Commit Graph

10070 Commits

Author SHA1 Message Date
Filipe Manana
d8ac76cdd1 btrfs: send: fix invalid path for unlink operations after parent orphanization
During an incremental send operation, when processing the new references
for the current inode, we might send an unlink operation for another inode
that has a conflicting path and has more than one hard link. However this
path was computed and cached before we processed previous new references
for the current inode. We may have orphanized a directory of that path
while processing a previous new reference, in which case the path will
be invalid and cause the receiver process to fail.

The following reproducer triggers the problem and explains how/why it
happens in its comments:

  $ cat test-send-unlink.sh
  #!/bin/bash

  DEV=/dev/sdi
  MNT=/mnt/sdi

  mkfs.btrfs -f $DEV >/dev/null
  mount $DEV $MNT

  # Create our test files and directory. Inode 259 (file3) has two hard
  # links.
  touch $MNT/file1
  touch $MNT/file2
  touch $MNT/file3

  mkdir $MNT/A
  ln $MNT/file3 $MNT/A/hard_link

  # Filesystem looks like:
  #
  # .                                     (ino 256)
  # |----- file1                          (ino 257)
  # |----- file2                          (ino 258)
  # |----- file3                          (ino 259)
  # |----- A/                             (ino 260)
  #        |---- hard_link                (ino 259)
  #

  # Now create the base snapshot, which is going to be the parent snapshot
  # for a later incremental send.
  btrfs subvolume snapshot -r $MNT $MNT/snap1
  btrfs send -f /tmp/snap1.send $MNT/snap1

  # Move inode 257 into directory inode 260. This results in computing the
  # path for inode 260 as "/A" and caching it.
  mv $MNT/file1 $MNT/A/file1

  # Move inode 258 (file2) into directory inode 260, with a name of
  # "hard_link", moving first inode 259 away since it currently has that
  # location and name.
  mv $MNT/A/hard_link $MNT/tmp
  mv $MNT/file2 $MNT/A/hard_link

  # Now rename inode 260 to something else (B for example) and then create
  # a hard link for inode 258 that has the old name and location of inode
  # 260 ("/A").
  mv $MNT/A $MNT/B
  ln $MNT/B/hard_link $MNT/A

  # Filesystem now looks like:
  #
  # .                                     (ino 256)
  # |----- tmp                            (ino 259)
  # |----- file3                          (ino 259)
  # |----- B/                             (ino 260)
  # |      |---- file1                    (ino 257)
  # |      |---- hard_link                (ino 258)
  # |
  # |----- A                              (ino 258)

  # Create another snapshot of our subvolume and use it for an incremental
  # send.
  btrfs subvolume snapshot -r $MNT $MNT/snap2
  btrfs send -f /tmp/snap2.send -p $MNT/snap1 $MNT/snap2

  # Now unmount the filesystem, create a new one, mount it and try to
  # apply both send streams to recreate both snapshots.
  umount $DEV

  mkfs.btrfs -f $DEV >/dev/null

  mount $DEV $MNT

  # First add the first snapshot to the new filesystem by applying the
  # first send stream.
  btrfs receive -f /tmp/snap1.send $MNT

  # The incremental receive operation below used to fail with the
  # following error:
  #
  #    ERROR: unlink A/hard_link failed: No such file or directory
  #
  # This is because when send is processing inode 257, it generates the
  # path for inode 260 as "/A", since that inode is its parent in the send
  # snapshot, and caches that path.
  #
  # Later when processing inode 258, it first processes its new reference
  # that has the path of "/A", which results in orphanizing inode 260
  # because there is a a path collision. This results in issuing a rename
  # operation from "/A" to "/o260-6-0".
  #
  # Finally when processing the new reference "B/hard_link" for inode 258,
  # it notices that it collides with inode 259 (not yet processed, because
  # it has a higher inode number), since that inode has the name
  # "hard_link" under the directory inode 260. It also checks that inode
  # 259 has two hardlinks, so it decides to issue a unlink operation for
  # the name "hard_link" for inode 259. However the path passed to the
  # unlink operation is "/A/hard_link", which is incorrect since currently
  # "/A" does not exists, due to the orphanization of inode 260 mentioned
  # before. The path is incorrect because it was computed and cached
  # before the orphanization. This results in the receiver to fail with
  # the above error.
  btrfs receive -f /tmp/snap2.send $MNT

  umount $MNT

When running the test, it fails like this:

  $ ./test-send-unlink.sh
  Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap1'
  At subvol /mnt/sdi/snap1
  Create a readonly snapshot of '/mnt/sdi' in '/mnt/sdi/snap2'
  At subvol /mnt/sdi/snap2
  At subvol snap1
  At snapshot snap2
  ERROR: unlink A/hard_link failed: No such file or directory

Fix this by recomputing a path before issuing an unlink operation when
processing the new references for the current inode if we previously
have orphanized a directory.

A test case for fstests will follow soon.

CC: stable@vger.kernel.org # 4.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-22 14:11:57 +02:00
David Sterba
ae5d29d4e7 btrfs: inline wait_current_trans_commit_start in its caller
Function wait_current_trans_commit_start is now fairly trivial so it can
be inlined in its only caller.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:11 +02:00
David Sterba
32cc4f8759 btrfs: sink wait_for_unblock parameter to async commit
There's only one caller left btrfs_ioctl_start_sync that passes 0, so we
can remove the switch in btrfs_commit_transaction_async.

A cleanup 9babda9f33 ("btrfs: Remove async_transid from
btrfs_mksubvol/create_subvol/create_snapshot") removed calls that passed
1, so this is a followup.

As this removes last call of wait_current_trans_commit_start_and_unblock,
remove the function as well.

Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:11 +02:00
Nathan Chancellor
bfaa324e9a btrfs: remove total_data_size variable in btrfs_batch_insert_items()
clang warns:

  fs/btrfs/delayed-inode.c:684:6: warning: variable 'total_data_size' set
  but not used [-Wunused-but-set-variable]
	  int total_data_size = 0, total_size = 0;
	      ^
  1 warning generated.

This variable's value has been unused since commit fc0d82e103 ("btrfs:
sink total_data parameter in setup_items_for_insert"). Eliminate it.

Link: https://github.com/ClangBuiltLinux/linux/issues/1391
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:11 +02:00
Nikolay Borisov
77d255348b btrfs: eliminate insert label in add_falloc_range
By way of inverting the list_empty conditional the insert label can be
eliminated, making the function's flow entirely linear.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:10 +02:00
Qu Wenruo
3d078efae6 btrfs: subpage: fix a rare race between metadata endio and eb freeing
[BUG]
There is a very rare ASSERT() triggering during full fstests run for
subpage rw support.

No other reproducer so far.

The ASSERT() gets triggered for metadata read in
btrfs_page_set_uptodate() inside end_page_read().

[CAUSE]
There is still a small race window for metadata only, the race could
happen like this:

                T1                  |              T2
------------------------------------+-----------------------------
end_bio_extent_readpage()           |
|- btrfs_validate_metadata_buffer() |
|  |- free_extent_buffer()          |
|     Still have 2 refs             |
|- end_page_read()                  |
   |- if (unlikely(PagePrivate())   |
   |  The page still has Private    |
   |                                | free_extent_buffer()
   |                                | |  Only one ref 1, will be
   |                                | |  released
   |                                | |- detach_extent_buffer_page()
   |                                |    |- btrfs_detach_subpage()
   |- btrfs_set_page_uptodate()     |
      The page no longer has Private|
      >>> ASSERT() triggered <<<    |

This race window is super small, thus pretty hard to hit, even with so
many runs of fstests.

But the race window is still there, we have to go another way to solve
it other than relying on random PagePrivate() check.

Data path is not affected, as it will lock the page before reading,
while unlocking the page after the last read has finished, thus no race
window.

[FIX]
This patch will fix the bug by repurposing btrfs_subpage::readers.

Now btrfs_subpage::readers will be a member shared by both metadata and
data.

For metadata path, we don't do the page unlock as metadata only relies
on extent locking.

At the same time, teach page_range_has_eb() to take
btrfs_subpage::readers into consideration.

So that even if the last eb of a page gets freed, page::private won't be
detached as long as there still are pending end_page_read() calls.

By this we eliminate the race window, this will slight increase the
metadata memory usage, as the page may not be released as frequently as
usual.  But it should not be a big deal.

The code got introduced in ("btrfs: submit read time repair only for
each corrupted sector"), but the fix is in a separate patch to keep the
problem description and the crash is rare so it should not hurt
bisectability.

Signed-off-by: Qu Wegruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:10 +02:00
Qu Wenruo
bcd77455d5 btrfs: don't clear page extent mapped if we're not invalidating the full page
[BUG]
With current btrfs subpage rw support, the following script can lead to
fs hang:

  $ mkfs.btrfs -f -s 4k $dev
  $ mount $dev -o nospace_cache $mnt
  $ fsstress -w -n 100 -p 1 -s 1608140256 -v -d $mnt

The fs will hang at btrfs_start_ordered_extent().

[CAUSE]
In above test case, btrfs_invalidate() will be called with the following
parameters:

  offset = 0 length = 53248 page dirty = 1 subpage dirty bitmap = 0x2000

Since @offset is 0, btrfs_invalidate() will try to invalidate the full
page, and finally call clear_page_extent_mapped() which will detach
subpage structure from the page.

And since the page no longer has subpage structure, the subpage dirty
bitmap will be cleared, preventing the dirty range from being written
back, thus no way to wake up the ordered extent.

[FIX]
Just follow other filesystems, only to invalidate the page if the range
covers the full page.

There are cases like truncate_setsize() which can call
btrfs_invalidatepage() with offset == 0 and length != 0 for the last
page of an inode.

Although the old code will still try to invalidate the full page, we are
still safe to just wait for ordered extent to finish.
So it shouldn't cause extra problems.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:10 +02:00
Qu Wenruo
0528476b6a btrfs: fix the filemap_range_has_page() call in btrfs_punch_hole_lock_range()
[BUG]
With current subpage RW support, the following script can hang the fs
with 64K page size.

 # mkfs.btrfs -f -s 4k $dev
 # mount $dev -o nospace_cache $mnt
 # fsstress -w -n 50 -p 1 -s 1607749395 -d $mnt

The kernel will do an infinite loop in btrfs_punch_hole_lock_range().

[CAUSE]
In btrfs_punch_hole_lock_range() we:

- Truncate page cache range
- Lock extent io tree
- Wait any ordered extents in the range.

We exit the loop until we meet all the following conditions:

- No ordered extent in the lock range
- No page is in the lock range

The latter condition has a pitfall, it only works for sector size ==
PAGE_SIZE case.

While can't handle the following subpage case:

  0       32K     64K     96K     128K
  |       |///////||//////|       ||

lockstart=32K
lockend=96K - 1

In this case, although the range crosses 2 pages,
truncate_pagecache_range() will invalidate no page at all, but only zero
the [32K, 96K) range of the two pages.

Thus filemap_range_has_page(32K, 96K-1) will always return true, thus we
will never meet the loop exit condition.

[FIX]
Fix the problem by doing page alignment for the lock range.

Function filemap_range_has_page() has already handled lend < lstart
case, we only need to round up @lockstart, and round_down @lockend for
truncate_pagecache_range().

