mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-23 02:54:32 +08:00
d91ca84ede
186 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Linus Torvalds
|
dff4d1f6fe |
- Some request-based DM core and DM multipath fixes and cleanups
- Constify a few variables in DM core and DM integrity - Add bufio optimization and checksum failure accounting to DM integrity - Fix DM integrity to avoid checking integrity of failed reads - Fix DM integrity to use init_completion - A couple DM log-writes target fixes - Simplify DAX flushing by eliminating the unnecessary flush abstraction that was stood up for DM's use. -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQEcBAABAgAGBQJZuo8UAAoJEMUj8QotnQNa5BEIANO4mHh1nrzEbH72a4RCLgxV H1Pk1zZx/W1bhOOmcRRhxCSM85dPgsCegc5EmpwLZEMavQrP9UZblHcYOUsyIx7W S/lWa+soOq/5N2OveROc4WdoWVs50UFmc1+BcClc4YrEe+15XC3R0VMkjX2b/hUL o2eYhPjpMlgaorMtRRU6MAooo2fBRQ9m05aPeVgd35fxibrE7PZm+EYW09wa0STi 9ufuDXJf8+TtFP/38BD41LbUEskuHUZTSDeAJ+3DBaTtfEZcZYxsst4P9JangsHx jqqqI9aYzFD2a27fl9WLhCvm40YFiKp5nwzED0RZjzWxVa/jTShX7a49BdzTTfw= =rkSB -----END PGP SIGNATURE----- Merge tag 'for-4.14/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm Pull device mapper updates from Mike Snitzer: - Some request-based DM core and DM multipath fixes and cleanups - Constify a few variables in DM core and DM integrity - Add bufio optimization and checksum failure accounting to DM integrity - Fix DM integrity to avoid checking integrity of failed reads - Fix DM integrity to use init_completion - A couple DM log-writes target fixes - Simplify DAX flushing by eliminating the unnecessary flush abstraction that was stood up for DM's use. * tag 'for-4.14/dm-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper/linux-dm: dax: remove the pmem_dax_ops->flush abstraction dm integrity: use init_completion instead of COMPLETION_INITIALIZER_ONSTACK dm integrity: make blk_integrity_profile structure const dm integrity: do not check integrity for failed read operations dm log writes: fix >512b sectorsize support dm log writes: don't use all the cpu while waiting to log blocks dm ioctl: constify ioctl lookup table dm: constify argument arrays dm integrity: count and display checksum failures dm integrity: optimize writing dm-bufio buffers that are partially changed dm rq: do not update rq partially in each ending bio dm rq: make dm-sq requeuing behavior consistent with dm-mq behavior dm mpath: complain about unsupported __multipath_map_bio() return values dm mpath: avoid that building with W=1 causes gcc 7 to complain about fall-through |
||
Mikulas Patocka
|
c3ca015fab |
dax: remove the pmem_dax_ops->flush abstraction
Commit |
||
Nicolas Iooss
|
2f52074d35 |
dax: initialize variable pfn before using it
dax_pmd_insert_mapping() contains the following code: pfn_t pfn; if (bdev_dax_pgoff(bdev, sector, size, &pgoff) != 0) goto fallback; /* ... */ fallback: trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, pfn, ret); When the condition in the if statement fails, the function calls trace_dax_pmd_insert_mapping_fallback() with an uninitialized pfn value. This issue has been found while building the kernel with clang. The compiler reported: fs/dax.c:1280:6: error: variable 'pfn' is used uninitialized whenever 'if' condition is true [-Werror,-Wsometimes-uninitialized] if (bdev_dax_pgoff(bdev, sector, size, &pgoff) != 0) ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ fs/dax.c:1310:60: note: uninitialized use occurs here trace_dax_pmd_insert_mapping_fallback(inode, vmf, length, pfn, ret); ^~~ Link: http://lkml.kernel.org/r/20170903083000.587-1-nicolas.iooss_linux@m4x.org Signed-off-by: Nicolas Iooss <nicolas.iooss_linux@m4x.org> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ross Zwisler
|
917f34526c |
dax: use PG_PMD_COLOUR instead of open coding
Use ~PG_PMD_COLOUR in dax_entry_waitqueue() instead of open coding an equivalent page offset mask. Link: http://lkml.kernel.org/r/20170822222436.18926-2-ross.zwisler@linux.intel.com Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: "Slusarz, Marcin" <marcin.slusarz@intel.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ross Zwisler
|
a2e050f5a9 |
dax: explain how read(2)/write(2) addresses are validated
Add a comment explaining how the user addresses provided to read(2) and write(2) are validated in the DAX I/O path. We call dax_copy_from_iter() or copy_to_iter() on these without calling access_ok() first in the DAX code, and there was a concern that the user might be able to read/write to arbitrary kernel addresses with this path. Link: http://lkml.kernel.org/r/20170816173615.10098-1-ross.zwisler@linux.intel.com Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ross Zwisler
|
527b19d080 |
dax: move all DAX radix tree defs to fs/dax.c
Now that we no longer insert struct page pointers in DAX radix trees the page cache code no longer needs to know anything about DAX exceptional entries. Move all the DAX exceptional entry definitions from dax.h to fs/dax.c. Link: http://lkml.kernel.org/r/20170724170616.25810-6-ross.zwisler@linux.intel.com Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Suggested-by: Jan Kara <jack@suse.cz> Reviewed-by: Jan Kara <jack@suse.cz> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ross Zwisler
|
d01ad197ac |
dax: remove DAX code from page_cache_tree_insert()
Now that we no longer insert struct page pointers in DAX radix trees we can remove the special casing for DAX in page_cache_tree_insert(). This also allows us to make dax_wake_mapping_entry_waiter() local to fs/dax.c, removing it from dax.h. Link: http://lkml.kernel.org/r/20170724170616.25810-5-ross.zwisler@linux.intel.com Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Suggested-by: Jan Kara <jack@suse.cz> Reviewed-by: Jan Kara <jack@suse.cz> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ross Zwisler
|
91d25ba8a6 |
dax: use common 4k zero page for dax mmap reads
When servicing mmap() reads from file holes the current DAX code allocates a page cache page of all zeroes and places the struct page pointer in the mapping->page_tree radix tree. This has three major drawbacks: 1) It consumes memory unnecessarily. For every 4k page that is read via a DAX mmap() over a hole, we allocate a new page cache page. This means that if you read 1GiB worth of pages, you end up using 1GiB of zeroed memory. This is easily visible by looking at the overall memory consumption of the system or by looking at /proc/[pid]/smaps: 7f62e72b3000-7f63272b3000 rw-s 00000000 103:00 12 /root/dax/data Size: 1048576 kB Rss: 1048576 kB Pss: 1048576 kB Shared_Clean: 0 kB Shared_Dirty: 0 kB Private_Clean: 1048576 kB Private_Dirty: 0 kB Referenced: 1048576 kB Anonymous: 0 kB LazyFree: 0 kB AnonHugePages: 0 kB ShmemPmdMapped: 0 kB Shared_Hugetlb: 0 kB Private_Hugetlb: 0 kB Swap: 0 kB SwapPss: 0 kB KernelPageSize: 4 kB MMUPageSize: 4 kB Locked: 0 kB 2) It is slower than using a common zero page because each page fault has more work to do. Instead of just inserting a common zero page we have to allocate a page cache page, zero it, and then insert it. Here are the average latencies of dax_load_hole() as measured by ftrace on a random test box: Old method, using zeroed page cache pages: 3.4 us New method, using the common 4k zero page: 0.8 us This was the average latency over 1 GiB of sequential reads done by this simple fio script: [global] size=1G filename=/root/dax/data fallocate=none [io] rw=read ioengine=mmap 3) The fact that we had to check for both DAX exceptional entries and for page cache pages in the radix tree made the DAX code more complex. Solve these issues by following the lead of the DAX PMD code and using a common 4k zero page instead. As with the PMD code we will now insert a DAX exceptional entry into the radix tree instead of a struct page pointer which allows us to remove all the special casing in the DAX code. Note that we do still pretty aggressively check for regular pages in the DAX radix tree, especially where we take action based on the bits set in the page. If we ever find a regular page in our radix tree now that most likely means that someone besides DAX is inserting pages (which has happened lots of times in the past), and we want to find that out early and fail loudly. This solution also removes the extra memory consumption. Here is that same /proc/[pid]/smaps after 1GiB of reading