xfs_start_flags can make use of is_power_of_2 to tidy up the test a little
bit.
SGI-PV: 968563
SGI-Modid: xfs-linux-melb:xfs-kern:29327a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Generally we try not to directly include linux header files in core xfs
code; xfs_linux.h is the spot for that.
SGI-PV: 968563
SGI-Modid: xfs-linux-melb:xfs-kern:29326a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Now that nobody's using it, remove xfs_physmem & friends.
SGI-PV: 968563
SGI-Modid: xfs-linux-melb:xfs-kern:29325a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Remove scaling of inode "clusters" based on machine memory; small cluster
cut-point was an unrealistic 32MB and was probably never tested.
Removes another user of xfs_physmem.
SGI-PV: 968563
SGI-Modid: xfs-linux-melb:xfs-kern:29324a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Remove sizing of logbuf size & count based on physical memory; this was
never a very good gauge as it's looking at global memory, but deciding on
sizing per-filesystem; no account is made of the total number of
filesystems, for example.
For now just take the largest "default" case, as was set for machines with
>400MB - 8 x 32k buffers. This can always be tuned higher or lower with
mount options if necessary. Removes one more user of xfs_physmem.
SGI-PV: 968563
SGI-Modid: xfs-linux-melb:xfs-kern:29323a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
m_nreadaheads in the mount struct is never used; remove it and the various
macros assigned to it. Also remove a couple other unused macros in the
same areas.
Removes one user of xfs_physmem.
SGI-PV: 968563
SGI-Modid: xfs-linux-melb:xfs-kern:29322a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
The BMBT_*BITLEN are currently defined in a complicated way depending on
XFS_NATIVE_HOST. But if all the macros are expanded they (obviously)
expand to the same value for both cases.
This patch defines the macros in the most simple way and updates the
comment describing them to remove outdated bits.
SGI-PV: 968563
SGI-Modid: xfs-linux-melb:xfs-kern:29320a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
xfs_bmbt_set_all/xfs_bmbt_disk_set_all are identical to
xfs_bmbt_set_allf/xfs_bmbt_disk_set_allf except that the former take a
xfs_bmbt_irec_t and the latter take the individual extent fields as scalar
values.
This patch reimplements xfs_bmbt_set_all/xfs_bmbt_disk_set_all as trivial
wrappers around xfs_bmbt_set_allf/xfs_bmbt_disk_set_allf and cleans up the
variable naming in xfs_bmbt_set_allf/xfs_bmbt_disk_set_allf to have some
meaning instead of one char variable names.
SGI-PV: 968563
SGI-Modid: xfs-linux-melb:xfs-kern:29319a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
currently xfs_bmbt_rec_t is used both for ondisk extents as well as
host-endian ones. This patch adds a new xfs_bmbt_rec_host_t for the native
endian ones and cleans up the fallout. There have been various endianess
issues in the tracing / debug printf code that are fixed by this patch.
SGI-PV: 968563
SGI-Modid: xfs-linux-melb:xfs-kern:29318a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
If the underlying block device suddenly stops supporting barriers, we need
to handle the -EOPNOTSUPP error in a sane manner rather than shutting
down the filesystem. If we get this error, clear the barrier flag, reissue
the I/O, and tell the world bad things are occurring.
SGI-PV: 964544
SGI-Modid: xfs-linux-melb:xfs-kern:28568a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
The new xlog_recover_do_reg_buffer checks call be16_to_cpu on di_gen which
is a 32bit value so sparse rightly complains. Fortunately the warning is
harmless because we don't care for the value, but only whether it's
non-NULL. Due to that fact we can simply kill the endian swaps on this and
the previous di_mode check entirely.
