is now reseeded from a delayed worker, rather than on demand
when used. Always running from a worker allows it to make use of the
CPU RNG on platforms like S390x, whose instructions are too slow to
do so from interrupts. It also has the effect of adding in new inputs
more frequently with more regularity, amounting to a long term
transcript of random values. Plus, it helps a bit with the upcoming
vDSO implementation (which isn't yet ready for 6.2).
- The jitter entropy algorithm now tries to execute on many different
CPUs, round-robining, in hopes of hitting even more memory latencies
and other unpredictable effects. It also will mix in a cycle counter
when the entropy timer fires, in addition to being mixed in from the
main loop, to account more explicitly for fluctuations in that timer
firing. And the state it touches is now kept within the same cache
line, so that it's assured that the different execution contexts will
cause latencies.
* tag 'random-6.2-rc1-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/crng/random: (23 commits)
random: include <linux/once.h> in the right header
random: align entropy_timer_state to cache line
random: mix in cycle counter when jitter timer fires
random: spread out jitter callback to different CPUs
random: remove extraneous period and add a missing one in comments
efi: random: refresh non-volatile random seed when RNG is initialized
vsprintf: initialize siphash key using notifier
random: add back async readiness notifier
random: reseed in delayed work rather than on-demand
random: always mix cycle counter in add_latent_entropy()
hw_random: use add_hwgenerator_randomness() for early entropy
random: modernize documentation comment on get_random_bytes()
random: adjust comment to account for removed function
random: remove early archrandom abstraction
random: use random.trust_{bootloader,cpu} command line option only
stackprotector: actually use get_random_canary()
stackprotector: move get_random_canary() into stackprotector.h
treewide: use get_random_u32_inclusive() when possible
treewide: use get_random_u32_{above,below}() instead of manual loop
treewide: use get_random_u32_below() instead of deprecated function
...
There is issue as follows when do setxattr with inject fault:
[localhost]# fsck.ext4 -fn /dev/sda
e2fsck 1.46.6-rc1 (12-Sep-2022)
Pass 1: Checking inodes, blocks, and sizes
Pass 2: Checking directory structure
Pass 3: Checking directory connectivity
Pass 4: Checking reference counts
Unattached zero-length inode 15. Clear? no
Unattached inode 15
Connect to /lost+found? no
Pass 5: Checking group summary information
/dev/sda: ********** WARNING: Filesystem still has errors **********
/dev/sda: 15/655360 files (0.0% non-contiguous), 66755/2621440 blocks
This occurs in 'ext4_xattr_inode_create()'. If 'ext4_mark_inode_dirty()'
fails, dropping i_nlink of the inode is needed. Or will lead to inode leak.
Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221208023233.1231330-5-yebin@huaweicloud.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
Now, extended attribute value maximum length is 64K. The memory
requested here does not need continuous physical addresses, so it is
appropriate to use kvmalloc to request memory. At the same time, it
can also cope with the situation that the extended attribute will
become longer in the future.
Signed-off-by: Ye Bin <yebin10@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221208023233.1231330-3-yebin@huaweicloud.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
When expanding inode space in ext4_expand_extra_isize_ea() we may need
to allocate external xattr block. If quota is not initialized for the
inode, the block allocation will not be accounted into quota usage. Make
sure the quota is initialized before we try to expand inode space.
Reported-by: Pengfei Xu <pengfei.xu@intel.com>
Link: https://lore.kernel.org/all/Y5BT+k6xWqthZc1P@xpf.sh.intel.com
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: stable@kernel.org
Link: https://lore.kernel.org/r/20221207115937.26601-2-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Make sure we initialize quotas before possibly expanding inode space
(and thus maybe needing to allocate external xattr block) in
ext4_ioctl_setproject(). This prevents not accounting the necessary
block allocation.
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: stable@kernel.org
Link: https://lore.kernel.org/r/20221207115937.26601-1-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Now we don't need .writepage hook for anything anymore. Reclaim is
fine with relying on .writepages to clean pages and we often couldn't
do much from the .writepage callback anyway. We only need to provide
.migrate_folio callback for the ext4_journalled_aops - let's use
buffer_migrate_page_norefs() there so that buffers cannot be modified
under jdb2's hands as that can cause data corruption. For example when
commit code does writeout of transaction buffers in
jbd2_journal_write_metadata_buffer(), we don't hold page lock or have
page writeback bit set or have the buffer locked. So page migration
code would go and happily migrate the page elsewhere while the copy is
running thus corrupting data.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221207112722.22220-12-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Instead of using generic_writepages(), let's use write_cache_pages() for
writeout of journalled data. It will allow us to stop providing
.writepage callback. Our data=journal writeback path would benefit from
a larger cleanup and refactoring but that's for a separate cleanup
series.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221207112722.22220-10-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
jbd2_submit_inode_data() hardcoded use of
jbd2_journal_submit_inode_data_buffers() for submission of data pages.