from a hole with the new code: 7f2054a74000-7f2094a74000 rw-s 00000000 103:00 12 /root/dax/data Size: 1048576 kB Rss: 0 kB Pss: 0 kB Shared_Clean: 0 kB Shared_Dirty: 0 kB Private_Clean: 0 kB Private_Dirty: 0 kB Referenced: 0 kB Anonymous: 0 kB LazyFree: 0 kB AnonHugePages: 0 kB ShmemPmdMapped: 0 kB Shared_Hugetlb: 0 kB Private_Hugetlb: 0 kB Swap: 0 kB SwapPss: 0 kB KernelPageSize: 4 kB MMUPageSize: 4 kB Locked: 0 kB Overall system memory consumption is similarly improved. Another major change is that we remove dax_pfn_mkwrite() from our fault flow, and instead rely on the page fault itself to make the PTE dirty and writeable. The following description from the patch adding the vm_insert_mixed_mkwrite() call explains this a little more: "To be able to use the common 4k zero page in DAX we need to have our PTE fault path look more like our PMD fault path where a PTE entry can be marked as dirty and writeable as it is first inserted rather than waiting for a follow-up dax_pfn_mkwrite() => finish_mkwrite_fault() call. Right now we can rely on having a dax_pfn_mkwrite() call because we can distinguish between these two cases in do_wp_page(): case 1: 4k zero page => writable DAX storage case 2: read-only DAX storage => writeable DAX storage This distinction is made by via vm_normal_page(). vm_normal_page() returns false for the common 4k zero page, though, just as it does for DAX ptes. Instead of special casing the DAX + 4k zero page case we will simplify our DAX PTE page fault sequence so that it matches our DAX PMD sequence, and get rid of the dax_pfn_mkwrite() helper. We will instead use dax_iomap_fault() to handle write-protection faults. This means that insert_pfn() needs to follow the lead of insert_pfn_pmd() and allow us to pass in a 'mkwrite' flag. If 'mkwrite' is set insert_pfn() will do the work that was previously done by wp_page_reuse() as part of the dax_pfn_mkwrite() call path" Link: http://lkml.kernel.org/r/20170724170616.25810-4-ross.zwisler@linux.intel.com Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ross Zwisler
|
e30331ff05 |
dax: relocate some dax functions
dax_load_hole() will soon need to call dax_insert_mapping_entry(), so it needs to be moved lower in dax.c so the definition exists. dax_wake_mapping_entry_waiter() will soon be removed from dax.h and be made static to dax.c, so we need to move its definition above all its callers. Link: http://lkml.kernel.org/r/20170724170616.25810-3-ross.zwisler@linux.intel.com Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jérôme Glisse
|
a4d1a88525 |
dax: update to new mmu_notifier semantic
Replace all mmu_notifier_invalidate_page() calls by *_invalidate_range() and make sure it is bracketed by calls to *_invalidate_range_start()/end(). Note that because we can not presume the pmd value or pte value we have to assume the worst and unconditionaly report an invalidation as happening. Signed-off-by: Jérôme Glisse <jglisse@redhat.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Bernhard Held <berny156@gmx.de> Cc: Adam Borowski <kilobyte@angband.pl> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Wanpeng Li <kernellwp@gmail.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: axie <axie@amd.com> Cc: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ross Zwisler
|
fffa281b48 |
dax: fix deadlock due to misaligned PMD faults
In DAX there are two separate places where the 2MiB range of a PMD is defined. The first is in the page tables, where a PMD mapping inserted for a given address spans from (vmf->address & PMD_MASK) to ((vmf->address & PMD_MASK) + PMD_SIZE - 1). That is, from the 2MiB boundary below the address to the 2MiB boundary above the address. So, for example, a fault at address 3MiB (0x30 0000) falls within the PMD that ranges from 2MiB (0x20 0000) to 4MiB (0x40 0000). The second PMD range is in the mapping->page_tree, where a given file offset is covered by a radix tree entry that spans from one 2MiB aligned file offset to another 2MiB aligned file offset. So, for example, the file offset for 3MiB (pgoff 768) falls within the PMD range for the order 9 radix tree entry that ranges from 2MiB (pgoff 512) to 4MiB (pgoff 1024). This system works so long as the addresses and file offsets for a given mapping both have the same offsets relative to the start of each PMD. Consider the case where the starting address for a given file isn't 2MiB aligned - say our faulting address is 3 MiB (0x30 0000), but that corresponds to the beginning of our file (pgoff 0). Now all the PMDs in the mapping are misaligned so that the 2MiB range defined in the page tables never matches up with the 2MiB range defined in the radix tree. The current code notices this case for DAX faults to storage with the following test in dax_pmd_insert_mapping(): if (pfn_t_to_pfn(pfn) & PG_PMD_COLOUR) goto unlock_fallback; This test makes sure that the pfn we get from the driver is 2MiB aligned, and relies on the assumption that the 2MiB alignment of the pfn we get back from the driver matches the 2MiB alignment of the faulting address. However, faults to holes were not checked and we could hit the problem described above. This was reported in response to the NVML nvml/src/test/pmempool_sync TEST5: $ cd nvml/src/test/pmempool_sync $ make TEST5 You can grab NVML here: https://github.com/pmem/nvml/ The dmesg warning you see when you hit this error is: WARNING: CPU: 13 PID: 2900 at fs/dax.c:641 dax_insert_mapping_entry+0x2df/0x310 Where we notice in dax_insert_mapping_entry() that the radix tree entry we are about to replace doesn't match the locked entry that we had previously inserted into the tree. This happens because the initial insertion was done in grab_mapping_entry() using a pgoff calculated from the faulting address (vmf->address), and the replacement in dax_pmd_load_hole() => dax_insert_mapping_entry() is done using vmf->pgoff. In our failure case those two page offsets (one calculated from vmf->address, one using vmf->pgoff) point to different order 9 radix tree entries. This failure case can result in a deadlock because the radix tree unlock also happens on the pgoff calculated from vmf->address. This means that the locked radix tree entry that we swapped in to the tree in dax_insert_mapping_entry() using vmf->pgoff is never unlocked, so all future faults to that 2MiB range will block forever. Fix this by validating that the faulting address's PMD offset matches the PMD offset from the start of the file. This check is done at the very beginning of the fault and covers faults that would have mapped to storage as well as faults to holes. I left the COLOUR check in dax_pmd_insert_mapping() in place in case we ever hit the insanity condition where the alignment of the pfn we get from the driver doesn't match the alignment of the userspace address. Link: http://lkml.kernel.org/r/20170822222436.18926-1-ross.zwisler@linux.intel.com Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Reported-by: "Slusarz, Marcin" <marcin.slusarz@intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
088737f44b |
Writeback error handling fixes (pile #2)
-----BEGIN PGP SIGNATURE----- iQIcBAABAgAGBQJZXhmCAAoJEAAOaEEZVoIVpRkP/1qlYn3pq6d5Kuz84pejOmlL 5jbkS/cOmeTxeUU4+B1xG8Lx7bAk8PfSXQOADbSJGiZd0ug95tJxplFYIGJzR/tG aNMHeu/BVKKhUKORGuKR9rJKtwC839L/qao+yPBo5U3mU4L73rFWX8fxFuhSJ8HR hvkgBu3Hx6GY59CzxJ8iJzj+B+uPSFrNweAk0+0UeWkBgTzEdiGqaXBX4cHIkq/5 hMoCG+xnmwHKbCBsQ5js+YJT+HedZ4lvfjOqGxgElUyjJ7Bkt/IFYOp8TUiu193T tA4UinDjN8A7FImmIBIftrECmrAC9HIGhGZroYkMKbb8ReDR2ikE5FhKEpuAGU3a BXBgX2mPQuArvZWM7qeJCkxV9QJ0u/8Ykbyzo30iPrICyrzbEvIubeB/mDA034+Z Z0/z8C3v7826F3zP/NyaQEojUgRq30McMOIS8GMnx15HJwRsRKlzjfy9Wm4tWhl0 t3nH1jMqAZ7068s6rfh/oCwdgGOwr5o4hW/bnlITzxbjWQUOnZIe7KBxIezZJ2rv OcIwd5qE8PNtpagGj5oUbnjGOTkERAgsMfvPk5tjUNt28/qUlVs2V0aeo47dlcsh oYr8WMOIzw98Rl7Bo70mplLrqLD6nGl0LfXOyUlT4STgLWW4ksmLVuJjWIUxcO/0 yKWjj9wfYRQ0vSUqhsI5 =3Z93 -----END PGP SIGNATURE----- Merge tag 'for-linus-v4.