SGI-PV: 969656
SGI-Modid: xfs-linux-melb:xfs-kern:29709a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Lachlan McIlroy <lachlan@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
xfs_filestream_mount() sets up an mru cache with:
err = xfs_mru_cache_create(&mp->m_filestream, lifetime, grp_count,
(xfs_mru_cache_free_func_t)xfs_fstrm_free_func);
but that cast is causing problems...
typedef void (*xfs_mru_cache_free_func_t)(unsigned long, void*);
but:
void xfs_fstrm_free_func( xfs_ino_t ino, fstrm_item_t *item)
so on a 32-bit box, it's casting (32, 32) args into (64, 32) and I assume
it's getting garbage for *item, which subsequently causes an explosion.
With this change the filestreams xfsqa tests don't oops on my 32-bit box.
SGI-PV: 967795
SGI-Modid: xfs-linux-melb:xfs-kern:29510a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Instead of running the mru cache reaper all the time based on a timeout,
we should only run it when the cache has active objects. This allows CPUs
to sleep when there is no activity rather than be woken repeatedly just to
check if there is anything to do.
SGI-PV: 968554
SGI-Modid: xfs-linux-melb:xfs-kern:29305a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
This git mod: 77e4635ae1
converted to a "greedy" allocation interface, but for the quota hashtables
it switched from allocating XFS_QM_HASHSIZE (nr of elements)
xfs_dqhash_t's to allocating only XFS_QM_HASHSIZE *bytes* - quite a lot
smaller! Then when we converted hsize "back" to nr of elements (the
division line) hsize went to 0. This was leading to oopses when running
any quota tests on the Fedora 8 test kernel, but the problem has been
there for almost a year.
SGI-PV: 968837
SGI-Modid: xfs-linux-melb:xfs-kern:29354a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
- in xfs_probe_cluster rename the inner len to pg_len. There's no harm
here because the outer len isn't used after the inner len comes into
existence but it keeps the code clean.
- in xfs_da_do_buf remove the inner i because they don't overlap
and they are both the same type.
SGI-PV: 968555
SGI-Modid: xfs-linux-melb:xfs-kern:29311a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
- remove the != 0 inside the unlikely in ASSERT_ALWAYS because sparse now
complains about comparisons between pointers and 0
- add a standalone ASSERT implementation because defining it to
ASSERT_ALWAYS means the string is expanded before the token passing
stringification. This way we get the actual content of the
assertion in the assfail message and don't overflow sparse's
stringification buffer leading to sparse error messages.
SGI-PV: 968555
SGI-Modid: xfs-linux-melb:xfs-kern:29310a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
We can't return a masked result of a __bitwise type. Compare it to 0 first
to keep the behaviour without the warning.
SGI-PV: 968555
SGI-Modid: xfs-linux-melb:xfs-kern:29309a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Sparse now warns about comparing pointers to 0, so change all instance
where that happens to NULL instead.
SGI-PV: 968555
SGI-Modid: xfs-linux-melb:xfs-kern:29308a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Slab destructors were no longer supported after Christoph's
c59def9f22 change. They've been
BUGs for both slab and slub, and slob never supported them
either.
This rips out support for the dtor pointer from kmem_cache_create()
completely and fixes up every single callsite in the kernel (there were
about 224, not including the slab allocator definitions themselves,
or the documentation references).
Signed-off-by: Paul Mundt <lethal@linux-sh.org>
* 'for-linus' of git://oss.sgi.com:8090/xfs/xfs-2.6:
[XFS] Fix inode size update before data write in xfs_setattr
[XFS] Allow punching holes to free space when at ENOSPC
[XFS] Implement ->page_mkwrite in XFS.
[FS] Implement block_page_mkwrite.
Manually fix up conflict with Nick's VM fault handling patches in
fs/xfs/linux-2.6/xfs_file.c
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Change ->fault prototype. We now return an int, which contains
VM_FAULT_xxx code in the low byte, and FAULT_RET_xxx code in the next byte.
FAULT_RET_ code tells the VM whether a page was found, whether it has been
locked, and potentially other things. This is not quite the way he wanted
it yet, but that's changed in the next patch (which requires changes to
arch code).