This modification should not change any thing for sector size ==
PAGE_SIZE case, as in that case our range is already page aligned.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:10 +02:00
Qu Wenruo
3115deb381 btrfs: reflink: make copy_inline_to_page() to be subpage compatible
The modifications are:

- Page copy destination
  For subpage case, one page can contain multiple sectors, thus we can
  no longer expect the memcpy_to_page()/btrfs_decompress() to copy
  data into page offset 0.
  The correct offset is offset_in_page(file_offset) now, which should
  handle both regular sectorsize and subpage cases well.

- Page status update
  Now we need to use subpage helper to handle the page status update.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:10 +02:00
Qu Wenruo
2d8ec40ee4 btrfs: make btrfs_page_mkwrite() to be subpage compatible
Only set_page_dirty() and SetPageUptodate() is not subpage compatible.
Convert them to subpage helpers, so that __extent_writepage_io() can
submit page content correctly.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:10 +02:00
Qu Wenruo
6c9ac8be45 btrfs: make btrfs_truncate_block() to be subpage compatible
btrfs_truncate_block() itself is already mostly subpage compatible, the
only missing part is the page dirtying code.

Currently if we have a sector that needs to be truncated, we set the
sector aligned range delalloc, then set the full page dirty.

The problem is, current subpage code requires subpage dirty bit to be
set, or __extent_writepage_io() won't submit bio, thus leads to ordered
extent never to finish.

So this patch will make btrfs_truncate_block() to call
btrfs_page_set_dirty() helper to replace set_page_dirty() to fix the
problem.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:10 +02:00
Qu Wenruo
c5ef5c6c73 btrfs: make __extent_writepage_io() only submit dirty range for subpage
__extent_writepage_io() function originally just iterates through all
the extent maps of a page, and submits any regular extents.

This is fine for sectorsize == PAGE_SIZE case, as if a page is dirty, we
need to submit the only sector contained in the page.

But for subpage case, one dirty page can contain several clean sectors
with at least one dirty sector.

If __extent_writepage_io() still submit all regular extent maps, it can
submit data which is already written to disk.
And since such already written data won't have corresponding ordered
extents, it will trigger a BUG_ON() in btrfs_csum_one_bio().

Change the behavior of __extent_writepage_io() by finding the first
dirty byte in the page, and only submit the dirty range other than the
full extent.

Since we're also here, also modify the following calls to be subpage
compatible:

- SetPageError()
- end_page_writeback()

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:10 +02:00
Qu Wenruo
d2a9106448 btrfs: make btrfs_set_range_writeback() subpage compatible
Function btrfs_set_range_writeback() currently just sets the page
writeback unconditionally.

Change it to call the subpage helper so that we can handle both cases
well.

Since the subpage helpers needs btrfs_fs_info, also change the parameter
to accept btrfs_inode.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:10 +02:00
Qu Wenruo
4750af3bbe btrfs: prevent extent_clear_unlock_delalloc() to unlock page not locked by __process_pages_contig()
In cow_file_range(), after we have succeeded creating an inline extent,
we unlock the page with extent_clear_unlock_delalloc() by passing
locked_page == NULL.

For sectorsize == PAGE_SIZE case, this is just making the page lock and
unlock harder to grab.

But for incoming subpage case, it can be a big problem.

For incoming subpage case, page locking have two entry points:

- __process_pages_contig()
  In that case, we know exactly the range we want to lock (which only
  requires sector alignment).
  To handle the subpage requirement, we introduce btrfs_subpage::writers
  to page::private, and will update it in __process_pages_contig().

- Other directly lock/unlock_page() call sites
  Those won't touch btrfs_subpage::writers at all.

This means, page locked by __process_pages_contig() can only be unlocked
by __process_pages_contig().
Thankfully we already have the existing infrastructure in the form of
@locked_page in various call sites.

Unfortunately, extent_clear_unlock_delalloc() in cow_file_range() after
creating an inline extent is the exception.
It intentionally call extent_clear_unlock_delalloc() with locked_page ==
NULL, to also unlock current page (and clear its dirty/writeback bits).

To co-operate with incoming subpage modifications, and make the page
lock/unlock pair easier to understand, this patch will still call
extent_clear_unlock_delalloc() with locked_page, and only unlock the
page in __extent_writepage().

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:10 +02:00
Qu Wenruo
a33a8e9afc btrfs: update locked page dirty/writeback/error bits in __process_pages_contig
When __process_pages_contig() gets called for
extent_clear_unlock_delalloc(), if we hit the locked page, only Private2
bit is updated, but dirty/writeback/error bits are all skipped.

There are several call sites that call extent_clear_unlock_delalloc()
with locked_page and PAGE_CLEAR_DIRTY/PAGE_SET_WRITEBACK/PAGE_END_WRITEBACK

- cow_file_range()
- run_delalloc_nocow()
- cow_file_range_async()
  All for their error handling branches.

For those call sites, since we skip the locked page for
dirty/error/writeback bit update, the locked page will still have its
subpage dirty bit remaining.

Normally it's the call sites which locked the page to handle the locked
page, but it won't hurt if we also do the update.

Especially there are already other call sites doing the same thing by
manually passing NULL as locked_page.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:10 +02:00
Qu Wenruo
b945a4637e btrfs: make page Ordered bit to be subpage compatible
This involves the following modification:

- Ordered extent creation
  This is done in process_one_page(), now PAGE_SET_ORDERED will call
  subpage helper to do the work.

- endio functions
  This is done in btrfs_mark_ordered_io_finished().

- btrfs_invalidatepage()

- btrfs_cleanup_ordered_extents()
  Use the subpage page helper, and add an extra branch to exit if the
  locked page have covered the full range.