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux Pull Writeback error handling updates from Jeff Layton: "This pile represents the bulk of the writeback error handling fixes that I have for this cycle. Some of the earlier patches in this pile may look trivial but they are prerequisites for later patches in the series. The aim of this set is to improve how we track and report writeback errors to userland. Most applications that care about data integrity will periodically call fsync/fdatasync/msync to ensure that their writes have made it to the backing store. For a very long time, we have tracked writeback errors using two flags in the address_space: AS_EIO and AS_ENOSPC. Those flags are set when a writeback error occurs (via mapping_set_error) and are cleared as a side-effect of filemap_check_errors (as you noted yesterday). This model really sucks for userland. Only the first task to call fsync (or msync or fdatasync) will see the error. Any subsequent task calling fsync on a file will get back 0 (unless another writeback error occurs in the interim). If I have several tasks writing to a file and calling fsync to ensure that their writes got stored, then I need to have them coordinate with one another. That's difficult enough, but in a world of containerized setups that coordination may even not be possible. But wait...it gets worse! The calls to filemap_check_errors can be buried pretty far down in the call stack, and there are internal callers of filemap_write_and_wait and the like that also end up clearing those errors. Many of those callers ignore the error return from that function or return it to userland at nonsensical times (e.g. truncate() or stat()). If I get back -EIO on a truncate, there is no reason to think that it was because some previous writeback failed, and a subsequent fsync() will (incorrectly) return 0. This pile aims to do three things: 1) ensure that when a writeback error occurs that that error will be reported to userland on a subsequent fsync/fdatasync/msync call, regardless of what internal callers are doing 2) report writeback errors on all file descriptions that were open at the time that the error occurred. This is a user-visible change, but I think most applications are written to assume this behavior anyway. Those that aren't are unlikely to be hurt by it. 3) document what filesystems should do when there is a writeback error. Today, there is very little consistency between them, and a lot of cargo-cult copying. We need to make it very clear what filesystems should do in this situation. To achieve this, the set adds a new data type (errseq_t) and then builds new writeback error tracking infrastructure around that. Once all of that is in place, we change the filesystems to use the new infrastructure for reporting wb errors to userland. Note that this is just the initial foray into cleaning up this mess. There is a lot of work remaining here: 1) convert the rest of the filesystems in a similar fashion. Once the initial set is in, then I think most other fs' will be fairly simple to convert. Hopefully most of those can in via individual filesystem trees. 2) convert internal waiters on writeback to use errseq_t for detecting errors instead of relying on the AS_* flags. I have some draft patches for this for ext4, but they are not quite ready for prime time yet. This was a discussion topic this year at LSF/MM too. If you're interested in the gory details, LWN has some good articles about this: https://lwn.net/Articles/718734/ https://lwn.net/Articles/724307/" * tag 'for-linus-v4.13-2' of git://git.kernel.org/pub/scm/linux/kernel/git/jlayton/linux: btrfs: minimal conversion to errseq_t writeback error reporting on fsync xfs: minimal conversion to errseq_t writeback error reporting ext4: use errseq_t based error handling for reporting data writeback errors fs: convert __generic_file_fsync to use errseq_t based reporting block: convert to errseq_t based writeback error tracking dax: set errors in mapping when writeback fails Documentation: flesh out the section in vfs.txt on storing and reporting writeback errors mm: set both AS_EIO/AS_ENOSPC and errseq_t in mapping_set_error fs: new infrastructure for writeback error handling and reporting lib: add errseq_t type and infrastructure for handling it mm: don't TestClearPageError in __filemap_fdatawait_range mm: clear AS_EIO/AS_ENOSPC when writeback initiation fails jbd2: don't clear and reset errors after waiting on writeback buffer: set errors in mapping at the time that the error occurs fs: check for writeback errors after syncing out buffers in generic_file_fsync buffer: use mapping_set_error instead of setting the flag mm: fix mapping_set_error call in me_pagecache_dirty |
||
Linus Torvalds
|
b6ffe9ba46 |
libnvdimm for 4.13
* Introduce the _flushcache() family of memory copy helpers and use them for persistent memory write operations on x86. The _flushcache() semantic indicates that the cache is either bypassed for the copy operation (movnt) or any lines dirtied by the copy operation are written back (clwb, clflushopt, or clflush). * Extend dax_operations with ->copy_from_iter() and ->flush() operations. These operations and other infrastructure updates allow all persistent memory specific dax functionality to be pushed into libnvdimm and the pmem driver directly. It also allows dax-specific sysfs attributes to be linked to a host device, for example: /sys/block/pmem0/dax/write_cache * Add support for the new NVDIMM platform/firmware mechanisms introduced in ACPI 6.2 and UEFI 2.7. This support includes the v1.2 namespace label format, extensions to the address-range-scrub command set, new error injection commands, and a new BTT (block-translation-table) layout. These updates support inter-OS and pre-OS compatibility. * Fix a longstanding memory corruption bug in nfit_test. * Make the pmem and nvdimm-region 'badblocks' sysfs files poll(2) capable. * Miscellaneous fixes and small updates across libnvdimm and the nfit driver. Acknowledgements that came after the branch was pushed: commit |
||
Roman Gushchin
|
2262185c5b |
mm: per-cgroup memory reclaim stats
Track the following reclaim counters for every memory cgroup: PGREFILL, PGSCAN, PGSTEAL, PGACTIVATE, PGDEACTIVATE, PGLAZYFREE and PGLAZYFREED. These values are exposed using the memory.stats interface of cgroup v2. The meaning of each value is the same as for global counters, available using /proc/vmstat. Also, for consistency, rename mem_cgroup_count_vm_event() to count_memcg_event_mm(). Link: http://lkml.kernel.org/r/1494530183-30808-1-git-send-email-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vladimir Davydov <vdavydov.dev@gmail.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Tejun Heo <tj@kernel.org> Cc: Li Zefan <lizefan@huawei.com> Cc: Balbir Singh <bsingharora@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jeff Layton
|
819ec6b91d |
dax: set errors in mapping when writeback fails
Jan Kara's description for this patch is much better than mine, so I'm quoting it verbatim here: DAX currently doesn't set errors in the mapping when cache flushing fails in dax_writeback_mapping_range(). Since this function can get called only from fsync(2) or sync(2), this is actually as good as it can currently get since we correctly propagate the error up from dax_writeback_mapping_range() to filemap_fdatawrite() However, in the future better writeback error handling will enable us to properly report these errors on fsync(2) even if there are multiple file descriptors open against the file or if sync(2) gets called before fsync(2). So convert DAX to using standard error reporting through the mapping. Signed-off-by: Jeff Layton <jlayton@redhat.com> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-and-tested-by: Ross Zwisler <ross.zwisler@linux.intel.com> |
||
Dan Williams
|
ca6a4657e5 |
x86, libnvdimm, pmem: remove global pmem api
Now that all callers of the pmem api have been converted to dax helpers that call back to the pmem driver, we can remove include/linux/pmem.h and asm/pmem.h. Cc: <x86@kernel.org> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Toshi Kani <toshi.kani@hpe.com> Cc: Oliver O'Halloran <oohall@gmail.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Dan Williams <dan.j.williams@intel.com> |
||
Ingo Molnar
|
1bc3cd4dfa |
Merge branch 'linus' into sched/core, to pick up fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Jan Kara
|
1eb643d02b |
fs/dax.c: fix inefficiency in dax_writeback_mapping_range()
dax_writeback_mapping_range() fails to update iteration index when
searching radix tree for entries needing cache flushing. Thus each
pagevec worth of entries is searched starting from the start which is
inefficient and prone to livelocks. Update index properly.