Make it use j_submit_inode_data_buffers hook instead. This effectively
switches ext4 fastcommits to use ext4_writepages() for data writeout
instead of generic_writepages().
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221207112722.22220-9-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Use the standard writepages method (ext4_do_writepages()) to perform
writeout of ordered data during journal commit.
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221207112722.22220-8-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Move protection by percpu_rwsem from ext4_do_writepages() to
ext4_writepages(). We will not want to grab this protection during
transaction commits as that would be prone to deadlocks and the
protection is not needed. Move the shutdown state checking as well since
we want to be able to complete commit while the shutdown is in progress.
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221207112722.22220-7-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Provide ext4_do_writepages() function that takes mpage_da_data as an
argument and make ext4_writepages() just a simple wrapper around it. No
functional changes.
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221207112722.22220-6-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Add support for calls to ext4_writepages() than cannot map blocks. These
will be issued from jbd2 transaction commit code.
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221207112722.22220-5-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
We submit outstanding IO in ext4_bio_write_page() if we find a buffer we
are not going to write. This is however pointless because we already
handle submission of previous IO in case we detect newly added buffer
head is discontiguous. So just delete the pointless IO submission call.
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221207112722.22220-4-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
nr_submitted is the same as nr_to_submit. Drop one of them.
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221207112722.22220-3-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
When we are writing back page but we cannot for some reason write all
its buffers (e.g. because we cannot allocate blocks in current context) we
have to keep TOWRITE tag set in the mapping as otherwise racing
WB_SYNC_ALL writeback that could write these buffers can skip the page
and result in data loss. We will need this logic for writeback during
transaction commit so move the logic from ext4_writepage() to
ext4_bio_write_page().
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221207112722.22220-2-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Since we want to transition transaction commits to use ext4_writepages()
for writing back ordered, add handling of page redirtying into
ext4_bio_write_page(). Also move buffer dirty bit clearing into the same
place other buffer state handling.
Reviewed-by: Ritesh Harjani (IBM) <ritesh.list@gmail.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221207112722.22220-1-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Change the return type to void since it always return 0, and no need
to do the checking in ext4_mb_new_blocks.
Signed-off-by: Guoqing Jiang <guoqing.jiang@linux.dev>
Reviewed-by: Ojaswin Mujoo <ojaswin@linux.ibm.com>
Link: https://lore.kernel.org/r/20221202120409.24098-1-guoqing.jiang@linux.dev
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
When manipulating xattr blocks, we can deadlock infinitely looping
inside ext4_xattr_block_set() where we constantly keep finding xattr
block for reuse in mbcache but we are unable to reuse it because its
reference count is too big. This happens because cache entry for the
xattr block is marked as reusable (e_reusable set) although its
reference count is too big. When this inconsistency happens, this
inconsistent state is kept indefinitely and so ext4_xattr_block_set()
keeps retrying indefinitely.
The inconsistent state is caused by non-atomic update of e_reusable bit.
e_reusable is part of a bitfield and e_reusable update can race with
update of e_referenced bit in the same bitfield resulting in loss of one
of the updates. Fix the problem by using atomic bitops instead.
This bug has been around for many years, but it became *much* easier
to hit after commit 65f8b80053 ("ext4: fix race when reusing xattr
blocks").
Cc: stable@vger.kernel.org
Fixes: 6048c64b26 ("mbcache: add reusable flag to cache entries")
Fixes: 65f8b80053 ("ext4: fix race when reusing xattr blocks")
Reported-and-tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Reported-by: Thilo Fromm <t-lo@linux.microsoft.com>
Link: https://lore.kernel.org/r/c77bf00f-4618-7149-56f1-b8d1664b9d07@linux.microsoft.com/
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Link: https://lore.kernel.org/r/20221123193950.16758-1-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Commit fb0a387dcd ("ext4: limit block allocations for indirect-block
files to < 2^32") added code to try to allocate xattr block with 32-bit
block number for indirect block based files on the grounds that these
files cannot use larger block numbers. It also added BUG_ON when
allocated block could not fit into 32 bits. This is however bogus
reasoning because xattr block is stored in inode->i_file_acl and
inode->i_file_acl_hi and as such even indirect block based files can
happily use full 48 bits for xattr block number. The proper handling
seems to be there basically since 64-bit block number support was added.
