Commit Graph

387 Commits

Author SHA1 Message Date
Joe Perches
0825a6f986 mm: use octal not symbolic permissions
mm/*.c files use symbolic and octal styles for permissions.

Using octal and not symbolic permissions is preferred by many as more
readable.

https://lkml.org/lkml/2016/8/2/1945

Prefer the direct use of octal for permissions.

Done using
$ scripts/checkpatch.pl -f --types=SYMBOLIC_PERMS --fix-inplace mm/*.c
and some typing.

Before:	 $ git grep -P -w "0[0-7]{3,3}" mm | wc -l
44
After:	 $ git grep -P -w "0[0-7]{3,3}" mm | wc -l
86

Miscellanea:

o Whitespace neatening around these conversions.

Link: http://lkml.kernel.org/r/2e032ef111eebcd4c5952bae86763b541d373469.1522102887.git.joe@perches.com
Signed-off-by: Joe Perches <joe@perches.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-15 07:55:25 +09:00
Joonsoo Kim
d883c6cf3b Revert "mm/cma: manage the memory of the CMA area by using the ZONE_MOVABLE"
This reverts the following commits that change CMA design in MM.

 3d2054ad8c ("ARM: CMA: avoid double mapping to the CMA area if CONFIG_HIGHMEM=y")

 1d47a3ec09 ("mm/cma: remove ALLOC_CMA")

 bad8c6c0b1 ("mm/cma: manage the memory of the CMA area by using the ZONE_MOVABLE")

Ville reported a following error on i386.

  Inode-cache hash table entries: 65536 (order: 6, 262144 bytes)
  microcode: microcode updated early to revision 0x4, date = 2013-06-28
  Initializing CPU#0
  Initializing HighMem for node 0 (000377fe:00118000)
  Initializing Movable for node 0 (00000001:00118000)
  BUG: Bad page state in process swapper  pfn:377fe
  page:f53effc0 count:0 mapcount:-127 mapping:00000000 index:0x0
  flags: 0x80000000()
  raw: 80000000 00000000 00000000 ffffff80 00000000 00000100 00000200 00000001
  page dumped because: nonzero mapcount
  Modules linked in:
  CPU: 0 PID: 0 Comm: swapper Not tainted 4.17.0-rc5-elk+ #145
  Hardware name: Dell Inc. Latitude E5410/03VXMC, BIOS A15 07/11/2013
  Call Trace:
   dump_stack+0x60/0x96
   bad_page+0x9a/0x100
   free_pages_check_bad+0x3f/0x60
   free_pcppages_bulk+0x29d/0x5b0
   free_unref_page_commit+0x84/0xb0
   free_unref_page+0x3e/0x70
   __free_pages+0x1d/0x20
   free_highmem_page+0x19/0x40
   add_highpages_with_active_regions+0xab/0xeb
   set_highmem_pages_init+0x66/0x73
   mem_init+0x1b/0x1d7
   start_kernel+0x17a/0x363
   i386_start_kernel+0x95/0x99
   startup_32_smp+0x164/0x168

The reason for this error is that the span of MOVABLE_ZONE is extended
to whole node span for future CMA initialization, and, normal memory is
wrongly freed here.  I submitted the fix and it seems to work, but,
another problem happened.

It's so late time to fix the later problem so I decide to reverting the
series.

Reported-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Acked-by: Laura Abbott <labbott@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-05-24 10:07:50 -07:00
Joonsoo Kim
1d47a3ec09 mm/cma: remove ALLOC_CMA
Now, all reserved pages for CMA region are belong to the ZONE_MOVABLE
and it only serves for a request with GFP_HIGHMEM && GFP_MOVABLE.

Therefore, we don't need to maintain ALLOC_CMA at all.

Link: http://lkml.kernel.org/r/1512114786-5085-3-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Tested-by: Tony Lindgren <tony@atomide.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:32 -07:00
Michal Hocko
666feb21a0 mm, migrate: remove reason argument from new_page_t
No allocation callback is using this argument anymore.  new_page_node
used to use this parameter to convey node_id resp.  migration error up
to move_pages code (do_move_page_to_node_array).  The error status never
made it into the final status field and we have a better way to
communicate node id to the status field now.  All other allocation
callbacks simply ignored the argument so we can drop it finally.

[mhocko@suse.com: fix migration callback]
  Link: http://lkml.kernel.org/r/20180105085259.GH2801@dhcp22.suse.cz
[akpm@linux-foundation.org: fix alloc_misplaced_dst_page()]
[mhocko@kernel.org: fix build]
  Link: http://lkml.kernel.org/r/20180103091134.GB11319@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20180103082555.14592-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Zi Yan <zi.yan@cs.rutgers.edu>
Cc: Andrea Reale <ar@linux.vnet.ibm.com>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-11 10:28:32 -07:00
Mike Rapoport
e8b098fc57 mm: kernel-doc: add missing parameter descriptions
Link: http://lkml.kernel.org/r/1519585191-10180-4-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:27 -07:00
David Rientjes
bc3106b26c mm, compaction: drain pcps for zone when kcompactd fails
It's possible for free pages to become stranded on per-cpu pagesets
(pcps) that, if drained, could be merged with buddy pages on the zone's
free area to form large order pages, including up to MAX_ORDER.

Consider a verbose example using the tools/vm/page-types tool at the
beginning of a ZONE_NORMAL ('B' indicates a buddy page and 'S' indicates
a slab page).  Pages on pcps do not have any page flags set.

  109954  1       _______S________________________________________________________
  109955  2       __________B_____________________________________________________
  109957  1       ________________________________________________________________
  109958  1       __________B_____________________________________________________
  109959  7       ________________________________________________________________
  109960  1       __________B_____________________________________________________
  109961  9       ________________________________________________________________
  10996a  1       __________B_____________________________________________________
  10996b  3       ________________________________________________________________
  10996e  1       __________B_____________________________________________________
  10996f  1       ________________________________________________________________
  ...
  109f8c  1       __________B_____________________________________________________
  109f8d  2       ________________________________________________________________
  109f8f  2       __________B_____________________________________________________
  109f91  f       ________________________________________________________________
  109fa0  1       __________B_____________________________________________________
  109fa1  7       ________________________________________________________________
  109fa8  1       __________B_____________________________________________________
  109fa9  1       ________________________________________________________________
  109faa  1       __________B_____________________________________________________
  109fab  1       _______S________________________________________________________

The compaction migration scanner is attempting to defragment this memory
since it is at the beginning of the zone.  It has done so quite well,
all movable pages have been migrated.  From pfn [0x109955, 0x109fab),
there are only buddy pages and pages without flags set.

These pages may be stranded on pcps that could otherwise allow this
memory to be coalesced if freed back to the zone free area.  It is
possible that some of these pages may not be on pcps and that something
has called alloc_pages() and used the memory directly, but we rely on
the absence of __GFP_MOVABLE in these cases to allocate from
MIGATE_UNMOVABLE pageblocks to try to keep these MIGRATE_MOVABLE
pageblocks as free as possible.

These buddy and pcp pages, spanning 1,621 pages, could be coalesced and
allow for three transparent hugepages to be dynamically allocated.
Running the numbers for all such spans on the system, it was found that
there were over 400 such spans of only buddy pages and pages without
flags set at the time this /proc/kpageflags sample was collected.
Without this support, there were _no_ order-9 or order-10 pages free.

When kcompactd fails to defragment memory such that a cc.order page can
be allocated, drain all pcps for the zone back to the buddy allocator so
this stranding cannot occur.  Compaction for that order will
subsequently be deferred, which acts as a ratelimit on this drain.

Link: http://lkml.kernel.org/r/alpine.DEB.2.20.1803010340100.88270@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-04-05 21:36:26 -07:00
Yang Shi
112d2d29fc mm/compaction.c: fix comment for try_to_compact_pages()
"mode" argument is not used by try_to_compact_pages() and sub functions
anymore, it has been replaced by "prio".  Fix the comment to explain the
use of "prio" argument.

Link: http://lkml.kernel.org/r/1515801336-20611-1-git-send-email-yang.shi@linux.alibaba.com
Signed-off-by: Yang Shi <yang.shi@linux.alibaba.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-01-31 17:18:39 -08:00
Vlastimil Babka
d3c85bad89 mm, compaction: remove unneeded pageblock_skip_persistent() checks
Commit f3c931633a59 ("mm, compaction: persistently skip hugetlbfs
pageblocks") has introduced pageblock_skip_persistent() checks into
migration and free scanners, to make sure pageblocks that should be
persistently skipped are marked as such, regardless of the
ignore_skip_hint flag.

Since the previous patch introduced a new no_set_skip_hint flag, the
ignore flag no longer prevents marking pageblocks as skipped.  Therefore
we can remove the special cases.  The relevant pageblocks will be marked
as skipped by the common logic which marks each pageblock where no page
could be isolated.  This makes the code simpler.

Link: http://lkml.kernel.org/r/20171102121706.21504-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-17 16:10:00 -08:00
Vlastimil Babka
2583d67132 mm, compaction: split off flag for not updating skip hints
Pageblock skip hints were added as a heuristic for compaction, which
shares core code with CMA.  Since CMA reliability would suffer from the
heuristics, compact_control flag ignore_skip_hint was added for the CMA
use case.  Since 6815bf3f23 ("mm/compaction: respect ignore_skip_hint
in update_pageblock_skip") the flag also means that CMA won't *update*
the skip hints in addition to ignoring them.

Today, direct compaction can also ignore the skip hints in the last
resort attempt, but there's no reason not to set them when isolation
fails in such case.  Thus, this patch splits off a new no_set_skip_hint
flag to avoid the updating, which only CMA sets.  This should improve
the heuristics a bit, and allow us to simplify the persistent skip bit
handling as the next step.

Link: http://lkml.kernel.org/r/20171102121706.21504-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-17 16:10:00 -08:00
Vlastimil Babka
b527cfe5bc mm, compaction: extend pageblock_skip_persistent() to all compound pages
pageblock_skip_persistent() checks for HugeTLB pages of pageblock order.
When clearing pageblock skip bits for compaction, the bits are not
cleared for such pageblocks, because they cannot contain base pages
suitable for migration, nor free pages to use as migration targets.

This optimization can be simply extended to all compound pages of order
equal or larger than pageblock order, because migrating such pages (if
they support it) cannot help sub-pageblock fragmentation.  This includes
THP's and also gigantic HugeTLB pages, which the current implementation
doesn't persistently skip due to a strict pageblock_order equality check
and not recognizing tail pages.

While THP pages are generally less "persistent" than HugeTLB, we can
still expect that if a THP exists at the point of
__reset_isolation_suitable(), it will exist also during the subsequent
compaction run.  The time difference here could be actually smaller than
between a compaction run that sets a (non-persistent) skip bit on a THP,
and the next compaction run that observes it.

Link: http://lkml.kernel.org/r/20171102121706.21504-1-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-17 16:10:00 -08:00
David Rientjes
21dc7e0236 mm, compaction: persistently skip hugetlbfs pageblocks
It is pointless to migrate hugetlb memory as part of memory compaction
if the hugetlb size is equal to the pageblock order.  No defragmentation
is occurring in this condition.

It is also pointless to for the freeing scanner to scan a pageblock
where a hugetlb page is pinned.  Unconditionally skip these pageblocks,
and do so peristently so that they are not rescanned until it is
observed that these hugepages are no longer pinned.

It would also be possible to do this by involving the hugetlb subsystem
in marking pageblocks to no longer be skipped when they hugetlb pages
are freed.  This is a simple solution that doesn't involve any
additional subsystems in pageblock skip manipulation.

[rientjes@google.com: fix build]
  Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1708201734390.117182@chino.kir.corp.google.com
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1708151639130.106658@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Tested-by: Michal Hocko <mhocko@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-17 16:10:00 -08:00
David Rientjes
a0647dc920 mm, compaction: kcompactd should not ignore pageblock skip
Kcompactd is needlessly ignoring pageblock skip information.  It is
doing MIGRATE_SYNC_LIGHT compaction, which is no more powerful than
MIGRATE_SYNC compaction.

If compaction recently failed to isolate memory from a set of
pageblocks, there is nothing to indicate that kcompactd will be able to
do so, or that it is beneficial from attempting to isolate memory.

Use the pageblock skip hint to avoid rescanning pageblocks needlessly
until that information is reset.

Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1708151638550.106658@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-11-17 16:10:00 -08:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Davidlohr Bueso
6818600ff0 mm,compaction: serialize waitqueue_active() checks (for real)
Andrea brought to my attention that the L->{L,S} guarantees are
completely bogus for this case.  I was looking at the diagram, from the
offending commit, when that _is_ the race, we had the load reordered
already.

What we need is at least S->L semantics, thus simply use
wq_has_sleeper() to serialize the call for good.

Link: http://lkml.kernel.org/r/20170914175313.GB811@linux-80c1.suse
Fixes: 46acef048a (mm,compaction: serialize waitqueue_active() checks)
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Reported-by: Andrea Parri <parri.andrea@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-10-03 17:54:24 -07:00
Michal Hocko
ccbe1e4dde mm, compaction: skip over holes in __reset_isolation_suitable
__reset_isolation_suitable walks the whole zone pfn range and it tries
to jump over holes by checking the zone for each page.  It might still
stumble over offline pages, though.  Skip those by checking
pfn_to_online_page()

Link: http://lkml.kernel.org/r/20170515085827.16474-9-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Daniel Kiper <daniel.kiper@oracle.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jerome Glisse <jglisse@redhat.com>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Tobias Regnery <tobias.regnery@gmail.com>
Cc: Toshi Kani <toshi.kani@hpe.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Cc: Yasuaki Ishimatsu <isimatu.yasuaki@jp.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-06 16:24:32 -07:00
Vlastimil Babka
baf6a9a1db mm, compaction: finish whole pageblock to reduce fragmentation
The main goal of direct compaction is to form a high-order page for
allocation, but it should also help against long-term fragmentation when
possible.

Most lower-than-pageblock-order compactions are for non-movable
allocations, which means that if we compact in a movable pageblock and
terminate as soon as we create the high-order page, it's unlikely that
the fallback heuristics will claim the whole block.  Instead there might
be a single unmovable page in a pageblock full of movable pages, and the
next unmovable allocation might pick another pageblock and increase
long-term fragmentation.

To help against such scenarios, this patch changes the termination
criteria for compaction so that the current pageblock is finished even
though the high-order page already exists.  Note that it might be
possible that the high-order page formed elsewhere in the zone due to
parallel activity, but this patch doesn't try to detect that.

This is only done with sync compaction, because async compaction is
limited to pageblock of the same migratetype, where it cannot result in
a migratetype fallback.  (Async compaction also eagerly skips
order-aligned blocks where isolation fails, which is against the goal of
migrating away as much of the pageblock as possible.)

As a result of this patch, long-term memory fragmentation should be
reduced.

In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 20%.  The number

Link: http://lkml.kernel.org/r/20170307131545.28577-9-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:10 -07:00
Vlastimil Babka
282722b0d2 mm, compaction: restrict async compaction to pageblocks of same migratetype
The migrate scanner in async compaction is currently limited to
MIGRATE_MOVABLE pageblocks.  This is a heuristic intended to reduce
latency, based on the assumption that non-MOVABLE pageblocks are
unlikely to contain movable pages.

However, with the exception of THP's, most high-order allocations are
not movable.  Should the async compaction succeed, this increases the
chance that the non-MOVABLE allocations will fallback to a MOVABLE
pageblock, making the long-term fragmentation worse.

This patch attempts to help the situation by changing async direct
compaction so that the migrate scanner only scans the pageblocks of the
requested migratetype.  If it's a non-MOVABLE type and there are such
pageblocks that do contain movable pages, chances are that the
allocation can succeed within one of such pageblocks, removing the need
for a fallback.  If that fails, the subsequent sync attempt will ignore
this restriction.

In testing based on 4.9 kernel with stress-highalloc from mmtests
configured for order-4 GFP_KERNEL allocations, this patch has reduced
the number of unmovable allocations falling back to movable pageblocks
by 30%.  The number of movable allocations falling back is reduced by
12%.

Link: http://lkml.kernel.org/r/20170307131545.28577-8-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:10 -07:00
Vlastimil Babka
d39773a062 mm, compaction: add migratetype to compact_control
Preparation patch.  We are going to need migratetype at lower layers
than compact_zone() and compact_finished().

Link: http://lkml.kernel.org/r/20170307131545.28577-7-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:10 -07:00
Vlastimil Babka
b682debd97 mm, compaction: change migrate_async_suitable() to suitable_migration_source()
Preparation for making the decisions more complex and depending on
compact_control flags.  No functional change.

Link: http://lkml.kernel.org/r/20170307131545.28577-6-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:10 -07:00
Vlastimil Babka
228d7e3390 mm, compaction: remove redundant watermark check in compact_finished()
When detecting whether compaction has succeeded in forming a high-order
page, __compact_finished() employs a watermark check, followed by an own
search for a suitable page in the freelists.  This is not ideal for two
reasons:

 - The watermark check also searches high-order freelists, but has a
   less strict criteria wrt fallback. It's therefore redundant and waste
   of cycles. This was different in the past when high-order watermark
   check attempted to apply reserves to high-order pages.

 - The watermark check might actually fail due to lack of order-0 pages.
   Compaction can't help with that, so there's no point in continuing
   because of that. It's possible that high-order page still exists and
   it terminates.

This patch therefore removes the watermark check.  This should save some
cycles and terminate compaction sooner in some cases.

Link: http://lkml.kernel.org/r/20170307131545.28577-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-08 17:15:09 -07:00
Yisheng Xie
1ef36db2a9 mm/compaction: ignore block suitable after check large free page
By reviewing code, I find that if the migrate target is a large free
page and we ignore suitable, it may splite large target free page into
smaller block which is not good for defrag.  So move the ignore block
suitable after check large free page.

As Vlastimil pointed out in RFC version that this patch is just based on
logical analyses which might be better for future-proofing the function
and it is most likely won't have any visible effect right now, for
direct compaction shouldn't have to be called if there's a
>=pageblock_order page already available.

Link: http://lkml.kernel.org/r/1489490743-5364-1-git-send-email-xieyisheng1@huawei.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-05-03 15:52:09 -07:00
Ingo Molnar
174cd4b1e5 sched/headers: Prepare to move signal wakeup & sigpending methods from <linux/sched.h> into <linux/sched/signal.h>
Fix up affected files that include this signal functionality via sched.h.

Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-03-02 08:42:32 +01:00
Yisheng Xie
9e5bcd610f mm/migration: make isolate_movable_page() return int type
Patch series "HWPOISON: soft offlining for non-lru movable page", v6.

After Minchan's commit bda807d444 ("mm: migrate: support non-lru
movable page migration"), some type of non-lru page like zsmalloc and
virtio-balloon page also support migration.

Therefore, we can:

1) soft offlining no-lru movable pages, which means when memory
   corrected errors occur on a non-lru movable page, we can stop to use
   it by migrating data onto another page and disable the original
   (maybe half-broken) one.

2) enable memory hotplug for non-lru movable pages, i.e. we may offline
   blocks, which include such pages, by using non-lru page migration.

This patchset is heavily dependent on non-lru movable page migration.

This patch (of 4):

Change the return type of isolate_movable_page() from bool to int.  It
will return 0 when isolate movable page successfully, and return -EBUSY
when it isolates failed.

There is no functional change within this patch but prepare for later
patch.

[xieyisheng1@huawei.com: v6]
  Link: http://lkml.kernel.org/r/1486108770-630-2-git-send-email-xieyisheng1@huawei.com
Link: http://lkml.kernel.org/r/1485867981-16037-2-git-send-email-ysxie@foxmail.com
Signed-off-by: Yisheng Xie <xieyisheng1@huawei.com>
Suggested-by: Michal Hocko <mhocko@kernel.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Hanjun Guo <guohanjun@huawei.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Taku Izumi <izumi.taku@jp.fujitsu.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Xishi Qiu <qiuxishi@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-24 17:46:55 -08:00
Davidlohr Bueso
46acef048a mm,compaction: serialize waitqueue_active() checks
Without a memory barrier, the following race can occur with a high-order
allocation:

wakeup_kcompactd(order == 1)  		     kcompactd()
  [L] waitqueue_active(kcompactd_wait)
						[S] prepare_to_wait_event(kcompactd_wait)
						[L] (kcompactd_max_order == 0)
  [S] kcompactd_max_order = order;		      schedule()

Where the waitqueue_active() check is speculatively re-ordered to before
setting the actual condition (max_order), not seeing the threads that's
going to block; making us miss a wakeup.  There are a couple of options
to fix this, including calling wq_has_sleepers() which adds a full
barrier, or unconditionally doing the wake_up_interruptible() and
serialize on the q->lock.  However, to make use of the control
dependency, we just need to add L->L guarantees.

While this bug is theoretical, there have been other offenders of the
lockless waitqueue_active() in the past -- this is also documented in
the call itself.

Link: http://lkml.kernel.org/r/1483975528-24342-1-git-send-email-dave@stgolabs.net
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:29 -08:00
David Rientjes
7f354a548d mm, compaction: add vmstats for kcompactd work
A "compact_daemon_wake" vmstat exists that represents the number of
times kcompactd has woken up.  This doesn't represent how much work it
actually did, though.

It's useful to understand how much compaction work is being done by
kcompactd versus other methods such as direct compaction and explicitly
triggered per-node (or system) compaction.

This adds two new vmstats: "compact_daemon_migrate_scanned" and
"compact_daemon_free_scanned" to represent the number of pages kcompactd
has scanned as part of its migration scanner and freeing scanner,
respectively.

These values are still accounted for in the general
"compact_migrate_scanned" and "compact_free_scanned" for compatibility.

It could be argued that explicitly triggered compaction could also be
tracked separately, and that could be added if others find it useful.

Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1612071749390.69852@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-02-22 16:41:29 -08:00
Michal Hocko
73e64c51af mm, compaction: allow compaction for GFP_NOFS requests
compaction has been disabled for GFP_NOFS and GFP_NOIO requests since
the direct compaction was introduced by commit 56de7263fc ("mm:
compaction: direct compact when a high-order allocation fails").  The
main reason is that the migration of page cache pages might recurse back
to fs/io layer and we could potentially deadlock.  This is overly
conservative because all the anonymous memory is migrateable in the
GFP_NOFS context just fine.  This might be a large portion of the memory
in many/most workkloads.

Remove the GFP_NOFS restriction and make sure that we skip all fs pages
(those with a mapping) while isolating pages to be migrated.  We cannot
consider clean fs pages because they might need a metadata update so
only isolate pages without any mapping for nofs requests.