Link: http://lkml.kernel.org/r/20170619124531.21491-1-jack@suse.cz
Fixes:
|
||
Ingo Molnar
|
ac6424b981 |
sched/wait: Rename wait_queue_t => wait_queue_entry_t
Rename: wait_queue_t => wait_queue_entry_t 'wait_queue_t' was always a slight misnomer: its name implies that it's a "queue", but in reality it's a queue *entry*. The 'real' queue is the wait queue head, which had to carry the name. Start sorting this out by renaming it to 'wait_queue_entry_t'. This also allows the real structure name 'struct __wait_queue' to lose its double underscore and become 'struct wait_queue_entry', which is the more canonical nomenclature for such data types. Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Dan Williams
|
81f558701a |
x86, dax: replace clear_pmem() with open coded memset + dax_ops->flush
The clear_pmem() helper simply combines a memset() plus a cache flush. Now that the flush routine is optionally provided by the dax device driver we can avoid unnecessary cache management on dax devices fronting volatile memory. With clear_pmem() gone we can follow on with a patch to make pmem cache management completely defined within the pmem driver. Cc: <x86@kernel.org> Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Dan Williams <dan.j.williams@intel.com> |
||
Dan Williams
|
6318770a7d |
filesystem-dax: convert to dax_flush()
Filesystem-DAX flushes caches whenever it writes to the address returned through dax_direct_access() and when writing back dirty radix entries. That flushing is only required in the pmem case, so the dax_flush() helper skips cache management work when the underlying driver does not specify a flush method. We still do all the dirty tracking since the radix entry will already be there for locking purposes. However, the work to clean the entry will be a nop for some dax drivers. Cc: Jeff Moyer <jmoyer@redhat.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Dan Williams <dan.j.williams@intel.com> |
||
Dan Williams
|
fec53774fd |
filesystem-dax: convert to dax_copy_from_iter()
Now that all possible providers of the dax_operations copy_from_iter method are implemented, switch filesytem-dax to call the driver rather than copy_to_iter_pmem. Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Dan Williams <dan.j.williams@intel.com> |
||
Ross Zwisler
|
e2093926a0 |
dax: fix race between colliding PMD & PTE entries
We currently have two related PMD vs PTE races in the DAX code. These can both be easily triggered by having two threads reading and writing simultaneously to the same private mapping, with the key being that private mapping reads can be handled with PMDs but private mapping writes are always handled with PTEs so that we can COW. Here is the first race: CPU 0 CPU 1 (private mapping write) __handle_mm_fault() create_huge_pmd() - FALLBACK handle_pte_fault() passes check for pmd_devmap() (private mapping read) __handle_mm_fault() create_huge_pmd() dax_iomap_pmd_fault() inserts PMD dax_iomap_pte_fault() does a PTE fault, but we already have a DAX PMD installed in our page tables at this spot. Here's the second race: CPU 0 CPU 1 (private mapping read) __handle_mm_fault() passes check for pmd_none() create_huge_pmd() dax_iomap_pmd_fault() inserts PMD (private mapping write) __handle_mm_fault() create_huge_pmd() - FALLBACK (private mapping read) __handle_mm_fault() passes check for pmd_none() create_huge_pmd() handle_pte_fault() dax_iomap_pte_fault() inserts PTE dax_iomap_pmd_fault() inserts PMD, but we already have a PTE at this spot. The core of the issue is that while there is isolation between faults to the same range in the DAX fault handlers via our DAX entry locking, there is no isolation between faults in the code in mm/memory.c. This means for instance that this code in __handle_mm_fault() can run: if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) { ret = create_huge_pmd(&vmf); But by the time we actually get to run the fault handler called by create_huge_pmd(), the PMD is no longer pmd_none() because a racing PTE fault has installed a normal PMD here as a parent. This is the cause of the 2nd race. The first race is similar - there is the following check in handle_pte_fault(): } else { /* See comment in pte_alloc_one_map() */ if (pmd_devmap(*vmf->pmd) || pmd_trans_unstable(vmf->pmd)) return 0; So if a pmd_devmap() PMD (a DAX PMD) has been installed at vmf->pmd, we will bail and retry the fault. This is correct, but there is nothing preventing the PMD from being installed after this check but before we actually get to the DAX PTE fault handlers. In my testing these races result in the following types of errors: BUG: Bad rss-counter state mm:ffff8800a817d280 idx:1 val:1 BUG: non-zero nr_ptes on freeing mm: 15 Fix this issue by having the DAX fault handlers verify that it is safe to continue their fault after they have taken an entry lock to block other racing faults. [ross.zwisler@linux.intel.com: improve fix for colliding PMD & PTE entries] Link: http://lkml.kernel.org/r/20170526195932.32178-1-ross.zwisler@linux.intel.com Link: http://lkml.kernel.org/r/20170522215749.23516-2-ross.zwisler@linux.intel.com Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Reported-by: Pawel Lebioda <pawel.lebioda@intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: "Kirill A . Shutemov" <kirill.shutemov@linux.intel.com> Cc: Pawel Lebioda <pawel.lebioda@intel.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Xiong Zhou <xzhou@redhat.com> Cc: Eryu Guan <eguan@redhat.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
1251704a63 |
Merge branch 'akpm' (patches from Andrew)
Merge misc fixes from Andrew Morton: "15 fixes" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: mm, docs: update memory.stat description with workingset* entries mm: vmscan: scan until it finds eligible pages mm, thp: copying user pages must schedule on collapse dax: fix PMD data corruption when fault races with write dax: fix data corruption when fault races with write ext4: return to starting transaction in ext4_dax_huge_fault() mm: fix data corruption due to stale mmap reads dax: prevent invalidation of mapped DAX entries Tigran has moved mm, vmalloc: fix vmalloc users tracking properly mm/khugepaged: add missed tracepoint for collapse_huge_page_swapin gcov: support GCC 7.1 mm, vmstat: Remove spurious WARN() during zoneinfo print time: delete current_fs_time() hwpoison, memcg: forcibly uncharge LRU pages |
||
Ross Zwisler
|
876f29460c |
dax: fix PMD data corruption when fault races with write
This is based on a patch from Jan Kara that fixed the equivalent race in
the DAX PTE fault path.
Currently DAX PMD read fault can race with write(2) in the following
way:
CPU1 - write(2) CPU2 - read fault
dax_iomap_pmd_fault()
->iomap_begin() - sees hole
dax_iomap_rw()
iomap_apply()
->iomap_begin - allocates blocks
dax_iomap_actor()
invalidate_inode_pages2_range()
- there's nothing to invalidate
grab_mapping_entry()
- we add huge zero page to the radix tree
and map it to page tables
The result is that hole page is mapped into page tables (and thus zeros
are seen in mmap) while file has data written in that place.
Fix the problem by locking exception entry before mapping blocks for the
fault. That way we are sure invalidate_inode_pages2_range() call for
racing write will either block on entry lock waiting for the fault to
finish (and unmap stale page tables after that) or read fault will see
already allocated blocks by write(2).
