Add a new rp_size= parameter which creates a "reserved pool" of disk
space which can only be used by root. Other users are not permitted
to write to disk when the available space is less than the pool size.
Based on original code by Artem Bityutskiy in
https://dev.laptop.org/ticket/5317
[dwmw2: use capable(CAP_SYS_RESOURCE) not uid/gid check, fix debug prints]
Signed-off-by: Daniel Drake <dsd@laptop.org>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Use pr_fmt to prefix KBUILD_MODNAME to appropriate logging messages.
Remove now unnecessary internal prefixes from formats.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Use the more current logging style.
Coalesce formats, align arguments.
Convert uses of embedded function names to %s, __func__.
A couple of long line checkpatch errors I don't care about exist.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
D1 and D2 macros are mostly uses to emit debugging messages.
Convert the logging uses of D1 & D2 to jffs2_dbg(level, fmt, ...)
to be a bit more consistent style with the rest of the kernel.
All jffs2_dbg output is now at KERN_DEBUG where some of
the previous uses were emitted at various KERN_<LEVEL>s.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
We're about to call this from a bunch of places which already hold
c->erase_completion_lock, so add an assertion and change its existing
callers to do the same.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Now that we trigger block erases from jffs2_garbage_collect_pass(),
adjust jffs2_thread_should_wake() to return 1 when there are blocks to
erase.
Signed-off-by: Joakim Tjernlund <joakim.tjernlund@transmode.se>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
jffs2_garbage_collect_pass() would previously return -EAGAIN if it
couldn't find anything to garbage collect from, and there were blocks on
the erase_pending_list. If the blocks were actually in the process of
being erased, though, then they wouldn't be on that list. Check for
nr_erasing_blocks being non-zero instead.
Fix jffs2_reserve_space() to wait for the in-progress erases to
complete, when jffs2_garbage_collect_pass() returns -EAGAIN.
And fix jffs2_erase_succeeded() to actually wake up the erase_wait wq
that jffs2_reserve_space() is now using.
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
After choosing new c->nextblock, don't leave the wbuf offset field
occasionally pointing at the start of the next physical eraseblock.
This was causing a BUG() on NOR-ECC (Sibley) flash, where we start
writing after the cleanmarker.
Among other this fix should cover write buffer offset adjustment
after flushing the last page of an eraseblock.
Signed-off-by: Alexander Belyakov <abelyako@googlemail.com>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
To support NFS export, we need to know the parent inode of directories.
Rather than growing the jffs2_inode_cache structure, share space with
the nlink field -- which was always set to 1 for directories anyway.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
When _all_ the blocks were on the erase_pending_list, we could't find a
block to GC from but there was no _actually_ free space, and
jffs2_reserve_space() would get a little unhappy.
Handle this case by returning -EAGAIN from jffs2_garbage_collect_pass().
There are two callers of that function -- jffs2_flush_wbuf_gc(), which
will interpret it as an error and flush the writebuffer by other means,
and jffs2_reserve_space(), which we modify to respond to -EAGAIN with an
immediate call to jffs2_erase_pending_blocks() and another run round the
loop.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
fs/jffs2/nodemgmt.c:60:8: warning: symbol 'ret' shadows an earlier one
fs/jffs2/nodemgmt.c:45:6: originally declared here
(reported by Harvey Harrison)
Just remove the offending declaration of 'int ret' and use the earlier one.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
With huge amounts of free space, we weren't bothering to GC for while a
while, and pathological numbers of obsolete nodes were accumulating,
seriously affecting performance on NAND flash (OLPC trac #3978)
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
In particular, remove the bit in the LICENCE file about contacting
Red Hat for alternative arrangements. Their errant IS department broke
that arrangement a long time ago -- the policy of collecting copyright
assignments from contributors came to an end when the plug was pulled on
the servers hosting the project, without notice or reason.
We do still dual-license it for use with eCos, with the GPL+exception
licence approved by the FSF as being GPL-compatible. It's just that nobody
has the right to license it differently.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
If a write error occurs, the affected block is placed on the
bad_used_list. In the case that the write error occured
when writing summary data the block was also being placed on
the dirty_list, which caused list corruption and ultimately
a soft lockup in jffs2_mark_node_obsolete. This fixes that.
Signed-off-by: Adrian Hunter <ext-adrian.hunter@nokia.com>
Signed-off-by: Artem Bityutskiy <Artem.Bityutskiy@nokia.com>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
- When xdatum is removed, a new xdatum with 'delete marker' is
written. (version==0xffffffff means 'delete marker')
- When xref is removed, a new xref with 'delete marker' is written.
(odd-numbered xseqno means 'delete marker')
- delete_xattr_(datum/xref)_delay() are new deletion functions
are added. We can only use them if we can detect the target
obsolete xdatum/xref as a orphan or errir one.
(e.g when inode deletion, or detecting crc error)
[1/3] jffs2-xattr-v6-01-delete_marker.patch
Signed-off-by: KaiGai Kohei <kaigai@ak.jp.nec.com>
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
This patch converts the combination of list_del(A) and list_add(A, B) to
list_move(A, B) under fs/.