Now the usage of page Ordered flag for ordered extent accounting is fully
subpage compatible.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:10 +02:00
Qu Wenruo
6f17400bd9 btrfs: introduce helpers for subpage ordered status
This patch introduces the following functions to handle btrfs subpage
ordered (Private2) status:

- btrfs_subpage_set_ordered()
- btrfs_subpage_clear_ordered()
- btrfs_subpage_test_ordered()
  These helpers can only be called when the range is ensured to be
  inside the page.

- btrfs_page_set_ordered()
- btrfs_page_clear_ordered()
- btrfs_page_test_ordered()
  These helpers can handle both regular sector size and subpage without
  problem.

These functions are here to coordinate btrfs_invalidatepage() with
btrfs_writepage_endio_finish_ordered(), to make sure only one of those
functions can finish the ordered extent.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:09 +02:00
Qu Wenruo
1e1de38792 btrfs: make process_one_page() to handle subpage locking
Introduce a new data inodes specific subpage member, writers, to record
how many sectors are under page lock for delalloc writing.

This member acts pretty much the same as readers, except it's only for
delalloc writes.

This is important for delalloc code to trace which page can really be
freed, as we have cases like run_delalloc_nocow() where we may exit
processing nocow range inside a page, but need to exit to do cow half
way.
In that case, we need a way to determine if we can really unlock a full
page.

With the new btrfs_subpage::writers, there is a new requirement:
- Page locked by process_one_page() must be unlocked by
  process_one_page()
  There are still tons of call sites manually lock and unlock a page,
  without updating btrfs_subpage::writers.
  So if we lock a page through process_one_page() then it must be
  unlocked by process_one_page() to keep btrfs_subpage::writers
  consistent.

  This will be handled in next patch.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:09 +02:00
Qu Wenruo
9047e3170a btrfs: make end_bio_extent_writepage() to be subpage compatible
Now in end_bio_extent_writepage(), the only subpage incompatible code is
the end_page_writeback().

Just call the subpage helpers.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:09 +02:00
Qu Wenruo
e38992be1f btrfs: make __process_pages_contig() to handle subpage dirty/error/writeback status
For __process_pages_contig() and process_one_page(), to handle subpage
we only need to pass bytenr in and call subpage helpers to handle
dirty/error/writeback status.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:09 +02:00
Qu Wenruo
f02a85d2d5 btrfs: make btrfs_dirty_pages() to be subpage compatible
Since the extent io tree operations in btrfs_dirty_pages() are already
subpage compatible, we only need to make the page status update to use
subpage helpers.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:09 +02:00
Qu Wenruo
321a02db32 btrfs: only require sector size alignment for end_bio_extent_writepage()
Just like read page, for subpage support we only require sector size
alignment.

So change the error message condition to only require sector alignment.

This should not affect existing code, as for regular sectorsize ==
PAGE_SIZE case, we are still requiring page alignment.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:09 +02:00
Qu Wenruo
60e2d25500 btrfs: provide btrfs_page_clamp_*() helpers
In the coming subpage RW supports, there are a lot of page status update
calls which need to be converted to subpage compatible version, which
needs @start and @len.

Some call sites already have such @start/@len and are already in
page range, like various endio functions.

But there are also call sites which need to clamp the range for subpage
case, like btrfs_dirty_pagse() and __process_contig_pages().

Here we introduce new helpers, btrfs_page_clamp_*(), to do and only do the
clamp for subpage version.

Although in theory all existing btrfs_page_*() calls can be converted to
use btrfs_page_clamp_*() directly, but that would make us to do
unnecessary clamp operations.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:09 +02:00
Qu Wenruo
ed8f13bf4a btrfs: refactor page status update into process_one_page()
In __process_pages_contig() we update page status according to page_ops.

That update process is a bunch of 'if' branches, which lie inside
two loops, this makes it pretty hard to expand for later subpage
operations.

So this patch will extract these operations into its own function,
process_one_pages().

Also since we're refactoring __process_pages_contig(), also move the new
helper and __process_pages_contig() before the first caller of them, to
remove the forward declaration.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:09 +02:00
Qu Wenruo
98af9ab12b btrfs: pass bytenr directly to __process_pages_contig()
As a preparation for incoming subpage support, we need bytenr passed to
__process_pages_contig() directly, not the current page index.

So change the parameter and all callers to pass bytenr in.

With the modification, here we need to replace the old @index_ret with
@processed_end for __process_pages_contig(), but this brings a small
problem.

Normally we follow the inclusive return value, meaning @processed_end
should be the last byte we processed.

If parameter @start is 0, and we failed to lock any page, then we would
return @processed_end as -1, causing more problems for
__unlock_for_delalloc().

So here for @processed_end, we use two different return value patterns.
If we have locked any page, @processed_end will be the last byte of
locked page.
Or it will be @start otherwise.

This change will impact lock_delalloc_pages(), so it needs to check
@processed_end to only unlock the range if we have locked any.

Tested-by: Ritesh Harjani <riteshh@linux.ibm.com> # [ppc64]
Tested-by: Anand Jain <anand.jain@oracle.com> # [aarch64]
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:09 +02:00
Qu Wenruo
968f2566ad btrfs: fix hang when run_delalloc_range() failed
[BUG]
When running subpage preparation patches on x86, btrfs/125 will hang
forever with one ordered extent never finished.

[CAUSE]
The test case btrfs/125 itself will always fail as the fix is never merged.

When the test fails at balance, btrfs needs to cleanup the ordered
extent in btrfs_cleanup_ordered_extents() for data reloc inode.

The problem is in the sequence how we cleanup the page Order bit.

Currently it works like:

  btrfs_cleanup_ordered_extents()
  |- find_get_page();
  |- btrfs_page_clear_ordered(page);
  |  Now the page doesn't have Ordered bit anymore.
  |  !!! This also includes the first (locked) page !!!
  |
  |- offset += PAGE_SIZE
  |  This is to skip the first page
  |- __endio_write_update_ordered()
     |- btrfs_mark_ordered_io_finished(NULL)
        Except the first page, all ordered extents are finished.

