Export the constant arrays fk, ck, sbox of the SM4 algorithm, and
add the 'crypto_sm4_' prefix, where sbox is used in the SM4 NEON
implementation for the tbl/tbx instruction to replace the S-BOX,
and the fk, ck arrays are used in the SM4 CE implementation. Use
the sm4ekey instruction to speed up key expansion operations.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
asym_tpm keys are tied to TPM v1.2, which uses outdated crypto and has
been deprecated in favor of TPM v2.0 for over 7 years. A very quick
look at this code also immediately found some memory safety bugs
(https://lore.kernel.org/r/20220113235440.90439-2-ebiggers@kernel.org).
Note that this code is reachable by unprivileged users.
According to Jarkko (one of the keyrings subsystem maintainers), this
code has no practical use cases, and he isn't willing to maintain it
(https://lore.kernel.org/r/YfFZPbKkgYJGWu1Q@iki.fi).
Therefore, let's remove it.
Note that this feature didn't have any documentation or tests, so we
don't need to worry about removing those.
Cc: David Howells <dhowells@redhat.com>
Cc: Denis Kenzior <denkenz@gmail.com>
Cc: James Morris <jmorris@namei.org>
Cc: Jarkko Sakkinen <jarkko@kernel.org>
Cc: Marcel Holtmann <marcel@holtmann.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Dereferencing a misaligned pointer is undefined behavior in C, and may
result in codegen on architectures such as ARM that trigger alignments
traps and expensive fixups in software.
Instead, use the get_aligned()/put_aligned() accessors, which are cheap
or even completely free when CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS=y.
In the converse case, the prior alignment checks ensure that the casts
are safe, and so no unaligned accessors are necessary.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
A subsequent commit will introduce "dh" wrapping templates of the form
"ffdhe2048(dh)", "ffdhe3072(dh)" and so on in order to provide built-in
support for the well-known safe-prime ffdhe group parameters specified in
RFC 7919.
Those templates' ->set_secret() will wrap the inner "dh" implementation's
->set_secret() and set the ->p and ->g group parameters as appropriate on
the way inwards. More specifically,
- A ffdheXYZ(dh) user would call crypto_dh_encode() on a struct dh instance
having ->p == ->g == NULL as well as ->p_size == ->g_size == 0 and pass
the resulting buffer to the outer ->set_secret().
- This outer ->set_secret() would then decode the struct dh via
crypto_dh_decode_key(), set ->p, ->g, ->p_size as well as ->g_size as
appropriate for the group in question and encode the struct dh again
before passing it further down to the inner "dh"'s ->set_secret().
The problem is that crypto_dh_decode_key() implements some basic checks
which would reject parameter sets with ->p_size == 0 and thus, the ffdheXYZ
templates' ->set_secret() cannot use it as-is for decoding the passed
buffer. As the inner "dh"'s ->set_secret() will eventually conduct said
checks on the final parameter set anyway, the outer ->set_secret() really
only needs the decoding functionality.
Split out the pure struct dh decoding part from crypto_dh_decode_key() into
the new __crypto_dh_decode_key().
__crypto_dh_decode_key() gets defined in crypto/dh_helper.c, but will have
to get called from crypto/dh.c and thus, its declaration must be somehow
made available to the latter. Strictly speaking, __crypto_dh_decode_key()
is internal to the dh_generic module, yet it would be a bit over the top
to introduce a new header like e.g. include/crypto/internal/dh.h
containing just a single prototype. Add the __crypto_dh_decode_key()
declaration to include/crypto/dh.h instead.
Provide a proper kernel-doc annotation, even though
__crypto_dh_decode_key() is purposedly not on the function list specified
in Documentation/crypto/api-kpp.rst.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
struct dh contains several pointer members corresponding to DH parameters:
->key, ->p and ->g. A subsequent commit will introduce "dh" wrapping
templates of the form "ffdhe2048(dh)", "ffdhe3072(dh)" and so on in order
to provide built-in support for the well-known safe-prime ffdhe group
parameters specified in RFC 7919. These templates will need to set the
group parameter related members of the (serialized) struct dh instance
passed to the inner "dh" kpp_alg instance, i.e. ->p and ->g, to some
constant, static storage arrays.
Turn the struct dh pointer members' types into "pointer to const" in
preparation for this.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The only current user of the DH KPP algorithm, the
keyctl(KEYCTL_DH_COMPUTE) syscall, doesn't set the domain parameter ->q
in struct dh. Remove it and any associated (de)serialization code in
crypto_dh_encode_key() and crypto_dh_decode_key. Adjust the encoded
->secret values in testmgr's DH test vectors accordingly.
Note that the dh-generic implementation would have initialized its
struct dh_ctx's ->q from the decoded struct dh's ->q, if present. If this
struct dh_ctx's ->q would ever have been non-NULL, it would have enabled a
full key validation as specified in NIST SP800-56A in dh_is_pubkey_valid().
However, as outlined above, ->q is always NULL in practice and the full key
validation code is effectively dead. A later patch will make
dh_is_pubkey_valid() to calculate Q from P on the fly, if possible, so
don't remove struct dh_ctx's ->q now, but leave it there until that has
happened.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The upcoming support for the RFC 7919 ffdhe group parameters will be
made available in the form of templates like "ffdhe2048(dh)",
"ffdhe3072(dh)" and so on. Template instantiations thereof would wrap the
inner "dh" kpp_alg and also provide kpp_alg services to the outside again.
The primitves needed for providing kpp_alg services from template instances
have been introduced with the previous patch. Continue this work now and
implement everything needed for enabling template instances to make use
of inner KPP algorithms like "dh".