Fixes:
|
||
Jan Kara
|
13e451fdc1 |
dax: fix data corruption when fault races with write
Currently DAX read fault can race with write(2) in the following way:
CPU1 - write(2) CPU2 - read fault
dax_iomap_pte_fault()
->iomap_begin() - sees hole
dax_iomap_rw()
iomap_apply()
->iomap_begin - allocates blocks
dax_iomap_actor()
invalidate_inode_pages2_range()
- there's nothing to invalidate
grab_mapping_entry()
- we add zero page in the radix tree
and map it to page tables
The result is that hole page is mapped into page tables (and thus zeros
are seen in mmap) while file has data written in that place.
Fix the problem by locking exception entry before mapping blocks for the
fault. That way we are sure invalidate_inode_pages2_range() call for
racing write will either block on entry lock waiting for the fault to
finish (and unmap stale page tables after that) or read fault will see
already allocated blocks by write(2).
Fixes:
|
||
Jan Kara
|
cd656375f9 |
mm: fix data corruption due to stale mmap reads
Currently, we didn't invalidate page tables during invalidate_inode_pages2()
for DAX. That could result in e.g. 2MiB zero page being mapped into
page tables while there were already underlying blocks allocated and
thus data seen through mmap were different from data seen by read(2).
The following sequence reproduces the problem:
- open an mmap over a 2MiB hole
- read from a 2MiB hole, faulting in a 2MiB zero page
- write to the hole with write(3p). The write succeeds but we
incorrectly leave the 2MiB zero page mapping intact.
- via the mmap, read the data that was just written. Since the zero
page mapping is still intact we read back zeroes instead of the new
data.
Fix the problem by unconditionally calling invalidate_inode_pages2_range()
in dax_iomap_actor() for new block allocations and by properly
invalidating page tables in invalidate_inode_pages2_range() for DAX
mappings.
Fixes:
|
||
Ross Zwisler
|
4636e70bb0 |
dax: prevent invalidation of mapped DAX entries
Patch series "mm,dax: Fix data corruption due to mmap inconsistency",
v4.
This series fixes data corruption that can happen for DAX mounts when
page faults race with write(2) and as a result page tables get out of
sync with block mappings in the filesystem and thus data seen through
mmap is different from data seen through read(2).
The series passes testing with t_mmap_stale test program from Ross and
also other mmap related tests on DAX filesystem.
This patch (of 4):
dax_invalidate_mapping_entry() currently removes DAX exceptional entries
only if they are clean and unlocked. This is done via:
invalidate_mapping_pages()
invalidate_exceptional_entry()
dax_invalidate_mapping_entry()
However, for page cache pages removed in invalidate_mapping_pages()
there is an additional criteria which is that the page must not be
mapped. This is noted in the comments above invalidate_mapping_pages()
and is checked in invalidate_inode_page().
For DAX entries this means that we can can end up in a situation where a
DAX exceptional entry, either a huge zero page or a regular DAX entry,
could end up mapped but without an associated radix tree entry. This is
inconsistent with the rest of the DAX code and with what happens in the
page cache case.
We aren't able to unmap the DAX exceptional entry because according to
its comments invalidate_mapping_pages() isn't allowed to block, and
unmap_mapping_range() takes a write lock on the mapping->i_mmap_rwsem.
Since we essentially never have unmapped DAX entries to evict from the
radix tree, just remove dax_invalidate_mapping_entry().
Fixes:
|
||
Linus Torvalds
|
0fcc3ab23d |
Merge branch 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm fixes from Dan Williams: "Incremental fixes and a small feature addition on top of the main libnvdimm 4.12 pull request: - Geert noticed that tinyconfig was bloated by BLOCK selecting DAX. The size regression is fixed by moving all dax helpers into the dax-core and only specifying "select DAX" for FS_DAX and dax-capable drivers. He also asked for clarification of the NR_DEV_DAX config option which, on closer look, does not need to be a config option at all. Mike also throws in a DEV_DAX_PMEM fixup for good measure. - Ben's attention to detail on -stable patch submissions caught a case where the recent fixes to arch_copy_from_iter_pmem() missed a condition where we strand dirty data in the cache. This is tagged for -stable and will also be included in the rework of the pmem api to a proposed {memcpy,copy_user}_flushcache() interface for 4.13. - Vishal adds a feature that missed the initial pull due to pending review feedback. It allows the kernel to clear media errors when initializing a BTT (atomic sector update driver) instance on a pmem namespace. - Ross noticed that the dax_device + dax_operations conversion broke __dax_zero_page_range(). The nvdimm unit tests fail to check this path, but xfstests immediately trips over it. No excuse for missing this before submitting the 4.12 pull request. These all pass the nvdimm unit tests and an xfstests spot check. The set has received a build success notification from the kbuild robot" * 'libnvdimm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: filesystem-dax: fix broken __dax_zero_page_range() conversion libnvdimm, btt: ensure that initializing metadata clears poison libnvdimm: add an atomic vs process context flag to rw_bytes x86, pmem: Fix cache flushing for iovec write < 8 bytes device-dax: kill NR_DEV_DAX block, dax: move "select DAX" from BLOCK to FS_DAX device-dax: Tell kbuild DEV_DAX_PMEM depends on DEV_DAX |
||
Dan Williams
|
e84b83b9ee |
filesystem-dax: fix broken __dax_zero_page_range() conversion
The conversion of __dax_zero_page_range() to 'struct dax_operations'
caused it to frequently fail. The mistake was treating the @size
parameter as a dax mapping length rather than just a length of the
clear_pmem() operation. The dax mapping length is assumed to be hard
coded as PAGE_SIZE.
Without this fix any page unaligned zeroing request will trigger a
-EINVAL return from bdev_dax_pgoff().