Then the locked page is cleaned up in __extent_writepage():

  __extent_writepage()
  |- If (PageError(page))
  |- end_extent_writepage()
     |- btrfs_mark_ordered_io_finished(page)
        |- if (btrfs_test_page_ordered(page))
        |-  !!! The page gets skipped !!!
            The ordered extent is not decreased as the page doesn't
            have ordered bit anymore.

This leaves the ordered extent with bytes_left == sectorsize, thus never
finish.

[FIX]
The fix is to ensure we never clear page Ordered bit without running the
ordered extent accounting.

Here we choose to skip the locked page in
btrfs_cleanup_ordered_extents() so that later end_extent_writepage() can
properly finish the ordered extent.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:09 +02:00
Qu Wenruo
f57ad93735 btrfs: rename PagePrivate2 to PageOrdered inside btrfs
Inside btrfs we use Private2 page status to indicate we have an ordered
extent with pending IO for the sector.

But the page status name, Private2, tells us nothing about the bit
itself, so this patch will rename it to Ordered.
And with extra comment about the bit added, so reader who is still
uncertain about the page Ordered status, will find the comment pretty
easily.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:09 +02:00
Qu Wenruo
3b8358407a btrfs: refactor btrfs_invalidatepage() for subpage support
This patch will refactor btrfs_invalidatepage() for the incoming subpage
support.

The involved modifications are:

- Use while() loop instead of "goto again;"
- Use single variable to determine whether to delete extent states
  Each branch will also have comments why we can or cannot delete the
  extent states
- Do qgroup free and extent states deletion per-loop
  Current code can only work for PAGE_SIZE == sectorsize case.

This refactor also makes it clear what we do for different sectors:

- Sectors without ordered extent
  We're completely safe to remove all extent states for the sector(s)

- Sectors with ordered extent, but no Private2 bit
  This means the endio has already been executed, we can't remove all
  extent states for the sector(s).

- Sectors with ordere extent, still has Private2 bit
  This means we need to decrease the ordered extent accounting.
  And then it comes to two different variants:

  * We have finished and removed the ordered extent
    Then it's the same as "sectors without ordered extent"
  * We didn't finished the ordered extent
    We can remove some extent states, but not all.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:08 +02:00
Qu Wenruo
c095f3333f btrfs: introduce btrfs_lookup_first_ordered_range()
Although we already have btrfs_lookup_first_ordered_extent() and
btrfs_lookup_ordered_extent(), they all have their own limitations:

- btrfs_lookup_ordered_extent() can't do extra range check

  It's only designed to lookup any ordered extent before certain bytenr.

- btrfs_lookup_first_ordered_extent() may not return the first ordered
  extent in the range

  It doesn't ensure the first ordered extent is returned.
  The existing callers are only interested in exhausting all ordered
  extents in a range, the order is not important.

For incoming btrfs_invalidatepage() refactoring, we need a way to
properly iterate all ordered extents in their bytenr order of a range.

So this patch will introduce a new function,
btrfs_lookup_first_ordered_range(), to do ordered extent with bytenr
order awareness and extra range check.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:08 +02:00
Qu Wenruo
266a258678 btrfs: update comments in btrfs_invalidatepage()
The existing comments in btrfs_invalidatepage() don't really get to the
point, especially for what Private2 is really representing and how the
race avoidance is done.

The truth is, there are only three entrances to do ordered extent
accounting:

- btrfs_writepage_endio_finish_ordered()
- __endio_write_update_ordered()
  Those two entrance are just endio functions for dio and buffered
  write.

- btrfs_invalidatepage()

But there is a pitfall, in endio functions there is no check on whether
the ordered extent is already accounted.
They just blindly clear the Private2 bit and do the accounting.

So it's all btrfs_invalidatepage()'s responsibility to make sure we
won't do double account for the same sector.

That's why in btrfs_invalidatepage() we have to wait for page writeback,
this will ensure all submitted bios have finished, thus their endio
functions have finished the accounting on the ordered extent.

Then we also check page Private2 to ensure that, we only run ordered
extent accounting on pages who has no bio submitted.

This patch will rework related comments to make it more clear on the
race and how we use wait_on_page_writeback() and Private2 to prevent
double accounting on ordered extent.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:08 +02:00
Qu Wenruo
e65f152e43 btrfs: refactor how we finish ordered extent io for endio functions
Btrfs has two endio functions to mark certain io range finished for
ordered extents:

- __endio_write_update_ordered()
  This is for direct IO

- btrfs_writepage_endio_finish_ordered()
  This for buffered IO.

However they go different routines to handle ordered extent io:

- Whether to iterate through all ordered extents
  __endio_write_update_ordered() will but
  btrfs_writepage_endio_finish_ordered() will not.

  In fact, iterating through all ordered extents will benefit later
  subpage support, while for current PAGE_SIZE == sectorsize requirement
  this behavior makes no difference.

- Whether to update page Private2 flag
  __endio_write_update_ordered() will not update page Private2 flag as
  for iomap direct IO, the page can not be even mapped.
  While btrfs_writepage_endio_finish_ordered() will clear Private2 to
  prevent double accounting against btrfs_invalidatepage().

Those differences are pretty subtle, and the ordered extent iterations
code in callers makes code much harder to read.

So this patch will introduce a new function,
btrfs_mark_ordered_io_finished(), to do the heavy lifting:

- Iterate through all ordered extents in the range
- Do the ordered extent accounting
- Queue the work for finished ordered extent

This function has two new feature:

- Proper underflow detection and recovery
  The old underflow detection will only detect the problem, then
  continue.
  No proper info like root/inode/ordered extent info, nor noisy enough
  to be caught by fstests.

