o2dlm has the non-standard behavior of providing a cancel callback
(unlock_ast) even when the cancel has failed (the locking operation
succeeded without canceling). This is called CANCELGRANT after the
status code sent to the callback. fs/dlm does not provide this
callback, so dlmglue must be changed to live without it.
o2dlm_unlock_ast_wrapper() in stackglue now ignores CANCELGRANT calls.
Because dlmglue no longer sees CANCELGRANT, ocfs2_unlock_ast() no longer
needs to check for it. ocfs2_locking_ast() must catch that a cancel was
tried and clear the cancel state.
Making these changes opens up a locking race. dlmglue uses the the
OCFS2_LOCK_BUSY flag to ensure only one thread is calling the dlm at any
one time. But dlmglue must unlock the lockres before calling into the
dlm. In the small window of time between unlocking the lockres and
calling the dlm, the downconvert thread can try to cancel the lock. The
downconvert thread is checking the OCFS2_LOCK_BUSY flag - it doesn't
know that ocfs2_dlm_lock() has not yet been called.
Because ocfs2_dlm_lock() has not yet been called, the cancel operation
will just be a no-op. There's nothing to cancel. With CANCELGRANT,
dlmglue uses the CANCELGRANT callback to clear up the cancel state.
When it comes around again, it will retry the cancel. Eventually, the
first thread will have called into ocfs2_dlm_lock(), and either the
lock or the cancel will succeed. The downconvert thread can then do its
downconvert.
Without CANCELGRANT, there is nothing to clean up the cancellation
state. The downconvert thread does not know to retry its operations.
More importantly, the original lock may be blocking on the other node
that is trying to cancel us. With neither able to make progress, the
ast is never called and the cancellation state is never cleaned up that
way. dlmglue is deadlocked.
The OCFS2_LOCK_PENDING flag is introduced to remedy this window. It is
set at the same time OCFS2_LOCK_BUSY is. Thus, the downconvert thread
can check whether the lock is cancelable. If not, it just loops around
to try again. Once ocfs2_dlm_lock() is called, the thread then clears
OCFS2_LOCK_PENDING and wakes the downconvert thread. Now, if the
downconvert thread finds the lock BUSY, it can safely try to cancel it.
Whether the cancel works or not, the state will be properly set and the
lock processing can continue.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
It doesn't make sense to query for a node number before connecting to the
cluster stack. This should be safe to do because node_num is only just
printed,
and we're actually only moving the setting of node num a small amount
further in the mount process.
[ Disconnect when node query fails -- Joel ]
Reviewed-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
The last bit of classic stack used directly in ocfs2 code is o2hb.
Specifically, the check for heartbeat during mount and the call to
ocfs2_hb_ctl during unmount.
We create an extra API, ocfs2_cluster_hangup(), to encapsulate the call
to ocfs2_hb_ctl. Other stacks will just leave hangup() empty.
The check for heartbeat is moved into ocfs2_cluster_connect(). It will
be matched by a similar check for other stacks.
With this change, only stackglue.c includes cluster/ headers.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
ocfs2 asks the cluster stack for the local node's node number for two
reasons; to fill the slot map and to print it. While the slot map isn't
necessary for userspace cluster stacks, the printing is very nice for
debugging. Thus we add ocfs2_cluster_this_node() as a generic API to get
this value. It is anticipated that the slot map will not be used under a
userspace cluster stack, so validity checks of the node num only need to
exist in the slot map code. Otherwise, it just gets used and printed as an
opaque value.
[ Fixed up some "int" versus "unsigned int" issues and made osb->node_num
truly opaque. --Mark ]
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This step introduces a cluster stack agnostic API for initializing and
exiting. fs/ocfs2/dlmglue.c no longer uses o2cb/o2dlm knowledge to
connect to the stack. It is all handled in stackglue.c.
heartbeat.c no longer needs to know how it gets called.
ocfs2_do_node_down() is now a clean recovery trigger.
The big gotcha is the ordering of initializations and de-initializations done
underneath ocfs2_cluster_connect(). ocfs2_dlm_init() used to do all
o2dlm initialization in one block. Thus, the o2dlm functionality of
ocfs2_cluster_connect() is very straightforward. ocfs2_dlm_shutdown(),
however, did a few things between de-registration of the eviction
callback and actually shutting down the domain. Now de-registration and
shutdown of the domain are wrapped within the single
ocfs2_cluster_disconnect() call. I've checked the code paths to make
sure we can safely tear down things in ocfs2_dlm_shutdown() before
calling ocfs2_cluster_disconnect(). The filesystem has already set
itself to ignore the callback.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Wrap the lock status block (lksb) in a union. Later we will add a union
element for the fs/dlm lksb. Create accessors for the status and lvb
fields.