Cc: Jan Kara <jack@suse.com>
Cc: Christoph Hellwig <hch@lst.de>
Reported-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Tested-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Fixes:
|
||
Ross Zwisler
|
b444073458 |
dax: add tracepoint to dax_insert_mapping()
Add a tracepoint to dax_insert_mapping(), following the same logging conventions as the rest of DAX. This tracepoint, along with the one in dax_load_hole(), lets us know how a DAX PTE fault was serviced. Here is an example DAX fault that inserts a PTE mapping: small-1126 [007] .... 145.451604: dax_pte_fault: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10420000 pgoff 0x220 small-1126 [007] .... 145.452317: dax_insert_mapping: dev 259:0 ino 0x1003 shared write address 0x10420000 radix_entry 0x100006 small-1126 [007] .... 145.452399: dax_pte_fault_done: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10420000 pgoff 0x220 MAJOR|NOPAGE Link: http://lkml.kernel.org/r/20170221195116.13278-7-ross.zwisler@linux.intel.com Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ross Zwisler
|
f9bc3a0753 |
dax: add tracepoint to dax_writeback_one()
Add a tracepoint to dax_writeback_one(), following the same logging conventions as the rest of DAX. Here is an example range writeback which ends up flushing one PMD and one PTE: test-1265 [003] .... 496.615250: dax_writeback_range: dev 259:0 ino 0x1003 pgoff 0x0-0x7ffffffffffff test-1265 [003] .... 496.616263: dax_writeback_one: dev 259:0 ino 0x1003 pgoff 0x0 pglen 0x200 test-1265 [003] .... 496.616270: dax_writeback_one: dev 259:0 ino 0x1003 pgoff 0x305 pglen 0x1 test-1265 [003] .... 496.616272: dax_writeback_range_done: dev 259:0 ino 0x1003 pgoff 0x0-0x7ffffffffffff [akpm@linux-foundation.org: struct blk_dax_ctl has disappeared] Link: http://lkml.kernel.org/r/20170221195116.13278-6-ross.zwisler@linux.intel.com Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ross Zwisler
|
d14a3f48a1 |
dax: add tracepoints to dax_writeback_mapping_range()
Add tracepoints to dax_writeback_mapping_range(), following the same logging conventions as the rest of DAX. Here is an example writeback call: msync-1085 [006] .... 200.902565: dax_writeback_range: dev 259:0 ino 0x1003 pgoff 0x200-0x2ff msync-1085 [006] .... 200.902579: dax_writeback_range_done: dev 259:0 ino 0x1003 pgoff 0x200-0x2ff [ross.zwisler@linux.intel.com: fix regression in dax_writeback_mapping_range()] Link: http://lkml.kernel.org/r/20170314215358.31451-1-ross.zwisler@linux.intel.com Link: http://lkml.kernel.org/r/20170221195116.13278-5-ross.zwisler@linux.intel.com Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ross Zwisler
|
678c9fd043 |
dax: add tracepoints to dax_load_hole()
Add tracepoints to dax_load_hole(), following the same logging conventions as the rest of DAX. Here is the logging generated by a PTE read from a hole: read-1075 [002] .... 62.362108: dax_pte_fault: dev 259:0 ino 0x1003 shared ALLOW_RETRY|KILLABLE|USER address 0x10480000 pgoff 0x280 read-1075 [002] .... 62.362140: dax_load_hole: dev 259:0 ino 0x1003 shared ALLOW_RETRY|KILLABLE|USER address 0x10480000 pgoff 0x280 NOPAGE read-1075 [002] .... 62.362141: dax_pte_fault_done: dev 259:0 ino 0x1003 shared ALLOW_RETRY|KILLABLE|USER address 0x10480000 pgoff 0x280 NOPAGE Link: http://lkml.kernel.org/r/20170221195116.13278-4-ross.zwisler@linux.intel.com Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ross Zwisler
|
c3ff68d7d1 |
dax: add tracepoints to dax_pfn_mkwrite()
Add tracepoints to dax_pfn_mkwrite(), following the same logging conventions as the rest of DAX. Here is an example PTE fault followed by a pfn_mkwrite: small_aligned-1094 [002] .... 374.084998: dax_pte_fault: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10400000 pgoff 0x200 small_aligned-1094 [002] .... 374.085145: dax_pte_fault_done: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10400000 pgoff 0x200 MAJOR|NOPAGE small_aligned-1094 [002] .... 374.085165: dax_pfn_mkwrite: dev 259:0 ino 0x1003 shared WRITE|MKWRITE|ALLOW_RETRY|KILLABLE|USER address 0x10400000 pgoff 0x200 NOPAGE Link: http://lkml.kernel.org/r/20170221195116.13278-3-ross.zwisler@linux.intel.com Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ross Zwisler
|
a9c42b33ed |
dax: add tracepoints to dax_iomap_pte_fault()
Patch series "second round of tracepoints for DAX". This second round of DAX tracepoint patches adds tracing to the PTE fault path (dax_iomap_pte_fault(), dax_pfn_mkwrite(), dax_load_hole(), dax_insert_mapping()) and to the writeback path (dax_writeback_mapping_range(), dax_writeback_one()). The purpose of this tracing is to give us a high level view of what DAX is doing, whether faults are being serviced by PMDs or PTEs, and by real storage or by zero pages covering holes. I do have some patches nearly ready which also add tracing to grab_mapping_entry() and dax_insert_mapping_entry(). These are more targeted at logging how we are interacting with the radix tree, how we use empty entries for locking, whether we "downgrade" huge zero pages to 4k PTE sized allocations, etc. In the end it seemed to me that this might be too detailed to have as constantly present tracepoints, but if anyone sees value in having tracepoints like this in the DAX code permanently (Jan?), please let me know and I'll add those last two patches. All these tracepoints were done to be consistent with the style of the XFS tracepoints and with the existing DAX PMD tracepoints. This patch (of 6): Add tracepoints to dax_iomap_pte_fault(), following the same logging conventions as the rest of DAX. Here is an example fault that initially tries to be serviced by the PMD fault handler but which falls back to PTEs because the VMA isn't large enough to hold a PMD: small-1086 [005] .... 71.140014: xfs_filemap_huge_fault: dev 259:0 ino 0x1003 small-1086 [005] .... 71.140027: dax_pmd_fault: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10420000 vm_start 0x10200000 vm_end 0x10500000 pgoff 0x220 max_pgoff 0x1400 small-1086 [005] .... 71.140028: dax_pmd_fault_done: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10420000 vm_start 0x10200000 vm_end 0x10500000 pgoff 0x220 max_pgoff 0x1400 FALLBACK small-1086 [005] .... 71.140035: dax_pte_fault: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10420000 pgoff 0x220 small-1086 [005] .... 71.140396: dax_pte_fault_done: dev 259:0 ino 0x1003 shared WRITE|ALLOW_RETRY|KILLABLE|USER address 0x10420000 pgoff 0x220 MAJOR|NOPAGE Link: http://lkml.kernel.org/r/20170221195116.13278-2-ross.zwisler@linux.intel.com Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
53ef7d0e20 |
libnvdimm for 4.12
* Region media error reporting: A libnvdimm region device is the parent to one or more namespaces. To date, media errors have been reported via the "badblocks" attribute attached to pmem block devices for namespaces in "raw" or "memory" mode. Given that namespaces can be in "device-dax" or "btt-sector" mode this new interface reports media errors generically, i.e. independent of namespace modes or state. This subsequently allows userspace tooling to craft "ACPI 6.1 Section 9.20.7.6 Function Index 4 - Clear Uncorrectable Error" requests and submit them via the ioctl path for NVDIMM root bus devices. * Introduce 'struct dax_device' and 'struct dax_operations': Prompted by a request from Linus and feedback from Christoph this allows for dax capable drivers to publish their own custom dax operations. This fixes the broken assumption that all dax operations are related to a persistent memory device, and makes it easier for other architectures and platforms to add customized persistent memory support. * 'libnvdimm' core updates: A new "deep_flush" sysfs attribute is available for storage appliance applications to manually trigger memory controllers to drain write-pending buffers that would otherwise be flushed automatically by the platform ADR (asynchronous-DRAM-refresh) mechanism at a power loss event. Support for "locked" DIMMs is included to prevent namespaces from surfacing when the namespace label data area is locked. Finally, fixes for various reported deadlocks and crashes, also tagged for -stable. * ACPI / nfit driver updates: General updates of the nfit driver to add DSM command overrides, ACPI 6.1 health state flags support, DSM payload debug available by default, and various fixes. Acknowledgements that came after the branch was pushed: commmit |
||
Linus Torvalds
|
694752922b |
Merge branch 'for-4.12/block' of git://git.kernel.dk/linux-block