More specifically, define a struct crypto_kpp_spawn in close analogy to
crypto_skcipher_spawn, crypto_shash_spawn and alike. Implement a
crypto_grab_kpp() and crypto_drop_kpp() pair for binding such a spawn to
some inner kpp_alg and for releasing it respectively. Template
implementations can instantiate transforms from the underlying kpp_alg by
means of the new crypto_spawn_kpp(). Finally, provide the
crypto_spawn_kpp_alg() helper for accessing a spawn's underlying kpp_alg
during template instantiation.
Annotate everything with proper kernel-doc comments, even though
include/crypto/internal/kpp.h is not considered for the generated docs.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The upcoming support for the RFC 7919 ffdhe group parameters will be
made available in the form of templates like "ffdhe2048(dh)",
"ffdhe3072(dh)" and so on. Template instantiations thereof would wrap the
inner "dh" kpp_alg and also provide kpp_alg services to the outside again.
Furthermore, it might be perhaps be desirable to provide KDF templates in
the future, which would similarly wrap an inner kpp_alg and present
themselves to the outside as another kpp_alg, transforming the shared
secret on its way out.
Introduce the bits needed for supporting KPP template instances. Everything
related to inner kpp_alg spawns potentially being held by such template
instances will be deferred to a subsequent patch in order to facilitate
review.
Define struct struct kpp_instance in close analogy to the already existing
skcipher_instance, shash_instance and alike, but wrapping a struct kpp_alg.
Implement the new kpp_register_instance() template instance registration
primitive. Provide some helper functions for
- going back and forth between a generic struct crypto_instance and the new
struct kpp_instance,
- obtaining the instantiating kpp_instance from a crypto_kpp transform and
- for accessing a given kpp_instance's implementation specific context
data.
Annotate everything with proper kernel-doc comments, even though
include/crypto/internal/kpp.h is not considered for the generated docs.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
blake2s_compress_generic is weakly aliased by blake2s_compress. The
current harness for function selection uses a function pointer, which is
ordinarily inlined and resolved at compile time. But when Clang's CFI is
enabled, CFI still triggers when making an indirect call via a weak
symbol. This seems like a bug in Clang's CFI, as though it's bucketing
weak symbols and strong symbols differently. It also only seems to
trigger when "full LTO" mode is used, rather than "thin LTO".
[ 0.000000][ T0] Kernel panic - not syncing: CFI failure (target: blake2s_compress_generic+0x0/0x1444)
[ 0.000000][ T0] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.16.0-mainline-06981-g076c855b846e #1
[ 0.000000][ T0] Hardware name: MT6873 (DT)
[ 0.000000][ T0] Call trace:
[ 0.000000][ T0] dump_backtrace+0xfc/0x1dc
[ 0.000000][ T0] dump_stack_lvl+0xa8/0x11c
[ 0.000000][ T0] panic+0x194/0x464
[ 0.000000][ T0] __cfi_check_fail+0x54/0x58
[ 0.000000][ T0] __cfi_slowpath_diag+0x354/0x4b0
[ 0.000000][ T0] blake2s_update+0x14c/0x178
[ 0.000000][ T0] _extract_entropy+0xf4/0x29c
[ 0.000000][ T0] crng_initialize_primary+0x24/0x94
[ 0.000000][ T0] rand_initialize+0x2c/0x6c
[ 0.000000][ T0] start_kernel+0x2f8/0x65c
[ 0.000000][ T0] __primary_switched+0xc4/0x7be4
[ 0.000000][ T0] Rebooting in 5 seconds..
Nonetheless, the function pointer method isn't so terrific anyway, so
this patch replaces it with a simple boolean, which also gets inlined
away. This successfully works around the Clang bug.
In general, I'm not too keen on all of the indirection involved here; it
clearly does more harm than good. Hopefully the whole thing can get
cleaned up down the road when lib/crypto is overhauled more
comprehensively. But for now, we go with a simple bandaid.
Fixes: 6048fdcc5f ("lib/crypto: blake2s: include as built-in")
Link: https://github.com/ClangBuiltLinux/linux/issues/1567
Reported-by: Miles Chen <miles.chen@mediatek.com>
Tested-by: Miles Chen <miles.chen@mediatek.com>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Tested-by: John Stultz <john.stultz@linaro.org>
Acked-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
SM3 generic library is stand-alone implementation, it is necessary
making the sm3-generic implementation to depends on SM3 library.
The functions crypto_sm3_*() provided by sm3_generic is no longer
exported.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Stand-alone implementation of the SM3 algorithm. It is designed
to have as little dependencies as possible. In other cases you
should generally use the hash APIs from include/crypto/hash.h.
Especially when hashing large amounts of data as those APIs may
be hw-accelerated. In the new SM3 stand-alone library,
sm3_transform() has also been optimized, instead of simply using
the code in sm3_generic.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Reviewed-by: Gilad Ben-Yossef <gilad@benyossef.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Basically nobody should use blake2s in an HMAC construction; it already
has a keyed variant. But unfortunately for historical reasons, Noise,
used by WireGuard, uses HKDF quite strictly, which means we have to use
this. Because this really shouldn't be used by others, this commit moves
it into wireguard's noise.c locally, so that kernels that aren't using
WireGuard don't get this superfluous code baked in. On m68k systems,
this shaves off ~314 bytes.