So remove the bogus limitation and BUG_ON.
Cc: Eric Sandeen <sandeen@redhat.com>
Fixes: fb0a387dcd ("ext4: limit block allocations for indirect-block files to < 2^32")
Signed-off-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221121130929.32031-1-jack@suse.cz
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
When converting files with inline data to extents, delayed allocations
made on a file system created with both the bigalloc and inline options
can result in invalid extent status cache content, incorrect reserved
cluster counts, kernel memory leaks, and potential kernel panics.
With bigalloc, the code that determines whether a block must be
delayed allocated searches the extent tree to see if that block maps
to a previously allocated cluster. If not, the block is delayed
allocated, and otherwise, it isn't. However, if the inline option is
also used, and if the file containing the block is marked as able to
store data inline, there isn't a valid extent tree associated with
the file. The current code in ext4_clu_mapped() calls
ext4_find_extent() to search the non-existent tree for a previously
allocated cluster anyway, which typically finds nothing, as desired.
However, a side effect of the search can be to cache invalid content
from the non-existent tree (garbage) in the extent status tree,
including bogus entries in the pending reservation tree.
To fix this, avoid searching the extent tree when allocating blocks
for bigalloc + inline files that are being converted from inline to
extent mapped.
Signed-off-by: Eric Whitney <enwlinux@gmail.com>
Link: https://lore.kernel.org/r/20221117152207.2424-1-enwlinux@gmail.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
When a backup superblock is updated in update_backups(), the primary
superblock's offset in the group (that is, sbi->s_sbh->b_blocknr) is used
as the backup superblock's offset in its group. However, when the block
size is 1K and bigalloc is enabled, the two offsets are not equal. This
causes the backup group descriptors to be overwritten by the superblock
in update_backups(). Moreover, if meta_bg is enabled, the file system will
be corrupted because this feature uses backup group descriptors.
To solve this issue, we use a more accurate ext4_group_first_block_no() as
the offset of the backup superblock in its group.
Fixes: d77147ff44 ("ext4: add support for online resizing with bigalloc")
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: stable@kernel.org
Link: https://lore.kernel.org/r/20221117040341.1380702-4-libaokun1@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
In commit 9a8c5b0d06 ("ext4: update the backup superblock's at the end
of the online resize"), it is assumed that update_backups() only updates
backup superblocks, so each b_data is treated as a backupsuper block to
update its s_block_group_nr and s_checksum. However, update_backups()
also updates the backup group descriptors, which causes the backup group
descriptors to be corrupted.
The above commit fixes the problem of invalid checksum of the backup
superblock. The root cause of this problem is that the checksum of
ext4_update_super() is not set correctly. This problem has been fixed
in the previous patch ("ext4: fix bad checksum after online resize").
However, we do need to set block_group_nr for the backup superblock in
update_backups(). When a block is in a group that contains a backup
superblock, and the block is the first block in the group, the block is
definitely a superblock. We add a helper function that includes setting
s_block_group_nr and updating checksum, and then call it only when the
above conditions are met to prevent the backup group descriptors from
being incorrectly modified.
Fixes: 9a8c5b0d06 ("ext4: update the backup superblock's at the end of the online resize")
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: stable@kernel.org
Link: https://lore.kernel.org/r/20221117040341.1380702-3-libaokun1@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
When online resizing is performed twice consecutively, the error message
"Superblock checksum does not match superblock" is displayed for the
second time. Here's the reproducer:
mkfs.ext4 -F /dev/sdb 100M
mount /dev/sdb /tmp/test
resize2fs /dev/sdb 5G
resize2fs /dev/sdb 6G
To solve this issue, we moved the update of the checksum after the
es->s_overhead_clusters is updated.
Fixes: 026d0d27c4 ("ext4: reduce computation of overhead during resize")
Fixes: de394a8665 ("ext4: update s_overhead_clusters in the superblock during an on-line resize")
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: stable@kernel.org
Link: https://lore.kernel.org/r/20221117040341.1380702-2-libaokun1@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
If userspace provides a longer UUID buffer than is required, we
shouldn't fail the call with EINVAL -- rather, we can fill the caller's
buffer with the bytes we /can/ fill, and update the length field to
reflect what we copied. This doesn't break the UAPI since we're
enabling a case that currently fails, and so far Ted hasn't released a
version of e2fsprogs that uses the new ext4 ioctl.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Catherine Hoang <catherine.hoang@oracle.com>
Link: https://lore.kernel.org/r/166811139478.327006.13879198441587445544.stgit@magnolia
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
If userspace calls this ioctl with fsu_length (the length of the
fsuuid.fsu_uuid array) set to zero, ext4 copies the desired uuid length
out to userspace. The kernel call returned a result from a valid input,
so the return value here should be zero, not EINVAL.