Pull block layer updates from Jens Axboe: - Add BFQ IO scheduler under the new blk-mq scheduling framework. BFQ was initially a fork of CFQ, but subsequently changed to implement fairness based on B-WF2Q+, a modified variant of WF2Q. BFQ is meant to be used on desktop type single drives, providing good fairness. From Paolo. - Add Kyber IO scheduler. This is a full multiqueue aware scheduler, using a scalable token based algorithm that throttles IO based on live completion IO stats, similary to blk-wbt. From Omar. - A series from Jan, moving users to separately allocated backing devices. This continues the work of separating backing device life times, solving various problems with hot removal. - A series of updates for lightnvm, mostly from Javier. Includes a 'pblk' target that exposes an open channel SSD as a physical block device. - A series of fixes and improvements for nbd from Josef. - A series from Omar, removing queue sharing between devices on mostly legacy drivers. This helps us clean up other bits, if we know that a queue only has a single device backing. This has been overdue for more than a decade. - Fixes for the blk-stats, and improvements to unify the stats and user windows. This both improves blk-wbt, and enables other users to register a need to receive IO stats for a device. From Omar. - blk-throttle improvements from Shaohua. This provides a scalable framework for implementing scalable priotization - particularly for blk-mq, but applicable to any type of block device. The interface is marked experimental for now. - Bucketized IO stats for IO polling from Stephen Bates. This improves efficiency of polled workloads in the presence of mixed block size IO. - A few fixes for opal, from Scott. - A few pulls for NVMe, including a lot of fixes for NVMe-over-fabrics. From a variety of folks, mostly Sagi and James Smart. - A series from Bart, improving our exposed info and capabilities from the blk-mq debugfs support. - A series from Christoph, cleaning up how handle WRITE_ZEROES. - A series from Christoph, cleaning up the block layer handling of how we track errors in a request. On top of being a nice cleanup, it also shrinks the size of struct request a bit. - Removal of mg_disk and hd (sorry Linus) by Christoph. The former was never used by platforms, and the latter has outlived it's usefulness. - Various little bug fixes and cleanups from a wide variety of folks. * 'for-4.12/block' of git://git.kernel.dk/linux-block: (329 commits) block: hide badblocks attribute by default blk-mq: unify hctx delay_work and run_work block: add kblock_mod_delayed_work_on() blk-mq: unify hctx delayed_run_work and run_work nbd: fix use after free on module unload MAINTAINERS: bfq: Add Paolo as maintainer for the BFQ I/O scheduler blk-mq-sched: alloate reserved tags out of normal pool mtip32xx: use runtime tag to initialize command header scsi: Implement blk_mq_ops.show_rq() blk-mq: Add blk_mq_ops.show_rq() blk-mq: Show operation, cmd_flags and rq_flags names blk-mq: Make blk_flags_show() callers append a newline character blk-mq: Move the "state" debugfs attribute one level down blk-mq: Unregister debugfs attributes earlier blk-mq: Only unregister hctxs for which registration succeeded blk-mq-debugfs: Rename functions for registering and unregistering the mq directory blk-mq: Let blk_mq_debugfs_register() look up the queue name blk-mq: Register <dev>/queue/mq after having registered <dev>/queue ide-pm: always pass 0 error to ide_complete_rq in ide_do_devset ide-pm: always pass 0 error to __blk_end_request_all .. |
||
Dan Williams
|
cccbce6715 |
filesystem-dax: convert to dax_direct_access()
Now that a dax_device is plumbed through all dax-capable drivers we can switch from block_device_operations to dax_operations for invoking ->direct_access. This also lets us kill off some usages of struct blk_dax_ctl on the way to its eventual removal. Suggested-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com> |
||
Dan Williams
|
a41fe02b6b |
Revert "block: use DAX for partition table reads"
commit |
||
Christoph Hellwig
|
ee472d835c |
block: add a flags argument to (__)blkdev_issue_zeroout
Turn the existing discard flag into a new BLKDEV_ZERO_UNMAP flag with similar semantics, but without referring to diѕcard. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@fb.com> |
||
Ross Zwisler
|
e11f8b7b6c |
dax: fix radix tree insertion race
While running generic/340 in my test setup I hit the following race. It can happen with kernels that support FS DAX PMDs, so v4.10 thru v4.11-rc5. Thread 1 Thread 2 -------- -------- dax_iomap_pmd_fault() grab_mapping_entry() spin_lock_irq() get_unlocked_mapping_entry() 'entry' is NULL, can't call lock_slot() spin_unlock_irq() radix_tree_preload() dax_iomap_pmd_fault() grab_mapping_entry() spin_lock_irq() get_unlocked_mapping_entry() ... lock_slot() spin_unlock_irq() dax_pmd_insert_mapping() <inserts a PMD mapping> spin_lock_irq() __radix_tree_insert() fails with -EEXIST <fall back to 4k fault, and die horribly when inserting a 4k entry where a PMD exists> The issue is that we have to drop mapping->tree_lock while calling radix_tree_preload(), but since we didn't have a radix tree entry to lock (unlike in the pmd_downgrade case) we have no protection against Thread 2 coming along and inserting a PMD at the same index. For 4k entries we handled this with a special-case response to -EEXIST coming from the __radix_tree_insert(), but this doesn't save us for PMDs because the -EEXIST case can also mean that we collided with a 4k entry in the radix tree at a different index, but one that is covered by our PMD range. So, correctly handle both the 4k and 2M collision cases by explicitly re-checking the radix tree for an entry at our index once we reacquire mapping->tree_lock. This patch has made it through a clean xfstests run with the current v4.11-rc5 based linux/master, and it also ran generic/340 500 times in a loop. It used to fail within the first 10 iterations. Link: http://lkml.kernel.org/r/20170406212944.2866-1-ross.zwisler@linux.intel.com Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: "Darrick J. Wong" <darrick.wong@oracle.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Christoph Hellwig <hch@lst.de> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Jan Kara <jack@suse.cz> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: <stable@vger.kernel.org> [4.10+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Ingo Molnar
|
f361bf4a66 |
sched/headers: Prepare for the reduction of <linux/sched.h>'s signal API dependency
Instead of including the full <linux/signal.h>, we are going to include the types-only <linux/signal_types.h> header in <linux/sched.h>, to further decouple the scheduler header from the signal headers. This means that various files which relied on the full <linux/signal.h> need to be updated to gain an explicit dependency on it. Update the code that relies on sched.h's inclusion of the <linux/signal.h> header. Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Arnd Bergmann
|
01cddfe990 |
mm,fs,dax: mark dax_iomap_pmd_fault as const
The two alternative implementations of dax_iomap_fault have different
prototypes, and one of them is obviously wrong as seen from this build
warning:
fs/dax.c: In function 'dax_iomap_fault':
fs/dax.c:1462:35: error: passing argument 2 of 'dax_iomap_pmd_fault' discards 'const' qualifier from pointer target type [-Werror=discarded-qualifiers]
This marks the argument 'const' as in all the related functions.
Fixes:
|
||
Dave Jiang
|
c791ace1e7 |
mm: replace FAULT_FLAG_SIZE with parameter to huge_fault
Since the introduction of FAULT_FLAG_SIZE to the vm_fault flag, it has been somewhat painful with getting the flags set and removed at the correct locations. More than one kernel oops was introduced due to difficulties of getting the placement correctly. Remove the flag values and introduce an input parameter to huge_fault that indicates the size of the page entry. This makes the code easier to trace and should avoid the issues we see with the fault flags where removal of the flag was necessary in the fallback paths. Link: http://lkml.kernel.org/r/148615748258.43180.1690152053774975329.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Dave Jiang <dave.jiang@intel.com> Tested-by: Dan Williams <dan.j.williams@intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Dave Jiang
|
a2d581675d |
mm,fs,dax: change ->pmd_fault to ->huge_fault