The effect of this patch will be probably very limited in many/most
workloads because higher order GFP_NOFS requests are quite rare,
although different configurations might lead to very different results.
David Chinner has mentioned a heavy metadata workload with 64kB block
which to quote him:

: Unfortunately, there was an era of cargo cult configuration tweaks in the
: Ceph community that has resulted in a large number of production machines
: with XFS filesystems configured this way.  And a lot of them store large
: numbers of small files and run under significant sustained memory
: pressure.
:
: I slowly working towards getting rid of these high order allocations and
: replacing them with the equivalent number of single page allocations, but
: I haven't got that (complex) change working yet.

We can do the following to simulate that workload:
$ mkfs.xfs -f -n size=64k <dev>
$ mount <dev> /mnt/scratch
$ time ./fs_mark  -D  10000  -S0  -n  100000  -s  0  -L  32 \
        -d  /mnt/scratch/0  -d  /mnt/scratch/1 \
        -d  /mnt/scratch/2  -d  /mnt/scratch/3 \
        -d  /mnt/scratch/4  -d  /mnt/scratch/5 \
        -d  /mnt/scratch/6  -d  /mnt/scratch/7 \
        -d  /mnt/scratch/8  -d  /mnt/scratch/9 \
        -d  /mnt/scratch/10  -d  /mnt/scratch/11 \
        -d  /mnt/scratch/12  -d  /mnt/scratch/13 \
        -d  /mnt/scratch/14  -d  /mnt/scratch/15

and indeed is hammers the system with many high order GFP_NOFS requests as
per a simle tracepoint during the load:
$ echo '!(gfp_flags & 0x80) && (gfp_flags &0x400000)' > $TRACE_MNT/events/kmem/mm_page_alloc/filter
I am getting
5287609 order=0
     37 order=1
1594905 order=2
3048439 order=3
6699207 order=4
  66645 order=5

My testing was done in a kvm guest so performance numbers should be
taken with a grain of salt but there seems to be a difference when the
patch is applied:

* Original kernel
FSUse%        Count         Size    Files/sec     App Overhead
     1      1600000            0       4300.1         20745838
     3      3200000            0       4239.9         23849857
     5      4800000            0       4243.4         25939543
     6      6400000            0       4248.4         19514050
     8      8000000            0       4262.1         20796169
     9      9600000            0       4257.6         21288675
    11     11200000            0       4259.7         19375120
    13     12800000            0       4220.7         22734141
    14     14400000            0       4238.5         31936458
    16     16000000            0       4231.5         23409901
    18     17600000            0       4045.3         23577700
    19     19200000            0       2783.4         58299526
    21     20800000            0       2678.2         40616302
    23     22400000            0       2693.5         83973996

and xfs complaining about memory allocation not making progress
[ 2304.372647] XFS: fs_mark(3289) possible memory allocation deadlock size 65624 in kmem_alloc (mode:0x2408240)
[ 2304.443323] XFS: fs_mark(3285) possible memory allocation deadlock size 65728 in kmem_alloc (mode:0x2408240)
[ 4796.772477] XFS: fs_mark(3424) possible memory allocation deadlock size 46936 in kmem_alloc (mode:0x2408240)
[ 4796.775329] XFS: fs_mark(3423) possible memory allocation deadlock size 51416 in kmem_alloc (mode:0x2408240)
[ 4797.388808] XFS: fs_mark(3424) possible memory allocation deadlock size 65728 in kmem_alloc (mode:0x2408240)

* Patched kernel
FSUse%        Count         Size    Files/sec     App Overhead
     1      1600000            0       4289.1         19243934
     3      3200000            0       4241.6         32828865
     5      4800000            0       4248.7         32884693
     6      6400000            0       4314.4         19608921
     8      8000000            0       4269.9         24953292
     9      9600000            0       4270.7         33235572
    11     11200000            0       4346.4         40817101
    13     12800000            0       4285.3         29972397
    14     14400000            0       4297.2         20539765
    16     16000000            0       4219.6         18596767
    18     17600000            0       4273.8         49611187
    19     19200000            0       4300.4         27944451
    21     20800000            0       4270.6         22324585
    22     22400000            0       4317.6         22650382
    24     24000000            0       4065.2         22297964

So the dropdown at Count 19200000 didn't happen and there was only a
single warning about allocation not making progress
[ 3063.815003] XFS: fs_mark(3272) possible memory allocation deadlock size 65624 in kmem_alloc (mode:0x2408240)

This suggests that the patch has helped even though there is not all that
much of anonymous memory as the workload mostly generates fs metadata.  I
assume the success rate would be higher with more anonymous memory which
should be the case in many workloads.

[akpm@linux-foundation.org: fix comment]
Link: http://lkml.kernel.org/r/20161012114721.31853-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Dave Chinner <david@fromorbit.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-14 16:04:07 -08:00
Linus Torvalds
e34bac726d Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton:

 - various misc bits

 - most of MM (quite a lot of MM material is awaiting the merge of
   linux-next dependencies)

 - kasan

 - printk updates

 - procfs updates

 - MAINTAINERS

 - /lib updates

 - checkpatch updates

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (123 commits)
  init: reduce rootwait polling interval time to 5ms
  binfmt_elf: use vmalloc() for allocation of vma_filesz
  checkpatch: don't emit unified-diff error for rename-only patches
  checkpatch: don't check c99 types like uint8_t under tools
  checkpatch: avoid multiple line dereferences
  checkpatch: don't check .pl files, improve absolute path commit log test
  scripts/checkpatch.pl: fix spelling
  checkpatch: don't try to get maintained status when --no-tree is given
  lib/ida: document locking requirements a bit better
  lib/rbtree.c: fix typo in comment of ____rb_erase_color
  lib/Kconfig.debug: make CONFIG_STRICT_DEVMEM depend on CONFIG_DEVMEM
  MAINTAINERS: add drm and drm/i915 irc channels
  MAINTAINERS: add "C:" for URI for chat where developers hang out
  MAINTAINERS: add drm and drm/i915 bug filing info
  MAINTAINERS: add "B:" for URI where to file bugs
  get_maintainer: look for arbitrary letter prefixes in sections
  printk: add Kconfig option to set default console loglevel
  printk/sound: handle more message headers
  printk/btrfs: handle more message headers
  printk/kdb: handle more message headers
  ...
2016-12-12 20:50:02 -08:00
Ming Ling
6afcf8ef0c mm, compaction: fix NR_ISOLATED_* stats for pfn based migration
Since commit bda807d444 ("mm: migrate: support non-lru movable page
migration") isolate_migratepages_block) can isolate !PageLRU pages which
would acct_isolated account as NR_ISOLATED_*.  Accounting these non-lru
pages NR_ISOLATED_{ANON,FILE} doesn't make any sense and it can misguide
heuristics based on those counters such as pgdat_reclaimable_pages resp.
too_many_isolated which would lead to unexpected stalls during the
direct reclaim without any good reason.  Note that
__alloc_contig_migrate_range can isolate a lot of pages at once.

On mobile devices such as 512M ram android Phone, it may use a big zram
swap.  In some cases zram(zsmalloc) uses too many non-lru but
migratedable pages, such as:

      MemTotal: 468148 kB
      Normal free:5620kB
      Free swap:4736kB
      Total swap:409596kB
      ZRAM: 164616kB(zsmalloc non-lru pages)
      active_anon:60700kB
      inactive_anon:60744kB
      active_file:34420kB
      inactive_file:37532kB

Fix this by only accounting lru pages to NR_ISOLATED_* in
isolate_migratepages_block right after they were isolated and we still
know they were on LRU.  Drop acct_isolated because it is called after
the fact and we've lost that information.  Batching per-cpu counter
doesn't make much improvement anyway.  Also make sure that we uncharge
only LRU pages when putting them back on the LRU in
putback_movable_pages resp.  when unmap_and_move migrates the page.

[mhocko@suse.com: replace acct_isolated() with direct counting]
Fixes: bda807d444 ("mm: migrate: support non-lru movable page migration")
Link: http://lkml.kernel.org/r/20161019080240.9682-1-mhocko@kernel.org
Signed-off-by: Ming Ling <ming.ling@spreadtrum.com>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <js1304@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:07 -08:00
Anna-Maria Gleixner
e46b1db249 mm/compaction: Convert to hotplug state machine
Install the callbacks via the state machine. Should the hotplug init fail then
no threads are spawned.

Signed-off-by: Anna-Maria Gleixner <anna-maria@linutronix.de>
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: linux-mm@kvack.org
Cc: rt@linutronix.de
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Link: http://lkml.kernel.org/r/20161126231350.10321-15-bigeasy@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-12-02 00:52:37 +01:00
Vlastimil Babka
2031142028 mm, compaction: restrict fragindex to costly orders
Fragmentation index and the vm.extfrag_threshold sysctl is meant as a
heuristic to prevent excessive compaction for costly orders (i.e.  THP).
It's unlikely to make any difference for non-costly orders, especially
with the default threshold.  But we cannot afford any uncertainty for
the non-costly orders where the only alternative to successful
reclaim/compaction is OOM.  After the recent patches we are guaranteed
maximum effort without heuristics from compaction before deciding OOM,
and fragindex is the last remaining heuristic.  Therefore skip fragindex
altogether for non-costly orders.

Suggested-by: Michal Hocko <mhocko@suse.com>
Link: http://lkml.kernel.org/r/20160926162025.21555-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:29 -07:00
Vlastimil Babka
cc5c9f098f mm, compaction: ignore fragindex from compaction_zonelist_suitable()
The compaction_zonelist_suitable() function tries to determine if
compaction will be able to proceed after sufficient reclaim, i.e.
whether there are enough reclaimable pages to provide enough order-0
freepages for compaction.

This addition of reclaimable pages to the free pages works well for the
order-0 watermark check, but in the fragmentation index check we only
consider truly free pages.  Thus we can get fragindex value close to 0
which indicates failure do to lack of memory, and wrongly decide that
compaction won't be suitable even after reclaim.

Instead of trying to somehow adjust fragindex for reclaimable pages,
let's just skip it from compaction_zonelist_suitable().

Link: http://lkml.kernel.org/r/20160926162025.21555-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:29 -07:00
Vlastimil Babka
9f7e338793 mm, compaction: make full priority ignore pageblock suitability
Several people have reported premature OOMs for order-2 allocations
(stack) due to OOM rework in 4.7.  In the scenario (parallel kernel
build and dd writing to two drives) many pageblocks get marked as
Unmovable and compaction free scanner struggles to isolate free pages.
Joonsoo Kim pointed out that the free scanner skips pageblocks that are
not movable to prevent filling them and forcing non-movable allocations
to fallback to other pageblocks.  Such heuristic makes sense to help
prevent long-term fragmentation, but premature OOMs are relatively more
urgent problem.  As a compromise, this patch disables the heuristic only
for the ultimate compaction priority.

Link: http://lkml.kernel.org/r/20160906135258.18335-5-vbabka@suse.cz
Reported-by: Ralf-Peter Rohbeck <Ralf-Peter.Rohbeck@quantum.com>
Reported-by: Arkadiusz Miskiewicz <a.miskiewicz@gmail.com>
Reported-by: Olaf Hering <olaf@aepfle.de>
Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:29 -07:00
Vlastimil Babka
8348faf91f mm, compaction: require only min watermarks for non-costly orders
The __compaction_suitable() function checks the low watermark plus a
compact_gap() gap to decide if there's enough free memory to perform
compaction.  Then __isolate_free_page uses low watermark check to decide
if particular free page can be isolated.  In the latter case, using low
watermark is needlessly pessimistic, as the free page isolations are
only temporary.  For __compaction_suitable() the higher watermark makes
sense for high-order allocations where more freepages increase the
chance of success, and we can typically fail with some order-0 fallback
when the system is struggling to reach that watermark.  But for
low-order allocation, forming the page should not be that hard.  So
using low watermark here might just prevent compaction from even trying,
and eventually lead to OOM killer even if we are above min watermarks.

So after this patch, we use min watermark for non-costly orders in
__compaction_suitable(), and for all orders in __isolate_free_page().

[vbabka@suse.cz: clarify __isolate_free_page() comment]
 Link: http://lkml.kernel.org/r/7ae4baec-4eca-e70b-2a69-94bea4fb19fa@suse.cz
Link: http://lkml.kernel.org/r/20160810091226.6709-11-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Vlastimil Babka
984fdba6a3 mm, compaction: use proper alloc_flags in __compaction_suitable()
The __compaction_suitable() function checks the low watermark plus a
compact_gap() gap to decide if there's enough free memory to perform
compaction.  This check uses direct compactor's alloc_flags, but that's
wrong, since these flags are not applicable for freepage isolation.

For example, alloc_flags may indicate access to memory reserves, making
compaction proceed, and then fail watermark check during the isolation.

A similar problem exists for ALLOC_CMA, which may be part of
alloc_flags, but not during freepage isolation.  In this case however it
makes sense to use ALLOC_CMA both in __compaction_suitable() and
__isolate_free_page(), since there's actually nothing preventing the
freepage scanner to isolate from CMA pageblocks, with the assumption
that a page that could be migrated once by compaction can be migrated
also later by CMA allocation.  Thus we should count pages in CMA
pageblocks when considering compaction suitability and when isolating
freepages.

To sum up, this patch should remove some false positives from
__compaction_suitable(), and allow compaction to proceed when free pages
required for compaction reside in the CMA pageblocks.

Link: http://lkml.kernel.org/r/20160810091226.6709-10-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Vlastimil Babka
9861a62c33 mm, compaction: create compact_gap wrapper
Compaction uses a watermark gap of (2UL << order) pages at various
places and it's not immediately obvious why.  Abstract it through a
compact_gap() wrapper to create a single place with a thorough
explanation.

[vbabka@suse.cz: clarify the comment of compact_gap()]
 Link: http://lkml.kernel.org/r/7b6aed1f-fdf8-2063-9ff4-bbe4de712d37@suse.cz
Link: http://lkml.kernel.org/r/20160810091226.6709-9-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Vlastimil Babka
f2b8228c5f mm, compaction: use correct watermark when checking compaction success
The __compact_finished() function uses low watermark in a check that has
to pass if the direct compaction is to finish and allocation should
succeed.  This is too pessimistic, as the allocation will typically use
min watermark.  It may happen that during compaction, we drop below the
low watermark (due to parallel activity), but still form the target
high-order page.  By checking against low watermark, we might needlessly
continue compaction.

Similarly, __compaction_suitable() uses low watermark in a check whether
allocation can succeed without compaction.  Again, this is unnecessarily
pessimistic.

After this patch, these check will use direct compactor's alloc_flags to
determine the watermark, which is effectively the min watermark.

Link: http://lkml.kernel.org/r/20160810091226.6709-8-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Vlastimil Babka
a8e025e55b mm, compaction: add the ultimate direct compaction priority
During reclaim/compaction loop, it's desirable to get a final answer
from unsuccessful compaction so we can either fail the allocation or
invoke the OOM killer.  However, heuristics such as deferred compaction
or pageblock skip bits can cause compaction to skip parts or whole zones
and lead to premature OOM's, failures or excessive reclaim/compaction
retries.

To remedy this, we introduce a new direct compaction priority called
COMPACT_PRIO_SYNC_FULL, which instructs direct compaction to:

 - ignore deferred compaction status for a zone
 - ignore pageblock skip hints
 - ignore cached scanner positions and scan the whole zone

The new priority should get eventually picked up by
should_compact_retry() and this should improve success rates for costly
allocations using __GFP_REPEAT, such as hugetlbfs allocations, and
reduce some corner-case OOM's for non-costly allocations.

Link: http://lkml.kernel.org/r/20160810091226.6709-6-vbabka@suse.cz
[vbabka@suse.cz: use the MIN_COMPACT_PRIORITY alias]
  Link: http://lkml.kernel.org/r/d443b884-87e7-1c93-8684-3a3a35759fb1@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Vlastimil Babka
7ceb009a22 mm, compaction: don't recheck watermarks after COMPACT_SUCCESS
Joonsoo has reminded me that in a later patch changing watermark checks
throughout compaction I forgot to update checks in
try_to_compact_pages() and compactd_do_work().  Closer inspection
however shows that they are redundant now in the success case, because
compact_zone() now reliably reports this with COMPACT_SUCCESS.  So
effectively the checks just repeat (a subset) of checks that have just
passed.  So instead of checking watermarks again, just test the return
value.

Note it's also possible that compaction would declare failure e.g.
because its find_suitable_fallback() is more strict than simple
watermark check, and then the watermark check we are removing would then
still succeed.  After this patch this is not possible and it's arguably
better, because for long-term fragmentation avoidance we should rather
try a different zone than allocate with the unsuitable fallback.  If
compaction of all zones fail and the allocation is important enough, it
will retry and succeed anyway.

Also remove the stray "bool success" variable from kcompactd_do_work().

Link: http://lkml.kernel.org/r/20160810091226.6709-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Vlastimil Babka
cf378319d3 mm, compaction: rename COMPACT_PARTIAL to COMPACT_SUCCESS
COMPACT_PARTIAL has historically meant that compaction returned after
doing some work without fully compacting a zone.  It however didn't
distinguish if compaction terminated because it succeeded in creating
the requested high-order page.  This has changed recently and now we
only return COMPACT_PARTIAL when compaction thinks it succeeded, or the
high-order watermark check in compaction_suitable() passes and no
compaction needs to be done.

So at this point we can make the return value clearer by renaming it to
COMPACT_SUCCESS.  The next patch will remove some redundant tests for
success where compaction just returned COMPACT_SUCCESS.

Link: http://lkml.kernel.org/r/20160810091226.6709-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Vlastimil Babka
791cae9620 mm, compaction: cleanup unused functions
Since kswapd compaction moved to kcompactd, compact_pgdat() is not
called anymore, so we remove it.  The only caller of __compact_pgdat()
is compact_node(), so we merge them and remove code that was only
reachable from kswapd.

Link: http://lkml.kernel.org/r/20160810091226.6709-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Vlastimil Babka
06ed29989f mm, compaction: make whole_zone flag ignore cached scanner positions
Patch series "make direct compaction more deterministic")

This is mostly a followup to Michal's oom detection rework, which
highlighted the need for direct compaction to provide better feedback in
reclaim/compaction loop, so that it can reliably recognize when
compaction cannot make further progress, and allocation should invoke
OOM killer or fail.  We've discussed this at LSF/MM [1] where I proposed
expanding the async/sync migration mode used in compaction to more
general "priorities".  This patchset adds one new priority that just
overrides all the heuristics and makes compaction fully scan all zones.
I don't currently think that we need more fine-grained priorities, but
we'll see.  Other than that there's some smaller fixes and cleanups,
mainly related to the THP-specific hacks.

I've tested this with stress-highalloc in GFP_KERNEL order-4 and
THP-like order-9 scenarios.  There's some improvement for compaction
stats for the order-4, which is likely due to the better watermarks
handling.  In the previous version I reported mostly noise wrt
compaction stats, and decreased direct reclaim - now the reclaim is
without difference.  I believe this is due to the less aggressive
compaction priority increase in patch 6.

"before" is a mmotm tree prior to 4.7 release plus the first part of the
series that was sent and merged separately

                                    before        after
order-4:

Compaction stalls                    27216       30759
Compaction success                   19598       25475
Compaction failures                   7617        5283
Page migrate success                370510      464919
Page migrate failure                 25712       27987
Compaction pages isolated           849601     1041581
Compaction migrate scanned       143146541   101084990
Compaction free scanned          208355124   144863510
Compaction cost                       1403        1210

order-9:

Compaction stalls                     7311        7401
Compaction success                    1634        1683
Compaction failures                   5677        5718
Page migrate success                194657      183988
Page migrate failure                  4753        4170
Compaction pages isolated           498790      456130
Compaction migrate scanned          565371      524174
Compaction free scanned            4230296     4250744
Compaction cost                        215         203

[1] https://lwn.net/Articles/684611/

This patch (of 11):

A recent patch has added whole_zone flag that compaction sets when
scanning starts from the zone boundary, in order to report that zone has
been fully scanned in one attempt.  For allocations that want to try
really hard or cannot fail, we will want to introduce a mode where
scanning whole zone is guaranteed regardless of the cached positions.

This patch reuses the whole_zone flag in a way that if it's already
passed true to compaction, the cached scanner positions are ignored.
Employing this flag during reclaim/compaction loop will be done in the
next patch.  This patch however converts compaction invoked from
userspace via procfs to use this flag.  Before this patch, the cached
positions were first reset to zone boundaries and then read back from
struct zone, so there was a window where a parallel compaction could
replace the reset values, making the manual compaction less effective.
Using the flag instead of performing reset is more robust.

[akpm@linux-foundation.org: coding-style fixes]
Link: http://lkml.kernel.org/r/20160810091226.6709-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Vlastimil Babka
c3486f5376 mm, compaction: simplify contended compaction handling
Async compaction detects contention either due to failing trylock on
zone->lock or lru_lock, or by need_resched().  Since 1f9efdef4f ("mm,
compaction: khugepaged should not give up due to need_resched()") the
code got quite complicated to distinguish these two up to the
__alloc_pages_slowpath() level, so different decisions could be taken
for khugepaged allocations.

After the recent changes, khugepaged allocations don't check for
contended compaction anymore, so we again don't need to distinguish lock
and sched contention, and simplify the current convoluted code a lot.

However, I believe it's also possible to simplify even more and
completely remove the check for contended compaction after the initial
async compaction for costly orders, which was originally aimed at THP
page fault allocations.  There are several reasons why this can be done
now:

- with the new defaults, THP page faults no longer do reclaim/compaction at
  all, unless the system admin has overridden the default, or application has
  indicated via madvise that it can benefit from THP's. In both cases, it
  means that the potential extra latency is expected and worth the benefits.
- even if reclaim/compaction proceeds after this patch where it previously
  wouldn't, the second compaction attempt is still async and will detect the
  contention and back off, if the contention persists
- there are still heuristics like deferred compaction and pageblock skip bits
  in place that prevent excessive THP page fault latencies

Link: http://lkml.kernel.org/r/20160721073614.24395-9-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Vlastimil Babka
a5508cd83f mm, compaction: introduce direct compaction priority
In the context of direct compaction, for some types of allocations we
would like the compaction to either succeed or definitely fail while
trying as hard as possible.  Current async/sync_light migration mode is
insufficient, as there are heuristics such as caching scanner positions,
marking pageblocks as unsuitable or deferring compaction for a zone.  At
least the final compaction attempt should be able to override these
heuristics.