  Furthermore when underflow happens, the ordered extent will never
  finish.

  New error detection will reset the bytes_left to 0, do proper
  kernel warning, and output extra info including root, ino, ordered
  extent range, the underflow value.

- Prevent double accounting based on Private2 flag
  Now if we find a range without Private2 flag, we will skip to next
  range.
  As that means someone else has already finished the accounting of
  ordered extent.

  This makes no difference for current code, but will be a critical part
  for incoming subpage support, as we can call
  btrfs_mark_ordered_io_finished() for multiple sectors if they are
  beyond inode size.
  Thus such double accounting prevention is a key feature for subpage.

Now both endio functions only need to call that new function.

And since the only caller of btrfs_dec_test_first_ordered_pending() is
removed, also remove btrfs_dec_test_first_ordered_pending() completely.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:08 +02:00
Qu Wenruo
87b4d86baa btrfs: make Private2 lifespan more consistent
Currently we use page Private2 bit to indicate that we have ordered
extent for the page range.

But the lifespan of it is not consistent, during regular writeback path,
there are two locations to clear the same PagePrivate2:

    T ----- Page marked Dirty
    |
    + ----- Page marked Private2, through btrfs_run_dealloc_range()
    |
    + ----- Page cleared Private2, through btrfs_writepage_cow_fixup()
    |       in __extent_writepage_io()
    |       ^^^ Private2 cleared for the first time
    |
    + ----- Page marked Writeback, through btrfs_set_range_writeback()
    |       in __extent_writepage_io().
    |
    + ----- Page cleared Private2, through
    |       btrfs_writepage_endio_finish_ordered()
    |       ^^^ Private2 cleared for the second time.
    |
    + ----- Page cleared Writeback, through
            btrfs_writepage_endio_finish_ordered()

Currently PagePrivate2 is mostly to prevent ordered extent accounting
being executed for both endio and invalidatepage.
Thus only the one who cleared page Private2 is responsible for ordered
extent accounting.

But the fact is, in btrfs_writepage_endio_finish_ordered(), page
Private2 is cleared and ordered extent accounting is executed
unconditionally.

The race prevention only happens through btrfs_invalidatepage(), where
we wait for the page writeback first, before checking the Private2 bit.

This means, Private2 is also protected by Writeback bit, and there is no
need for btrfs_writepage_cow_fixup() to clear Priavte2.

This patch will change btrfs_writepage_cow_fixup() to just check
PagePrivate2, not to clear it.
The clearing will happen in either btrfs_invalidatepage() or
btrfs_writepage_endio_finish_ordered().

This makes the Private2 bit easier to understand, just meaning the page
has unfinished ordered extent attached to it.

And this patch is a hard requirement for the incoming refactoring for
how we finished ordered IO for endio context, as the coming patch will
check Private2 to determine if we need to do the ordered extent
accounting.  Thus this patch is definitely needed or we will hang due to
unfinished ordered extent.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:08 +02:00
Qu Wenruo
38a39ac77e btrfs: pass btrfs_inode to btrfs_writepage_endio_finish_ordered()
There is a pretty bad abuse of btrfs_writepage_endio_finish_ordered() in
end_compressed_bio_write().

It passes compressed pages to btrfs_writepage_endio_finish_ordered(),
which is only supposed to accept inode pages.

Thankfully the important info here is the inode, so let's pass
btrfs_inode directly into btrfs_writepage_endio_finish_ordered(), and
make @page parameter optional.

By this, end_compressed_bio_write() can happily pass page=NULL while
still getting everything done properly.

Also, to cooperate with such modification, replace @page parameter for
trace_btrfs_writepage_end_io_hook() with btrfs_inode.
Although this removes page_index info, the existing start/len should be
enough for most usage.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:08 +02:00
Qu Wenruo
fa04c16574 btrfs: make subpage metadata write path call its own endio functions
For subpage metadata, we're reusing two functions for subpage metadata
write:

- end_bio_extent_buffer_writepage()
- write_one_eb()

But the truth is, for subpage we just call
end_bio_subpage_eb_writepage() without using any bit in
end_bio_extent_buffer_writepage().

For write_one_eb(), it's pretty similar, but with a small part of code
reused.

There is really no need to pollute the existing code path if we're not
really using most of them.

So this patch will do the following change to separate the subpage
metadata write path from regular write path by:

- Use end_bio_subpage_eb_writepage() directly as endio in
  write_one_subpage_eb()
- Directly call write_one_subpage_eb() in submit_eb_subpage()

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:08 +02:00
Qu Wenruo
390ed29b81 btrfs: refactor submit_extent_page() to make bio and its flag tracing easier
There is a lot of code inside extent_io.c needs both "struct bio
**bio_ret" and "unsigned long prev_bio_flags", along with some
parameters like "unsigned long bio_flags".

Such strange parameters are here for bio assembly.

For example, we have such inode page layout:

  0       4K      8K      12K
  |<-- Extent A-->|<- EB->|

Then what we do is:

- Page [0, 4K)
  *bio_ret = NULL
  So we allocate a new bio to bio_ret,
  Add page [0, 4K) to *bio_ret.

- Page [4K, 8K)
  *bio_ret != NULL
  We found this page is continuous to *bio_ret,
  and if we're not at stripe boundary, we
  add page [4K, 8K) to *bio_ret.

- Page [8K, 12K)
  *bio_ret != NULL
  But we found this page is not continuous, so
  we submit *bio_ret, then allocate a new bio,
  and add page [8K, 12K) to the new bio.

This means we need to record both the bio and its bio_flag, but we
record them manually using those strange parameter list, other than
encapsulating them into their own structure.

So this patch will introduce a new structure, btrfs_bio_ctrl, to record
both the bio, and its bio_flags.