This means we no longer set VM_CAN_INVALIDATE in the vma in order to say
that a page is locked which requires filemap_nopage to go away (because we
can no longer remain backward compatible without that flag), but we were
going to do that anyway.
struct fault_data is renamed to struct vm_fault as Linus asked. address
is now a void __user * that we should firmly encourage drivers not to use
without really good reason.
The page is now returned via a page pointer in the vm_fault struct.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Nonlinear mappings are (AFAIKS) simply a virtual memory concept that encodes
the virtual address -> file offset differently from linear mappings.
->populate is a layering violation because the filesystem/pagecache code
should need to know anything about the virtual memory mapping. The hitch here
is that the ->nopage handler didn't pass down enough information (ie. pgoff).
But it is more logical to pass pgoff rather than have the ->nopage function
calculate it itself anyway (because that's a similar layering violation).
Having the populate handler install the pte itself is likewise a nasty thing
to be doing.
This patch introduces a new fault handler that replaces ->nopage and
->populate and (later) ->nopfn. Most of the old mechanism is still in place
so there is a lot of duplication and nice cleanups that can be removed if
everyone switches over.
The rationale for doing this in the first place is that nonlinear mappings are
subject to the pagefault vs invalidate/truncate race too, and it seemed stupid
to duplicate the synchronisation logic rather than just consolidate the two.
After this patch, MAP_NONBLOCK no longer sets up ptes for pages present in
pagecache. Seems like a fringe functionality anyway.
NOPAGE_REFAULT is removed. This should be implemented with ->fault, and no
users have hit mainline yet.
[akpm@linux-foundation.org: cleanup]
[randy.dunlap@oracle.com: doc. fixes for readahead]
[akpm@linux-foundation.org: build fix]
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Cc: Mark Fasheh <mark.fasheh@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix the race between invalidate_inode_pages and do_no_page.
Andrea Arcangeli identified a subtle race between invalidation of pages from
pagecache with userspace mappings, and do_no_page.
The issue is that invalidation has to shoot down all mappings to the page,
before it can be discarded from the pagecache. Between shooting down ptes to
a particular page, and actually dropping the struct page from the pagecache,
do_no_page from any process might fault on that page and establish a new
mapping to the page just before it gets discarded from the pagecache.
The most common case where such invalidation is used is in file truncation.
This case was catered for by doing a sort of open-coded seqlock between the
file's i_size, and its truncate_count.
Truncation will decrease i_size, then increment truncate_count before
unmapping userspace pages; do_no_page will read truncate_count, then find the
page if it is within i_size, and then check truncate_count under the page
table lock and back out and retry if it had subsequently been changed (ptl
will serialise against unmapping, and ensure a potentially updated
truncate_count is actually visible).
Complexity and documentation issues aside, the locking protocol fails in the
case where we would like to invalidate pagecache inside i_size. do_no_page
can come in anytime and filemap_nopage is not aware of the invalidation in
progress (as it is when it is outside i_size). The end result is that
dangling (->mapping == NULL) pages that appear to be from a particular file
may be mapped into userspace with nonsense data. Valid mappings to the same
place will see a different page.
Andrea implemented two working fixes, one using a real seqlock, another using
a page->flags bit. He also proposed using the page lock in do_no_page, but
that was initially considered too heavyweight. However, it is not a global or
per-file lock, and the page cacheline is modified in do_no_page to increment
_count and _mapcount anyway, so a further modification should not be a large
performance hit. Scalability is not an issue.
This patch implements this latter approach. ->nopage implementations return
with the page locked if it is possible for their underlying file to be
invalidated (in that case, they must set a special vm_flags bit to indicate
so). do_no_page only unlocks the page after setting up the mapping
completely. invalidation is excluded because it holds the page lock during
invalidation of each page (and ensures that the page is not mapped while
holding the lock).
This also allows significant simplifications in do_no_page, because we have
the page locked in the right place in the pagecache from the start.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When changing the file size by a truncate() call, we log the change in the
inode size. However, we do not flush any outstanding data that might not
have been written to disk, thereby violating the data/inode size update
order. This can leave files full of NULLs on crash.