To communicate how hard compaction should try, we replace migration mode
with a new enum compact_priority and change the relevant function
signatures.  In compact_zone_order() where struct compact_control is
constructed, the priority is mapped to suitable control flags.  This
patch itself has no functional change, as the current priority levels
are mapped back to the same migration modes as before.  Expanding them
will be done next.

Note that !CONFIG_COMPACTION variant of try_to_compact_pages() is
removed, as the only caller exists under CONFIG_COMPACTION.

Link: http://lkml.kernel.org/r/20160721073614.24395-8-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Hugh Dickins
1d2047fefa mm, compaction: don't isolate PageWriteback pages in MIGRATE_SYNC_LIGHT mode
At present MIGRATE_SYNC_LIGHT is allowing __isolate_lru_page() to
isolate a PageWriteback page, which __unmap_and_move() then rejects with
-EBUSY: of course the writeback might complete in between, but that's
not what we usually expect, so probably better not to isolate it.

When tested by stress-highalloc from mmtests, this has reduced the
number of page migrate failures by 60-70%.

Link: http://lkml.kernel.org/r/20160721073614.24395-2-vbabka@suse.cz
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
5a1c84b404 mm: remove reclaim and compaction retry approximations
If per-zone LRU accounting is available then there is no point
approximating whether reclaim and compaction should retry based on pgdat
statistics.  This is effectively a revert of "mm, vmstat: remove zone
and node double accounting by approximating retries" with the difference
that inactive/active stats are still available.  This preserves the
history of why the approximation was retried and why it had to be
reverted to handle OOM kills on 32-bit systems.

Link: http://lkml.kernel.org/r/1469110261-7365-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
bca6759258 mm, vmstat: remove zone and node double accounting by approximating retries
The number of LRU pages, dirty pages and writeback pages must be
accounted for on both zones and nodes because of the reclaim retry
logic, compaction retry logic and highmem calculations all depending on
per-zone stats.

Many lowmem allocations are immune from OOM kill due to a check in
__alloc_pages_may_oom for (ac->high_zoneidx < ZONE_NORMAL) since commit
03668b3ceb ("oom: avoid oom killer for lowmem allocations").  The
exception is costly high-order allocations or allocations that cannot
fail.  If the __alloc_pages_may_oom avoids OOM-kill for low-order lowmem
allocations then it would fall through to __alloc_pages_direct_compact.

This patch will blindly retry reclaim for zone-constrained allocations
in should_reclaim_retry up to MAX_RECLAIM_RETRIES.  This is not ideal
but without per-zone stats there are not many alternatives.  The impact
it that zone-constrained allocations may delay before considering the
OOM killer.

As there is no guarantee enough memory can ever be freed to satisfy
compaction, this patch avoids retrying compaction for zone-contrained
allocations.

In combination, that means that the per-node stats can be used when
deciding whether to continue reclaim using a rough approximation.  While
it is possible this will make the wrong decision on occasion, it will
not infinite loop as the number of reclaim attempts is capped by
MAX_RECLAIM_RETRIES.

The final step is calculating the number of dirtyable highmem pages.  As
those calculations only care about the global count of file pages in
highmem.  This patch uses a global counter used instead of per-zone
stats as it is sufficient.

In combination, this allows the per-zone LRU and dirty state counters to
be removed.

[mgorman@techsingularity.net: fix acct_highmem_file_pages()]
  Link: http://lkml.kernel.org/r/1468853426-12858-4-git-send-email-mgorman@techsingularity.netLink: http://lkml.kernel.org/r/1467970510-21195-35-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Suggested by: Michal Hocko <mhocko@kernel.org>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
599d0c954f mm, vmscan: move LRU lists to node
This moves the LRU lists from the zone to the node and related data such
as counters, tracing, congestion tracking and writeback tracking.

Unfortunately, due to reclaim and compaction retry logic, it is
necessary to account for the number of LRU pages on both zone and node
logic.  Most reclaim logic is based on the node counters but the retry
logic uses the zone counters which do not distinguish inactive and
active sizes.  It would be possible to leave the LRU counters on a
per-zone basis but it's a heavier calculation across multiple cache
lines that is much more frequent than the retry checks.

Other than the LRU counters, this is mostly a mechanical patch but note
that it introduces a number of anomalies.  For example, the scans are
per-zone but using per-node counters.  We also mark a node as congested
when a zone is congested.  This causes weird problems that are fixed
later but is easier to review.

In the event that there is excessive overhead on 32-bit systems due to
the nodes being on LRU then there are two potential solutions

1. Long-term isolation of highmem pages when reclaim is lowmem

   When pages are skipped, they are immediately added back onto the LRU
   list. If lowmem reclaim persisted for long periods of time, the same
   highmem pages get continually scanned. The idea would be that lowmem
   keeps those pages on a separate list until a reclaim for highmem pages
   arrives that splices the highmem pages back onto the LRU. It potentially
   could be implemented similar to the UNEVICTABLE list.

   That would reduce the skip rate with the potential corner case is that
   highmem pages have to be scanned and reclaimed to free lowmem slab pages.

2. Linear scan lowmem pages if the initial LRU shrink fails

   This will break LRU ordering but may be preferable and faster during
   memory pressure than skipping LRU pages.

Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Mel Gorman
a52633d8e9 mm, vmscan: move lru_lock to the node
Node-based reclaim requires node-based LRUs and locking.  This is a
preparation patch that just moves the lru_lock to the node so later
patches are easier to review.  It is a mechanical change but note this
patch makes contention worse because the LRU lock is hotter and direct
reclaim and kswapd can contend on the same lock even when reclaiming
from different zones.

Link: http://lkml.kernel.org/r/1467970510-21195-3-git-send-email-mgorman@techsingularity.net
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Rik van Riel <riel@surriel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Ganesh Mahendran
b2b331f966 mm/compaction: remove unnecessary order check in try_to_compact_pages()
The caller __alloc_pages_direct_compact() already checked (order == 0)
so there's no need to check again.

Link: http://lkml.kernel.org/r/1465973568-3496-1-git-send-email-opensource.ganesh@gmail.com
Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Anshuman Khandual <khandual@linux.vnet.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Joonsoo Kim
46f24fd857 mm/page_alloc: introduce post allocation processing on page allocator
This patch is motivated from Hugh and Vlastimil's concern [1].

There are two ways to get freepage from the allocator.  One is using
normal memory allocation API and the other is __isolate_free_page()
which is internally used for compaction and pageblock isolation.  Later
usage is rather tricky since it doesn't do whole post allocation
processing done by normal API.

One problematic thing I already know is that poisoned page would not be
checked if it is allocated by __isolate_free_page().  Perhaps, there
would be more.

We could add more debug logic for allocated page in the future and this
separation would cause more problem.  I'd like to fix this situation at
this time.  Solution is simple.  This patch commonize some logic for
newly allocated page and uses it on all sites.  This will solve the
problem.

[1] http://marc.info/?i=alpine.LSU.2.11.1604270029350.7066%40eggly.anvils%3E

[iamjoonsoo.kim@lge.com: mm-page_alloc-introduce-post-allocation-processing-on-page-allocator-v3]
  Link: http://lkml.kernel.org/r/1464230275-25791-7-git-send-email-iamjoonsoo.kim@lge.com
  Link: http://lkml.kernel.org/r/1466150259-27727-9-git-send-email-iamjoonsoo.kim@lge.com
Link: http://lkml.kernel.org/r/1464230275-25791-7-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Joonsoo Kim
83358ece26 mm/page_owner: initialize page owner without holding the zone lock
It's not necessary to initialized page_owner with holding the zone lock.
It would cause more contention on the zone lock although it's not a big
problem since it is just debug feature.  But, it is better than before
so do it.  This is also preparation step to use stackdepot in page owner
feature.  Stackdepot allocates new pages when there is no reserved space
and holding the zone lock in this case will cause deadlock.

Link: http://lkml.kernel.org/r/1464230275-25791-2-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Joonsoo Kim
66c64223ad mm/compaction: split freepages without holding the zone lock
We don't need to split freepages with holding the zone lock.  It will
cause more contention on zone lock so not desirable.

[rientjes@google.com: if __isolate_free_page() fails, avoid adding to freelist so we don't call map_pages() with it]
  Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1606211447001.43430@chino.kir.corp.google.com
Link: http://lkml.kernel.org/r/1464230275-25791-1-git-send-email-iamjoonsoo.kim@lge.com
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Minchan Kim
3783689a1a zsmalloc: introduce zspage structure
We have squeezed meta data of zspage into first page's descriptor.  So,
to get meta data from subpage, we should get first page first of all.
But it makes trouble to implment page migration feature of zsmalloc
because any place where to get first page from subpage can be raced with
first page migration.  IOW, first page it got could be stale.  For
preventing it, I have tried several approahces but it made code
complicated so finally, I concluded to separate metadata from first
page.  Of course, it consumes more memory.  IOW, 16bytes per zspage on
32bit at the moment.  It means we lost 1% at *worst case*(40B/4096B)
which is not bad I think at the cost of maintenance.

Link: http://lkml.kernel.org/r/1464736881-24886-9-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Minchan Kim
b1123ea6d3 mm: balloon: use general non-lru movable page feature
Now, VM has a feature to migrate non-lru movable pages so balloon
doesn't need custom migration hooks in migrate.c and compaction.c.

Instead, this patch implements the page->mapping->a_ops->
{isolate|migrate|putback} functions.

With that, we could remove hooks for ballooning in general migration
functions and make balloon compaction simple.

[akpm@linux-foundation.org: compaction.h requires that the includer first include node.h]
Link: http://lkml.kernel.org/r/1464736881-24886-4-git-send-email-minchan@kernel.org
Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Minchan Kim
bda807d444 mm: migrate: support non-lru movable page migration
We have allowed migration for only LRU pages until now and it was enough
to make high-order pages.  But recently, embedded system(e.g., webOS,
android) uses lots of non-movable pages(e.g., zram, GPU memory) so we
have seen several reports about troubles of small high-order allocation.
For fixing the problem, there were several efforts (e,g,.  enhance
compaction algorithm, SLUB fallback to 0-order page, reserved memory,
vmalloc and so on) but if there are lots of non-movable pages in system,
their solutions are void in the long run.

So, this patch is to support facility to change non-movable pages with
movable.  For the feature, this patch introduces functions related to
migration to address_space_operations as well as some page flags.

If a driver want to make own pages movable, it should define three
functions which are function pointers of struct
address_space_operations.

1. bool (*isolate_page) (struct page *page, isolate_mode_t mode);

What VM expects on isolate_page function of driver is to return *true*
if driver isolates page successfully.  On returing true, VM marks the
page as PG_isolated so concurrent isolation in several CPUs skip the
page for isolation.  If a driver cannot isolate the page, it should
return *false*.

Once page is successfully isolated, VM uses page.lru fields so driver
shouldn't expect to preserve values in that fields.

2. int (*migratepage) (struct address_space *mapping,
		struct page *newpage, struct page *oldpage, enum migrate_mode);

After isolation, VM calls migratepage of driver with isolated page.  The
function of migratepage is to move content of the old page to new page
and set up fields of struct page newpage.  Keep in mind that you should
indicate to the VM the oldpage is no longer movable via
__ClearPageMovable() under page_lock if you migrated the oldpage
successfully and returns 0.  If driver cannot migrate the page at the
moment, driver can return -EAGAIN.  On -EAGAIN, VM will retry page
migration in a short time because VM interprets -EAGAIN as "temporal
migration failure".  On returning any error except -EAGAIN, VM will give
up the page migration without retrying in this time.

Driver shouldn't touch page.lru field VM using in the functions.

3. void (*putback_page)(struct page *);

If migration fails on isolated page, VM should return the isolated page
to the driver so VM calls driver's putback_page with migration failed
page.  In this function, driver should put the isolated page back to the
own data structure.

4. non-lru movable page flags

There are two page flags for supporting non-lru movable page.

* PG_movable

Driver should use the below function to make page movable under
page_lock.

	void __SetPageMovable(struct page *page, struct address_space *mapping)

It needs argument of address_space for registering migration family
functions which will be called by VM.  Exactly speaking, PG_movable is
not a real flag of struct page.  Rather than, VM reuses page->mapping's
lower bits to represent it.

	#define PAGE_MAPPING_MOVABLE 0x2
	page->mapping = page->mapping | PAGE_MAPPING_MOVABLE;

so driver shouldn't access page->mapping directly.  Instead, driver
should use page_mapping which mask off the low two bits of page->mapping
so it can get right struct address_space.

For testing of non-lru movable page, VM supports __PageMovable function.
However, it doesn't guarantee to identify non-lru movable page because
page->mapping field is unified with other variables in struct page.  As
well, if driver releases the page after isolation by VM, page->mapping
doesn't have stable value although it has PAGE_MAPPING_MOVABLE (Look at
__ClearPageMovable).  But __PageMovable is cheap to catch whether page
is LRU or non-lru movable once the page has been isolated.  Because LRU
pages never can have PAGE_MAPPING_MOVABLE in page->mapping.  It is also
good for just peeking to test non-lru movable pages before more
expensive checking with lock_page in pfn scanning to select victim.

For guaranteeing non-lru movable page, VM provides PageMovable function.
Unlike __PageMovable, PageMovable functions validates page->mapping and
mapping->a_ops->isolate_page under lock_page.  The lock_page prevents
sudden destroying of page->mapping.

Driver using __SetPageMovable should clear the flag via
__ClearMovablePage under page_lock before the releasing the page.

* PG_isolated

To prevent concurrent isolation among several CPUs, VM marks isolated
page as PG_isolated under lock_page.  So if a CPU encounters PG_isolated
non-lru movable page, it can skip it.  Driver doesn't need to manipulate
the flag because VM will set/clear it automatically.  Keep in mind that
if driver sees PG_isolated page, it means the page have been isolated by
VM so it shouldn't touch page.lru field.  PG_isolated is alias with
PG_reclaim flag so driver shouldn't use the flag for own purpose.

[opensource.ganesh@gmail.com: mm/compaction: remove local variable is_lru]
  Link: http://lkml.kernel.org/r/20160618014841.GA7422@leo-test
Link: http://lkml.kernel.org/r/1464736881-24886-3-git-send-email-minchan@kernel.org
Signed-off-by: Gioh Kim <gi-oh.kim@profitbricks.com>
Signed-off-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Ganesh Mahendran <opensource.ganesh@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: John Einar Reitan <john.reitan@foss.arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
David Rientjes
a46cbf3bc5 mm, compaction: prevent VM_BUG_ON when terminating freeing scanner
It's possible to isolate some freepages in a pageblock and then fail
split_free_page() due to the low watermark check.  In this case, we hit
VM_BUG_ON() because the freeing scanner terminated early without a
contended lock or enough freepages.

This should never have been a VM_BUG_ON() since it's not a fatal
condition.  It should have been a VM_WARN_ON() at best, or even handled
gracefully.

Regardless, we need to terminate anytime the full pageblock scan was not
done.  The logic belongs in isolate_freepages_block(), so handle its
state gracefully by terminating the pageblock loop and making a note to
restart at the same pageblock next time since it was not possible to
complete the scan this time.

[rientjes@google.com: don't rescan pages in a pageblock]
  Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1607111244150.83138@chino.kir.corp.google.com
Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1606291436300.145590@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Minchan Kim <minchan@kernel.org>
Tested-by: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-15 14:54:27 +09:00
David Rientjes
a4f04f2c69 mm, compaction: abort free scanner if split fails
If the memory compaction free scanner cannot successfully split a free
page (only possible due to per-zone low watermark), terminate the free
scanner rather than continuing to scan memory needlessly.  If the
watermark is insufficient for a free page of order <= cc->order, then
terminate the scanner since all future splits will also likely fail.

This prevents the compaction freeing scanner from scanning all memory on
very large zones (very noticeable for zones > 128GB, for instance) when
all splits will likely fail while holding zone->lock.

compaction_alloc() iterating a 128GB zone has been benchmarked to take
over 400ms on some systems whereas any free page isolated and ready to
be split ends up failing in split_free_page() because of the low
watermark check and thus the iteration continues.

The next time compaction occurs, the freeing scanner will likely start
at the end of the zone again since no success was made previously and we
get the same lengthy iteration until the zone is brought above the low
watermark.  All thp page faults can take >400ms in such a state without
this fix.

Link: http://lkml.kernel.org/r/alpine.DEB.2.10.1606211820350.97086@chino.kir.corp.google.com
Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-24 17:23:52 -07:00
Chen Feng
6cd9dc3e75 mm/compaction.c: fix zoneindex in kcompactd()
While testing the kcompactd in my platform 3G MEM only DMA ZONE.  I
found the kcompactd never wakeup.  It seems the zoneindex has already
minus 1 before.  So the traverse here should be <=.

It fixes a regression where kswapd could previously compact, but
kcompactd not.  Not a crash fix though.

[akpm@linux-foundation.org: fix kcompactd_do_work() as well, per Hugh]
Link: http://lkml.kernel.org/r/1463659121-84124-1-git-send-email-puck.chen@hisilicon.com
Fixes: accf62422b ("mm, kswapd: replace kswapd compaction with waking up kcompactd")
Signed-off-by: Chen Feng <puck.chen@hisilicon.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Hugh Dickins <hughd@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zhuangluan Su <suzhuangluan@hisilicon.com>
Cc: Yiping Xu <xuyiping@hisilicon.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
86a294a81f mm, oom, compaction: prevent from should_compact_retry looping for ever for costly orders
"mm: consider compaction feedback also for costly allocation" has
removed the upper bound for the reclaim/compaction retries based on the
number of reclaimed pages for costly orders.  While this is desirable
the patch did miss a mis interaction between reclaim, compaction and the
retry logic.  The direct reclaim tries to get zones over min watermark
while compaction backs off and returns COMPACT_SKIPPED when all zones
are below low watermark + 1<<order gap.  If we are getting really close
to OOM then __compaction_suitable can keep returning COMPACT_SKIPPED a
high order request (e.g.  hugetlb order-9) while the reclaim is not able
to release enough pages to get us over low watermark.  The reclaim is
still able to make some progress (usually trashing over few remaining
pages) so we are not able to break out from the loop.

I have seen this happening with the same test described in "mm: consider
compaction feedback also for costly allocation" on a swapless system.
The original problem got resolved by "vmscan: consider classzone_idx in
compaction_ready" but it shows how things might go wrong when we
approach the oom event horizont.

The reason why compaction requires being over low rather than min
watermark is not clear to me.  This check was there essentially since
56de7263fc ("mm: compaction: direct compact when a high-order
allocation fails").  It is clearly an implementation detail though and
we shouldn't pull it into the generic retry logic while we should be
able to cope with such eventuality.  The only place in
should_compact_retry where we retry without any upper bound is for
compaction_withdrawn() case.

Introduce compaction_zonelist_suitable function which checks the given
zonelist and returns true only if there is at least one zone which would
would unblock __compaction_suitable if more memory got reclaimed.  In
this implementation it checks __compaction_suitable with NR_FREE_PAGES
plus part of the reclaimable memory as the target for the watermark
check.  The reclaimable memory is reduced linearly by the allocation
order.  The idea is that we do not want to reclaim all the remaining
memory for a single allocation request just unblock
__compaction_suitable which doesn't guarantee we will make a further
progress.

The new helper is then used if compaction_withdrawn() feedback was
provided so we do not retry if there is no outlook for a further
progress.  !costly requests shouldn't be affected much - e.g.  order-2
pages would require to have at least 64kB on the reclaimable LRUs while
order-9 would need at least 32M which should be enough to not lock up.

[vbabka@suse.cz: fix classzone_idx vs. high_zoneidx usage in compaction_zonelist_suitable]
[akpm@linux-foundation.org: fix it for Mel's mm-page_alloc-remove-field-from-alloc_context.patch]
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
c8f7de0bfa mm, compaction: distinguish between full and partial COMPACT_COMPLETE
COMPACT_COMPLETE now means that compaction and free scanner met.  This
is not very useful information if somebody just wants to use this
feedback and make any decisions based on that.  The current caller might
be a poor guy who just happened to scan tiny portion of the zone and
that could be the reason no suitable pages were compacted.  Make sure we
distinguish the full and partial zone walks.

Consumers should treat COMPACT_PARTIAL_SKIPPED as a potential success
and be optimistic in retrying.

The existing users of COMPACT_COMPLETE are conservatively changed to use
COMPACT_PARTIAL_SKIPPED as well but some of them should be probably
reconsidered and only defer the compaction only for COMPACT_COMPLETE
with the new semantic.

This patch shouldn't introduce any functional changes.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
1d4746d395 mm, compaction: distinguish COMPACT_DEFERRED from COMPACT_SKIPPED
try_to_compact_pages() can currently return COMPACT_SKIPPED even when
the compaction is defered for some zone just because zone DMA is skipped
in 99% of cases due to watermark checks.  This makes COMPACT_DEFERRED
basically unusable for the page allocator as a feedback mechanism.

Make sure we distinguish those two states properly and switch their
ordering in the enum.  This would mean that the COMPACT_SKIPPED will be
returned only when all eligible zones are skipped.

As a result COMPACT_DEFERRED handling for THP in __alloc_pages_slowpath
will be more precise and we would bail out rather than reclaim.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
c46649deae mm, compaction: cover all compaction mode in compact_zone
The compiler is complaining after "mm, compaction: change COMPACT_
constants into enum"

  mm/compaction.c: In function `compact_zone':
  mm/compaction.c:1350:2: warning: enumeration value `COMPACT_DEFERRED' not handled in switch [-Wswitch]
    switch (ret) {
    ^
  mm/compaction.c:1350:2: warning: enumeration value `COMPACT_COMPLETE' not handled in switch [-Wswitch]
  mm/compaction.c:1350:2: warning: enumeration value `COMPACT_NO_SUITABLE_PAGE' not handled in switch [-Wswitch]
  mm/compaction.c:1350:2: warning: enumeration value `COMPACT_NOT_SUITABLE_ZONE' not handled in switch [-Wswitch]
  mm/compaction.c:1350:2: warning: enumeration value `COMPACT_CONTENDED' not handled in switch [-Wswitch]

compaction_suitable is allowed to return only COMPACT_PARTIAL,
COMPACT_SKIPPED and COMPACT_CONTINUE so other cases are simply
impossible.  Put a VM_BUG_ON to catch an impossible return value.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
ea7ab982b6 mm, compaction: change COMPACT_ constants into enum
Compaction code is doing weird dances between COMPACT_FOO -> int ->
unsigned long

But there doesn't seem to be any reason for that.  All functions which
return/use one of those constants are not expecting any other value so it
really makes sense to define an enum for them and make it clear that no
other values are expected.