Other than a debugging function, dlmglue.c does not directly reference
the o2dlm locking path anymore.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Change the ocfs2_dlm_lock/unlock() functions to return -errno values.
This is the first step towards elminiating dlm_status in
fs/ocfs2/dlmglue.c. The change also passes -errno values to
->unlock_ast().
[ Fix a return code in dlmglue.c and change the error translation table into
an array of ints. --Mark ]
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
The ocfs2 generic code should use the values in <linux/dlmconstants.h>.
stackglue.c will convert them to o2dlm values.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
This is the first in a series of patches to isolate ocfs2 from the
underlying cluster stack. Here we wrap the dlm locking functions with
ocfs2-specific calls. Because ocfs2 always uses the same dlm lock status
callbacks, we can eliminate the callbacks from the filesystem visible
functions.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
The old slot map had a few limitations:
- It was limited to one block, so the maximum slot count was 255.
- Each slot was signed 16bits, limiting node numbers to INT16_MAX.
- An empty slot was marked by the magic 0xFFFF (-1).
The new slot map format provides 32bit node numbers (UINT32_MAX), a
separate space to mark a slot in use, and extra room to grow. The slot
map is now bounded by i_size, not a block.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
The slot map file is merely an array of __le16. Wrap it in a structure for
cleaner reference.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
The in-memory slot map uses the same magic as the on-disk one. There is
a special value to mark a slot as invalid. It relies on the size of
certain types and so on.
Write a new in-memory map that keeps validity as a separate field. Outside
of the I/O functions, OCFS2_INVALID_SLOT now means what it is supposed to.
It also is no longer tied to the type size.
This also means that only the I/O functions refer to 16bit quantities.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
The slot map code assumed a slot_map file has one block allocated.
This changes the code to I/O as many blocks as will cover max_slots.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
The old recovery map was a bitmap of node numbers. This was sufficient
for the maximum node number of 254. Going forward, we want node numbers
to be UINT32. Thus, we need a new recovery map.
Note that we can't keep track of slots here. We must write down the
node number to recovery *before* we get the locks needed to convert a
node number into a slot number.
The recovery map is now an array of unsigned ints, max_slots in size.
It moves to journal.c with the rest of recovery.
Because it needs to be initialized, we move all of recovery initialization
into a new function, ocfs2_recovery_init(). This actually cleans up
ocfs2_initialize_super() a little as well. Following on, recovery cleaup
becomes part of ocfs2_recovery_exit().
A number of node map functions are rendered obsolete and are removed.
Finally, waiting on recovery is wrapped in a function rather than naked
checks on the recovery_event. This is a cleanup from Mark.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
Just use osb_lock around the ocfs2_slot_info data. This allows us to
take the ocfs2_slot_info structure private in slot_info.c. All access
is now via accessors.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
journal.c and dlmglue.c would refresh the slot map by hand. Instead, have
the update and clear functions do the work inside slot_map.c. The eventual
result is to make ocfs2_slot_info defined privately in slot_map.c
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mfasheh@suse.com>
In some situations, ocfs2_set_nn_state might get called with sc = NULL and
valid = 0. If sc = NULL, we can't dereference it to get the o2nm_node
member. Instead, do what o2net_initialize_handshake does and use NULL when
calling o2net_reconnect_delay and o2net_idle_timeout.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
This patch addresses the bug in which the dlm_thread could go to sleep
while holding the dlm_spinlock.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Knowing the dlm recovery master helps in debugging recovery
issues. This patch prints a message on the recovery master node.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
dlm_master_request_handler() forgot to put a lockres when
dlm_assert_master_worker() failed or was skipped.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
During migration, the recovery master node may be asked to master a lockres
it may not know about. In that case, it would not only have to create a
lockres and add it to the hash, but also remember to to do the _put_
corresponding to the kref_init in dlm_init_lockres(), as soon as the migration
is completed. Yes, we don't wait for the dlm_purge_lockres() to do that
matching put. Note the ref added for it being in the hash protects the lockres
from being freed prematurely.
This patch adds that missing put, as described above, to plug a memleak.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Normally locks for remote nodes are freed when that node sends an UNLOCK
message to the master. The master node tags an DLM_UNLOCK_FREE_LOCK action
to do an extra put on the lock at the end.