Patch series "1G transparent hugepage support for device dax", v2. The following series implements support for 1G trasparent hugepage on x86 for device dax. The bulk of the code was written by Mathew Wilcox a while back supporting transparent 1G hugepage for fs DAX. I have forward ported the relevant bits to 4.10-rc. The current submission has only the necessary code to support device DAX. Comments from Dan Williams: So the motivation and intended user of this functionality mirrors the motivation and users of 1GB page support in hugetlbfs. Given expected capacities of persistent memory devices an in-memory database may want to reduce tlb pressure beyond what they can already achieve with 2MB mappings of a device-dax file. We have customer feedback to that effect as Willy mentioned in his previous version of these patches [1]. [1]: https://lkml.org/lkml/2016/1/31/52 Comments from Nilesh @ Oracle: There are applications which have a process model; and if you assume 10,000 processes attempting to mmap all the 6TB memory available on a server; we are looking at the following: processes : 10,000 memory : 6TB pte @ 4k page size: 8 bytes / 4K of memory * #processes = 6TB / 4k * 8 * 10000 = 1.5GB * 80000 = 120,000GB pmd @ 2M page size: 120,000 / 512 = ~240GB pud @ 1G page size: 240GB / 512 = ~480MB As you can see with 2M pages, this system will use up an exorbitant amount of DRAM to hold the page tables; but the 1G pages finally brings it down to a reasonable level. Memory sizes will keep increasing; so this number will keep increasing. An argument can be made to convert the applications from process model to thread model, but in the real world that may not be always practical. Hopefully this helps explain the use case where this is valuable. This patch (of 3): In preparation for adding the ability to handle PUD pages, convert vm_operations_struct.pmd_fault to vm_operations_struct.huge_fault. The vm_fault structure is extended to include a union of the different page table pointers that may be needed, and three flag bits are reserved to indicate which type of pointer is in the union. [ross.zwisler@linux.intel.com: remove unused function ext4_dax_huge_fault()] Link: http://lkml.kernel.org/r/1485813172-7284-1-git-send-email-ross.zwisler@linux.intel.com [dave.jiang@intel.com: clear PMD or PUD size flags when in fall through path] Link: http://lkml.kernel.org/r/148589842696.5820.16078080610311444794.stgit@djiang5-desk3.ch.intel.com Link: http://lkml.kernel.org/r/148545058784.17912.6353162518188733642.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Matthew Wilcox <mawilcox@microsoft.com> Signed-off-by: Dave Jiang <dave.jiang@intel.com> Signed-off-by: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Nilesh Choudhury <nilesh.choudhury@oracle.com> Cc: Ingo Molnar <mingo@elte.hu> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Dave Jiang <dave.jiang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Dave Jiang
|
11bac80004 |
mm, fs: reduce fault, page_mkwrite, and pfn_mkwrite to take only vmf
->fault(), ->page_mkwrite(), and ->pfn_mkwrite() calls do not need to take a vma and vmf parameter when the vma already resides in vmf. Remove the vma parameter to simplify things. [arnd@arndb.de: fix ARM build] Link: http://lkml.kernel.org/r/20170125223558.1451224-1-arnd@arndb.de Link: http://lkml.kernel.org/r/148521301778.19116.10840599906674778980.stgit@djiang5-desk3.ch.intel.com Signed-off-by: Dave Jiang <dave.jiang@intel.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Cc: Theodore Ts'o <tytso@mit.edu> Cc: Darrick J. Wong <darrick.wong@oracle.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Jan Kara <jack@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
bc49a7831b |
Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton: "142 patches: - DAX updates - various misc bits - OCFS2 updates - most of MM" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (142 commits) mm/z3fold.c: limit first_num to the actual range of possible buddy indexes mm: fix <linux/pagemap.h> stray kernel-doc notation zram: remove obsolete sysfs attrs mm/memblock.c: remove unnecessary log and clean up oom-reaper: use madvise_dontneed() logic to decide if unmap the VMA mm: drop unused argument of zap_page_range() mm: drop zap_details::check_swap_entries mm: drop zap_details::ignore_dirty mm, page_alloc: warn_alloc nodemask is NULL when cpusets are disabled mm: help __GFP_NOFAIL allocations which do not trigger OOM killer mm, oom: do not enforce OOM killer for __GFP_NOFAIL automatically mm: consolidate GFP_NOFAIL checks in the allocator slowpath lib/show_mem.c: teach show_mem to work with the given nodemask arch, mm: remove arch specific show_mem mm, page_alloc: warn_alloc print nodemask mm, page_alloc: do not report all nodes in show_mem Revert "mm: bail out in shrink_inactive_list()" mm, vmscan: consider eligible zones in get_scan_count mm, vmscan: cleanup lru size claculations mm, vmscan: do not count freed pages as PGDEACTIVATE ... |
||
Linus Torvalds
|
a27fcb0cd1 |
Changes since last update:
- Various cleanups - Livelock fixes for eofblocks scanning - Improved input verification for on-disk metadata - Fix races in the copy on write remap mechanism - Fix buffer io error timeout controls - Streamlining of directio copy on write - Asynchronous discard support - Fix asserts when splitting delalloc reservations - Don't bloat bmbt when right shifting extents - Inode alignment fixes for 32k block sizes -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQIcBAABCgAGBQJYp85wAAoJEPh/dxk0SrTr5HgP/jcx/oI+ap/NaXMi1Q8K65mh C3gf27cgUxtdGnEO5KRUE1Jyscuu4ZpzugDdLQISwR55kesT5FU0xpgbsfiICc86 dxLAhg8auwpTfHV+96Do2hfpO3IhYoBC2w5jo32+C+SaQUqTdPixncZukX89tjyP HOFLrQnpc336hCO2rv1Q9hSkD6IUCkSAtk+Dh1xMvbsmKFLGdmkTdqUQfl1U4YnV 2S98k9QSRdiVyzj3lAGOy+IU9aTcPX/PptMEYaQZEaod5WWNjy91lQZNM6zRc4QW 8P199yiH6CQa2vESO2SV72cJ40WihM1KQXqnrlJjAMGQ7mMGTGJcTwxhuZYUbDYZ cuk6bAUaijt/PzfmydJKlcH8vFerX4aU4CGkxPU0nph0iTR5kxYlIAMmFw2cdRzf Iar3SBb8Pc9jiNnEZMFsQ0Fd9hNk9rNoUSpKqm4FtSRocU6JjmpAdPqNYdTVKc2l 2EY7JMo0xCaTVC1WT6sE2NsxsFvm0R7H6HHG2vMFIMNkhI24GRijIXH6dQlaGCQJ 5oTHrSM7503qPlEQNsxF7zI02LpJT+duf+2ODw/FSjA1z/TWwOUYYUrPUOyQNdzP NrRnMa6LWsEehkuvz2FFko8PKXD55lTuUP1KdjigjqKp8Jzkc/PP+uvuwF5vUFfd pWRvE5m/NePWBZetbL3Q =Ga1F -----END PGP SIGNATURE----- Merge tag 'xfs-4.11-merge-7' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux Pull xfs updates from Darrick Wong: "Here are the XFS changes for 4.11. We aren't introducing any major features in this release cycle except for this being the first merge window I've managed on my own. :) Changes since last update: - Various cleanups - Livelock fixes for eofblocks scanning - Improved input verification for on-disk metadata - Fix races in the copy on write remap mechanism - Fix buffer io error timeout controls - Streamlining of directio copy on write - Asynchronous discard support - Fix asserts when splitting delalloc reservations - Don't bloat bmbt when right shifting extents - Inode alignment fixes for 32k block sizes" * tag 'xfs-4.11-merge-7' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux: (39 commits) xfs: remove XFS_ALLOCTYPE_ANY_AG and XFS_ALLOCTYPE_START_AG xfs: simplify xfs_rtallocate_extent xfs: tune down agno asserts in the bmap code xfs: Use xfs_icluster_size_fsb() to calculate inode chunk alignment xfs: don't reserve blocks for right shift transactions xfs: fix len comparison in xfs_extent_busy_trim xfs: fix uninitialized variable in _reflink_convert_cow xfs: split indlen reservations fairly when under reserved xfs: handle indlen shortage on delalloc extent merge xfs: resurrect debug mode drop buffered writes mechanism xfs: clear delalloc and cache on buffered write failure xfs: don't block the log commit handler for discards xfs: improve busy extent sorting xfs: improve handling of busy extents in the low-level allocator xfs: don't fail xfs_extent_busy allocation xfs: correct null checks and error processing in xfs_initialize_perag xfs: update ctime and mtime on clone destinatation inodes xfs: allocate direct I/O COW blocks in iomap_begin xfs: go straight to real allocations for direct I/O COW writes xfs: return the converted extent in __xfs_reflink_convert_cow ... |
||
Dave Jiang
|
f42003917b |
mm, dax: change pmd_fault() to take only vmf parameter
pmd_fault() and related functions really only need the vmf parameter since the additional parameters are all included in the vmf struct. Remove the additional parameter and simplify pmd_fault() and friends. Link: http://lkml.kernel.org/r/1484085142-2297-8-git-send-email-ross.zwisler@linux.intel.com Signed-off-by: Dave Jiang <dave.jiang@intel.com> Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Dave Chinner <david@fromorbit.com> Cc: Dave Jiang <dave.jiang@intel.com> Cc: Matthew Wilcox <mawilcox@microsoft.com> Cc: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |