Use only simple inline assemblies which consist of a single basic
block if the register asm construct is being used.
Otherwise gcc would generate broken code if the compiler option
--sanitize-coverage=trace-pc would be used.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
This is not necessary anymore, since the offending code is gone with
the conversion to the memblock code.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>-
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Dumps created by kdump or zfcpdump can contain invalid memory holes when
dumping z/VM systems that have memory pressure.
For example:
# zgetdump -i /proc/vmcore.
Memory map:
0000000000000000 - 0000000000bfffff (12 MB)
0000000000e00000 - 00000000014fffff (7 MB)
000000000bd00000 - 00000000f3bfffff (3711 MB)
The memory detection function find_memory_chunks() issues tprot to
find valid memory chunks. In case of CMM it can happen that pages are
marked as unstable via set_page_unstable() in arch_free_page().
If z/VM has released that pages, tprot returns -EFAULT and indicates
a memory hole.
So fix this and switch off CMM in case of kdump or zfcpdump.
Cc: <stable@vger.kernel.org>
Signed-off-by: Michael Holzheu <holzheu@linux.vnet.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
On resume the system that loads the to be resumed image might have
unstable pages.
When the resume image is copied back and a write access happen to an
unstable page this causes an exception and the system crashes.
To fix this set all free pages to stable before copying the resumed
image data. Also after everything has been restored set all free
pages of the resumed system to unstable again.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Get rid of the PAGE_STATES config option and enable guest page hinting
by default.
It can be disabled by specifying "cmma=off" at the command line.
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Use the existing arch_alloc_page/arch_free_page callbacks to do
the guest page state transitions between stable and unused.
Acked-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>