Hence if we are truncating the file, flush any unwritten data that may lie
between the curret on disk inode size and the new inode size that is being
logged to ensure that ordering is preserved.
SGI-PV: 966308
SGI-Modid: xfs-linux-melb:xfs-kern:29174a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Make the free file space transaction able to dip into the reserved blocks
to ensure that we can successfully free blocks when the filesystem is at
ENOSPC.
SGI-PV: 967788
SGI-Modid: xfs-linux-melb:xfs-kern:29167a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Vlad Apostolov <vapo@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Hook XFS up to ->page_mkwrite to ensure that we know about mmap pages
being written to. This allows use to do correct delayed allocation and
ENOSPC checking as well as remap unwritten extents so that they get
converted correctly during writeback. This is done via the generic
block_page_mkwrite code.
SGI-PV: 940392
SGI-Modid: xfs-linux-melb:xfs-kern:29149a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
currently the export_operation structure and helpers related to it are in
fs.h. fs.h is already far too large and there are very few places needing the
export bits, so split them off into a separate header.
[akpm@linux-foundation.org: fix cifs build]
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Neil Brown <neilb@suse.de>
Cc: Steven French <sfrench@us.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently, the freezer treats all tasks as freezable, except for the kernel
threads that explicitly set the PF_NOFREEZE flag for themselves. This
approach is problematic, since it requires every kernel thread to either
set PF_NOFREEZE explicitly, or call try_to_freeze(), even if it doesn't
care for the freezing of tasks at all.
It seems better to only require the kernel threads that want to or need to
be frozen to use some freezer-related code and to remove any
freezer-related code from the other (nonfreezable) kernel threads, which is
done in this patch.
The patch causes all kernel threads to be nonfreezable by default (ie. to
have PF_NOFREEZE set by default) and introduces the set_freezable()
function that should be called by the freezable kernel threads in order to
unset PF_NOFREEZE. It also makes all of the currently freezable kernel
threads call set_freezable(), so it shouldn't cause any (intentional)
change of behaviour to appear. Additionally, it updates documentation to
describe the freezing of tasks more accurately.
[akpm@linux-foundation.org: build fixes]
Signed-off-by: Rafael J. Wysocki <rjw@sisk.pl>
Acked-by: Nigel Cunningham <nigel@nigel.suspend2.net>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Oleg Nesterov <oleg@tv-sign.ru>
Cc: Gautham R Shenoy <ego@in.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
I can never remember what the function to register to receive VM pressure
is called. I have to trace down from __alloc_pages() to find it.
It's called "set_shrinker()", and it needs Your Help.
1) Don't hide struct shrinker. It contains no magic.
2) Don't allocate "struct shrinker". It's not helpful.
3) Call them "register_shrinker" and "unregister_shrinker".
4) Call the function "shrink" not "shrinker".
5) Reduce the 17 lines of waffly comments to 13, but document it properly.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: David Chinner <dgc@sgi.com>
Cc: Trond Myklebust <trond.myklebust@fys.uio.no>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 32bit struct xfs_fsop_bulkreq has different size and layout of
members, no matter the alignment. Move the code out of the #else
branch (why was it there in the first place?). Define _32 variants of
the ioctl constants.
* 32bit struct xfs_bstat is different because of time_t and on
i386 because of different padding. Make xfs_bulkstat_one() accept a
custom "output formatter" in the private_data argument which takes care
of the xfs_bulkstat_one_compat() that takes care of the different
layout in the compat case.
* i386 struct xfs_inogrp has different padding.
Add a similar "output formatter" mecanism to xfs_inumbers().
SGI-PV: 967354
SGI-Modid: xfs-linux-melb:xfs-kern:29102a
Signed-off-by: Michal Marek <mmarek@suse.cz>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
32bit struct xfs_fsop_handlereq has different size and offsets (due to
pointers). TODO: case XFS_IOC_{FSSETDM,ATTRLIST,ATTRMULTI}_BY_HANDLE still
not handled.