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Tested-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
-----BEGIN PGP SIGNATURE-----
iIgEABYIADAWIQRE6pSOnaBC00OEHEIaerohdGur0gUCYdzf7hIcamFya2tvQGtl
cm5lbC5vcmcACgkQGnq6IXRrq9IA/AEA2sX9fNNYSYnUwvi/Ju+Y8BgW4pA+GvA0
L8iSuUkWdssA/iQFdQ3vyDK0CI56G1jerKMyT7o8QEuJmUYogTRV7+oA
=7q7g
-----END PGP SIGNATURE-----
Merge tag 'tpmdd-next-v5.17-fixed' of git://git.kernel.org/pub/scm/linux/kernel/git/jarkko/linux-tpmdd
Pull TPM updates from Jarkko Sakkinen:
"Other than bug fixes for TPM, this includes a patch for asymmetric
keys to allow to look up and verify with self-signed certificates
(keys without so called AKID - Authority Key Identifier) using a new
"dn:" prefix in the query"
* tag 'tpmdd-next-v5.17-fixed' of git://git.kernel.org/pub/scm/linux/kernel/git/jarkko/linux-tpmdd:
lib: remove redundant assignment to variable ret
tpm: fix NPE on probe for missing device
tpm: fix potential NULL pointer access in tpm_del_char_device
tpm: Add Upgrade/Reduced mode support for TPM2 modules
char: tpm: cr50: Set TPM_FIRMWARE_POWER_MANAGED based on device property
keys: X.509 public key issuer lookup without AKID
tpm_tis: Fix an error handling path in 'tpm_tis_core_init()'
tpm: tpm_tis_spi_cr50: Add default RNG quality
tpm/st33zp24: drop unneeded over-commenting
tpm: add request_locality before write TPM_INT_ENABLE
Pull crypto updates from Herbert Xu:
"Algorithms:
- Drop alignment requirement for data in aesni
- Use synchronous seeding from the /dev/random in DRBG
- Reseed nopr DRBGs every 5 minutes from /dev/random
- Add KDF algorithms currently used by security/DH
- Fix lack of entropy on some AMD CPUs with jitter RNG
Drivers:
- Add support for the D1 variant in sun8i-ce
- Add SEV_INIT_EX support in ccp
- PFVF support for GEN4 host driver in qat
- Compression support for GEN4 devices in qat
- Add cn10k random number generator support"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (145 commits)
crypto: af_alg - rewrite NULL pointer check
lib/mpi: Add the return value check of kcalloc()
crypto: qat - fix definition of ring reset results
crypto: hisilicon - cleanup warning in qm_get_qos_value()
crypto: kdf - select SHA-256 required for self-test
crypto: x86/aesni - don't require alignment of data
crypto: ccp - remove unneeded semicolon
crypto: stm32/crc32 - Fix kernel BUG triggered in probe()
crypto: s390/sha512 - Use macros instead of direct IV numbers
crypto: sparc/sha - remove duplicate hash init function
crypto: powerpc/sha - remove duplicate hash init function
crypto: mips/sha - remove duplicate hash init function
crypto: sha256 - remove duplicate generic hash init function
crypto: jitter - add oversampling of noise source
MAINTAINERS: update SEC2 driver maintainers list
crypto: ux500 - Use platform_get_irq() to get the interrupt
crypto: hisilicon/qm - disable qm clock-gating
crypto: omap-aes - Fix broken pm_runtime_and_get() usage
MAINTAINERS: update caam crypto driver maintainers list
crypto: octeontx2 - prevent underflow in get_cores_bmap()
...
There are non-root X.509 v3 certificates in use out there that contain
no Authority Key Identifier extension (RFC5280 section 4.2.1.1). For
trust verification purposes the kernel asymmetric key type keeps two
struct asymmetric_key_id instances that the key can be looked up by,
and another two to look up the key's issuer. The x509 public key type
and the PKCS7 type generate them from the SKID and AKID extensions in
the certificate. In effect current code has no way to look up the
issuer certificate for verification without the AKID.
To remedy this, add a third asymmetric_key_id blob to the arrays in
both asymmetric_key_id's (for certficate subject) and in the
public_keys_signature's auth_ids (for issuer lookup), using just raw
subject and issuer DNs from the certificate. Adapt
asymmetric_key_ids() and its callers to use the third ID for lookups
when none of the other two are available. Attempt to keep the logic
intact when they are, to minimise behaviour changes. Adapt the
restrict functions' NULL-checks to include that ID too. Do not modify
the lookup logic in pkcs7_verify.c, the AKID extensions are still
required there.
Internally use a new "dn:" prefix to the search specifier string
generated for the key lookup in find_asymmetric_key(). This tells
asymmetric_key_match_preparse to only match the data against the raw
DN in the third ID and shouldn't conflict with search specifiers
already in use.
In effect implement what (2) in the struct asymmetric_key_id comment
(include/keys/asymmetric-type.h) is probably talking about already, so
do not modify that comment. It is also how "openssl verify" looks up
issuer certificates without the AKID available. Lookups by the raw
DN are unambiguous only provided that the CAs respect the condition in
RFC5280 4.2.1.1 that the AKID may only be omitted if the CA uses
a single signing key.
The following is an example of two things that this change enables.