However, there are times when the master node has to free the locks for the
remote nodes forcibly.
Two cases when this happens are:
1. When the master has migrated the lockres plus all locks to another node.
2. When the master is clearing all the locks of a dead node.
It was in the above two conditions that the dlm was missing the extra put.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
In ocfs2_group_add, 'cr' is a disk field of type 'ocfs2_chain_rec', and we
were putting cpu byteorder values into it. Swap things to the right endian
before storing.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
struct dlm_query_join_packet is made up of four one-byte fields. They
are effectively in big-endian order already. However, little-endian
machines swap them before putting the packet on the wire (because
query_join's response is a status, and that status is treated as a u32
on the wire). Thus, a big-endian and little-endian machines will
treat this structure differently.
The solution is to have little-endian machines swap the structure when
converting from the structure to the u32 representation.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
__dlm_print_one_lock_resource must be called with spin_lock
the res->spinlock. While in some cases, we use it without this
precondition and lead to the failure of assert_spin_locked.
So call dlm_print_one_lock_resource instead.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
fs/ocfs2/dlm/dlmdomain.c: In function 'dlm_send_join_cancels':
fs/ocfs2/dlm/dlmdomain.c:983: warning: format '%u' expects type 'unsigned int', but argument 7 has type 'long unsigned int'
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
In commit e6bafba5b4, a bug was fixed that
involved converting !x & y to !(x & y). The code below shows the same
pattern, and thus should perhaps be fixed in the same way.
This is not tested and clearly changes the semantics, so it is only
something to consider.
Signed-off-by: Julia Lawall <julia@diku.dk>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
This patch makes the needlessly global dlm_do_assert_master() static.
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
This patch makes the needlessly global ocfs2_downconvert_thread()
static.
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
This patch contains the following cleanups that are now possible:
- make the following needlessly global functions static:
- dlmglue.c:ocfs2_process_blocked_lock()
- heartbeat.c:ocfs2_node_map_init()
- #if 0 the following unused global function plus support functions:
- heartbeat.c:ocfs2_node_map_is_only()
Signed-off-by: Adrian Bunk <bunk@kernel.org>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Commit f1f540688e "optimized"
ocfs2_data_convert_worker() to "only do work for regular files".
Unfortunately, I left out a '!', which casued it to *skip* regular files.
This was hidden from testing until recently because the default data
journaling mode (data=ordered) doesn't exercise this code.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Commit 2fbe8d1ebe disabled localalloc
for local mounts. This caused issues as ocfs2 uses localalloc to
provide write locality. This patch enables localalloc for local mounts.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
This patchset moves le*_add_cpu and be*_add_cpu functions from OCFS2 to core
header (1st), converts ext3 filesystem to this API (2nd) and replaces XFS
different named functions with new ones (3rd).
There are many places where these functions will be useful. Just look at:
grep -r 'cpu_to_[ble12346]*([ble12346]*_to_cpu.*[-+]' linux-src/ Patch for
ext3 is an example how conversions will probably look like.
This patch:
- move inline functions which add native byte order variable to
little/big endian variable to core header
* le16_add_cpu(__le16 *var, u16 val)
* le32_add_cpu(__le32 *var, u32 val)
* le64_add_cpu(__le64 *var, u64 val)
* be32_add_cpu(__be32 *var, u32 val)
- add for completeness:
* be16_add_cpu(__be16 *var, u16 val)
* be64_add_cpu(__be64 *var, u64 val)
Signed-off-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Acked-by: Mark Fasheh <mark.fasheh@oracle.com>
Cc: David Chinner <dgc@sgi.com>
Cc: Timothy Shimmin <tes@sgi.com>
Cc: <linux-ext4@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, when ocfs2 nodes connect via TCP, they advertise their
compatibility level. If the versions do not match, two nodes cannot speak
to each other and they disconnect. As a result, this provides no forward or
backwards compatibility.
This patch implements a simple protocol negotiation at the dlm level by
introducing a major/minor version number scheme for entities that
communicate. Specifically, o2dlm has a major/minor version for interaction
with o2dlm on other nodes, and ocfs2 itself has a major/minor version for
interacting with the filesystem on other nodes.
This will allow rolling upgrades of ocfs2 clusters when changes to the
locking or network protocols can be done in a backwards compatible manner.