SGI-PV: 967354
SGI-Modid: xfs-linux-melb:xfs-kern:29101a
Signed-off-by: Michal Marek <mmarek@suse.cz>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
i386 struct xfs_fsop_geom_v1 has no padding after the last member, so the
size is different.
SGI-PV: 967354
SGI-Modid: xfs-linux-melb:xfs-kern:29100a
Signed-off-by: Michal Marek <mmarek@suse.cz>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Remove the hardcoded "fnames" for tracing, and just embed them in tracing
macros via __FUNCTION__. Kills a lot of #ifdefs too.
SGI-PV: 967353
SGI-Modid: xfs-linux-melb:xfs-kern:29099a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Avoid using a special "zero inode" as the parent of the quota inode as
this can confuse the filestreams code into thinking the quota inode has a
parent. We do not want the quota inode to follow filestreams allocation
rules, so pass a NULL as the parent inode and detect this condition when
doing stream associations.
SGI-PV: 964469
SGI-Modid: xfs-linux-melb:xfs-kern:29098a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
In media spaces, video is often stored in a frame-per-file format. When
dealing with uncompressed realtime HD video streams in this format, it is
crucial that files do not get fragmented and that multiple files a placed
contiguously on disk.
When multiple streams are being ingested and played out at the same time,
it is critical that the filesystem does not cross the streams and
interleave them together as this creates seek and readahead cache miss
latency and prevents both ingest and playout from meeting frame rate
targets.
This patch set creates a "stream of files" concept into the allocator to
place all the data from a single stream contiguously on disk so that RAID
array readahead can be used effectively. Each additional stream gets
placed in different allocation groups within the filesystem, thereby
ensuring that we don't cross any streams. When an AG fills up, we select a
new AG for the stream that is not in use.
The core of the functionality is the stream tracking - each inode that we
create in a directory needs to be associated with the directories' stream.
Hence every time we create a file, we look up the directories' stream
object and associate the new file with that object.
Once we have a stream object for a file, we use the AG that the stream
object point to for allocations. If we can't allocate in that AG (e.g. it
is full) we move the entire stream to another AG. Other inodes in the same
stream are moved to the new AG on their next allocation (i.e. lazy
update).
Stream objects are kept in a cache and hold a reference on the inode.
Hence the inode cannot be reclaimed while there is an outstanding stream
reference. This means that on unlink we need to remove the stream
association and we also need to flush all the associations on certain
events that want to reclaim all unreferenced inodes (e.g. filesystem
freeze).
SGI-PV: 964469
SGI-Modid: xfs-linux-melb:xfs-kern:29096a
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Barry Naujok <bnaujok@sgi.com>
Signed-off-by: Donald Douwsma <donaldd@sgi.com>
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
Signed-off-by: Vlad Apostolov <vapo@sgi.com>
Appease gcc in regards to "warning: 'rtx' is used uninitialized in
this function".
SGI-PV: 907752
SGI-Modid: xfs-linux-melb:xfs-kern:29007a
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Tim Shimmin <tes@sgi.com>
A check for file_count is always a bad idea. Linux has the ->release
method to deal with cleanups on last close and ->flush is only for the
very rare case where we want to perform an operation on every drop of a
reference to a file struct.
This patch gets rid of vop_close and surrounding code in favour of simply
doing the page flushing from ->release.
SGI-PV: 966562
SGI-Modid: xfs-linux-melb:xfs-kern:28952a
Signed-off-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>
xfs_count_bits is only called once, and is then compared to 0. IOW, what
it really wants to know is, is the bitmap empty. This can be done more
simply, certainly.
SGI-PV: 966503
SGI-Modid: xfs-linux-melb:xfs-kern:28944a
Signed-off-by: Eric Sandeen <sandeen@sandeen.net>
Signed-off-by: David Chinner <dgc@sgi.com>
Signed-off-by: Tim Shimmin <tes@sgi.com>