XDP_REDIRECT works by a three-step process: the bpf_redirect() and
bpf_redirect_map() helpers will lookup the target of the redirect and store
it (along with some other metadata) in a per-CPU struct bpf_redirect_info.
Next, when the program returns the XDP_REDIRECT return code, the driver
will call xdp_do_redirect() which will use the information thus stored to
actually enqueue the frame into a bulk queue structure (that differs
slightly by map type, but shares the same principle). Finally, before
exiting its NAPI poll loop, the driver will call xdp_do_flush(), which will
flush all the different bulk queues, thus completing the redirect.
Pointers to the map entries will be kept around for this whole sequence of
steps, protected by RCU. However, there is no top-level rcu_read_lock() in
the core code; instead drivers add their own rcu_read_lock() around the XDP
portions of the code, but somewhat inconsistently as Martin discovered[0].
However, things still work because everything happens inside a single NAPI
poll sequence, which means it's between a pair of calls to
local_bh_disable()/local_bh_enable(). So Paul suggested[1] that we could
document this intention by using rcu_dereference_check() with
rcu_read_lock_bh_held() as a second parameter, thus allowing sparse and
lockdep to verify that everything is done correctly.
This patch does just that: we add an __rcu annotation to the map entry
pointers and remove the various comments explaining the NAPI poll assurance
strewn through devmap.c in favour of a longer explanation in filter.c. The
goal is to have one coherent documentation of the entire flow, and rely on
the RCU annotations as a "standard" way of communicating the flow in the
map code (which can additionally be understood by sparse and lockdep).
The RCU annotation replacements result in a fairly straight-forward
replacement where READ_ONCE() becomes rcu_dereference_check(), WRITE_ONCE()
becomes rcu_assign_pointer() and xchg() and cmpxchg() gets wrapped in the
proper constructs to cast the pointer back and forth between __rcu and
__kernel address space (for the benefit of sparse). The one complication is
that xskmap has a few constructions where double-pointers are passed back
and forth; these simply all gain __rcu annotations, and only the final
reference/dereference to the inner-most pointer gets changed.
With this, everything can be run through sparse without eliciting
complaints, and lockdep can verify correctness even without the use of
rcu_read_lock() in the drivers. Subsequent patches will clean these up from
the drivers.
[0] https://lore.kernel.org/bpf/20210415173551.7ma4slcbqeyiba2r@kafai-mbp.dhcp.thefacebook.com/
[1] https://lore.kernel.org/bpf/20210419165837.GA975577@paulmck-ThinkPad-P17-Gen-1/
Signed-off-by: Toke Høiland-Jørgensen <toke@redhat.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20210624160609.292325-6-toke@redhat.com
The functions xsk_map_put() and xsk_map_inc() are simple wrappers and
as such, replace these functions with the functions bpf_map_inc() and
bpf_map_put() and remove some error testing code.
Signed-off-by: Zhu Yanjun <zyjzyj2000@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Magnus Karlsson <magnus.karlsson@intel.com>
Link: https://lore.kernel.org/bpf/1606402998-12562-1-git-send-email-yanjunz@nvidia.com
Fix possible segfault when entry is inserted into xskmap. This can
happen if the socket is in a state where the umem has been set up, the
Rx ring created but it has yet to be bound to a device. In this case
the pool has not yet been created and we cannot reference it for the
existence of the fill ring. Fix this by removing the whole
xsk_is_setup_for_bpf_map function. Once upon a time, it was used to
make sure that the Rx and fill rings where set up before the driver
could call xsk_rcv, since there are no tests for the existence of
these rings in the data path. But these days, we have a state variable
that we test instead. When it is XSK_BOUND, everything has been set up
correctly and the socket has been bound. So no reason to have the
xsk_is_setup_for_bpf_map function anymore.
Fixes: 7361f9c3d7 ("xsk: Move fill and completion rings to buffer pool")
Reported-by: syzbot+febe51d44243fbc564ee@syzkaller.appspotmail.com
Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/1599037569-26690-1-git-send-email-magnus.karlsson@intel.com
Move queue_id, dev, and need_wakeup from the umem to the
buffer pool. This so that we in a later commit can share the umem
between multiple HW queues. There is one buffer pool per dev and
queue id, so these variables should belong to the buffer pool, not
the umem. Need_wakeup is also something that is set on a per napi
level, so there is usually one per device and queue id. So move
this to the buffer pool too.
Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Björn Töpel <bjorn.topel@intel.com>
Link: https://lore.kernel.org/bpf/1598603189-32145-6-git-send-email-magnus.karlsson@intel.com
Create and free the buffer pool independently from the umem. Move
these operations that are performed on the buffer pool from the
umem create and destroy functions to new create and destroy
functions just for the buffer pool. This so that in later commits
we can instantiate multiple buffer pools per umem when sharing a
umem between HW queues and/or devices. We also erradicate the
back pointer from the umem to the buffer pool as this will not
work when we introduce the possibility to have multiple buffer
pools per umem.
Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Björn Töpel <bjorn.topel@intel.com>
Link: https://lore.kernel.org/bpf/1598603189-32145-4-git-send-email-magnus.karlsson@intel.com
Move the XSK_NEXT_PG_CONTIG_{MASK,SHIFT}, and
XDP_UMEM_USES_NEED_WAKEUP defines from xdp_sock.h to the AF_XDP
internal xsk.h file. Also, start using the BIT{,_ULL} macro instead of
explicit shifts.
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200520192103.355233-5-bjorn.topel@gmail.com
The XSKMAP is partly implemented by net/xdp/xsk.c. Move xskmap.c from
kernel/bpf/ to net/xdp/, which is the logical place for AF_XDP related
code. Also, move AF_XDP struct definitions, and function declarations
only used by AF_XDP internals into net/xdp/xsk.h.
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20200520192103.355233-3-bjorn.topel@gmail.com
This commit adds support for a new flag called need_wakeup in the
AF_XDP Tx and fill rings. When this flag is set, it means that the
application has to explicitly wake up the kernel Rx (for the bit in
the fill ring) or kernel Tx (for bit in the Tx ring) processing by
issuing a syscall. Poll() can wake up both depending on the flags
submitted and sendto() will wake up tx processing only.
The main reason for introducing this new flag is to be able to
efficiently support the case when application and driver is executing
on the same core. Previously, the driver was just busy-spinning on the
fill ring if it ran out of buffers in the HW and there were none on
the fill ring. This approach works when the application is running on
another core as it can replenish the fill ring while the driver is
busy-spinning. Though, this is a lousy approach if both of them are
running on the same core as the probability of the fill ring getting
more entries when the driver is busy-spinning is zero. With this new
feature the driver now sets the need_wakeup flag and returns to the
application. The application can then replenish the fill queue and
then explicitly wake up the Rx processing in the kernel using the
syscall poll(). For Tx, the flag is only set to one if the driver has
no outstanding Tx completion interrupts. If it has some, the flag is
zero as it will be woken up by a completion interrupt anyway.
As a nice side effect, this new flag also improves the performance of
the case where application and driver are running on two different
cores as it reduces the number of syscalls to the kernel. The kernel
tells user space if it needs to be woken up by a syscall, and this
eliminates many of the syscalls.
This flag needs some simple driver support. If the driver does not
support this, the Rx flag is always zero and the Tx flag is always
one. This makes any application relying on this feature default to the
old behaviour of not requiring any syscalls in the Rx path and always
having to call sendto() in the Tx path.
For backwards compatibility reasons, this feature has to be explicitly
turned on using a new bind flag (XDP_USE_NEED_WAKEUP). I recommend
that you always turn it on as it so far always have had a positive
performance impact.
The name and inspiration of the flag has been taken from io_uring by
Jens Axboe. Details about this feature in io_uring can be found in
http://kernel.dk/io_uring.pdf, section 8.3.
Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com>
Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
This patch adds the sock_diag interface for querying sockets from user
space. Tools like iproute2 ss(8) can use this interface to list open
AF_XDP sockets.
The user-space ABI is defined in linux/xdp_diag.h and includes netlink
request and response structs. The request can query sockets and the
response contains socket information about the rings, umems, inode and
more.
Signed-off-by: Björn Töpel <bjorn.topel@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>