This is a pure cleanup and shouldn't introduce any functional changes.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <js1304@gmail.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Mel Gorman
93ea9964d1 mm, page_alloc: remove field from alloc_context
The classzone_idx can be inferred from preferred_zoneref so remove the
unnecessary field and save stack space.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Mel Gorman
c603844bdc mm, page_alloc: convert alloc_flags to unsigned
alloc_flags is a bitmask of flags but it is signed which does not
necessarily generate the best code depending on the compiler.  Even
without an impact, it makes more sense that this be unsigned.

Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jesper Dangaard Brouer <brouer@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Vlastimil Babka
fdd048e12c mm, compaction: skip blocks where isolation fails in async direct compaction
The goal of direct compaction is to quickly make a high-order page
available for the pending allocation.  Within an aligned block of pages
of desired order, a single allocated page that cannot be isolated for
migration means that the block cannot fully merge to a buddy page that
would satisfy the allocation request.  Therefore we can reduce the
allocation stall by skipping the rest of the block immediately on
isolation failure.  For async compaction, this also means a higher
chance of succeeding until it detects contention.

We however shouldn't completely sacrifice the second objective of
compaction, which is to reduce overal long-term memory fragmentation.
As a compromise, perform the eager skipping only in direct async
compaction, while sync compaction (including kcompactd) remains
thorough.

Testing was done using stress-highalloc from mmtests, configured for
order-4 GFP_KERNEL allocations:

                                 4.6-rc1               4.6-rc1
                                  before                 after
  Success 1 Min         24.00 (  0.00%)       27.00 (-12.50%)
  Success 1 Mean        30.20 (  0.00%)       31.60 ( -4.64%)
  Success 1 Max         37.00 (  0.00%)       35.00 (  5.41%)
  Success 2 Min         42.00 (  0.00%)       32.00 ( 23.81%)
  Success 2 Mean        44.00 (  0.00%)       44.80 ( -1.82%)
  Success 2 Max         48.00 (  0.00%)       52.00 ( -8.33%)
  Success 3 Min         91.00 (  0.00%)       92.00 ( -1.10%)
  Success 3 Mean        92.20 (  0.00%)       92.80 ( -0.65%)
  Success 3 Max         94.00 (  0.00%)       93.00 (  1.06%)

We can see that success rates are unaffected by the skipping.

                4.6-rc1     4.6-rc1
                 before       after
  User         2587.42     2566.53
  System        482.89      471.20
  Elapsed      1395.68     1382.00

Times are not so useful metric for this benchmark as main portion is the
interfering kernel builds, but results do hint at reduced system times.

                                      4.6-rc1     4.6-rc1
                                       before       after
  Direct pages scanned                163614      159608
  Kswapd pages scanned               2070139     2078790
  Kswapd pages reclaimed             2061707     2069757
  Direct pages reclaimed              163354      159505

Reduced direct reclaim was unintended, but could be explained by more
successful first attempt at (async) direct compaction, which is
attempted before the first reclaim attempt in __alloc_pages_slowpath().

  Compaction stalls                    33052       39853
  Compaction success                   12121       19773
  Compaction failures                  20931       20079

Compaction is indeed more successful, and thus less likely to get
deferred, so there are also more direct compaction stalls.

  Page migrate success               3781876     3326819
  Page migrate failure                 45817       41774
  Compaction pages isolated          7868232     6941457
  Compaction migrate scanned       168160492   127269354
  Compaction migrate prescanned            0           0
  Compaction free scanned         2522142582  2326342620
  Compaction free direct alloc             0           0
  Compaction free dir. all. miss           0           0
  Compaction cost                       5252        4476

The patch reduces migration scanned pages by 25% thanks to the eager
skipping.

[hughd@google.com: prevent nr_isolated_* from going negative]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Vlastimil Babka
a34753d275 mm, compaction: reduce spurious pcplist drains
Compaction drains the local pcplists each time migration scanner moves
away from a cc->order aligned block where it isolated pages for
migration, so that the pages freed by migrations can merge into higher
orders.

The detection is currently coarser than it could be.  The
cc->last_migrated_pfn variable should track the lowest pfn that was
isolated for migration.  But it is set to the pfn where
isolate_migratepages_block() starts scanning, which is typically the
first pfn of the pageblock.  There, the scanner might fail to isolate
several order-aligned blocks, and then isolate COMPACT_CLUSTER_MAX in
another block.  This would cause the pcplists drain to be performed,
although the scanner didn't yet finish the block where it isolated from.

This patch thus makes cc->last_migrated_pfn handling more accurate by
setting it to the pfn of an actually isolated page in
isolate_migratepages_block().  Although practical effects of this patch
are likely low, it arguably makes the intent of the code more obvious.
Also the next patch will make async direct compaction skip blocks more
aggressively, and draining pcplists due to skipped blocks is wasteful.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Vlastimil Babka
06b6640a39 mm, compaction: wrap calculating first and last pfn of pageblock
Compaction code has accumulated numerous instances of manual
calculations of the first (inclusive) and last (exclusive) pfn of a
pageblock (or a smaller block of given order), given a pfn within the
pageblock.

Wrap these calculations by introducing pageblock_start_pfn(pfn) and
pageblock_end_pfn(pfn) macros.

[vbabka@suse.cz: fix crash in get_pfnblock_flags_mask() from isolate_freepages():]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19 19:12:14 -07:00
Vlastimil Babka
172400c69c mm: fix kcompactd hang during memory offlining
Assume memory47 is the last online block left in node1.  This will hang:

  # echo offline > /sys/devices/system/node/node1/memory47/state

After a couple of minutes, the following pops up in dmesg:

  INFO: task bash:957 blocked for more than 120 seconds.
         Not tainted 4.6.0-rc6+ #6
  "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
  bash            D ffff8800b7adbaf8     0   957    951 0x00000000
  Call Trace:
    schedule+0x35/0x80
    schedule_timeout+0x1ac/0x270
    wait_for_completion+0xe1/0x120
    kthread_stop+0x4f/0x110
    kcompactd_stop+0x26/0x40
    __offline_pages.constprop.28+0x7e6/0x840
    offline_pages+0x11/0x20
    memory_block_action+0x73/0x1d0
    memory_subsys_offline+0x47/0x60
    device_offline+0x86/0xb0
    store_mem_state+0xda/0xf0
    dev_attr_store+0x18/0x30
    sysfs_kf_write+0x37/0x40
    kernfs_fop_write+0x11d/0x170
    __vfs_write+0x37/0x120
    vfs_write+0xa9/0x1a0
    SyS_write+0x55/0xc0
    entry_SYSCALL_64_fastpath+0x1a/0xa4

kcompactd is waiting for kcompactd_max_order > 0 when it's woken up to
actually exit.  Check kthread_should_stop() to break out of the wait.

Fixes: 698b1b306 ("mm, compaction: introduce kcompactd").
Reported-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Tested-by: Reza Arbab <arbab@linux.vnet.ibm.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-05 17:38:53 -07:00
Hugh Dickins
14af4a5e9b mm, cma: prevent nr_isolated_* counters from going negative
/proc/sys/vm/stat_refresh warns nr_isolated_anon and nr_isolated_file go
increasingly negative under compaction: which would add delay when
should be none, or no delay when should delay.  The bug in compaction
was due to a recent mmotm patch, but much older instance of the bug was
also noticed in isolate_migratepages_range() which is used for CMA and
gigantic hugepage allocations.

The bug is caused by putback_movable_pages() in an error path
decrementing the isolated counters without them being previously
incremented by acct_isolated().  Fix isolate_migratepages_range() by
removing the error-path putback, thus reaching acct_isolated() with
migratepages still isolated, and leaving putback to caller like most
other places do.

Fixes: edc2ca6124 ("mm, compaction: move pageblock checks up from isolate_migratepages_range()")
[vbabka@suse.cz: expanded the changelog]
Signed-off-by: Hugh Dickins <hughd@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-05 17:38:53 -07:00
Vlastimil Babka
accf62422b mm, kswapd: replace kswapd compaction with waking up kcompactd
Similarly to direct reclaim/compaction, kswapd attempts to combine
reclaim and compaction to attempt making memory allocation of given
order available.

The details differ from direct reclaim e.g. in having high watermark as
a goal.  The code involved in kswapd's reclaim/compaction decisions has
evolved to be quite complex.

Testing reveals that it doesn't actually work in at least one scenario,
and closer inspection suggests that it could be greatly simplified
without compromising on the goal (make high-order page available) or
efficiency (don't reclaim too much).  The simplification relieas of
doing all compaction in kcompactd, which is simply woken up when high
watermarks are reached by kswapd's reclaim.

The scenario where kswapd compaction doesn't work was found with mmtests
test stress-highalloc configured to attempt order-9 allocations without
direct reclaim, just waking up kswapd.  There was no compaction attempt
from kswapd during the whole test.  Some added instrumentation shows
what happens:

 - balance_pgdat() sets end_zone to Normal, as it's not balanced
 - reclaim is attempted on DMA zone, which sets nr_attempted to 99, but
   it cannot reclaim anything, so sc.nr_reclaimed is 0
 - for zones DMA32 and Normal, kswapd_shrink_zone uses testorder=0, so
   it merely checks if high watermarks were reached for base pages.
   This is true, so no reclaim is attempted.  For DMA, testorder=0
   wasn't used, as compaction_suitable() returned COMPACT_SKIPPED
 - even though the pgdat_needs_compaction flag wasn't set to false, no
   compaction happens due to the condition sc.nr_reclaimed >
   nr_attempted being false (as 0 < 99)
 - priority-- due to nr_reclaimed being 0, repeat until priority reaches
   0 pgdat_balanced() is false as only the small zone DMA appears
   balanced (curiously in that check, watermark appears OK and
   compaction_suitable() returns COMPACT_PARTIAL, because a lower
   classzone_idx is used there)

Now, even if it was decided that reclaim shouldn't be attempted on the
DMA zone, the scenario would be the same, as (sc.nr_reclaimed=0 >
nr_attempted=0) is also false.  The condition really should use >= as
the comment suggests.  Then there is a mismatch in the check for setting
pgdat_needs_compaction to false using low watermark, while the rest uses
high watermark, and who knows what other subtlety.  Hopefully this
demonstrates that this is unsustainable.

Luckily we can simplify this a lot.  The reclaim/compaction decisions
make sense for direct reclaim scenario, but in kswapd, our primary goal
is to reach high watermark in order-0 pages.  Afterwards we can attempt
compaction just once.  Unlike direct reclaim, we don't reclaim extra
pages (over the high watermark), the current code already disallows it
for good reasons.

After this patch, we simply wake up kcompactd to process the pgdat,
after we have either succeeded or failed to reach the high watermarks in
kswapd, which goes to sleep.  We pass kswapd's order and classzone_idx,
so kcompactd can apply the same criteria to determine which zones are
worth compacting.  Note that we use the classzone_idx from
wakeup_kswapd(), not balanced_classzone_idx which can include higher
zones that kswapd tried to balance too, but didn't consider them in
pgdat_balanced().

Since kswapd now cannot create high-order pages itself, we need to
adjust how it determines the zones to be balanced.  The key element here
is adding a "highorder" parameter to zone_balanced, which, when set to
false, makes it consider only order-0 watermark instead of the desired
higher order (this was done previously by kswapd_shrink_zone(), but not
elsewhere).  This false is passed for example in pgdat_balanced().
Importantly, wakeup_kswapd() uses true to make sure kswapd and thus
kcompactd are woken up for a high-order allocation failure.

The last thing is to decide what to do with pageblock_skip bitmap
handling.  Compaction maintains a pageblock_skip bitmap to record
pageblocks where isolation recently failed.  This bitmap can be reset by
three ways:

1) direct compaction is restarting after going through the full deferred cycle

2) kswapd goes to sleep, and some other direct compaction has previously
   finished scanning the whole zone and set zone->compact_blockskip_flush.
   Note that a successful direct compaction clears this flag.

3) compaction was invoked manually via trigger in /proc

The case 2) is somewhat fuzzy to begin with, but after introducing
kcompactd we should update it.  The check for direct compaction in 1),
and to set the flush flag in 2) use current_is_kswapd(), which doesn't
work for kcompactd.  Thus, this patch adds bool direct_compaction to
compact_control to use in 2).  For the case 1) we remove the check
completely - unlike the former kswapd compaction, kcompactd does use the
deferred compaction functionality, so flushing tied to restarting from
deferred compaction makes sense here.

Note that when kswapd goes to sleep, kcompactd is woken up, so it will
see the flushed pageblock_skip bits.  This is different from when the
former kswapd compaction observed the bits and I believe it makes more
sense.  Kcompactd can afford to be more thorough than a direct
compaction trying to limit allocation latency, or kswapd whose primary
goal is to reclaim.

For testing, I used stress-highalloc configured to do order-9
allocations with GFP_NOWAIT|__GFP_HIGH|__GFP_COMP, so they relied just
on kswapd/kcompactd reclaim/compaction (the interfering kernel builds in
phases 1 and 2 work as usual):

stress-highalloc
                        4.5-rc1+before          4.5-rc1+after
                             -nodirect              -nodirect
Success 1 Min          1.00 (  0.00%)         5.00 (-66.67%)
Success 1 Mean         1.40 (  0.00%)         6.20 (-55.00%)
Success 1 Max          2.00 (  0.00%)         7.00 (-16.67%)
Success 2 Min          1.00 (  0.00%)         5.00 (-66.67%)
Success 2 Mean         1.80 (  0.00%)         6.40 (-52.38%)
Success 2 Max          3.00 (  0.00%)         7.00 (-16.67%)
Success 3 Min         34.00 (  0.00%)        62.00 (  1.59%)
Success 3 Mean        41.80 (  0.00%)        63.80 (  1.24%)
Success 3 Max         53.00 (  0.00%)        65.00 (  2.99%)

User                          3166.67        3181.09
System                        1153.37        1158.25
Elapsed                       1768.53        1799.37

                            4.5-rc1+before   4.5-rc1+after
                                 -nodirect    -nodirect
Direct pages scanned                32938        32797
Kswapd pages scanned              2183166      2202613
Kswapd pages reclaimed            2152359      2143524
Direct pages reclaimed              32735        32545
Percentage direct scans                1%           1%
THP fault alloc                       579          612
THP collapse alloc                    304          316
THP splits                              0            0
THP fault fallback                    793          778
THP collapse fail                      11           16
Compaction stalls                    1013         1007
Compaction success                     92           67
Compaction failures                   920          939
Page migrate success               238457       721374
Page migrate failure                23021        23469
Compaction pages isolated          504695      1479924
Compaction migrate scanned         661390      8812554
Compaction free scanned          13476658     84327916
Compaction cost                       262          838

After this patch we see improvements in allocation success rate
(especially for phase 3) along with increased compaction activity.  The
compaction stalls (direct compaction) in the interfering kernel builds
(probably THP's) also decreased somewhat thanks to kcompactd activity,
yet THP alloc successes improved a bit.

Note that elapsed and user time isn't so useful for this benchmark,
because of the background interference being unpredictable.  It's just
to quickly spot some major unexpected differences.  System time is
somewhat more useful and that didn't increase.

Also (after adjusting mmtests' ftrace monitor):

Time kswapd awake               2547781     2269241
Time kcompactd awake                  0      119253
Time direct compacting           939937      557649
Time kswapd compacting                0           0
Time kcompactd compacting             0      119099

The decrease of overal time spent compacting appears to not match the
increased compaction stats.  I suspect the tasks get rescheduled and
since the ftrace monitor doesn't see that, the reported time is wall
time, not CPU time.  But arguably direct compactors care about overall
latency anyway, whether busy compacting or waiting for CPU doesn't
matter.  And that latency seems to almost halved.

It's also interesting how much time kswapd spent awake just going
through all the priorities and failing to even try compacting, over and
over.

We can also configure stress-highalloc to perform both direct
reclaim/compaction and wakeup kswapd/kcompactd, by using
GFP_KERNEL|__GFP_HIGH|__GFP_COMP:

stress-highalloc
                        4.5-rc1+before         4.5-rc1+after
                               -direct               -direct
Success 1 Min          4.00 (  0.00%)        9.00 (-50.00%)
Success 1 Mean         8.00 (  0.00%)       10.00 (-19.05%)
Success 1 Max         12.00 (  0.00%)       11.00 ( 15.38%)
Success 2 Min          4.00 (  0.00%)        9.00 (-50.00%)
Success 2 Mean         8.20 (  0.00%)       10.00 (-16.28%)
Success 2 Max         13.00 (  0.00%)       11.00 (  8.33%)
Success 3 Min         75.00 (  0.00%)       74.00 (  1.33%)
Success 3 Mean        75.60 (  0.00%)       75.20 (  0.53%)
Success 3 Max         77.00 (  0.00%)       76.00 (  0.00%)

User                          3344.73       3246.04
System                        1194.24       1172.29
Elapsed                       1838.04       1836.76

                            4.5-rc1+before  4.5-rc1+after
                                   -direct     -direct
Direct pages scanned               125146      120966
Kswapd pages scanned              2119757     2135012
Kswapd pages reclaimed            2073183     2108388
Direct pages reclaimed             124909      120577
Percentage direct scans                5%          5%
THP fault alloc                       599         652
THP collapse alloc                    323         354
THP splits                              0           0
THP fault fallback                    806         793
THP collapse fail                      17          16
Compaction stalls                    2457        2025
Compaction success                    906         518
Compaction failures                  1551        1507
Page migrate success              2031423     2360608
Page migrate failure                32845       40852
Compaction pages isolated         4129761     4802025
Compaction migrate scanned       11996712    21750613
Compaction free scanned         214970969   344372001
Compaction cost                      2271        2694

In this scenario, this patch doesn't change the overall success rate as
direct compaction already tries all it can.  There's however significant
reduction in direct compaction stalls (that is, the number of
allocations that went into direct compaction).  The number of successes
(i.e.  direct compaction stalls that ended up with successful
allocation) is reduced by the same number.  This means the offload to
kcompactd is working as expected, and direct compaction is reduced
either due to detecting contention, or compaction deferred by kcompactd.
In the previous version of this patchset there was some apparent
reduction of success rate, but the changes in this version (such as
using sync compaction only), new baseline kernel, and/or averaging
results from 5 executions (my bet), made this go away.

Ftrace-based stats seem to roughly agree:

Time kswapd awake               2532984     2326824
Time kcompactd awake                  0      257916
Time direct compacting           864839      735130
Time kswapd compacting                0           0
Time kcompactd compacting             0      257585

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Vlastimil Babka
698b1b3064 mm, compaction: introduce kcompactd
Memory compaction can be currently performed in several contexts:

 - kswapd balancing a zone after a high-order allocation failure
 - direct compaction to satisfy a high-order allocation, including THP
   page fault attemps
 - khugepaged trying to collapse a hugepage
 - manually from /proc

The purpose of compaction is two-fold.  The obvious purpose is to
satisfy a (pending or future) high-order allocation, and is easy to
evaluate.  The other purpose is to keep overal memory fragmentation low
and help the anti-fragmentation mechanism.  The success wrt the latter
purpose is more

The current situation wrt the purposes has a few drawbacks:

 - compaction is invoked only when a high-order page or hugepage is not
   available (or manually).  This might be too late for the purposes of
   keeping memory fragmentation low.
 - direct compaction increases latency of allocations.  Again, it would
   be better if compaction was performed asynchronously to keep
   fragmentation low, before the allocation itself comes.
 - (a special case of the previous) the cost of compaction during THP
   page faults can easily offset the benefits of THP.
 - kswapd compaction appears to be complex, fragile and not working in
   some scenarios.  It could also end up compacting for a high-order
   allocation request when it should be reclaiming memory for a later
   order-0 request.

To improve the situation, we should be able to benefit from an
equivalent of kswapd, but for compaction - i.e. a background thread
which responds to fragmentation and the need for high-order allocations
(including hugepages) somewhat proactively.

One possibility is to extend the responsibilities of kswapd, which could
however complicate its design too much.  It should be better to let
kswapd handle reclaim, as order-0 allocations are often more critical
than high-order ones.

Another possibility is to extend khugepaged, but this kthread is a
single instance and tied to THP configs.

This patch goes with the option of a new set of per-node kthreads called
kcompactd, and lays the foundations, without introducing any new
tunables.  The lifecycle mimics kswapd kthreads, including the memory
hotplug hooks.

For compaction, kcompactd uses the standard compaction_suitable() and
ompact_finished() criteria and the deferred compaction functionality.
Unlike direct compaction, it uses only sync compaction, as there's no
allocation latency to minimize.

This patch doesn't yet add a call to wakeup_kcompactd.  The kswapd
compact/reclaim loop for high-order pages will be replaced by waking up
kcompactd in the next patch with the description of what's wrong with
the old approach.

Waking up of the kcompactd threads is also tied to kswapd activity and
follows these rules:
 - we don't want to affect any fastpaths, so wake up kcompactd only from
   the slowpath, as it's done for kswapd
 - if kswapd is doing reclaim, it's more important than compaction, so
   don't invoke kcompactd until kswapd goes to sleep
 - the target order used for kswapd is passed to kcompactd

Future possible future uses for kcompactd include the ability to wake up
kcompactd on demand in special situations, such as when hugepages are
not available (currently not done due to __GFP_NO_KSWAPD) or when a
fragmentation event (i.e.  __rmqueue_fallback()) occurs.  It's also
possible to perform periodic compaction with kcompactd.

[arnd@arndb.de: fix build errors with kcompactd]
[paul.gortmaker@windriver.com: don't use modular references for non modular code]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Joonsoo Kim
7cf91a98e6 mm/compaction: speed up pageblock_pfn_to_page() when zone is contiguous
There is a performance drop report due to hugepage allocation and in
there half of cpu time are spent on pageblock_pfn_to_page() in
compaction [1].

In that workload, compaction is triggered to make hugepage but most of
pageblocks are un-available for compaction due to pageblock type and
skip bit so compaction usually fails.  Most costly operations in this
case is to find valid pageblock while scanning whole zone range.  To
check if pageblock is valid to compact, valid pfn within pageblock is
required and we can obtain it by calling pageblock_pfn_to_page().  This
function checks whether pageblock is in a single zone and return valid
pfn if possible.  Problem is that we need to check it every time before
scanning pageblock even if we re-visit it and this turns out to be very
expensive in this workload.