A self-signed ceritficate is generated following the example from
https://letsencrypt.org/docs/certificates-for-localhost/, and can be
looked up by an identifier and verified against itself by linking to a
restricted keyring -- both things not possible before due to the missing
AKID extension:
$ openssl req -x509 -out localhost.crt -outform DER -keyout localhost.key \
-newkey rsa:2048 -nodes -sha256 \
-subj '/CN=localhost' -extensions EXT -config <( \
echo -e "[dn]\nCN=localhost\n[req]\ndistinguished_name = dn\n[EXT]\n" \
"subjectAltName=DNS:localhost\nkeyUsage=digitalSignature\n" \
"extendedKeyUsage=serverAuth")
$ keyring=`keyctl newring test @u`
$ trusted=`keyctl padd asymmetric trusted $keyring < localhost.crt`; \
echo $trusted
39726322
$ keyctl search $keyring asymmetric dn:3112301006035504030c096c6f63616c686f7374
39726322
$ keyctl restrict_keyring $keyring asymmetric key_or_keyring:$trusted
$ keyctl padd asymmetric verified $keyring < localhost.crt
Signed-off-by: Andrew Zaborowski <andrew.zaborowski@intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Previously, the ChaCha constants for the primary pool were only
initialized in crng_initialize_primary(), called by rand_initialize().
However, some randomness is actually extracted from the primary pool
beforehand, e.g. by kmem_cache_create(). Therefore, statically
initialize the ChaCha constants for the primary pool.
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: <linux-crypto@vger.kernel.org>
Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
In preparation for using blake2s in the RNG, we change the way that it
is wired-in to the build system. Instead of using ifdefs to select the
right symbol, we use weak symbols. And because ARM doesn't need the
generic implementation, we make the generic one default only if an arch
library doesn't need it already, and then have arch libraries that do
need it opt-in. So that the arch libraries can remain tristate rather
than bool, we then split the shash part from the glue code.
Acked-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Cc: linux-kbuild@vger.kernel.org
Cc: linux-crypto@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
When kernel.h is used in the headers it adds a lot into dependency hell,
especially when there are circular dependencies are involved.
Replace kernel.h inclusion with the list of what is really being used.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
SP800-108 defines three KDFs - this patch provides the counter KDF
implementation.
The KDF is implemented as a service function where the caller has to
maintain the hash / HMAC state. Apart from this hash/HMAC state, no
additional state is required to be maintained by either the caller or
the KDF implementation.
The key for the KDF is set with the crypto_kdf108_setkey function which
is intended to be invoked before the caller requests a key derivation
operation via crypto_kdf108_ctr_generate.
SP800-108 allows the use of either a HMAC or a hash as crypto primitive
for the KDF. When a HMAC primtive is intended to be used,
crypto_kdf108_setkey must be used to set the HMAC key. Otherwise, for a
hash crypto primitve crypto_kdf108_ctr_generate can be used immediately
after allocating the hash handle.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
As a preparation to add the key derivation implementations, the
self-test data structure definition and the common test code is made
available.
The test framework follows the testing applied by the NIST CAVP test
approach.
The structure of the test code follows the implementations found in
crypto/testmgr.c|h. In case the KDF implementations will be made
available via a kernel crypto API templates, the test code is intended
to be merged into testmgr.c|h.
Signed-off-by: Stephan Mueller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
In contrast to the fully prediction resistant 'pr' DRBGs, the 'nopr'
variants get seeded once at boot and reseeded only rarely thereafter,
namely only after 2^20 requests have been served each. AFAICT, this
reseeding based on the number of requests served is primarily motivated
by information theoretic considerations, c.f. NIST SP800-90Ar1,
sec. 8.6.8 ("Reseeding").
However, given the relatively large seed lifetime of 2^20 requests, the
'nopr' DRBGs can hardly be considered to provide any prediction resistance
whatsoever, i.e. to protect against threats like side channel leaks of the
internal DRBG state (think e.g. leaked VM snapshots). This is expected and
completely in line with the 'nopr' naming, but as e.g. the
"drbg_nopr_hmac_sha512" implementation is potentially being used for
providing the "stdrng" and thus, the crypto_default_rng serving the
in-kernel crypto, it would certainly be desirable to achieve at least the
same level of prediction resistance as get_random_bytes() does.
Note that the chacha20 rngs underlying get_random_bytes() get reseeded
every CRNG_RESEED_INTERVAL == 5min: the secondary, per-NUMA node rngs from
the primary one and the primary rng in turn from the entropy pool, provided
sufficient entropy is available.
The 'nopr' DRBGs do draw randomness from get_random_bytes() for their
initial seed already, so making them to reseed themselves periodically from
get_random_bytes() in order to let them benefit from the latter's
prediction resistance is not such a big change conceptually.
In principle, it would have been also possible to make the 'nopr' DRBGs to
periodically invoke a full reseeding operation, i.e. to also consider the
jitterentropy source (if enabled) in addition to get_random_bytes() for the
seed value. However, get_random_bytes() is relatively lightweight as
compared to the jitterentropy generation process and thus, even though the
'nopr' reseeding is supposed to get invoked infrequently, it's IMO still
worthwhile to avoid occasional latency spikes for drbg_generate() and
stick to get_random_bytes() only. As an additional remark, note that
drawing randomness from the non-SP800-90B-conforming get_random_bytes()
only won't adversely affect SP800-90A conformance either: the very same is
being done during boot via drbg_seed_from_random() already once
rng_is_initialized() flips to true and it follows that if the DRBG
implementation does conform to SP800-90A now, it will continue to do so.
Make the 'nopr' DRBGs to reseed themselves periodically from
get_random_bytes() every CRNG_RESEED_INTERVAL == 5min.
More specifically, introduce a new member ->last_seed_time to struct
drbg_state for recording in units of jiffies when the last seeding
operation had taken place. Make __drbg_seed() maintain it and let
drbg_generate() invoke a reseed from get_random_bytes() via
drbg_seed_from_random() if more than 5min have passed by since the last
seeding operation. Be careful to not to reseed if in testing mode though,
or otherwise the drbg related tests in crypto/testmgr.c would fail to
reproduce the expected output.