Cc: Ian Kent <raven@themaw.net>
Acked-by: Joel Becker <joel.becker@oracle.com>
Cc: Neil Brown <neilb@cse.unsw.edu.au>
Cc: Hans Reiser <reiserfs-dev@namesys.com>
Cc: Urban Widmark <urban@teststation.com>
Acked-by: David Howells <dhowells@redhat.com>
Acked-by: Mark Fasheh <mark.fasheh@oracle.com>
Signed-off-by: Akinobu Mita <mita@miraclelinux.com>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
Failing to do so makes the calculated length of the last node incorrect,
when we're not using eraseblock summaries.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
This allows us to drop another pointer from the struct jffs2_raw_node_ref,
shrinking it to 8 bytes on 32-bit machines (if the TEST_TOTLEN) paranoia
check is turned off, which will be committed soon).
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Preallocation of refs is shortly going to be a per-eraseblock thing,
rather than per-filesystem. Add the required argument to the function.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Random unthinking 'cleanup' caused debug messages like this:
Obsoleting node at 0x0006daf4 of len 0x3a4: <7>Dirtying
If messages are continuation of an existing line, they don't need
to be prefixed with KERN_DEBUG.
THINK. Or you will be replaced by a small shell script.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
As the first step towards eliminating the ref->next_phys member and saving
memory by using an _array_ of struct jffs2_raw_node_ref per eraseblock,
stop the write functions from allocating their own refs; have them just
_reserve_ the appropriate number instead. Then jffs2_link_node_ref() can
just fill them in.
Use a linked list of pre-allocated refs in the superblock, for now. Once
we switch to an array, it'll just be a case of extending that array.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
We don't need the upper layers to deal with the physical offset. It's
_always_ c->nextblock->offset + c->sector_size - c->nextblock->free_size
so we might as well just let the actual write functions deal with that.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
In a couple of places, we assume that what's at the end of the
->next_in_ino list is a struct jffs2_inode_cache. Let's check
for that, since we expect it to change soon.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Let's avoid the potential for forgetting to set ref->next_in_ino, by doing
it within jffs2_link_node_ref() instead.
This highlights the ugliness of what we're currently doing with
xattr_datum and xattr_ref structures -- we should find a nicer way of
dealing with that.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Well, almost. We'll actually keep a 'TEST_TOTLEN' macro set for now, and keep
doing some paranoia checks to make sure it's all working correctly. But if
TEST_TOTLEN is unset, the size of struct jffs2_raw_node_ref drops from 16
bytes to 12 on 32-bit machines. That's a saving of about half a megabyte of
memory on the OLPC prototype board, with 125K or so nodes in its 512MiB of
flash.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
If __totlen is going away, we need to pass the length in separately.
Also stop callers from needlessly setting ref->next_phys to NULL,
since that's done for them... and since that'll also be going away soon.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
The same sequence of code was repeated in many places, to add a new
struct jffs2_raw_node_ref to an eraseblock and adjust the space accounting
accordingly. Move it out-of-line.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
We were calling ref_totlen() 18 times. Even before that becomes a real
function rather than just a dereference, apparently some compilers still
suck anyway. It'll _certainly_ suck after ref_totlen() becomes more
complicated, so calculate it once and don't rely on CSE.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Simplify the debugging code further.
Update the TODO list
Signed-off-by: Artem B. Bityutskiy <dedekind@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Always keep valid data in reserved_size.
It did not cause problems, but the reservation code was unoptimal
when centralized summary was active or the size of the erase block
was very small.
Signed-off-by: Ferenc Havasi <havasi@inf.u-szeged.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The goal of summary is to speed up the mount time. Erase block summary (EBS)
stores summary information at the end of every (closed) erase block. It is
no longer necessary to scan all nodes separetly (and read all pages of them)
just read this "small" summary, where every information is stored which is
needed at mount time.
This summary information is stored in a JFFS2_FEATURE_RWCOMPAT_DELETE. During
the mount process if there is no summary info the orignal scan process will
be executed. EBS works with NAND and NOR flashes, too.
There is a user space tool called sumtool to generate this summary
information for a JFFS2 image.
Signed-off-by: Ferenc Havasi <havasi@inf.u-szeged.hu>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Various simplifiactions. printk format corrections.
Convert more code to use the new debug functions.
Signed-off-by: Artem B. Bityutskiy <dedekind@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Move debug functions into a seperate source file
Signed-off-by: Artem B. Bityutskiy <dedekind@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Fix fairly sad NOR-specific bug - during FS building ic->scan_dents
isn't zero, but jffs2_mark_node_obsolete() migt be called it tries to
finde the ic corresponding to ref - this requires ic->scan_dents = 0.
Signed-off-by: Artem B. Bityuckiy <dedekind@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Don't remove inocache for inodes which are in read_inode() or
clear_inode() until they're done.
Signed-off-by: David Woodhouse <dwmw2@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>