Although we have no way to skip this pageblock check in the system where
hole exists at arbitrary position, we can use cached value for zone
continuity and just do pfn_to_page() in the system where hole doesn't
exist.  This optimization considerably speeds up in above workload.

Before vs After
  Max: 1096 MB/s vs 1325 MB/s
  Min: 635 MB/s 1015 MB/s
  Avg: 899 MB/s 1194 MB/s

Avg is improved by roughly 30% [2].

[1]: http://www.spinics.net/lists/linux-mm/msg97378.html
[2]: https://lkml.org/lkml/2015/12/9/23

[akpm@linux-foundation.org: don't forget to restore zone->contiguous on error path, per Vlastimil]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Reported-by: Aaron Lu <aaron.lu@intel.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Aaron Lu <aaron.lu@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
e1409c325f mm/compaction: pass only pageblock aligned range to pageblock_pfn_to_page
pageblock_pfn_to_page() is used to check there is valid pfn and all
pages in the pageblock is in a single zone.  If there is a hole in the
pageblock, passing arbitrary position to pageblock_pfn_to_page() could
cause to skip whole pageblock scanning, instead of just skipping the
hole page.  For deterministic behaviour, it's better to always pass
pageblock aligned range to pageblock_pfn_to_page().  It will also help
further optimization on pageblock_pfn_to_page() in the following patch.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
623446e4dc mm/compaction: fix invalid free_pfn and compact_cached_free_pfn
free_pfn and compact_cached_free_pfn are the pointer that remember
restart position of freepage scanner.  When they are reset or invalid,
we set them to zone_end_pfn because freepage scanner works in reverse
direction.  But, because zone range is defined as [zone_start_pfn,
zone_end_pfn), zone_end_pfn is invalid to access.  Therefore, we should
not store it to free_pfn and compact_cached_free_pfn.  Instead, we need
to store zone_end_pfn - 1 to them.  There is one more thing we should
consider.  Freepage scanner scan reversely by pageblock unit.  If
free_pfn and compact_cached_free_pfn are set to middle of pageblock, it
regards that sitiation as that it already scans front part of pageblock
so we lose opportunity to scan there.  To fix-up, this patch do
round_down() to guarantee that reset position will be pageblock aligned.

Note that thanks to the current pageblock_pfn_to_page() implementation,
actual access to zone_end_pfn doesn't happen until now.  But, following
patch will change pageblock_pfn_to_page() so this patch is needed from
now on.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-15 16:55:16 -07:00
Joonsoo Kim
7546934570 mm/compaction.c: __compact_pgdat() code cleanuup
This patch uses is_via_compact_memory() to distinguish compaction from
sysfs or sysctl.  And, this patch also reduces indentation on
compaction_defer_reset() by filtering these cases first before checking
watermark.

There is no functional change.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Yaowei Bai
fec4eb2c8d mm/compaction: improve comment for compact_memory tunable knob handler
sysctl_compaction_handler() is the handler function for compact_memory
tunable knob under /proc/sys/vm, add the missing knob name to make this
more accurate in comment.

No functional change.

Signed-off-by: Yaowei Bai <baiyaowei@cmss.chinamobile.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Vlastimil Babka
2d1e10412c mm, compaction: distinguish contended status in tracepoints
Compaction returns prematurely with COMPACT_PARTIAL when contended or has
fatal signal pending.  This is ok for the callers, but might be misleading
in the traces, as the usual reason to return COMPACT_PARTIAL is that we
think the allocation should succeed.  After this patch we distinguish the
premature ending condition in the mm_compaction_finished and
mm_compaction_end tracepoints.

The contended status covers the following reasons:
- lock contention or need_resched() detected in async compaction
- fatal signal pending
- too many pages isolated in the zone (only for async compaction)
Further distinguishing the exact reason seems unnecessary for now.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Vlastimil Babka
fa6c7b46aa mm, compaction: export tracepoints status strings to userspace
Some compaction tracepoints convert the integer return values to strings
using the compaction_status_string array.  This works for in-kernel
printing, but not userspace trace printing of raw captured trace such as
via trace-cmd report.

This patch converts the private array to appropriate tracepoint macros
that result in proper userspace support.

trace-cmd output before:
transhuge-stres-4235  [000]   453.149280: mm_compaction_finished: node=0
  zone=ffffffff81815d7a order=9 ret=

after:
transhuge-stres-4235  [000]   453.149280: mm_compaction_finished: node=0
  zone=ffffffff81815d7a order=9 ret=partial

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Yaowei Bai
21c527a3cb mm/compaction.c: add an is_via_compact_memory() helper
Introduce is_via_compact_memory() helper indicating compacting via
/proc/sys/vm/compact_memory to improve readability.

To catch this situation in __compaction_suitable, use order as parameter
directly instead of using struct compact_control.

This patch has no functional changes.

Signed-off-by: Yaowei Bai <bywxiaobai@163.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05 19:34:48 -08:00
Joonsoo Kim
1a16718cf7 mm/compaction: correct to flush migrated pages if pageblock skip happens
We cache isolate_start_pfn before entering isolate_migratepages().  If
pageblock is skipped in isolate_migratepages() due to whatever reason,
cc->migrate_pfn can be far from isolate_start_pfn hence we flush pages
that were freed.  For example, the following scenario can be possible:

- assume order-9 compaction, pageblock order is 9
- start_isolate_pfn is 0x200
- isolate_migratepages()
  - skip a number of pageblocks
  - start to isolate from pfn 0x600
  - cc->migrate_pfn = 0x620
  - return
- last_migrated_pfn is set to 0x200
- check flushing condition
  - current_block_start is set to 0x600
  - last_migrated_pfn < current_block_start then do useless flush

This wrong flush would not help the performance and success rate so this
patch tries to fix it.  One simple way to know the exact position where
we start to isolate migratable pages is that we cache it in
isolate_migratepages() before entering actual isolation.  This patch
implements that and fixes the problem.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Vlastimil Babka
9fcd6d2e05 mm, compaction: skip compound pages by order in free scanner
The compaction free scanner is looking for PageBuddy() pages and
skipping all others.  For large compound pages such as THP or hugetlbfs,
we can save a lot of iterations if we skip them at once using their
compound_order().  This is generally unsafe and we can read a bogus
value of order due to a race, but if we are careful, the only danger is
skipping too much.

When tested with stress-highalloc from mmtests on 4GB system with 1GB
hugetlbfs pages, the vmstat compact_free_scanned count decreased by at
least 15%.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Vlastimil Babka
29c0dde830 mm, compaction: always skip all compound pages by order in migrate scanner
The compaction migrate scanner tries to skip THP pages by their order,
to reduce number of iterations for pages it cannot isolate.  The check
is only done if PageLRU() is true, which means it applies to THP pages,
but not e.g.  hugetlbfs pages or any other non-LRU compound pages, which
we have to iterate by base pages.

This limitation comes from the assumption that it's only safe to read
compound_order() when we have the zone's lru_lock and THP cannot be
split under us.  But the only danger (after filtering out order values
that are not below MAX_ORDER, to prevent overflows) is that we skip too
much or too little after reading a bogus compound_order() due to a rare
race.  This is the same reasoning as patch 99c0fd5e51 ("mm,
compaction: skip buddy pages by their order in the migrate scanner")
introduced for unsafely reading PageBuddy() order.

After this patch, all pages are tested for PageCompound() and we skip
them by compound_order().  The test is done after the test for
balloon_page_movable() as we don't want to assume if balloon pages (or
other pages with own isolation and migration implementation if a generic
API gets implemented) are compound or not.

When tested with stress-highalloc from mmtests on 4GB system with 1GB
hugetlbfs pages, the vmstat compact_migrate_scanned count decreased by
15%.

[kirill.shutemov@linux.intel.com: change PageTransHuge checks to PageCompound for different series was squashed here]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Vlastimil Babka
02333641e2 mm, compaction: encapsulate resetting cached scanner positions
Reseting the cached compaction scanner positions is now open-coded in
__reset_isolation_suitable() and compact_finished().  Encapsulate the
functionality in a new function reset_cached_positions().

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Vlastimil Babka
f5f61a320b mm, compaction: simplify handling restart position in free pages scanner
Handling the position where compaction free scanner should restart
(stored in cc->free_pfn) got more complex with commit e14c720efd ("mm,
compaction: remember position within pageblock in free pages scanner").
Currently the position is updated in each loop iteration of
isolate_freepages(), although it should be enough to update it only when
breaking from the loop.  There's also an extra check outside the loop
updates the position in case we have met the migration scanner.

This can be simplified if we move the test for having isolated enough
from the for-loop header next to the test for contention, and
determining the restart position only in these cases.  We can reuse the
isolate_start_pfn variable for this instead of setting cc->free_pfn
directly.  Outside the loop, we can simply set cc->free_pfn to current
value of isolate_start_pfn without any extra check.

Also add a VM_BUG_ON to catch possible mistake in the future, in case we
later add a new condition that terminates isolate_freepages_block()
prematurely without also considering the condition in
isolate_freepages().

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Vlastimil Babka
f2849aa09d mm, compaction: more robust check for scanners meeting
Assorted compaction cleanups and optimizations.  The interesting patches
are 4 and 5.  In 4, skipping of compound pages in single iteration is
improved for migration scanner, so it works also for !PageLRU compound
pages such as hugetlbfs, slab etc.  Patch 5 introduces this kind of
skipping in the free scanner.  The trick is that we can read
compound_order() without any protection, if we are careful to filter out
values larger than MAX_ORDER.  The only danger is that we skip too much.
The same trick was already used for reading the freepage order in the
migrate scanner.

To demonstrate improvements of Patches 4 and 5 I've run stress-highalloc
from mmtests, set to simulate THP allocations (including __GFP_COMP) on
a 4GB system where 1GB was occupied by hugetlbfs pages.  I'll include
just the relevant stats:

                               Patch 3     Patch 4     Patch 5

Compaction stalls                 7523        7529        7515
Compaction success                 323         304         322
Compaction failures               7200        7224        7192
Page migrate success            247778      264395      240737
Page migrate failure             15358       33184       21621
Compaction pages isolated       906928      980192      909983
Compaction migrate scanned     2005277     1692805     1498800
Compaction free scanned       13255284    11539986     9011276
Compaction cost                    288         305         277

With 5 iterations per patch, the results are still noisy, but we can see
that Patch 4 does reduce migrate_scanned by 15% thanks to skipping the
hugetlbfs pages at once.  Interestingly, free_scanned is also reduced
and I have no idea why.  Patch 5 further reduces free_scanned as
expected, by 15%.  Other stats are unaffected modulo noise.

[1] https://lkml.org/lkml/2015/1/19/158

This patch (of 5):

Compaction should finish when the migration and free scanner meet, i.e.
they reach the same pageblock.  Currently however, the test in
compact_finished() simply just compares the exact pfns, which may yield
a false negative when the free scanner position is in the middle of a
pageblock and the migration scanner reaches the begining of the same
pageblock.

This hasn't been a problem until commit e14c720efd ("mm, compaction:
remember position within pageblock in free pages scanner") allowed the
free scanner position to be in the middle of a pageblock between
invocations.  The hot-fix 1d5bfe1ffb ("mm, compaction: prevent
infinite loop in compact_zone") prevented the issue by adding a special
check in the migration scanner to satisfy the current detection of
scanners meeting.

However, the proper fix is to make the detection more robust.  This
patch introduces the compact_scanners_met() function that returns true
when the free scanner position is in the same or lower pageblock than
the migration scanner.  The special case in isolate_migratepages()
introduced by 1d5bfe1ffb is removed.

Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-08 15:35:28 -07:00
Andrew Morton
018e9a49a5 mm/compaction.c: fix "suitable_migration_target() unused" warning
mm/compaction.c:250:13: warning: 'suitable_migration_target' defined but not used [-Wunused-function]

Reported-by: Fengguang Wu <fengguang.wu@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:20 -07:00
Gioh Kim
195b0c6080 mm/compaction: reset compaction scanner positions
When the compaction is activated via /proc/sys/vm/compact_memory it would
better scan the whole zone.  And some platforms, for instance ARM, have
the start_pfn of a zone at zero.  Therefore the first try to compact via
/proc doesn't work.  It needs to reset the compaction scanner position
first.

Signed-off-by: Gioh Kim <gioh.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:17 -07:00
Eric B Munson
5bbe3547aa mm: allow compaction of unevictable pages
Currently, pages which are marked as unevictable are protected from
compaction, but not from other types of migration.  The POSIX real time
extension explicitly states that mlock() will prevent a major page
fault, but the spirit of this is that mlock() should give a process the
ability to control sources of latency, including minor page faults.
However, the mlock manpage only explicitly says that a locked page will
not be written to swap and this can cause some confusion.  The
compaction code today does not give a developer who wants to avoid swap
but wants to have large contiguous areas available any method to achieve
this state.  This patch introduces a sysctl for controlling compaction
behavior with respect to the unevictable lru.  Users who demand no page
faults after a page is present can set compact_unevictable_allowed to 0
and users who need the large contiguous areas can enable compaction on
locked memory by leaving the default value of 1.

To illustrate this problem I wrote a quick test program that mmaps a
large number of 1MB files filled with random data.  These maps are
created locked and read only.  Then every other mmap is unmapped and I
attempt to allocate huge pages to the static huge page pool.  When the
compact_unevictable_allowed sysctl is 0, I cannot allocate hugepages
after fragmenting memory.  When the value is set to 1, allocations
succeed.

Signed-off-by: Eric B Munson <emunson@akamai.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Christoph Lameter <cl@linux.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Christoph Lameter <cl@linux.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Michal Hocko <mhocko@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-15 16:35:17 -07:00
Joonsoo Kim
2149cdaef6 mm/compaction: enhance compaction finish condition
Compaction has anti fragmentation algorithm.  It is that freepage should
be more than pageblock order to finish the compaction if we don't find any
freepage in requested migratetype buddy list.  This is for mitigating
fragmentation, but, there is a lack of migratetype consideration and it is
too excessive compared to page allocator's anti fragmentation algorithm.

Not considering migratetype would cause premature finish of compaction.
For example, if allocation request is for unmovable migratetype, freepage
with CMA migratetype doesn't help that allocation and compaction should
not be stopped.  But, current logic regards this situation as compaction
is no longer needed, so finish the compaction.

Secondly, condition is too excessive compared to page allocator's logic.
We can steal freepage from other migratetype and change pageblock
migratetype on more relaxed conditions in page allocator.  This is
designed to prevent fragmentation and we can use it here.  Imposing hard
constraint only to the compaction doesn't help much in this case since
page allocator would cause fragmentation again.

To solve these problems, this patch borrows anti fragmentation logic from
page allocator.  It will reduce premature compaction finish in some cases
and reduce excessive compaction work.

stress-highalloc test in mmtests with non movable order 7 allocation shows
considerable increase of compaction success rate.

Compaction success rate (Compaction success * 100 / Compaction stalls, %)
31.82 : 42.20

I tested it on non-reboot 5 runs stress-highalloc benchmark and found that
there is no more degradation on allocation success rate than before.  That
roughly means that this patch doesn't result in more fragmentations.

Vlastimil suggests additional idea that we only test for fallbacks when
migration scanner has scanned a whole pageblock.  It looked good for
fragmentation because chance of stealing increase due to making more free
pages in certain pageblock.  So, I tested it, but, it results in decreased
compaction success rate, roughly 38.00.  I guess the reason that if system
is low memory condition, watermark check could be failed due to not enough
order 0 free page and so, sometimes, we can't reach a fallback check
although migrate_pfn is aligned to pageblock_nr_pages.  I can insert code
to cope with this situation but it makes code more complicated so I don't
include his idea at this patch.

[akpm@linux-foundation.org: fix CONFIG_CMA=n build]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-04-14 16:49:01 -07:00
Andrey Ryabinin
b8c73fc249 mm: page_alloc: add kasan hooks on alloc and free paths
Add kernel address sanitizer hooks to mark allocated page's addresses as
accessible in corresponding shadow region.  Mark freed pages as
inaccessible.

Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-13 21:21:41 -08:00
Hugh Dickins
ff59909a07 mm: fix negative nr_isolated counts
The vmstat interfaces are good at hiding negative counts (at least when
CONFIG_SMP); but if you peer behind the curtain, you find that
nr_isolated_anon and nr_isolated_file soon go negative, and grow ever
more negative: so they can absorb larger and larger numbers of isolated
pages, yet still appear to be zero.

I'm happy to avoid a congestion_wait() when too_many_isolated() myself;
but I guess it's there for a good reason, in which case we ought to get
too_many_isolated() working again.

The imbalance comes from isolate_migratepages()'s ISOLATE_ABORT case:
putback_movable_pages() decrements the NR_ISOLATED counts, but we forgot
to call acct_isolated() to increment them.

It is possible that the bug whcih this patch fixes could cause OOM kills
when the system still has a lot of reclaimable page cache.

Fixes: edc2ca6124 ("mm, compaction: move pageblock checks up from isolate_migratepages_range()")
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: <stable@vger.kernel.org>	[3.18+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:11 -08:00
Joonsoo Kim
932ff6bbbd mm/compaction: stop the isolation when we isolate enough freepage
Currently, freepage isolation in one pageblock doesn't consider how many
freepages we isolate. When I traced flow of compaction, compaction
sometimes isolates more than 256 freepages to migrate just 32 pages.

In this patch, freepage isolation is stopped at the point that we
have more isolated freepage than isolated page for migration. This
results in slowing down free page scanner and make compaction success
rate higher.

stress-highalloc test in mmtests with non movable order 7 allocation shows
increase of compaction success rate.

Compaction success rate (Compaction success * 100 / Compaction stalls, %)
27.13 : 31.82

pfn where both scanners meets on compaction complete
(separate test due to enormous tracepoint buffer)
(zone_start=4096, zone_end=1048576)
586034 : 654378

In fact, I didn't fully understand why this patch results in such good
result. There was a guess that not used freepages are released to pcp list
and on next compaction trial we won't isolate them again so compaction
success rate would decrease. To prevent this effect, I tested with adding
pcp drain code on release_freepages(), but, it has no good effect.

Anyway, this patch reduces waste time to isolate unneeded freepages so
seems reasonable.

Vlastimil said:

: I briefly tried it on top of the pivot-changing series and with order-9
: allocations it reduced free page scanned counter by almost 10%.  No effect
: on success rates (maybe because pivot changing already took care of the
: scanners meeting problem) but the scanning reduction is good on its own.
:
: It also explains why e14c720efd ("mm, compaction: remember position
: within pageblock in free pages scanner") had less than expected
: improvements.  It would only actually stop within pageblock in case of
: async compaction detecting contention.  I guess that's also why the
: infinite loop problem fixed by 1d5bfe1ffb affected so relatively few
: people.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Tested-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:10 -08:00
Joonsoo Kim
372549c2a3 mm/compaction: fix wrong order check in compact_finished()
What we want to check here is whether there is highorder freepage in buddy
list of other migratetype in order to steal it without fragmentation.
But, current code just checks cc->order which means allocation request
order.  So, this is wrong.

Without this fix, non-movable synchronous compaction below pageblock order
would not stopped until compaction is complete, because migratetype of
most pageblocks are movable and high order freepage made by compaction is
usually on movable type buddy list.

There is some report related to this bug. See below link.

  http://www.spinics.net/lists/linux-mm/msg81666.html

Although the issued system still has load spike comes from compaction,
this makes that system completely stable and responsive according to his
report.

stress-highalloc test in mmtests with non movable order 7 allocation
doesn't show any notable difference in allocation success rate, but, it
shows more compaction success rate.

Compaction success rate (Compaction success * 100 / Compaction stalls, %)
18.47 : 28.94

Fixes: 1fb3f8ca0e ("mm: compaction: capture a suitable high-order page immediately when it is made available")
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: <stable@vger.kernel.org>	[3.7+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-12 18:54:10 -08:00
Joonsoo Kim
24e2716f63 mm/compaction: add tracepoint to observe behaviour of compaction defer
Compaction deferring logic is heavy hammer that block the way to the
compaction.  It doesn't consider overall system state, so it could prevent
user from doing compaction falsely.  In other words, even if system has
enough range of memory to compact, compaction would be skipped due to
compaction deferring logic.  This patch add new tracepoint to understand
work of deferring logic.  This will also help to check compaction success
and fail.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:04 -08:00
Joonsoo Kim
837d026d56 mm/compaction: more trace to understand when/why compaction start/finish
It is not well analyzed that when/why compaction start/finish or not.
With these new tracepoints, we can know much more about start/finish
reason of compaction.  I can find following bug with these tracepoint.

http://www.spinics.net/lists/linux-mm/msg81582.html

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:04 -08:00
Joonsoo Kim
e34d85f0e3 mm/compaction: print current range where compaction work
It'd be useful to know current range where compaction work for detailed
analysis.  With it, we can know pageblock where we actually scan and
isolate, and, how much pages we try in that pageblock and can guess why it
doesn't become freepage with pageblock order roughly.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:04 -08:00
Joonsoo Kim
16c4a097a0 mm/compaction: enhance tracepoint output for compaction begin/end
We now have tracepoint for begin event of compaction and it prints start
position of both scanners, but, tracepoint for end event of compaction
doesn't print finish position of both scanners.  It'd be also useful to
know finish position of both scanners so this patch add it.  It will help
to find odd behavior or problem on compaction internal logic.

And mode is added to both begin/end tracepoint output, since according to
mode, compaction behavior is quite different.

And lastly, status format is changed to string rather than status number
for readability.

[akpm@linux-foundation.org: fix sparse warning]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:04 -08:00
Vlastimil Babka
1a6d53a105 mm: reduce try_to_compact_pages parameters
Expand the usage of the struct alloc_context introduced in the previous
patch also for calling try_to_compact_pages(), to reduce the number of its
parameters.  Since the function is in different compilation unit, we need
to move alloc_context definition in the shared mm/internal.h header.

With this change we get simpler code and small savings of code size and stack
usage:

add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-27 (-27)
function                                     old     new   delta
__alloc_pages_direct_compact                 283     256     -27
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-13 (-13)
function                                     old     new   delta
try_to_compact_pages                         582     569     -13

Stack usage of __alloc_pages_direct_compact goes from 24 to none (per
scripts/checkstack.pl).

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-02-11 17:06:02 -08:00
Vlastimil Babka
fdaf7f5c40 mm, compaction: more focused lru and pcplists draining
The goal of memory compaction is to create high-order freepages through
page migration.  Page migration however puts pages on the per-cpu lru_add
cache, which is later flushed to per-cpu pcplists, and only after pcplists
are drained the pages can actually merge.  This can happen due to the
per-cpu caches becoming full through further freeing, or explicitly.

During direct compaction, it is useful to do the draining explicitly so
that pages merge as soon as possible and compaction can detect success
immediately and keep the latency impact at minimum.  However the current
implementation is far from ideal.  Draining is done only in
__alloc_pages_direct_compact(), after all zones were already compacted,
and the decisions to continue or stop compaction in individual zones was
done without the last batch of migrations being merged.  It is also
missing the draining of lru_add cache before the pcplists.

This patch moves the draining for direct compaction into compact_zone().
It adds the missing lru_cache draining and uses the newly introduced
single zone pcplists draining to reduce overhead and avoid impact on
unrelated zones.  Draining is only performed when it can actually lead to
merging of a page of desired order (passed by cc->order).  This means it
is only done when migration occurred in the previously scanned cc->order
aligned block(s) and the migration scanner is now pointing to the next
cc->order aligned block.

The patch has been tested with stress-highalloc benchmark from mmtests.
Although overal allocation success rates of the benchmark were not
affected, the number of detected compaction successes has doubled.  This
suggests that allocations were previously successful due to implicit
merging caused by background activity, making a later allocation attempt
succeed immediately, but not attributing the success to compaction.  Since
stress-highalloc always tries to allocate almost the whole memory, it
cannot show the improvement in its reported success rate metric.  However
after this patch, compaction should detect success and terminate earlier,
reducing the direct compaction latencies in a real scenario.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:06 -08:00
Vlastimil Babka
6bace090a2 mm, compaction: always update cached scanner positions
Compaction caches the migration and free scanner positions between
compaction invocations, so that the whole zone gets eventually scanned and
there is no bias towards the initial scanner positions at the
beginning/end of the zone.

The cached positions are continuously updated as scanners progress and the
updating stops as soon as a page is successfully isolated.  The reasoning
behind this is that a pageblock where isolation succeeded is likely to
succeed again in near future and it should be worth revisiting it.

However, the downside is that potentially many pages are rescanned without
successful isolation.  At worst, there might be a page where isolation
from LRU succeeds but migration fails (potentially always).  So upon
encountering this page, cached position would always stop being updated
for no good reason.  It might have been useful to let such page be
rescanned with sync compaction after async one failed, but this is now
handled by caching scanner position for async and sync mode separately
since commit 35979ef339 ("mm, compaction: add per-zone migration pfn
cache for async compaction").

After this patch, cached positions are updated unconditionally.  In
stress-highalloc benchmark, this has decreased the numbers of scanned
pages by few percent, without affecting allocation success rates.

To prevent free scanner from leaving free pages behind after they are
returned due to page migration failure, the cached scanner pfn is changed
to point to the pageblock of the returned free page with the highest pfn,
before leaving compact_zone().

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:06 -08:00
Vlastimil Babka
f866979539 mm, compaction: defer only on COMPACT_COMPLETE
Deferred compaction is employed to avoid compacting zone where sync direct
compaction has recently failed.  As such, it makes sense to only defer
when a full zone was scanned, which is when compact_zone returns with
COMPACT_COMPLETE.  It's less useful to defer when compact_zone returns
with apparent success (COMPACT_PARTIAL), followed by a watermark check
failure, which can happen due to parallel allocation activity.  It also
does not make much sense to defer compaction which was completely skipped
(COMPACT_SKIP) for being unsuitable in the first place.

This patch therefore makes deferred compaction trigger only when
COMPACT_COMPLETE is returned from compact_zone().  Results of
stress-highalloc becnmark show the difference is within measurement error,
so the issue is rather cosmetic.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:06 -08:00
Vlastimil Babka
97d47a65be mm, compaction: simplify deferred compaction
Since commit 53853e2d2b ("mm, compaction: defer each zone individually
instead of preferred zone"), compaction is deferred for each zone where
sync direct compaction fails, and reset where it succeeds.  However, it
was observed that for DMA zone compaction often appeared to succeed
while subsequent allocation attempt would not, due to different outcome
of watermark check.

In order to properly defer compaction in this zone, the candidate zone
has to be passed back to __alloc_pages_direct_compact() and compaction
deferred in the zone after the allocation attempt fails.

The large source of mismatch between watermark check in compaction and
allocation was the lack of alloc_flags and classzone_idx values in
compaction, which has been fixed in the previous patch.  So with this
problem fixed, we can simplify the code by removing the candidate_zone
parameter and deferring in __alloc_pages_direct_compact().

After this patch, the compaction activity during stress-highalloc
benchmark is still somewhat increased, but it's negligible compared to the
increase that occurred without the better watermark checking.  This
suggests that it is still possible to apparently succeed in compaction but
fail to allocate, possibly due to parallel allocation activity.

[akpm@linux-foundation.org: fix build]
Suggested-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:06 -08:00
Vlastimil Babka
ebff398017 mm, compaction: pass classzone_idx and alloc_flags to watermark checking
Compaction relies on zone watermark checks for decisions such as if it's
worth to start compacting in compaction_suitable() or whether compaction
should stop in compact_finished().  The watermark checks take
classzone_idx and alloc_flags parameters, which are related to the memory
allocation request.  But from the context of compaction they are currently
passed as 0, including the direct compaction which is invoked to satisfy
the allocation request, and could therefore know the proper values.

The lack of proper values can lead to mismatch between decisions taken
during compaction and decisions related to the allocation request.  Lack
of proper classzone_idx value means that lowmem_reserve is not taken into
account.  This has manifested (during recent changes to deferred
compaction) when DMA zone was used as fallback for preferred Normal zone.
compaction_suitable() without proper classzone_idx would think that the
watermarks are already satisfied, but watermark check in
get_page_from_freelist() would fail.  Because of this problem, deferring
compaction has extra complexity that can be removed in the following
patch.

The issue (not confirmed in practice) with missing alloc_flags is opposite
in nature.  For allocations that include ALLOC_HIGH, ALLOC_HIGHER or
ALLOC_CMA in alloc_flags (the last includes all MOVABLE allocations on
CMA-enabled systems) the watermark checking in compaction with 0 passed
will be stricter than in get_page_from_freelist().  In these cases
compaction might be running for a longer time than is really needed.

Another issue compaction_suitable() is that the check for "does the zone
need compaction at all?" comes only after the check "does the zone have
enough free free pages to succeed compaction".  The latter considers extra
pages for migration and can therefore in some situations fail and return
COMPACT_SKIPPED, although the high-order allocation would succeed and we
should return COMPACT_PARTIAL.

This patch fixes these problems by adding alloc_flags and classzone_idx to
struct compact_control and related functions involved in direct compaction
and watermark checking.  Where possible, all other callers of
compaction_suitable() pass proper values where those are known.  This is
currently limited to classzone_idx, which is sometimes known in kswapd
context.  However, the direct reclaim callers should_continue_reclaim()
and compaction_ready() do not currently know the proper values, so the
coordination between reclaim and compaction may still not be as accurate
as it could.  This can be fixed later, if it's shown to be an issue.

Additionaly the checks in compact_suitable() are reordered to address the
second issue described above.

The effect of this patch should be slightly better high-order allocation
success rates and/or less compaction overhead, depending on the type of
allocations and presence of CMA.  It allows simplifying deferred
compaction code in a followup patch.

When testing with stress-highalloc, there was some slight improvement
(which might be just due to variance) in success rates of non-THP-like
allocations.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-10 17:41:06 -08:00
Vlastimil Babka
1d5bfe1ffb mm, compaction: prevent infinite loop in compact_zone
Several people have reported occasionally seeing processes stuck in
compact_zone(), even triggering soft lockups, in 3.18-rc2+.

Testing a revert of commit e14c720efd ("mm, compaction: remember
position within pageblock in free pages scanner") fixed the issue,
although the stuck processes do not appear to involve the free scanner.

Finally, by code inspection, the bug was found in isolate_migratepages()
which uses a slightly different condition to detect if the migration and
free scanners have met, than compact_finished().  That has not been a
problem until commit e14c720efd allowed the free scanner position
between individual invocations to be in the middle of a pageblock.

In a relatively rare case, the migration scanner position can end up at
the beginning of a pageblock, with the free scanner position in the
middle of the same pageblock.  If it's the migration scanner's turn,
isolate_migratepages() exits immediately (without updating the
position), while compact_finished() decides to continue compaction,
resulting in a potentially infinite loop.  The system can recover only
if another process creates enough high-order pages to make the watermark
checks in compact_finished() pass.

This patch fixes the immediate problem by bumping the migration
scanner's position to meet the free scanner in isolate_migratepages(),
when both are within the same pageblock.  This causes compact_finished()
to terminate properly.  A more robust check in compact_finished() is
planned as a cleanup for better future maintainability.

Fixes: e14c720efd ("mm, compaction: remember position within pageblock in free pages scanner)
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: P. Christeas <xrg@linux.gr>
Tested-by: P. Christeas <xrg@linux.gr>
Link: http://marc.info/?l=linux-mm&m=141508604232522&w=2
Reported-by: Norbert Preining <preining@logic.at>
Tested-by: Norbert Preining <preining@logic.at>
Link: https://lkml.org/lkml/2014/11/4/904
Reported-by: Pavel Machek <pavel@ucw.cz>
Link: https://lkml.org/lkml/2014/11/7/164
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-13 16:17:06 -08:00
Joonsoo Kim
5842001630 mm/compaction: skip the range until proper target pageblock is met
Commit 7d49d88683 ("mm, compaction: reduce zone checking frequency in
the migration scanner") has a side-effect that changes the iteration
range calculation.  Before the change, block_end_pfn is calculated using
start_pfn, but now it blindly adds pageblock_nr_pages to the previous
value.

This causes the problem that isolation_start_pfn is larger than
block_end_pfn when we isolate the page with more than pageblock order.
In this case, isolation would fail due to an invalid range parameter.

To prevent this, this patch implements skipping the range until a proper
target pageblock is met.  Without this patch, CMA with more than
pageblock order always fails but with this patch it will succeed.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-13 16:17:05 -08:00
Joonsoo Kim
6ea41c0c0a mm/compaction.c: avoid premature range skip in isolate_migratepages_range
Commit edc2ca6124 ("mm, compaction: move pageblock checks up from
isolate_migratepages_range()") commonizes isolate_migratepages variants
and make them use isolate_migratepages_block().

isolate_migratepages_block() could stop the execution when enough pages
are isolated, but, there is no code in isolate_migratepages_range() to
handle this case.  In the result, even if isolate_migratepages_block()
returns prematurely without checking all pages in the range,

isolate_migratepages_block() is called repeately on the following
pageblock and some pages in the previous range are skipped to check.
Then, CMA is failed frequently due to this fact.

To fix this problem, this patch let isolate_migratepages_range() know
the situation that enough pages are isolated and stop the isolation in
that case.

Note that isolate_migratepages() has no such problem, because, it always
stops the isolation after just one call of isolate_migratepages_block().

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-29 16:33:13 -07:00
Konstantin Khlebnikov
d6d86c0a7f mm/balloon_compaction: redesign ballooned pages management
Sasha Levin reported KASAN splash inside isolate_migratepages_range().
Problem is in the function __is_movable_balloon_page() which tests
AS_BALLOON_MAP in page->mapping->flags.  This function has no protection
against anonymous pages.  As result it tried to check address space flags
inside struct anon_vma.

Further investigation shows more problems in current implementation:

* Special branch in __unmap_and_move() never works:
  balloon_page_movable() checks page flags and page_count.  In
  __unmap_and_move() page is locked, reference counter is elevated, thus
  balloon_page_movable() always fails.  As a result execution goes to the
  normal migration path.  virtballoon_migratepage() returns
  MIGRATEPAGE_BALLOON_SUCCESS instead of MIGRATEPAGE_SUCCESS,
  move_to_new_page() thinks this is an error code and assigns
  newpage->mapping to NULL.  Newly migrated page lose connectivity with
  balloon an all ability for further migration.

* lru_lock erroneously required in isolate_migratepages_range() for
  isolation ballooned page.  This function releases lru_lock periodically,
  this makes migration mostly impossible for some pages.

* balloon_page_dequeue have a tight race with balloon_page_isolate:
  balloon_page_isolate could be executed in parallel with dequeue between
  picking page from list and locking page_lock.  Race is rare because they
  use trylock_page() for locking.

This patch fixes all of them.

Instead of fake mapping with special flag this patch uses special state of
page->_mapcount: PAGE_BALLOON_MAPCOUNT_VALUE = -256.  Buddy allocator uses
PAGE_BUDDY_MAPCOUNT_VALUE = -128 for similar purpose.  Storing mark
directly in struct page makes everything safer and easier.

PagePrivate is used to mark pages present in page list (i.e.  not
isolated, like PageLRU for normal pages).  It replaces special rules for
reference counter and makes balloon migration similar to migration of
normal pages.  This flag is protected by page_lock together with link to
the balloon device.

Signed-off-by: Konstantin Khlebnikov <k.khlebnikov@samsung.com>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Link: http://lkml.kernel.org/p/53E6CEAA.9020105@oracle.com
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: <stable@vger.kernel.org>	[3.8+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:26:01 -04:00
Xiubo Li
b8b2d82532 mm/compaction.c: fix warning of 'flags' may be used uninitialized
C      mm/compaction.o
mm/compaction.c: In function isolate_freepages_block:
mm/compaction.c:364:37: warning: flags may be used uninitialized in this function [-Wmaybe-uninitialized]
       && compact_unlock_should_abort(&cc->zone->lock, flags,
                                     ^

Signed-off-by: Xiubo Li <Li.Xiubo@freescale.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: David Rientjes <rientjes@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:57 -04:00
David Rientjes
6d7ce55940 mm, compaction: pass gfp mask to compact_control
struct compact_control currently converts the gfp mask to a migratetype,
but we need the entire gfp mask in a follow-up patch.

Pass the entire gfp mask as part of struct compact_control.

Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:55 -04:00
David Rientjes
43e7a34d26 mm: rename allocflags_to_migratetype for clarity
The page allocator has gfp flags (like __GFP_WAIT) and alloc flags (like
ALLOC_CPUSET) that have separate semantics.

The function allocflags_to_migratetype() actually takes gfp flags, not
alloc flags, and returns a migratetype.  Rename it to
gfpflags_to_migratetype().

Signed-off-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:55 -04:00
Vlastimil Babka
99c0fd5e51 mm, compaction: skip buddy pages by their order in the migrate scanner
The migration scanner skips PageBuddy pages, but does not consider their
order as checking page_order() is generally unsafe without holding the
zone->lock, and acquiring the lock just for the check wouldn't be a good
tradeoff.

Still, this could avoid some iterations over the rest of the buddy page,
and if we are careful, the race window between PageBuddy() check and
page_order() is small, and the worst thing that can happen is that we skip
too much and miss some isolation candidates.  This is not that bad, as
compaction can already fail for many other reasons like parallel
allocations, and those have much larger race window.

This patch therefore makes the migration scanner obtain the buddy page
order and use it to skip the whole buddy page, if the order appears to be
in the valid range.

It's important that the page_order() is read only once, so that the value
used in the checks and in the pfn calculation is the same.  But in theory
the compiler can replace the local variable by multiple inlines of
page_order().  Therefore, the patch introduces page_order_unsafe() that
uses ACCESS_ONCE to prevent this.

Testing with stress-highalloc from mmtests shows a 15% reduction in number
of pages scanned by migration scanner.  The reduction is >60% with
__GFP_NO_KSWAPD allocations, along with success rates better by few
percent.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:54 -04:00
Vlastimil Babka
e14c720efd mm, compaction: remember position within pageblock in free pages scanner
Unlike the migration scanner, the free scanner remembers the beginning of
the last scanned pageblock in cc->free_pfn.  It might be therefore
rescanning pages uselessly when called several times during single
compaction.  This might have been useful when pages were returned to the
buddy allocator after a failed migration, but this is no longer the case.

This patch changes the meaning of cc->free_pfn so that if it points to a
middle of a pageblock, that pageblock is scanned only from cc->free_pfn to
the end.  isolate_freepages_block() will record the pfn of the last page
it looked at, which is then used to update cc->free_pfn.

In the mmtests stress-highalloc benchmark, this has resulted in lowering
the ratio between pages scanned by both scanners, from 2.5 free pages per
migrate page, to 2.25 free pages per migrate page, without affecting
success rates.

With __GFP_NO_KSWAPD allocations, this appears to result in a worse ratio
(2.1 instead of 1.8), but page migration successes increased by 10%, so
this could mean that more useful work can be done until need_resched()
aborts this kind of compaction.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:54 -04:00
Vlastimil Babka
69b7189f12 mm, compaction: skip rechecks when lock was already held
Compaction scanners try to lock zone locks as late as possible by checking
many page or pageblock properties opportunistically without lock and
skipping them if not unsuitable.  For pages that pass the initial checks,
some properties have to be checked again safely under lock.  However, if
the lock was already held from a previous iteration in the initial checks,
the rechecks are unnecessary.

This patch therefore skips the rechecks when the lock was already held.
This is now possible to do, since we don't (potentially) drop and
reacquire the lock between the initial checks and the safe rechecks
anymore.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:54 -04:00
Vlastimil Babka
8b44d2791f mm, compaction: periodically drop lock and restore IRQs in scanners
Compaction scanners regularly check for lock contention and need_resched()
through the compact_checklock_irqsave() function.  However, if there is no
contention, the lock can be held and IRQ disabled for potentially long
time.

This has been addressed by commit b2eef8c0d0 ("mm: compaction: minimise
the time IRQs are disabled while isolating pages for migration") for the
migration scanner.  However, the refactoring done by commit 2a1402aa04
("mm: compaction: acquire the zone->lru_lock as late as possible") has
changed the conditions so that the lock is dropped only when there's
contention on the lock or need_resched() is true.  Also, need_resched() is
checked only when the lock is already held.  The comment "give a chance to
irqs before checking need_resched" is therefore misleading, as IRQs remain
disabled when the check is done.

This patch restores the behavior intended by commit b2eef8c0d0 and also
tries to better balance and make more deterministic the time spent by
checking for contention vs the time the scanners might run between the
checks.  It also avoids situations where checking has not been done often
enough before.  The result should be avoiding both too frequent and too
infrequent contention checking, and especially the potentially
long-running scans with IRQs disabled and no checking of need_resched() or
for fatal signal pending, which can happen when many consecutive pages or
pageblocks fail the preliminary tests and do not reach the later call site
to compact_checklock_irqsave(), as explained below.

Before the patch:

In the migration scanner, compact_checklock_irqsave() was called each
loop, if reached.  If not reached, some lower-frequency checking could
still be done if the lock was already held, but this would not result in
aborting contended async compaction until reaching
compact_checklock_irqsave() or end of pageblock.  In the free scanner, it
was similar but completely without the periodical checking, so lock can be
potentially held until reaching the end of pageblock.

After the patch, in both scanners:

The periodical check is done as the first thing in the loop on each
SWAP_CLUSTER_MAX aligned pfn, using the new compact_unlock_should_abort()
function, which always unlocks the lock (if locked) and aborts async
compaction if scheduling is needed.  It also aborts any type of compaction
when a fatal signal is pending.

The compact_checklock_irqsave() function is replaced with a slightly
different compact_trylock_irqsave().  The biggest difference is that the
function is not called at all if the lock is already held.  The periodical
need_resched() checking is left solely to compact_unlock_should_abort().
The lock contention avoidance for async compaction is achieved by the
periodical unlock by compact_unlock_should_abort() and by using trylock in
compact_trylock_irqsave() and aborting when trylock fails.  Sync
compaction does not use trylock.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:54 -04:00
Vlastimil Babka
1f9efdef4f mm, compaction: khugepaged should not give up due to need_resched()
Async compaction aborts when it detects zone lock contention or
need_resched() is true.  David Rientjes has reported that in practice,
most direct async compactions for THP allocation abort due to
need_resched().  This means that a second direct compaction is never
attempted, which might be OK for a page fault, but khugepaged is intended
to attempt a sync compaction in such case and in these cases it won't.

This patch replaces "bool contended" in compact_control with an int that
distinguishes between aborting due to need_resched() and aborting due to
lock contention.  This allows propagating the abort through all compaction
functions as before, but passing the abort reason up to
__alloc_pages_slowpath() which decides when to continue with direct
reclaim and another compaction attempt.

Another problem is that try_to_compact_pages() did not act upon the
reported contention (both need_resched() or lock contention) immediately
and would proceed with another zone from the zonelist.  When
need_resched() is true, that means initializing another zone compaction,
only to check again need_resched() in isolate_migratepages() and aborting.
 For zone lock contention, the unintended consequence is that the lock
contended status reported back to the allocator is detrmined from the last
zone where compaction was attempted, which is rather arbitrary.

This patch fixes the problem in the following way:
- async compaction of a zone aborting due to need_resched() or fatal signal
  pending means that further zones should not be tried. We report
  COMPACT_CONTENDED_SCHED to the allocator.
- aborting zone compaction due to lock contention means we can still try
  another zone, since it has different set of locks. We report back
  COMPACT_CONTENDED_LOCK only if *all* zones where compaction was attempted,
  it was aborted due to lock contention.

As a result of these fixes, khugepaged will proceed with second sync
compaction as intended, when the preceding async compaction aborted due to
need_resched().  Page fault compactions aborting due to need_resched()
will spare some cycles previously wasted by initializing another zone
compaction only to abort again.  Lock contention will be reported only
when compaction in all zones aborted due to lock contention, and therefore
it's not a good idea to try again after reclaim.

In stress-highalloc from mmtests configured to use __GFP_NO_KSWAPD, this
has improved number of THP collapse allocations by 10%, which shows
positive effect on khugepaged.  The benchmark's success rates are
unchanged as it is not recognized as khugepaged.  Numbers of compact_stall
and compact_fail events have however decreased by 20%, with
compact_success still a bit improved, which is good.  With benchmark
configured not to use __GFP_NO_KSWAPD, there is 6% improvement in THP
collapse allocations, and only slight improvement in stalls and failures.

[akpm@linux-foundation.org: fix warnings]
Reported-by: David Rientjes <rientjes@google.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:54 -04:00
Vlastimil Babka
7d49d88683 mm, compaction: reduce zone checking frequency in the migration scanner
The unification of the migrate and free scanner families of function has
highlighted a difference in how the scanners ensure they only isolate
pages of the intended zone.  This is important for taking zone lock or lru
lock of the correct zone.  Due to nodes overlapping, it is however
possible to encounter a different zone within the range of the zone being
compacted.