In order to keep the formatting clean in drbg_generate() wrap the logic
for deciding whether or not a reseed is due in a new helper,
drbg_nopr_reseed_interval_elapsed().
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Stephan Müller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
get_random_bytes() usually hasn't full entropy available by the time DRBG
instances are first getting seeded from it during boot. Thus, the DRBG
implementation registers random_ready_callbacks which would in turn
schedule some work for reseeding the DRBGs once get_random_bytes() has
sufficient entropy available.
For reference, the relevant history around handling DRBG (re)seeding in
the context of a not yet fully seeded get_random_bytes() is:
commit 16b369a91d ("random: Blocking API for accessing
nonblocking_pool")
commit 4c7879907e ("crypto: drbg - add async seeding operation")
commit 205a525c33 ("random: Add callback API for random pool
readiness")
commit 57225e6797 ("crypto: drbg - Use callback API for random
readiness")
commit c2719503f5 ("random: Remove kernel blocking API")
However, some time later, the initialization state of get_random_bytes()
has been made queryable via rng_is_initialized() introduced with commit
9a47249d44 ("random: Make crng state queryable"). This primitive now
allows for streamlining the DRBG reseeding from get_random_bytes() by
replacing that aforementioned asynchronous work scheduling from
random_ready_callbacks with some simpler, synchronous code in
drbg_generate() next to the related logic already present therein. Apart
from improving overall code readability, this change will also enable DRBG
users to rely on wait_for_random_bytes() for ensuring that the initial
seeding has completed, if desired.
The previous patches already laid the grounds by making drbg_seed() to
record at each DRBG instance whether it was being seeded at a time when
rng_is_initialized() still had been false as indicated by
->seeded == DRBG_SEED_STATE_PARTIAL.
All that remains to be done now is to make drbg_generate() check for this
condition, determine whether rng_is_initialized() has flipped to true in
the meanwhile and invoke a reseed from get_random_bytes() if so.
Make this move:
- rename the former drbg_async_seed() work handler, i.e. the one in charge
of reseeding a DRBG instance from get_random_bytes(), to
"drbg_seed_from_random()",
- change its signature as appropriate, i.e. make it take a struct
drbg_state rather than a work_struct and change its return type from
"void" to "int" in order to allow for passing error information from
e.g. its __drbg_seed() invocation onwards to callers,
- make drbg_generate() invoke this drbg_seed_from_random() once it
encounters a DRBG instance with ->seeded == DRBG_SEED_STATE_PARTIAL by
the time rng_is_initialized() has flipped to true and
- prune everything related to the former, random_ready_callback based
mechanism.
As drbg_seed_from_random() is now getting invoked from drbg_generate() with
the ->drbg_mutex being held, it must not attempt to recursively grab it
once again. Remove the corresponding mutex operations from what is now
drbg_seed_from_random(). Furthermore, as drbg_seed_from_random() can now
report errors directly to its caller, there's no need for it to temporarily
switch the DRBG's ->seeded state to DRBG_SEED_STATE_UNSEEDED so that a
failure of the subsequently invoked __drbg_seed() will get signaled to
drbg_generate(). Don't do it then.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Currently, the DRBG implementation schedules asynchronous works from
random_ready_callbacks for reseeding the DRBG instances with output from
get_random_bytes() once the latter has sufficient entropy available.
However, as the get_random_bytes() initialization state can get queried by
means of rng_is_initialized() now, there is no real need for this
asynchronous reseeding logic anymore and it's better to keep things simple
by doing it synchronously when needed instead, i.e. from drbg_generate()
once rng_is_initialized() has flipped to true.
Of course, for this to work, drbg_generate() would need some means by which
it can tell whether or not rng_is_initialized() has flipped to true since
the last seeding from get_random_bytes(). Or equivalently, whether or not
the last seed from get_random_bytes() has happened when
rng_is_initialized() was still evaluating to false.
As it currently stands, enum drbg_seed_state allows for the representation
of two different DRBG seeding states: DRBG_SEED_STATE_UNSEEDED and
DRBG_SEED_STATE_FULL. The former makes drbg_generate() to invoke a full
reseeding operation involving both, the rather expensive jitterentropy as
well as the get_random_bytes() randomness sources. The DRBG_SEED_STATE_FULL
state on the other hand implies that no reseeding at all is required for a
!->pr DRBG variant.
Introduce the new DRBG_SEED_STATE_PARTIAL state to enum drbg_seed_state for
representing the condition that a DRBG was being seeded when
rng_is_initialized() had still been false. In particular, this new state
implies that
- the given DRBG instance has been fully seeded from the jitterentropy
source (if enabled)
- and drbg_generate() is supposed to reseed from get_random_bytes()
*only* once rng_is_initialized() turns to true.
Up to now, the __drbg_seed() helper used to set the given DRBG instance's
->seeded state to constant DRBG_SEED_STATE_FULL. Introduce a new argument
allowing for the specification of the to be written ->seeded value instead.
Make the first of its two callers, drbg_seed(), determine the appropriate
value based on rng_is_initialized(). The remaining caller,
drbg_async_seed(), is known to get invoked only once rng_is_initialized()
is true, hence let it pass constant DRBG_SEED_STATE_FULL for the new
argument to __drbg_seed().
There is no change in behaviour, except for that the pr_devel() in
drbg_generate() would now report "unseeded" for ->pr DRBG instances which
had last been seeded when rng_is_initialized() was still evaluating to
false.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Stephan Müller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
There are two different randomness sources the DRBGs are getting seeded
from, namely the jitterentropy source (if enabled) and get_random_bytes().