Also, in above case, for all pages added to the bio, we need to check if
the new page crosses stripe boundary.  This check itself can be time
consuming, and we don't really need to do that for each page.

This patch also integrates the stripe boundary check into btrfs_bio_ctrl.
When a new bio is allocated, the stripe and ordered extent boundary is
also calculated, so no matter how large the bio will be, we only
calculate the boundaries once, to save some CPU time.

The following functions/structures are affected:

- struct extent_page_data
  Replace its bio pointer with structure btrfs_bio_ctrl (embedded
  structure, not pointer)

- end_write_bio()
- flush_write_bio()
  Just change how bio is fetched

- btrfs_bio_add_page()
  Use pre-calculated boundaries instead of re-calculating them.
  And use @bio_ctrl to replace @bio and @prev_bio_flags.

- calc_bio_boundaries()
  New function

- submit_extent_page() callers
- btrfs_do_readpage() callers
- contiguous_readpages() callers
  To Use @bio_ctrl to replace @bio and @prev_bio_flags, and how to grab
  bio.

- btrfs_bio_fits_in_ordered_extent()
  Removed, as now the ordered extent size limit is done at bio
  allocation time, no need to check for each page range.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:08 +02:00
Qu Wenruo
1a0b5c4d64 btrfs: allow btrfs_bio_fits_in_stripe() to accept bio without any page
Function btrfs_bio_fits_in_stripe() now requires a bio with at least one
page added.  Or btrfs_get_chunk_map() will fail with -ENOENT.

But in fact this requirement is not needed at all, as we can just pass
sectorsize for btrfs_get_chunk_map().

This tiny behavior change is important for later subpage refactoring on
submit_extent_page().

As for 64K page size, we can have a page range with pgoff=0 and size=64K.
If the logical bytenr is just 16K before the stripe boundary, we have to
split the page range into two bios.

This means, we must check page range against stripe boundary, even adding
the range to an empty bio.

This tiny refactoring is for the incoming changes, but on its own,
regular sectorsize == PAGE_SIZE is not affected anyway.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:08 +02:00
Qu Wenruo
43c0d1a5e1 btrfs: remove the unused parameter @len for btrfs_bio_fits_in_stripe()
The parameter @len is not really used in btrfs_bio_fits_in_stripe(),
just remove it.

It got removed in 4203431319 ("btrfs: let callers of
btrfs_get_io_geometry pass the em"), before that btrfs_get_chunk_map
utilized it.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:08 +02:00
Qu Wenruo
0044ae11e8 btrfs: make free space cache size consistent across different PAGE_SIZE
Currently free space cache inode size is determined by two factors:

- block group size
- PAGE_SIZE

This means, for the same sized block groups, with different PAGE_SIZE,
it will result in different inode sizes.

This will not be a good thing for subpage support, so change the
requirement for PAGE_SIZE to sectorsize.

Now for the same 4K sectorsize btrfs, it should result the same inode
size no matter what the PAGE_SIZE is.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:08 +02:00
Qu Wenruo
8df507cbb5 btrfs: scrub: fix subpage repair error caused by hard coded PAGE_SIZE
[BUG]
For the following file layout, scrub will not be able to repair all
these two repairable error, but in fact make one corruption even
unrepairable:

	  inode offset 0      4k     8K
Mirror 1               |XXXXXX|      |
Mirror 2               |      |XXXXXX|

[CAUSE]
The root cause is the hard coded PAGE_SIZE, which makes scrub repair to
go crazy for subpage.

For above case, when reading the first sector, we use PAGE_SIZE other
than sectorsize to read, which makes us to read the full range [0, 64K).
In fact, after 8K there may be no data at all, we can just get some
garbage.

Then when doing the repair, we also writeback a full page from mirror 2,
this means, we will also writeback the corrupted data in mirror 2 back
to mirror 1, leaving the range [4K, 8K) unrepairable.

[FIX]
This patch will modify the following PAGE_SIZE use with sectorsize:

- scrub_print_warning_inode()
  Remove the min() and replace PAGE_SIZE with sectorsize.
  The min() makes no sense, as csum is done for the full sector with
  padding.

  This fixes a bug that subpage report extra length like:
   checksum error at logical 298844160 on dev /dev/mapper/arm_nvme-test,
   physical 575668224, root 5, inode 257, offset 0, length 12288, links 1 (path: file)

  Where the error is only 1 sector.

- scrub_handle_errored_block()
  Comments with PAGE|page involved, all changed to sector.

- scrub_setup_recheck_block()
- scrub_repair_page_from_good_copy()
- scrub_add_page_to_wr_bio()
- scrub_wr_submit()
- scrub_add_page_to_rd_bio()
- scrub_block_complete()
  Replace PAGE_SIZE with sectorsize.
  This solves several problems where we read/write extra range for
  subpage case.

RAID56 code is excluded intentionally, as RAID56 has extra PAGE_SIZE
usage, and is not really safe enough.
Thus we will reject RAID56 for subpage in later commit.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00
Nikolay Borisov
ec87b42f70 btrfs: use list_last_entry in add_falloc_range
Instead of calling list_entry with head->prev simply call
list_last_entry which makes it obvious which member of the list is
being referred. This allows to remove the extra 'prev' pointer.

Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00
Anand Jain
4183abf6cb btrfs: fix comment about max_out in btrfs_compress_pages
Commit e5d7490236 ("btrfs: derive maximum output size in the
compression implementation") removed @max_out argument in
btrfs_compress_pages() but its comment remained, remove it.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00
Anand Jain
65b5355f77 btrfs: optimize variables size in btrfs_submit_compressed_write
Patch "btrfs: reduce compressed_bio member's types" reduced some
member's size. Function arguments @len, @compressed_len and @nr_pages
can be declared as unsigned int.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00
Anand Jain
356b4a2dc1 btrfs: optimize variables size in btrfs_submit_compressed_read
Patch "btrfs: reduce compressed_bio member's types" reduced some
member's size. Declare the variables @compressed_len, @nr_pages and
@pg_index size as an unsigned int in the function
btrfs_submit_compressed_read.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00
Anand Jain
1d08ce5840 btrfs: reduce the variable size to fit nr_pages
Patch "btrfs: reduce compressed_bio member's types" reduced the
@nr_pages size to unsigned int, its cascading effects are updated here.

Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00
Filipe Manana
b590b83972 btrfs: avoid unnecessary logging of xattrs during fast fsyncs
When logging an inode we always log all its xattrs, so that we are able
to figure out which ones should be deleted during log replay. However this
is unnecessary when we are doing a fast fsync and no xattrs were added,
changed or deleted since the last time we logged the inode in the current
transaction.

So skip the logging of xattrs when the inode was previously logged in the
current transaction and no xattrs were added, changed or deleted. If any
changes to xattrs happened, than the inode has BTRFS_INODE_COPY_EVERYTHING
set in its runtime flags and the xattrs get logged. This saves time on
scanning for xattrs, allocating memory, COWing log tree extent buffers and
adding more lock contention on the extent buffers when there are multiple
tasks logging in parallel.

The use of xattrs is common when using ACLs, some applications, or when
using security modules like SELinux where every inode gets a security
xattr added to it.

The following test script, using fio, was used on a box with 12 cores, 64G
of RAM, a NVMe device and the default non-debug kernel config from Debian.
It uses 8 concurrent jobs each writing in blocks of 64K to its own 4G file,
each file with a single xattr of 50 bytes (about the same size for an ACL
or SELinux xattr), doing random buffered writes with an fsync after each
write.

   $ cat test.sh
   #!/bin/bash

   DEV=/dev/nvme0n1
   MNT=/mnt/test
   MOUNT_OPTIONS="-o ssd"
   MKFS_OPTIONS="-d single -m single"

   NUM_JOBS=8
   FILE_SIZE=4G

   cat <<EOF > /tmp/fio-job.ini
   [writers]
   rw=randwrite
   fsync=1
   fallocate=none
   group_reporting=1
   direct=0
   bs=64K
   ioengine=sync
   size=$FILE_SIZE
   directory=$MNT
   numjobs=$NUM_JOBS
   EOF

   echo "performance" | \
       tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

   mkfs.btrfs -f $MKFS_OPTIONS $DEV > /dev/null
   mount $MOUNT_OPTIONS $DEV $MNT

   echo "Creating files before fio runs, each with 1 xattr of 50 bytes"
   for ((i = 0; i < $NUM_JOBS; i++)); do
       path="$MNT/writers.$i.0"
       truncate -s $FILE_SIZE $path
       setfattr -n user.xa1 -v $(printf '%0.sX' $(seq 50)) $path
   done

   fio /tmp/fio-job.ini
   umount $MNT

fio output before this change:

WRITE: bw=120MiB/s (126MB/s), 120MiB/s-120MiB/s (126MB/s-126MB/s), io=32.0GiB (34.4GB), run=272145-272145msec

fio output after this change:

WRITE: bw=142MiB/s (149MB/s), 142MiB/s-142MiB/s (149MB/s-149MB/s), io=32.0GiB (34.4GB), run=230408-230408msec

+16.8% throughput, -16.6% runtime

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00
David Sterba
67ae34b69c btrfs: add device delete cancel
Accept device name "cancel" as a request to cancel running device
deletion operation. The string is literal, in case there's a real device
named "cancel", pass it as full absolute path or as "./cancel"

This works for v1 and v2 ioctls when the device is specified by name.
Moving chunks from the device uses relocation, use the conditional
exclusive operation start and cancellation helpers

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00
David Sterba
bb059a37c9 btrfs: add cancellation to resize
Accept literal string "cancel" as resize operation and interpret that
as a request to cancel the running operation. If it's running, wait
until it finishes current work and return ECANCELED.

Shrinking resize uses relocation to move the chunks away, use the
conditional exclusive operation start and cancellation helpers.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00
David Sterba
17aaa434ed btrfs: add wrapper for conditional start of exclusive operation
To support optional cancellation of some operations, add helper that will
wrap all the combinations. In normal mode it's same as
btrfs_exclop_start, in cancellation mode it checks if it's already
running and request cancellation and waits until completion.

The error codes can be returned to to user space and semantics is not
changed, adding ECANCELED. This should be evaluated as an error and that
the operation has not completed and the operation should be restarted
or the filesystem status reviewed.

Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00
David Sterba
578bda9e17 btrfs: introduce try-lock semantics for exclusive op start
Add try-lock for exclusive operation start to allow callers to do more
checks. The same operation must already be running. The try-lock and
unlock must pair and are a substitute for btrfs_exclop_start, thus it
must also pair with btrfs_exclop_finish to release the exclop context.

Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00
David Sterba
907d2710d7 btrfs: add cancellable chunk relocation support
Add support code that will allow canceling relocation on the chunk
granularity. This is different and independent of balance, that also
uses relocation but is a higher level operation and manages it's own
state and pause/cancellation requests.

Relocation is used for resize (shrink) and device deletion so this will
be a common point to implement cancellation for both. The context is
entirely in btrfs_relocate_block_group and btrfs_recover_relocation,
enclosing one chunk relocation. The status bit is set and unset between
the chunks. As relocation can take long, the effects may not be
immediate and the request and actual action can slightly race.

The fs_info::reloc_cancel_req is only supposed to be increased and does
not pair with decrement like fs_info::balance_cancel_req.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2021-06-21 15:19:07 +02:00