The free scanner, since its inception by commit 748446bb6b ("mm:
compaction: memory compaction core"), has been checking the zone of the
first valid page in a pageblock, and skipping the whole pageblock if the
zone does not match.

This checking was completely missing from the migration scanner at first,
and later added by commit dc9086004b ("mm: compaction: check for
overlapping nodes during isolation for migration") in a reaction to a bug
report.  But the zone comparison in migration scanner is done once per a
single scanned page, which is more defensive and thus more costly than a
check per pageblock.

This patch unifies the checking done in both scanners to once per
pageblock, through a new pageblock_pfn_to_page() function, which also
includes pfn_valid() checks.  It is more defensive than the current free
scanner checks, as it checks both the first and last page of the
pageblock, but less defensive by the migration scanner per-page checks.
It assumes that node overlapping may result (on some architecture) in a
boundary between two nodes falling into the middle of a pageblock, but
that there cannot be a node0 node1 node0 interleaving within a single
pageblock.

The result is more code being shared and a bit less per-page CPU cost in
the migration scanner.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:54 -04:00
Vlastimil Babka
edc2ca6124 mm, compaction: move pageblock checks up from isolate_migratepages_range()
isolate_migratepages_range() is the main function of the compaction
scanner, called either on a single pageblock by isolate_migratepages()
during regular compaction, or on an arbitrary range by CMA's
__alloc_contig_migrate_range().  It currently perfoms two pageblock-wide
compaction suitability checks, and because of the CMA callpath, it tracks
if it crossed a pageblock boundary in order to repeat those checks.

However, closer inspection shows that those checks are always true for CMA:
- isolation_suitable() is true because CMA sets cc->ignore_skip_hint to true
- migrate_async_suitable() check is skipped because CMA uses sync compaction

We can therefore move the compaction-specific checks to
isolate_migratepages() and simplify isolate_migratepages_range().
Furthermore, we can mimic the freepage scanner family of functions, which
has isolate_freepages_block() function called both by compaction from
isolate_freepages() and by CMA from isolate_freepages_range(), where each
use-case adds own specific glue code.  This allows further code
simplification.

Thus, we rename isolate_migratepages_range() to
isolate_migratepages_block() and limit its functionality to a single
pageblock (or its subset).  For CMA, a new different
isolate_migratepages_range() is created as a CMA-specific wrapper for the
_block() function.  The checks specific to compaction are moved to
isolate_migratepages().  As part of the unification of these two families
of functions, we remove the redundant zone parameter where applicable,
since zone pointer is already passed in cc->zone.

Furthermore, going back to compact_zone() and compact_finished() when
pageblock is found unsuitable (now by isolate_migratepages()) is wasteful
- the checks are meant to skip pageblocks quickly.  The patch therefore
also introduces a simple loop into isolate_migratepages() so that it does
not return immediately on failed pageblock checks, but keeps going until
isolate_migratepages_range() gets called once.  Similarily to
isolate_freepages(), the function periodically checks if it needs to
reschedule or abort async compaction.

[iamjoonsoo.kim@lge.com: fix isolated page counting bug in compaction]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:54 -04:00
Vlastimil Babka
f8224aa5a0 mm, compaction: do not recheck suitable_migration_target under lock
isolate_freepages_block() rechecks if the pageblock is suitable to be a
target for migration after it has taken the zone->lock.  However, the
check has been optimized to occur only once per pageblock, and
compact_checklock_irqsave() might be dropping and reacquiring lock, which
means somebody else might have changed the pageblock's migratetype
meanwhile.

Furthermore, nothing prevents the migratetype to change right after
isolate_freepages_block() has finished isolating.  Given how imperfect
this is, it's simpler to just rely on the check done in
isolate_freepages() without lock, and not pretend that the recheck under
lock guarantees anything.  It is just a heuristic after all.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:54 -04:00
Vlastimil Babka
53853e2d2b mm, compaction: defer each zone individually instead of preferred zone
When direct sync compaction is often unsuccessful, it may become deferred
for some time to avoid further useless attempts, both sync and async.
Successful high-order allocations un-defer compaction, while further
unsuccessful compaction attempts prolong the compaction deferred period.

Currently the checking and setting deferred status is performed only on
the preferred zone of the allocation that invoked direct compaction.  But
compaction itself is attempted on all eligible zones in the zonelist, so
the behavior is suboptimal and may lead both to scenarios where 1)
compaction is attempted uselessly, or 2) where it's not attempted despite
good chances of succeeding, as shown on the examples below:

1) A direct compaction with Normal preferred zone failed and set
   deferred compaction for the Normal zone.  Another unrelated direct
   compaction with DMA32 as preferred zone will attempt to compact DMA32
   zone even though the first compaction attempt also included DMA32 zone.

   In another scenario, compaction with Normal preferred zone failed to
   compact Normal zone, but succeeded in the DMA32 zone, so it will not
   defer compaction.  In the next attempt, it will try Normal zone which
   will fail again, instead of skipping Normal zone and trying DMA32
   directly.

2) Kswapd will balance DMA32 zone and reset defer status based on
   watermarks looking good.  A direct compaction with preferred Normal
   zone will skip compaction of all zones including DMA32 because Normal
   was still deferred.  The allocation might have succeeded in DMA32, but
   won't.

This patch makes compaction deferring work on individual zone basis
instead of preferred zone.  For each zone, it checks compaction_deferred()
to decide if the zone should be skipped.  If watermarks fail after
compacting the zone, defer_compaction() is called.  The zone where
watermarks passed can still be deferred when the allocation attempt is
unsuccessful.  When allocation is successful, compaction_defer_reset() is
called for the zone containing the allocated page.  This approach should
approximate calling defer_compaction() only on zones where compaction was
attempted and did not yield allocated page.  There might be corner cases
but that is inevitable as long as the decision to stop compacting dues not
guarantee that a page will be allocated.

Due to a new COMPACT_DEFERRED return value, some functions relying
implicitly on COMPACT_SKIPPED = 0 had to be updated, with comments made
more accurate.  The did_some_progress output parameter of
__alloc_pages_direct_compact() is removed completely, as the caller
actually does not use it after compaction sets it - it is only considered
when direct reclaim sets it.

During testing on a two-node machine with a single very small Normal zone
on node 1, this patch has improved success rates in stress-highalloc
mmtests benchmark.  The success here were previously made worse by commit
3a025760fc ("mm: page_alloc: spill to remote nodes before waking
kswapd") as kswapd was no longer resetting often enough the deferred
compaction for the Normal zone, and DMA32 zones on both nodes were thus
not considered for compaction.  On different machine, success rates were
improved with __GFP_NO_KSWAPD allocations.

[akpm@linux-foundation.org: fix CONFIG_COMPACTION=n build]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-09 22:25:53 -04:00
Vlastimil Babka
be9765722e mm, compaction: properly signal and act upon lock and need_sched() contention
Compaction uses compact_checklock_irqsave() function to periodically check
for lock contention and need_resched() to either abort async compaction,
or to free the lock, schedule and retake the lock.  When aborting,
cc->contended is set to signal the contended state to the caller.  Two
problems have been identified in this mechanism.

First, compaction also calls directly cond_resched() in both scanners when
no lock is yet taken.  This call either does not abort async compaction,
or set cc->contended appropriately.  This patch introduces a new
compact_should_abort() function to achieve both.  In isolate_freepages(),
the check frequency is reduced to once by SWAP_CLUSTER_MAX pageblocks to
match what the migration scanner does in the preliminary page checks.  In
case a pageblock is found suitable for calling isolate_freepages_block(),
the checks within there are done on higher frequency.

Second, isolate_freepages() does not check if isolate_freepages_block()
aborted due to contention, and advances to the next pageblock.  This
violates the principle of aborting on contention, and might result in
pageblocks not being scanned completely, since the scanning cursor is
advanced.  This problem has been noticed in the code by Joonsoo Kim when
reviewing related patches.  This patch makes isolate_freepages_block()
check the cc->contended flag and abort.

In case isolate_freepages() has already isolated some pages before
aborting due to contention, page migration will proceed, which is OK since
we do not want to waste the work that has been done, and page migration
has own checks for contention.  However, we do not want another isolation
attempt by either of the scanners, so cc->contended flag check is added
also to compaction_alloc() and compact_finished() to make sure compaction
is aborted right after the migration.

The outcome of the patch should be reduced lock contention by async
compaction and lower latencies for higher-order allocations where direct
compaction is involved.

[akpm@linux-foundation.org: fix typo in comment]
Reported-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Tested-by: Shawn Guo <shawn.guo@linaro.org>
Tested-by: Kevin Hilman <khilman@linaro.org>
Tested-by: Stephen Warren <swarren@nvidia.com>
Tested-by: Fabio Estevam <fabio.estevam@freescale.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:11 -07:00
Vlastimil Babka
e9ade56991 mm/compaction: avoid rescanning pageblocks in isolate_freepages
The compaction free scanner in isolate_freepages() currently remembers PFN
of the highest pageblock where it successfully isolates, to be used as the
starting pageblock for the next invocation.  The rationale behind this is
that page migration might return free pages to the allocator when
migration fails and we don't want to skip them if the compaction
continues.

Since migration now returns free pages back to compaction code where they
can be reused, this is no longer a concern.  This patch changes
isolate_freepages() so that the PFN for restarting is updated with each
pageblock where isolation is attempted.  Using stress-highalloc from
mmtests, this resulted in 10% reduction of the pages scanned by the free
scanner.

Note that the somewhat similar functionality that records highest
successful pageblock in zone->compact_cached_free_pfn, remains unchanged.
This cache is used when the whole compaction is restarted, not for
multiple invocations of the free scanner during single compaction.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:07 -07:00
Vlastimil Babka
f8c9301fa5 mm/compaction: do not count migratepages when unnecessary
During compaction, update_nr_listpages() has been used to count remaining
non-migrated and free pages after a call to migrage_pages().  The
freepages counting has become unneccessary, and it turns out that
migratepages counting is also unnecessary in most cases.

The only situation when it's needed to count cc->migratepages is when
migrate_pages() returns with a negative error code.  Otherwise, the
non-negative return value is the number of pages that were not migrated,
which is exactly the count of remaining pages in the cc->migratepages
list.

Furthermore, any non-zero count is only interesting for the tracepoint of
mm_compaction_migratepages events, because after that all remaining
unmigrated pages are put back and their count is set to 0.

This patch therefore removes update_nr_listpages() completely, and changes
the tracepoint definition so that the manual counting is done only when
the tracepoint is enabled, and only when migrate_pages() returns a
negative error code.

Furthermore, migrate_pages() and the tracepoints won't be called when
there's nothing to migrate.  This potentially avoids some wasted cycles
and reduces the volume of uninteresting mm_compaction_migratepages events
where "nr_migrated=0 nr_failed=0".  In the stress-highalloc mmtest, this
was about 75% of the events.  The mm_compaction_isolate_migratepages event
is better for determining that nothing was isolated for migration, and
this one was just duplicating the info.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:07 -07:00
David Rientjes
aeef4b8380 mm, compaction: terminate async compaction when rescheduling
Async compaction terminates prematurely when need_resched(), see
compact_checklock_irqsave().  This can never trigger, however, if the
cond_resched() in isolate_migratepages_range() always takes care of the
scheduling.

If the cond_resched() actually triggers, then terminate this pageblock
scan for async compaction as well.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:07 -07:00
David Rientjes
e0b9daeb45 mm, compaction: embed migration mode in compact_control
We're going to want to manipulate the migration mode for compaction in the
page allocator, and currently compact_control's sync field is only a bool.

Currently, we only do MIGRATE_ASYNC or MIGRATE_SYNC_LIGHT compaction
depending on the value of this bool.  Convert the bool to enum
migrate_mode and pass the migration mode in directly.  Later, we'll want
to avoid MIGRATE_SYNC_LIGHT for thp allocations in the pagefault patch to
avoid unnecessary latency.

This also alters compaction triggered from sysfs, either for the entire
system or for a node, to force MIGRATE_SYNC.

[akpm@linux-foundation.org: fix build]
[iamjoonsoo.kim@lge.com: use MIGRATE_SYNC in alloc_contig_range()]
Signed-off-by: David Rientjes <rientjes@google.com>
Suggested-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:06 -07:00
David Rientjes
35979ef339 mm, compaction: add per-zone migration pfn cache for async compaction
Each zone has a cached migration scanner pfn for memory compaction so that
subsequent calls to memory compaction can start where the previous call
left off.

Currently, the compaction migration scanner only updates the per-zone
cached pfn when pageblocks were not skipped for async compaction.  This
creates a dependency on calling sync compaction to avoid having subsequent
calls to async compaction from scanning an enormous amount of non-MOVABLE
pageblocks each time it is called.  On large machines, this could be
potentially very expensive.

This patch adds a per-zone cached migration scanner pfn only for async
compaction.  It is updated everytime a pageblock has been scanned in its
entirety and when no pages from it were successfully isolated.  The cached
migration scanner pfn for sync compaction is updated only when called for
sync compaction.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Greg Thelen <gthelen@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:06 -07:00
David Rientjes
d53aea3d46 mm, compaction: return failed migration target pages back to freelist
Greg reported that he found isolated free pages were returned back to the
VM rather than the compaction freelist.  This will cause holes behind the
free scanner and cause it to reallocate additional memory if necessary
later.

He detected the problem at runtime seeing that ext4 metadata pages (esp
the ones read by "sbi->s_group_desc[i] = sb_bread(sb, block)") were
constantly visited by compaction calls of migrate_pages().  These pages
had a non-zero b_count which caused fallback_migrate_page() ->
try_to_release_page() -> try_to_free_buffers() to fail.

Memory compaction works by having a "freeing scanner" scan from one end of
a zone which isolates pages as migration targets while another "migrating
scanner" scans from the other end of the same zone which isolates pages
for migration.

When page migration fails for an isolated page, the target page is
returned to the system rather than the freelist built by the freeing
scanner.  This may require the freeing scanner to continue scanning memory
after suitable migration targets have already been returned to the system
needlessly.

This patch returns destination pages to the freeing scanner freelist when
page migration fails.  This prevents unnecessary work done by the freeing
scanner but also encourages memory to be as compacted as possible at the
end of the zone.

Signed-off-by: David Rientjes <rientjes@google.com>
Reported-by: Greg Thelen <gthelen@google.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:06 -07:00
David Rientjes
68711a7463 mm, migration: add destination page freeing callback
Memory migration uses a callback defined by the caller to determine how to
allocate destination pages.  When migration fails for a source page,
however, it frees the destination page back to the system.

This patch adds a memory migration callback defined by the caller to
determine how to free destination pages.  If a caller, such as memory
compaction, builds its own freelist for migration targets, this can reuse
already freed memory instead of scanning additional memory.

If the caller provides a function to handle freeing of destination pages,
it is called when page migration fails.  If the caller passes NULL then
freeing back to the system will be handled as usual.  This patch
introduces no functional change.

Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:06 -07:00
Vlastimil Babka
c96b9e508f mm/compaction: cleanup isolate_freepages()
isolate_freepages() is currently somewhat hard to follow thanks to many
looks like it is related to the 'low_pfn' variable, but in fact it is not.

This patch renames the 'high_pfn' variable to a hopefully less confusing name,
and slightly changes its handling without a functional change. A comment made
obsolete by recent changes is also updated.

[akpm@linux-foundation.org: comment fixes, per Minchan]
[iamjoonsoo.kim@lge.com: cleanups]
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dongjun Shin <d.j.shin@samsung.com>
Cc: Sunghwan Yun <sunghwan.yun@samsung.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:00 -07:00
Heesub Shin
13fb44e4b0 mm/compaction: clean up unused code lines
Remove code lines currently not in use or never called.

Signed-off-by: Heesub Shin <heesub.shin@samsung.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Dongjun Shin <d.j.shin@samsung.com>
Cc: Sunghwan Yun <sunghwan.yun@samsung.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Dongjun Shin <d.j.shin@samsung.com>
Cc: Sunghwan Yun <sunghwan.yun@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-06-04 16:54:00 -07:00
Vlastimil Babka
49e068f0b7 mm/compaction: make isolate_freepages start at pageblock boundary
The compaction freepage scanner implementation in isolate_freepages()
starts by taking the current cc->free_pfn value as the first pfn.  In a
for loop, it scans from this first pfn to the end of the pageblock, and
then subtracts pageblock_nr_pages from the first pfn to obtain the first
pfn for the next for loop iteration.

This means that when cc->free_pfn starts at offset X rather than being
aligned on pageblock boundary, the scanner will start at offset X in all
scanned pageblock, ignoring potentially many free pages.  Currently this
can happen when

 a) zone's end pfn is not pageblock aligned, or

 b) through zone->compact_cached_free_pfn with CONFIG_HOLES_IN_ZONE
    enabled and a hole spanning the beginning of a pageblock

This patch fixes the problem by aligning the initial pfn in
isolate_freepages() to pageblock boundary.  This also permits replacing
the end-of-pageblock alignment within the for loop with a simple
pageblock_nr_pages increment.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reported-by: Heesub Shin <heesub.shin@samsung.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Cc: Christoph Lameter <cl@linux.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Dongjun Shin <d.j.shin@samsung.com>
Cc: Sunghwan Yun <sunghwan.yun@samsung.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-05-06 13:04:59 -07:00
David Rientjes
da1c67a76f mm, compaction: determine isolation mode only once
The conditions that control the isolation mode in
isolate_migratepages_range() do not change during the iteration, so
extract them out and only define the value once.

This actually does have an effect, gcc doesn't optimize it itself because
of cc->sync.

Signed-off-by: David Rientjes <rientjes@google.com>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:55 -07:00
Joonsoo Kim
b6c750163c mm/compaction: clean-up code on success of ballon isolation
It is just for clean-up to reduce code size and improve readability.
There is no functional change.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:51 -07:00
Joonsoo Kim
c122b2087a mm/compaction: check pageblock suitability once per pageblock
isolation_suitable() and migrate_async_suitable() is used to be sure
that this pageblock range is fine to be migragted.  It isn't needed to
call it on every page.  Current code do well if not suitable, but, don't
do well when suitable.

1) It re-checks isolation_suitable() on each page of a pageblock that was
   already estabilished as suitable.
2) It re-checks migrate_async_suitable() on each page of a pageblock that
   was not entered through the next_pageblock: label, because
   last_pageblock_nr is not otherwise updated.

This patch fixes situation by 1) calling isolation_suitable() only once
per pageblock and 2) always updating last_pageblock_nr to the pageblock
that was just checked.

Additionally, move PageBuddy() check after pageblock unit check, since
pageblock check is the first thing we should do and makes things more
simple.

[vbabka@suse.cz: rephrase commit description]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:51 -07:00
Joonsoo Kim
be1aa03b97 mm/compaction: change the timing to check to drop the spinlock
It is odd to drop the spinlock when we scan (SWAP_CLUSTER_MAX - 1) th
pfn page.  This may results in below situation while isolating
migratepage.

1. try isolate 0x0 ~ 0x200 pfn pages.
2. When low_pfn is 0x1ff, ((low_pfn+1) % SWAP_CLUSTER_MAX) == 0, so drop
   the spinlock.
3. Then, to complete isolating, retry to aquire the lock.

I think that it is better to use SWAP_CLUSTER_MAX th pfn for checking the
criteria about dropping the lock.  This has no harm 0x0 pfn, because, at
this time, locked variable would be false.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:51 -07:00
Joonsoo Kim
01ead5340b mm/compaction: do not call suitable_migration_target() on every page
suitable_migration_target() checks that pageblock is suitable for
migration target.  In isolate_freepages_block(), it is called on every
page and this is inefficient.  So make it called once per pageblock.

suitable_migration_target() also checks if page is highorder or not, but
it's criteria for highorder is pageblock order.  So calling it once
within pageblock range has no problem.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:51 -07:00
Joonsoo Kim
7d348b9ea6 mm/compaction: disallow high-order page for migration target
Purpose of compaction is to get a high order page.  Currently, if we
find high-order page while searching migration target page, we break it
to order-0 pages and use them as migration target.  It is contrary to
purpose of compaction, so disallow high-order page to be used for
migration target.

Additionally, clean-up logic in suitable_migration_target() to simplify
the code.  There is no functional changes from this clean-up.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-07 16:35:51 -07:00
Rashika Kheria
74e77fb9a2 mm/compaction.c: mark function as static
Mark function as static in compaction.c because it is not used outside
this file.

This eliminates the following warning from mm/compaction.c:

  mm/compaction.c:1190:9: warning: no previous prototype for `sysfs_compact_node' [-Wmissing-prototypes

Signed-off-by: Rashika Kheria <rashika.kheria@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-03 16:21:02 -07:00
David Rientjes
119d6d59dc mm, compaction: avoid isolating pinned pages
Page migration will fail for memory that is pinned in memory with, for
example, get_user_pages().  In this case, it is unnecessary to take
zone->lru_lock or isolating the page and passing it to page migration
which will ultimately fail.

This is a racy check, the page can still change from under us, but in
that case we'll just fail later when attempting to move the page.

This avoids very expensive memory compaction when faulting transparent
hugepages after pinning a lot of memory with a Mellanox driver.

On a 128GB machine and pinning ~120GB of memory, before this patch we
see the enormous disparity in the number of page migration failures
because of the pinning (from /proc/vmstat):

	compact_pages_moved 8450
	compact_pagemigrate_failed 15614415

0.05% of pages isolated are successfully migrated and explicitly
triggering memory compaction takes 102 seconds.  After the patch:

	compact_pages_moved 9197
	compact_pagemigrate_failed 7

99.9% of pages isolated are now successfully migrated in this
configuration and memory compaction takes less than one second.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Greg Thelen <gthelen@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-03 16:21:01 -07:00
David Rientjes
91ca918648 mm, compaction: ignore pageblock skip when manually invoking compaction
The cached pageblock hint should be ignored when triggering compaction
through /proc/sys/vm/compact_memory so all eligible memory is isolated.
Manually invoking compaction is known to be expensive, there's no need
to skip pageblocks based on heuristics (mainly for debugging).

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-03 16:20:58 -07:00
Laura Abbott
2af120bc04 mm/compaction: break out of loop on !PageBuddy in isolate_freepages_block
We received several reports of bad page state when freeing CMA pages
previously allocated with alloc_contig_range:

    BUG: Bad page state in process Binder_A  pfn:63202
    page:d21130b0 count:0 mapcount:1 mapping:  (null) index:0x7dfbf
    page flags: 0x40080068(uptodate|lru|active|swapbacked)

Based on the page state, it looks like the page was still in use.  The
page flags do not make sense for the use case though.  Further debugging
showed that despite alloc_contig_range returning success, at least one
page in the range still remained in the buddy allocator.