At initial DRBG seeding time during boot, the latter might not have
collected sufficient entropy for seeding itself yet and thus, the DRBG
implementation schedules a reseed work from a random_ready_callback once
that has happened. This is particularly important for the !->pr DRBG
instances, for which (almost) no further reseeds are getting triggered
during their lifetime.
Because collecting data from the jitterentropy source is a rather expensive
operation, the aforementioned asynchronously scheduled reseed work
restricts itself to get_random_bytes() only. That is, it in some sense
amends the initial DRBG seed derived from jitterentropy output at full
(estimated) entropy with fresh randomness obtained from get_random_bytes()
once that has been seeded with sufficient entropy itself.
With the advent of rng_is_initialized(), there is no real need for doing
the reseed operation from an asynchronously scheduled work anymore and a
subsequent patch will make it synchronous by moving it next to related
logic already present in drbg_generate().
However, for tracking whether a full reseed including the jitterentropy
source is required or a "partial" reseed involving only get_random_bytes()
would be sufficient already, the boolean struct drbg_state's ->seeded
member must become a tristate value.
Prepare for this by introducing the new enum drbg_seed_state and change
struct drbg_state's ->seeded member's type from bool to that type.
For facilitating review, enum drbg_seed_state is made to only contain
two members corresponding to the former ->seeded values of false and true
resp. at this point: DRBG_SEED_STATE_UNSEEDED and DRBG_SEED_STATE_FULL. A
third one for tracking the intermediate state of "seeded from jitterentropy
only" will be introduced with a subsequent patch.
There is no change in behaviour at this point.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Reviewed-by: Stephan Müller <smueller@chronox.de>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Export the following additional ECC helper functions:
- ecc_alloc_point()
- ecc_free_point()
- vli_num_bits()
- ecc_point_is_zero()
This is done to allow future ECC device drivers to re-use existing code,
thus simplifying their implementation.
Functions are exported using EXPORT_SYMBOL() (instead of
EXPORT_SYMBOL_GPL()) to be consistent with the functions already
exported by crypto/ecc.c.
Exported functions are documented in include/crypto/internal/ecc.h.
Signed-off-by: Daniele Alessandrelli <daniele.alessandrelli@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Move ecc.h header file to 'include/crypto/internal' so that it can be
easily imported from everywhere in the kernel tree.
This change is done to allow crypto device drivers to re-use the symbols
exported by 'crypto/ecc.c', thus avoiding code duplication.
Signed-off-by: Daniele Alessandrelli <daniele.alessandrelli@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add KPP support to the crypto engine queue manager, so that it can be
used to simplify the logic of KPP device drivers as done for other
crypto drivers.
Signed-off-by: Prabhjot Khurana <prabhjot.khurana@intel.com>
Signed-off-by: Daniele Alessandrelli <daniele.alessandrelli@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Pull crypto updates from Herbert Xu:
"Algorithms:
- Add AES-NI/AVX/x86_64 implementation of SM4.
Drivers:
- Add Arm SMCCC TRNG based driver"
[ And obviously a lot of random fixes and updates - Linus]
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (84 commits)
crypto: sha512 - remove imaginary and mystifying clearing of variables
crypto: aesni - xts_crypt() return if walk.nbytes is 0
padata: Remove repeated verbose license text
crypto: ccp - Add support for new CCP/PSP device ID
crypto: x86/sm4 - add AES-NI/AVX2/x86_64 implementation
crypto: x86/sm4 - export reusable AESNI/AVX functions
crypto: rmd320 - remove rmd320 in Makefile
crypto: skcipher - in_irq() cleanup
crypto: hisilicon - check _PS0 and _PR0 method
crypto: hisilicon - change parameter passing of debugfs function
crypto: hisilicon - support runtime PM for accelerator device
crypto: hisilicon - add runtime PM ops
crypto: hisilicon - using 'debugfs_create_file' instead of 'debugfs_create_regset32'
crypto: tcrypt - add GCM/CCM mode test for SM4 algorithm
crypto: testmgr - Add GCM/CCM mode test of SM4 algorithm
crypto: tcrypt - Fix missing return value check
crypto: hisilicon/sec - modify the hardware endian configuration
crypto: hisilicon/sec - fix the abnormal exiting process
crypto: qat - store vf.compatible flag
crypto: qat - do not export adf_iov_putmsg()
...
SM4 library is abstracted from sm4-generic algorithm, sm4-ce can depend on
the SM4 library instead of sm4-generic, and some functions in sm4-generic
do not need to be exported.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Take the existing small footprint and mostly time invariant C code
and turn it into a SM4 library that can be used for non-performance
critical, casual use of SM4, and as a fallback for, e.g., SIMD code
that needs a secondary path that can be taken in contexts where the
SIMD unit is off limits.
Secondly, some codes have been optimized, such as unrolling small
times loop, removing unnecessary memory shifts, exporting sbox, fk,
ck arrays, and basic encryption and decryption functions.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
As it is now legal to call flush_dcache_page on slab pages we
no longer need to do the check in the Crypto API.
Reported-by: Ira Weiny <ira.weiny@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The definitions for crypto_attr-related types and enums are not
needed by most Crypto API users. This patch moves them out of
crypto.h and into algapi.h/internal.h depending on the extent of
their use.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
According to the advice of Eric and Herbert, type CRYPTOA_U32
has been unused for over a decade, so remove the code related to
CRYPTOA_U32.
After removing CRYPTOA_U32, the type of the variable attrs can be
changed from union to struct.
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
crypto_shash_alg_has_setkey() is implemented by testing whether the
.setkey() member of a struct shash_alg points to the default version,
called shash_no_setkey(). As crypto_shash_alg_has_setkey() is a static
inline, this requires shash_no_setkey() to be exported to modules.
Unfortunately, when building with CFI, function pointers are routed
via CFI stubs which are private to each module (or to the kernel proper)
and so this function pointer comparison may fail spuriously.
Let's fix this by turning crypto_shash_alg_has_setkey() into an out of
line function.
Cc: Sami Tolvanen <samitolvanen@google.com>
Cc: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: Sami Tolvanen <samitolvanen@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
gcc-11 points out a mismatch between the declaration and the definition
of poly1305_core_setkey():
lib/crypto/poly1305-donna32.c:13:67: error: argument 2 of type ‘const u8[16]’ {aka ‘const unsigned char[16]’} with mismatched bound [-Werror=array-parameter=]
13 | void poly1305_core_setkey(struct poly1305_core_key *key, const u8 raw_key[16])
| ~~~~~~~~~^~~~~~~~~~~
In file included from lib/crypto/poly1305-donna32.c:11:
include/crypto/internal/poly1305.h:21:68: note: previously declared as ‘const u8 *’ {aka ‘const unsigned char *’}
21 | void poly1305_core_setkey(struct poly1305_core_key *key, const u8 *raw_key);
This is harmless in principle, as the calling conventions are the same,
but the more specific prototype allows better type checking in the
caller.
Change the declaration to match the actual function definition.
The poly1305_simd_init() is a bit suspicious here, as it previously
had a 32-byte argument type, but looks like it needs to take the
16-byte POLY1305_BLOCK_SIZE array instead.
Fixes: 1c08a10436 ("crypto: poly1305 - add new 32 and 64-bit generic versions")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
On big endian CPUs, the ChaCha20-based CRNG is using the wrong
endianness for the ChaCha20 constants.
This doesn't matter cryptographically, but technically it means it's not
ChaCha20 anymore. Fix it to always use the standard constants.
Cc: linux-crypto@vger.kernel.org
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Jann Horn <jannh@google.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add the parameters for the NIST P384 curve and define a new curve ID
for it. Make the curve available in ecc_get_curve.
Summary of changes:
* crypto/ecc_curve_defs.h
- add nist_p384 params
* include/crypto/ecdh.h
- add ECC_CURVE_NIST_P384
* crypto/ecc.c
- change ecc_get_curve to accept nist_p384
Signed-off-by: Saulo Alessandre <saulo.alessandre@tse.jus.br>
Tested-by: Stefan Berger <stefanb@linux.ibm.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
1. Add curve 25519 parameters in 'crypto/ecc_curve_defs.h';
2. Add curve25519 interface 'ecc_get_curve25519_param' in
'include/crypto/ecc_curve.h', to make its parameters be
exposed to everyone in kernel tree.
Signed-off-by: Meng Yu <yumeng18@huawei.com>
Reviewed-by: Zaibo Xu <xuzaibo@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Move 'ecc_get_curve' to 'include/crypto/ecc_curve.h', so everyone
in kernel tree can easily get ecc curve params;
Signed-off-by: Meng Yu <yumeng18@huawei.com>
Reviewed-by: Zaibo Xu <xuzaibo@huawei.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
1. crypto and crypto/atmel-ecc:
Move curve id of ECDH from the key into the algorithm name instead
in crypto and atmel-ecc, so ECDH algorithm name change form 'ecdh'
to 'ecdh-nist-pxxx', and we cannot use 'curve_id' in 'struct ecdh';
2. crypto/testmgr and net/bluetooth:
Modify 'testmgr.c', 'testmgr.h' and 'net/bluetooth' to adapt
the modification.
Signed-off-by: Meng Yu <yumeng18@huawei.com>
Reviewed-by: Zaibo Xu <xuzaibo@huawei.com>
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Given that crypto_alloc_tfm() may return ERR pointers, and to avoid
crashes on obscure error paths where such pointers are presented to
crypto_destroy_tfm() (such as [0]), add an ERR_PTR check there
before dereferencing the second argument as a struct crypto_tfm
pointer.
[0] https://lore.kernel.org/linux-crypto/000000000000de949705bc59e0f6@google.com/
Reported-by: syzbot+12cf5fbfdeba210a89dd@syzkaller.appspotmail.com
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEqG5UsNXhtOCrfGQP+7dXa6fLC2sFAmAj3ncACgkQ+7dXa6fL
C2s7eQ/+Obr0Mp9mYJhht/LN3YAIgFrgyPCgwsmYsanc0j8cdECDMoz6b287/W3g
69zHQUv7iVqHPIK+NntBSSpHKlCapfUKikt5c9kfPNuDn3aT3ZpTBr1t3DYJX1uO
K6tMUXNDNoi1O70yqsVZEq4Qcv2+1uQXP+F/GxjNkd/brID1HsV/VENKCLSRbyP/
iazgXx/hChQSdu0YbZwMCkuVErEAJvRWU75l9D1v1Uaaaqro5QdelMdz9DZeO4E5
CirXXA5d9zAA9ANj0T7odyg79vhFOz8yc0lFhybc/EPNYSHeOV1o8eK3h4ZIZ+hl
BShwe7feHlmxkQ5WQBppjAn+aFiBtw7LKIptS3YpMI5M7clgT1THDPhgOdVWmbZk
sBbD0bToP8sst6Zi/95StbqawjagR3uE6YBXRVSyTefGQdG1q1c0u9FM/8bZTc3B
q4iDTbvfYdUFN6ywQZhh09v6ljZLdNSv0ht1wLcgByBmgdBvzmBgfczEKtAZcxfY
cLBRvjc8ZjWpfqjrvmmURGQaqwVlO9YBGRzJJwALH9xib1IQbuVmUOilaIGTcCiE
W1Qd4YLPh8Gv1B9GDY2HMw56IGp75QHD56KwIbf93c8JeEB08/iWSuH+kKwyup8+
h5xXpzt5NKAx4GQesWeBjWvt+AmZ+uJDtt4dNb/j91gmbh3POTI=
=HCrJ
-----END PGP SIGNATURE-----
Merge tag 'keys-misc-20210126' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs
Pull keyring updates from David Howells:
"Here's a set of minor keyrings fixes/cleanups that I've collected from
various people for the upcoming merge window.
A couple of them might, in theory, be visible to userspace:
- Make blacklist_vet_description() reject uppercase letters as they
don't match the all-lowercase hex string generated for a blacklist
search.
This may want reconsideration in the future, but, currently, you
can't add to the blacklist keyring from userspace and the only
source of blacklist keys generates lowercase descriptions.
- Fix blacklist_init() to use a new KEY_ALLOC_* flag to indicate that
it wants KEY_FLAG_KEEP to be set rather than passing KEY_FLAG_KEEP
into keyring_alloc() as KEY_FLAG_KEEP isn't a valid alloc flag.
This isn't currently a problem as the blacklist keyring isn't
currently writable by userspace.
The rest of the patches are cleanups and I don't think they should
have any visible effect"
* tag 'keys-misc-20210126' of git://git.kernel.org/pub/scm/linux/kernel/git/dhowells/linux-fs:
watch_queue: rectify kernel-doc for init_watch()
certs: Replace K{U,G}IDT_INIT() with GLOBAL_ROOT_{U,G}ID
certs: Fix blacklist flag type confusion
PKCS#7: Fix missing include
certs: Fix blacklisted hexadecimal hash string check
certs/blacklist: fix kernel doc interface issue
crypto: public_key: Remove redundant header file from public_key.h
keys: remove trailing semicolon in macro definition
crypto: pkcs7: Use match_string() helper to simplify the code
PKCS#7: drop function from kernel-doc pkcs7_validate_trust_one
encrypted-keys: Replace HTTP links with HTTPS ones
crypto: asymmetric_keys: fix some comments in pkcs7_parser.h
KEYS: remove redundant memset
security: keys: delete repeated words in comments
KEYS: asymmetric: Fix kerneldoc
security/keys: use kvfree_sensitive()
watch_queue: Drop references to /dev/watch_queue
keys: Remove outdated __user annotations
security: keys: Fix fall-through warnings for Clang
Unlike many other structure types defined in the crypto API, the
'shash_desc' structure is permitted to live on the stack, which
implies its contents may not be accessed by DMA masters. (This is
due to the fact that the stack may be located in the vmalloc area,
which requires a different virtual-to-physical translation than the
one implemented by the DMA subsystem)
Our definition of CRYPTO_MINALIGN_ATTR is based on ARCH_KMALLOC_MINALIGN,
which may take DMA constraints into account on architectures that support
non-cache coherent DMA such as ARM and arm64. In this case, the value is
chosen to reflect the largest cacheline size in the system, in order to
ensure that explicit cache maintenance as required by non-coherent DMA
masters does not affect adjacent, unrelated slab allocations. On arm64,
this value is currently set at 128 bytes.
This means that applying CRYPTO_MINALIGN_ATTR to struct shash_desc is both
unnecessary (as it is never used for DMA), and undesirable, given that it
wastes stack space (on arm64, performing the alignment costs 112 bytes in
the worst case, and the hole between the 'tfm' and '__ctx' members takes
up another 120 bytes, resulting in an increased stack footprint of up to
232 bytes.) So instead, let's switch to the minimum SLAB alignment, which
does not take DMA constraints into account.
Note that this is a no-op for x86.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The akcipher.h header file was originally introduced in SM2, and
then the definition of SM2 was moved to the existing code. This
header file is left and should be removed.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Ben Boeckel <mathstuf@gmail.com>
All dependencies on the x86 glue helper module have been replaced by
local instantiations of the new ECB/CBC preprocessor helper macros, so
the glue helper module can be retired.
Acked-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Sync the BLAKE2b code with the BLAKE2s code as much as possible:
- Move a lot of code into new headers <crypto/blake2b.h> and
<crypto/internal/blake2b.h>, and adjust it to be like the
corresponding BLAKE2s code, i.e. like <crypto/blake2s.h> and
<crypto/internal/blake2s.h>.
- Rename constants, e.g. BLAKE2B_*_DIGEST_SIZE => BLAKE2B_*_HASH_SIZE.
- Use a macro BLAKE2B_ALG() to define the shash_alg structs.
- Export blake2b_compress_generic() for use as a fallback.
This makes it much easier to add optimized implementations of BLAKE2b,
as optimized implementations can use the helper functions
crypto_blake2b_{setkey,init,update,final}() and
blake2b_compress_generic(). The ARM implementation will use these.
But this change is also helpful because it eliminates unnecessary
differences between the BLAKE2b and BLAKE2s code, so that the same
improvements can easily be made to both. (The two algorithms are
basically identical, except for the word size and constants.) It also
makes it straightforward to add a library API for BLAKE2b in the future
if/when it's needed.
This change does make the BLAKE2b code slightly more complicated than it
needs to be, as it doesn't actually provide a library API yet. For
example, __blake2b_update() doesn't really need to exist yet; it could
just be inlined into crypto_blake2b_update(). But I believe this is
outweighed by the benefits of keeping the code in sync.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>