In those cases, only the minor number is changed and the negotatied protocol
minor is returned from dlm join. In the far less likely event that a
required protocol change makes backwards compatibility impossible, we simply
bump the major number.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Simplify page cache zeroing of segments of pages through 3 functions
zero_user_segments(page, start1, end1, start2, end2)
Zeros two segments of the page. It takes the position where to
start and end the zeroing which avoids length calculations and
makes code clearer.
zero_user_segment(page, start, end)
Same for a single segment.
zero_user(page, start, length)
Length variant for the case where we know the length.
We remove the zero_user_page macro. Issues:
1. Its a macro. Inline functions are preferable.
2. The KM_USER0 macro is only defined for HIGHMEM.
Having to treat this special case everywhere makes the
code needlessly complex. The parameter for zeroing is always
KM_USER0 except in one single case that we open code.
Avoiding KM_USER0 makes a lot of code not having to be dealing
with the special casing for HIGHMEM anymore. Dealing with
kmap is only necessary for HIGHMEM configurations. In those
configurations we use KM_USER0 like we do for a series of other
functions defined in highmem.h.
Since KM_USER0 is depends on HIGHMEM the existing zero_user_page
function could not be a macro. zero_user_* functions introduced
here can be be inline because that constant is not used when these
functions are called.
Also extract the flushing of the caches to be outside of the kmap.
[akpm@linux-foundation.org: fix nfs and ntfs build]
[akpm@linux-foundation.org: fix ntfs build some more]
Signed-off-by: Christoph Lameter <clameter@sgi.com>
Cc: Steven French <sfrench@us.ibm.com>
Cc: Michael Halcrow <mhalcrow@us.ibm.com>
Cc: <linux-ext4@vger.kernel.org>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Anton Altaparmakov <aia21@cantab.net>
Cc: Mark Fasheh <mark.fasheh@oracle.com>
Cc: David Chinner <dgc@sgi.com>
Cc: Michael Halcrow <mhalcrow@us.ibm.com>
Cc: Steven French <sfrench@us.ibm.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The userspace ABI of ocfs2's internal cluster stack (o2cb) was broken by
commit c60b717879 "kset: convert ocfs2 to
use kset_create". Specifically, the '/sys/o2cb' kset was moved to
'/sys/fs/o2cb'. This breaks all ocfs2 tools and renders the
filesystem unmountable.
This fix moves '/sys/o2cb' back where it belongs.
Signed-off-by: Joel Becker <joel.becker@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
If we know a buffer_head is non-null, then brelse() is unnecessary and
put_bh() can be used instead. Also, an explicit check for NULL is
unnecessary when using brelse(). This patch only covers buffer_head_io.c and
resize.c, which have recently added code which exhibits this problem.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
ocfs2_super->blocked_lock_list and ocfs2_super->blocked_lock_count have some
usage restrictions which aren't immediately obvious to anyone reading the
code. It's a good idea to document this so that we avoid making costly
mistakes in the future.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Bump the printed version to 1.5.0. This helps us quickly identify which
version of Ocfs2 a bug filer is running.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Currently the process of dlm join contains 2 steps: query join and assert join.
After query join, the joined node will set its joining_node. So if the joining
node happens to panic before the 2nd step, the joined node will fail to clear
its joining_node flag because that node isn't in the domain map. It at least
cause 2 problems.
1. All the new join request will fail. So no new node can mount the volume.
2. The joined node can't umount the volume since during the umount process it
has to wait for the joining_node to be unknown. So the umount will be hanged.
The solution is to clear the joining_node before we check the domain map.
Signed-off-by: Tao Ma <tao.ma@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Convert byte order of constant instead of variable it will be done at
compile time vs run time. Remove unused le32_and_cpu.
Signed-off-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Lots of people are having trouble with the default timeouts, which are too
low. These new values are derived from an informal survey taken on
ocfs2-users, as well as data from bug reports. This should reduce the amount
of cluster disconnects and subsequent fencing seen during normal workloads.
Signed-off-by: Sunil Mushran <sunil.mushran@oracle.com>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Explicitely convert loff_t to long long in printf. Just for sure...
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
We should use generic_file_llseek() and not default_llseek() so that
s_maxbytes gets properly checked when seeking.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
In ocfs2_read_inline_data() we should store file size in loff_t. Although
the file size should fit in 32 bits we cannot be sure in case filesystem is
corrupted.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Create separate lockdep lock classes for system file's i_mutexes. They are
used to guard allocations and similar things and thus rank differently
than i_mutex of a regular file or directory.
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>
Hook up ocfs2_flock(), using the new flock lock type in dlmglue.c. A new
mount option, "localflocks" is added so that users can revert to old
functionality as need be.
Signed-off-by: Mark Fasheh <mark.fasheh@oracle.com>