While we're at it, fix the copy_to_user call to make it clear that we're
only copying out fsu_len.
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Catherine Hoang <catherine.hoang@oracle.com>
Link: https://lore.kernel.org/r/166811138914.327006.9241306894437166566.stgit@magnolia
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
If a block is out of range in ext4_get_branch(), -ENOMEM will be returned
to user-space. Obviously, this error code isn't really useful. This
patch fixes it by making sure the right error code (-EFSCORRUPTED) is
propagated to user-space. EUCLEAN is more informative than ENOMEM.
Signed-off-by: Luís Henriques <lhenriques@suse.de>
Link: https://lore.kernel.org/r/20221109181445.17843-1-lhenriques@suse.de
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
Replace kmem_cache_create with KMEM_CACHE macro that
guaranteed struct alignment
Signed-off-by: JunChao Sun <sunjunchao2870@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221109153822.80250-1-sunjunchao2870@gmail.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
When we used the journal_async_commit mounting option in nojournal mode,
the kernel told me that "can't mount with journal_checksum", was very
confusing. I find that when we mount with journal_async_commit, both the
JOURNAL_ASYNC_COMMIT and EXPLICIT_JOURNAL_CHECKSUM flags are set. However,
in the error branch, CHECKSUM is checked before ASYNC_COMMIT. As a result,
the above inconsistency occurs, and the ASYNC_COMMIT branch becomes dead
code that cannot be executed. Therefore, we exchange the positions of the
two judgments to make the error msg more accurate.
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Link: https://lore.kernel.org/r/20221109074343.4184862-1-libaokun1@huawei.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Cc: stable@kernel.org
The device names are not necessarily consistent across reboots which can
make it more difficult to identify the right file system when tracking
down issues using system logs.
Print file system UUID string on every mount, remount and unmount to
make this task easier.
This is similar to the functionality recently propsed for XFS.
Signed-off-by: Lukas Czerner <lczerner@redhat.com>
Cc: Lukas Herbolt <lukas@herbolt.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Link: https://lore.kernel.org/r/20221108145042.85770-1-lczerner@redhat.com
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Instead of checksumming each field as it is added to the block, just
checksum each block before it is written. This is simpler, and also
much more efficient.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20221106224841.279231-8-ebiggers@kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Due to several different off-by-one errors, or perhaps due to a late
change in design that wasn't fully reflected in the code that was
actually merged, there are several very strange constraints on how
fast-commit blocks are filled with tlv entries:
- tlvs must start at least 10 bytes before the end of the block, even
though the minimum tlv length is 8. Otherwise, the replay code will
ignore them. (BUG: ext4_fc_reserve_space() could violate this
requirement if called with a len of blocksize - 9 or blocksize - 8.
Fortunately, this doesn't seem to happen currently.)
- tlvs must end at least 1 byte before the end of the block. Otherwise
the replay code will consider them to be invalid. This quirk
contributed to a bug (fixed by an earlier commit) where uninitialized
memory was being leaked to disk in the last byte of blocks.
Also, strangely these constraints don't apply to the replay code in
e2fsprogs, which will accept any tlvs in the blocks (with no bounds
checks at all, but that is a separate issue...).
Given that this all seems to be a bug, let's fix it by just filling
blocks with tlv entries in the natural way.
Note that old kernels will be unable to replay fast-commit journals
created by kernels that have this commit.
Fixes: aa75f4d3da ("ext4: main fast-commit commit path")
Cc: <stable@vger.kernel.org> # v5.10+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20221106224841.279231-7-ebiggers@kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
As is done elsewhere in the file, build the struct ext4_fc_tl on the
stack and memcpy() it into the buffer, rather than directly writing it
to a potentially-unaligned location in the buffer.
Fixes: aa75f4d3da ("ext4: main fast-commit commit path")
Cc: <stable@vger.kernel.org> # v5.10+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20221106224841.279231-6-ebiggers@kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Validate the inode and filename lengths in fast-commit journal records
so that a malicious fast-commit journal cannot cause a crash by having
invalid values for these. Also validate EXT4_FC_TAG_DEL_RANGE.
Fixes: aa75f4d3da ("ext4: main fast-commit commit path")
Cc: <stable@vger.kernel.org> # v5.10+
Signed-off-by: Eric Biggers <ebiggers@google.com>
Link: https://lore.kernel.org/r/20221106224841.279231-5-ebiggers@kernel.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>