There is an issue with isolate_freepages_block.  In strict mode (which
CMA uses), if any pages in the range cannot be isolated,
isolate_freepages_block should return failure 0.  The current check
keeps track of the total number of isolated pages and compares against
the size of the range:

        if (strict && nr_strict_required > total_isolated)
                total_isolated = 0;

After taking the zone lock, if one of the pages in the range is not in
the buddy allocator, we continue through the loop and do not increment
total_isolated.  If in the last iteration of the loop we isolate more
than one page (e.g.  last page needed is a higher order page), the check
for total_isolated may pass and we fail to detect that a page was
skipped.  The fix is to bail out if the loop immediately if we are in
strict mode.  There's no benfit to continuing anyway since we need all
pages to be isolated.  Additionally, drop the error checking based on
nr_strict_required and just check the pfn ranges.  This matches with
what isolate_freepages_range does.

Signed-off-by: Laura Abbott <lauraa@codeaurora.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-03-10 17:26:20 -07:00
Mel Gorman
6c14466cc0 mm: improve documentation of page_order
Developers occasionally try and optimise PFN scanners by using
page_order but miss that in general it requires zone->lock.  This has
happened twice for compaction.c and rejected both times.  This patch
clarifies the documentation of page_order and adds a note to
compaction.c why page_order is not used.

[akpm@linux-foundation.org: tweaks]
[lauraa@codeaurora.org: Corrected a page_zone(page)->lock reference]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rafael Aquini <aquini@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Laura Abbott <lauraa@codeaurora.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:53 -08:00
Sasha Levin
309381feae mm: dump page when hitting a VM_BUG_ON using VM_BUG_ON_PAGE
Most of the VM_BUG_ON assertions are performed on a page.  Usually, when
one of these assertions fails we'll get a BUG_ON with a call stack and
the registers.

I've recently noticed based on the requests to add a small piece of code
that dumps the page to various VM_BUG_ON sites that the page dump is
quite useful to people debugging issues in mm.

This patch adds a VM_BUG_ON_PAGE(cond, page) which beyond doing what
VM_BUG_ON() does, also dumps the page before executing the actual
BUG_ON.

[akpm@linux-foundation.org: fix up includes]
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-23 16:36:50 -08:00
Vlastimil Babka
55b7c4c99f mm: compaction: reset scanner positions immediately when they meet
Compaction used to start its migrate and free page scaners at the zone's
lowest and highest pfn, respectively.  Later, caching was introduced to
remember the scanners' progress across compaction attempts so that
pageblocks are not re-scanned uselessly.  Additionally, pageblocks where
isolation failed are marked to be quickly skipped when encountered again
in future compactions.

Currently, both the reset of cached pfn's and clearing of the pageblock
skip information for a zone is done in __reset_isolation_suitable().
This function gets called when:

 - compaction is restarting after being deferred
 - compact_blockskip_flush flag is set in compact_finished() when the scanners
   meet (and not again cleared when direct compaction succeeds in allocation)
   and kswapd acts upon this flag before going to sleep

This behavior is suboptimal for several reasons:

 - when direct sync compaction is called after async compaction fails (in the
   allocation slowpath), it will effectively do nothing, unless kswapd
   happens to process the compact_blockskip_flush flag meanwhile. This is racy
   and goes against the purpose of sync compaction to more thoroughly retry
   the compaction of a zone where async compaction has failed.
   The restart-after-deferring path cannot help here as deferring happens only
   after the sync compaction fails. It is also done only for the preferred
   zone, while the compaction might be done for a fallback zone.

 - the mechanism of marking pageblock to be skipped has little value since the
   cached pfn's are reset only together with the pageblock skip flags. This
   effectively limits pageblock skip usage to parallel compactions.

This patch changes compact_finished() so that cached pfn's are reset
immediately when the scanners meet.  Clearing pageblock skip flags is
unchanged, as well as the other situations where cached pfn's are reset.
This allows the sync-after-async compaction to retry pageblocks not
marked as skipped, such as blocks !MIGRATE_MOVABLE blocks that async
compactions now skips without marking them.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:49 -08:00
Vlastimil Babka
50b5b094e6 mm: compaction: do not mark unmovable pageblocks as skipped in async compaction
Compaction temporarily marks pageblocks where it fails to isolate pages
as to-be-skipped in further compactions, in order to improve efficiency.
One of the reasons to fail isolating pages is that isolation is not
attempted in pageblocks that are not of MIGRATE_MOVABLE (or CMA) type.

The problem is that blocks skipped due to not being MIGRATE_MOVABLE in
async compaction become skipped due to the temporary mark also in future
sync compaction.  Moreover, this may follow quite soon during
__alloc_page_slowpath, without much time for kswapd to clear the
pageblock skip marks.  This goes against the idea that sync compaction
should try to scan these blocks more thoroughly than the async
compaction.

The fix is to ensure in async compaction that these !MIGRATE_MOVABLE
blocks are not marked to be skipped.  Note this should not affect
performance or locking impact of further async compactions, as skipping
a block due to being !MIGRATE_MOVABLE is done soon after skipping a
block marked to be skipped, both without locking.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:48 -08:00
Vlastimil Babka
7ed695e069 mm: compaction: detect when scanners meet in isolate_freepages
Compaction of a zone is finished when the migrate scanner (which begins
at the zone's lowest pfn) meets the free page scanner (which begins at
the zone's highest pfn).  This is detected in compact_zone() and in the
case of direct compaction, the compact_blockskip_flush flag is set so
that kswapd later resets the cached scanner pfn's, and a new compaction
may again start at the zone's borders.

The meeting of the scanners can happen during either scanner's activity.
However, it may currently fail to be detected when it occurs in the free
page scanner, due to two problems.  First, isolate_freepages() keeps
free_pfn at the highest block where it isolated pages from, for the
purposes of not missing the pages that are returned back to allocator
when migration fails.  Second, failing to isolate enough free pages due
to scanners meeting results in -ENOMEM being returned by
migrate_pages(), which makes compact_zone() bail out immediately without
calling compact_finished() that would detect scanners meeting.

This failure to detect scanners meeting might result in repeated
attempts at compaction of a zone that keep starting from the cached
pfn's close to the meeting point, and quickly failing through the
-ENOMEM path, without the cached pfns being reset, over and over.  This
has been observed (through additional tracepoints) in the third phase of
the mmtests stress-highalloc benchmark, where the allocator runs on an
otherwise idle system.  The problem was observed in the DMA32 zone,
which was used as a fallback to the preferred Normal zone, but on the
4GB system it was actually the largest zone.  The problem is even
amplified for such fallback zone - the deferred compaction logic, which
could (after being fixed by a previous patch) reset the cached scanner
pfn's, is only applied to the preferred zone and not for the fallbacks.

The problem in the third phase of the benchmark was further amplified by
commit 81c0a2bb51 ("mm: page_alloc: fair zone allocator policy") which
resulted in a non-deterministic regression of the allocation success
rate from ~85% to ~65%.  This occurs in about half of benchmark runs,
making bisection problematic.  It is unlikely that the commit itself is
buggy, but it should put more pressure on the DMA32 zone during phases 1
and 2, which may leave it more fragmented in phase 3 and expose the bugs
that this patch fixes.

The fix is to make scanners meeting in isolate_freepage() stay that way,
and to check in compact_zone() for scanners meeting when migrate_pages()
returns -ENOMEM.  The result is that compact_finished() also detects
scanners meeting and sets the compact_blockskip_flush flag to make
kswapd reset the scanner pfn's.

The results in stress-highalloc benchmark show that the "regression" by
commit 81c0a2bb51 in phase 3 no longer occurs, and phase 1 and 2
allocation success rates are also significantly improved.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:48 -08:00
Vlastimil Babka
d3132e4b83 mm: compaction: reset cached scanner pfn's before reading them
Compaction caches pfn's for its migrate and free scanners to avoid
scanning the whole zone each time.  In compact_zone(), the cached values
are read to set up initial values for the scanners.  There are several
situations when these cached pfn's are reset to the first and last pfn
of the zone, respectively.  One of these situations is when a compaction
has been deferred for a zone and is now being restarted during a direct
compaction, which is also done in compact_zone().

However, compact_zone() currently reads the cached pfn's *before*
resetting them.  This means the reset doesn't affect the compaction that
performs it, and with good chance also subsequent compactions, as
update_pageblock_skip() is likely to be called and update the cached
pfn's to those being processed.  Another chance for a successful reset
is when a direct compaction detects that migration and free scanners
meet (which has its own problems addressed by another patch) and sets
update_pageblock_skip flag which kswapd uses to do the reset because it
goes to sleep.

This is clearly a bug that results in non-deterministic behavior, so
this patch moves the cached pfn reset to be performed *before* the
values are read.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:48 -08:00
Vlastimil Babka
de6c60a6c1 mm: compaction: encapsulate defer reset logic
Currently there are several functions to manipulate the deferred
compaction state variables.  The remaining case where the variables are
touched directly is when a successful allocation occurs in direct
compaction, or is expected to be successful in the future by kswapd.
Here, the lowest order that is expected to fail is updated, and in the
case of successful allocation, the deferred status and counter is reset
completely.

Create a new function compaction_defer_reset() to encapsulate this
functionality and make it easier to understand the code.  No functional
change.

Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:48 -08:00
Mel Gorman
0eb927c0ab mm: compaction: trace compaction begin and end
The broad goal of the series is to improve allocation success rates for
huge pages through memory compaction, while trying not to increase the
compaction overhead.  The original objective was to reintroduce
capturing of high-order pages freed by the compaction, before they are
split by concurrent activity.  However, several bugs and opportunities
for simple improvements were found in the current implementation, mostly
through extra tracepoints (which are however too ugly for now to be
considered for sending).

The patches mostly deal with two mechanisms that reduce compaction
overhead, which is caching the progress of migrate and free scanners,
and marking pageblocks where isolation failed to be skipped during
further scans.

Patch 1 (from mgorman) adds tracepoints that allow calculate time spent in
        compaction and potentially debug scanner pfn values.

Patch 2 encapsulates the some functionality for handling deferred compactions
        for better maintainability, without a functional change
        type is not determined without being actually needed.

Patch 3 fixes a bug where cached scanner pfn's are sometimes reset only after
        they have been read to initialize a compaction run.

Patch 4 fixes a bug where scanners meeting is sometimes not properly detected
        and can lead to multiple compaction attempts quitting early without
        doing any work.

Patch 5 improves the chances of sync compaction to process pageblocks that
        async compaction has skipped due to being !MIGRATE_MOVABLE.

Patch 6 improves the chances of sync direct compaction to actually do anything
        when called after async compaction fails during allocation slowpath.

The impact of patches were validated using mmtests's stress-highalloc
benchmark with mmtests's stress-highalloc benchmark on a x86_64 machine
with 4GB memory.

Due to instability of the results (mostly related to the bugs fixed by
patches 2 and 3), 10 iterations were performed, taking min,mean,max
values for success rates and mean values for time and vmstat-based
metrics.

First, the default GFP_HIGHUSER_MOVABLE allocations were tested with the
patches stacked on top of v3.13-rc2.  Patch 2 is OK to serve as baseline
due to no functional changes in 1 and 2.  Comments below.

stress-highalloc
                             3.13-rc2              3.13-rc2              3.13-rc2              3.13-rc2              3.13-rc2
                              2-nothp               3-nothp               4-nothp               5-nothp               6-nothp
Success 1 Min          9.00 (  0.00%)       10.00 (-11.11%)       43.00 (-377.78%)       43.00 (-377.78%)       33.00 (-266.67%)
Success 1 Mean        27.50 (  0.00%)       25.30 (  8.00%)       45.50 (-65.45%)       45.90 (-66.91%)       46.30 (-68.36%)
Success 1 Max         36.00 (  0.00%)       36.00 (  0.00%)       47.00 (-30.56%)       48.00 (-33.33%)       52.00 (-44.44%)
Success 2 Min         10.00 (  0.00%)        8.00 ( 20.00%)       46.00 (-360.00%)       45.00 (-350.00%)       35.00 (-250.00%)
Success 2 Mean        26.40 (  0.00%)       23.50 ( 10.98%)       47.30 (-79.17%)       47.60 (-80.30%)       48.10 (-82.20%)
Success 2 Max         34.00 (  0.00%)       33.00 (  2.94%)       48.00 (-41.18%)       50.00 (-47.06%)       54.00 (-58.82%)
Success 3 Min         65.00 (  0.00%)       63.00 (  3.08%)       85.00 (-30.77%)       84.00 (-29.23%)       85.00 (-30.77%)
Success 3 Mean        76.70 (  0.00%)       70.50 (  8.08%)       86.20 (-12.39%)       85.50 (-11.47%)       86.00 (-12.13%)
Success 3 Max         87.00 (  0.00%)       86.00 (  1.15%)       88.00 ( -1.15%)       87.00 (  0.00%)       87.00 (  0.00%)

            3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2
             2-nothp     3-nothp     4-nothp     5-nothp     6-nothp
User         6437.72     6459.76     5960.32     5974.55     6019.67
System       1049.65     1049.09     1029.32     1031.47     1032.31
Elapsed      1856.77     1874.48     1949.97     1994.22     1983.15

                              3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2
                               2-nothp     3-nothp     4-nothp     5-nothp     6-nothp
Minor Faults                 253952267   254581900   250030122   250507333   250157829
Major Faults                       420         407         506         530         530
Swap Ins                             4           9           9           6           6
Swap Outs                          398         375         345         346         333
Direct pages scanned            197538      189017      298574      287019      299063
Kswapd pages scanned           1809843     1801308     1846674     1873184     1861089
Kswapd pages reclaimed         1806972     1798684     1844219     1870509     1858622
Direct pages reclaimed          197227      188829      298380      286822      298835
Kswapd efficiency                  99%         99%         99%         99%         99%
Kswapd velocity                953.382     970.449     952.243     934.569     922.286
Direct efficiency                  99%         99%         99%         99%         99%
Direct velocity                104.058     101.832     153.961     143.200     148.205
Percentage direct scans             9%          9%         13%         13%         13%
Zone normal velocity           347.289     359.676     348.063     339.933     332.983
Zone dma32 velocity            710.151     712.605     758.140     737.835     737.507
Zone dma velocity                0.000       0.000       0.000       0.000       0.000
Page writes by reclaim         557.600     429.000     353.600     426.400     381.800
Page writes file                   159          53           7          79          48
Page writes anon                   398         375         345         346         333
Page reclaim immediate             825         644         411         575         420
Sector Reads                   2781750     2769780     2878547     2939128     2910483
Sector Writes                 12080843    12083351    12012892    12002132    12010745
Page rescued immediate               0           0           0           0           0
Slabs scanned                  1575654     1545344     1778406     1786700     1794073
Direct inode steals               9657       10037       15795       14104       14645
Kswapd inode steals              46857       46335       50543       50716       51796
Kswapd skipped wait                  0           0           0           0           0
THP fault alloc                     97          91          81          71          77
THP collapse alloc                 456         506         546         544         565
THP splits                           6           5           5           4           4
THP fault fallback                   0           1           0           0           0
THP collapse fail                   14          14          12          13          12
Compaction stalls                 1006         980        1537        1536        1548
Compaction success                 303         284         562         559         578
Compaction failures                702         696         974         976         969
Page migrate success           1177325     1070077     3927538     3781870     3877057
Page migrate failure                 0           0           0           0           0
Compaction pages isolated      2547248     2306457     8301218     8008500     8200674
Compaction migrate scanned    42290478    38832618   153961130   154143900   159141197
Compaction free scanned       89199429    79189151   356529027   351943166   356326727
Compaction cost                   1566        1426        5312        5156        5294
NUMA PTE updates                     0           0           0           0           0
NUMA hint faults                     0           0           0           0           0
NUMA hint local faults               0           0           0           0           0
NUMA hint local percent            100         100         100         100         100
NUMA pages migrated                  0           0           0           0           0
AutoNUMA cost                        0           0           0           0           0

Observations:

- The "Success 3" line is allocation success rate with system idle
  (phases 1 and 2 are with background interference).  I used to get stable
  values around 85% with vanilla 3.11.  The lower min and mean values came
  with 3.12.  This was bisected to commit 81c0a2bb ("mm: page_alloc: fair
  zone allocator policy") As explained in comment for patch 3, I don't
  think the commit is wrong, but that it makes the effect of compaction
  bugs worse.  From patch 3 onwards, the results are OK and match the 3.11
  results.

- Patch 4 also clearly helps phases 1 and 2, and exceeds any results
  I've seen with 3.11 (I didn't measure it that thoroughly then, but it
  was never above 40%).

- Compaction cost and number of scanned pages is higher, especially due
  to patch 4.  However, keep in mind that patches 3 and 4 fix existing
  bugs in the current design of compaction overhead mitigation, they do
  not change it.  If overhead is found unacceptable, then it should be
  decreased differently (and consistently, not due to random conditions)
  than the current implementation does.  In contrast, patches 5 and 6
  (which are not strictly bug fixes) do not increase the overhead (but
  also not success rates).  This might be a limitation of the
  stress-highalloc benchmark as it's quite uniform.

Another set of results is when configuring stress-highalloc t allocate
with similar flags as THP uses:
 (GFP_HIGHUSER_MOVABLE|__GFP_NOMEMALLOC|__GFP_NORETRY|__GFP_NO_KSWAPD)

stress-highalloc
                             3.13-rc2              3.13-rc2              3.13-rc2              3.13-rc2              3.13-rc2
                                2-thp                 3-thp                 4-thp                 5-thp                 6-thp
Success 1 Min          2.00 (  0.00%)        7.00 (-250.00%)       18.00 (-800.00%)       19.00 (-850.00%)       26.00 (-1200.00%)
Success 1 Mean        19.20 (  0.00%)       17.80 (  7.29%)       29.20 (-52.08%)       29.90 (-55.73%)       32.80 (-70.83%)
Success 1 Max         27.00 (  0.00%)       29.00 ( -7.41%)       35.00 (-29.63%)       36.00 (-33.33%)       37.00 (-37.04%)
Success 2 Min          3.00 (  0.00%)        8.00 (-166.67%)       21.00 (-600.00%)       21.00 (-600.00%)       32.00 (-966.67%)
Success 2 Mean        19.30 (  0.00%)       17.90 (  7.25%)       32.20 (-66.84%)       32.60 (-68.91%)       35.70 (-84.97%)
Success 2 Max         27.00 (  0.00%)       30.00 (-11.11%)       36.00 (-33.33%)       37.00 (-37.04%)       39.00 (-44.44%)
Success 3 Min         62.00 (  0.00%)       62.00 (  0.00%)       85.00 (-37.10%)       75.00 (-20.97%)       64.00 ( -3.23%)
Success 3 Mean        66.30 (  0.00%)       65.50 (  1.21%)       85.60 (-29.11%)       83.40 (-25.79%)       83.50 (-25.94%)
Success 3 Max         70.00 (  0.00%)       69.00 (  1.43%)       87.00 (-24.29%)       86.00 (-22.86%)       87.00 (-24.29%)

            3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2
               2-thp       3-thp       4-thp       5-thp       6-thp
User         6547.93     6475.85     6265.54     6289.46     6189.96
System       1053.42     1047.28     1043.23     1042.73     1038.73
Elapsed      1835.43     1821.96     1908.67     1912.74     1956.38

                              3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2    3.13-rc2
                                 2-thp       3-thp       4-thp       5-thp       6-thp
Minor Faults                 256805673   253106328   253222299   249830289   251184418
Major Faults                       395         375         423         434         448
Swap Ins                            12          10          10          12           9
Swap Outs                          530         537         487         455         415
Direct pages scanned             71859       86046      153244      152764      190713
Kswapd pages scanned           1900994     1870240     1898012     1892864     1880520
Kswapd pages reclaimed         1897814     1867428     1894939     1890125     1877924
Direct pages reclaimed           71766       85908      153167      152643      190600
Kswapd efficiency                  99%         99%         99%         99%         99%
Kswapd velocity               1029.000    1067.782    1000.091     991.049     951.218
Direct efficiency                  99%         99%         99%         99%         99%
Direct velocity                 38.897      49.127      80.747      79.983      96.468
Percentage direct scans             3%          4%          7%          7%          9%
Zone normal velocity           351.377     372.494     348.910     341.689     335.310
Zone dma32 velocity            716.520     744.414     731.928     729.343     712.377
Zone dma velocity                0.000       0.000       0.000       0.000       0.000
Page writes by reclaim         669.300     604.000     545.700     538.900     429.900
Page writes file                   138          66          58          83          14
Page writes anon                   530         537         487         455         415
Page reclaim immediate             806         655         772         548         517
Sector Reads                   2711956     2703239     2811602     2818248     2839459
Sector Writes                 12163238    12018662    12038248    11954736    11994892
Page rescued immediate               0           0           0           0           0
Slabs scanned                  1385088     1388364     1507968     1513292     1558656
Direct inode steals               1739        2564        4622        5496        6007
Kswapd inode steals              47461       46406       47804       48013       48466
Kswapd skipped wait                  0           0           0           0           0
THP fault alloc                    110          82          84          69          70
THP collapse alloc                 445         482         467         462         539
THP splits                           6           5           4           5           3
THP fault fallback                   3           0           0           0           0
THP collapse fail                   15          14          14          14          13
Compaction stalls                  659         685        1033        1073        1111
Compaction success                 222         225         410         427         456
Compaction failures                436         460         622         646         655
Page migrate success            446594      439978     1085640     1095062     1131716
Page migrate failure                 0           0           0           0           0
Compaction pages isolated      1029475     1013490     2453074     2482698     2565400
Compaction migrate scanned     9955461    11344259    24375202    27978356    30494204
Compaction free scanned       27715272    28544654    80150615    82898631    85756132
Compaction cost                    552         555        1344        1379        1436
NUMA PTE updates                     0           0           0           0           0
NUMA hint faults                     0           0           0           0           0
NUMA hint local faults               0           0           0           0           0
NUMA hint local percent            100         100         100         100         100
NUMA pages migrated                  0           0           0           0           0
AutoNUMA cost                        0           0           0           0           0

There are some differences from the previous results for THP-like allocations:

- Here, the bad result for unpatched kernel in phase 3 is much more
  consistent to be between 65-70% and not related to the "regression" in
  3.12.  Still there is the improvement from patch 4 onwards, which brings
  it on par with simple GFP_HIGHUSER_MOVABLE allocations.

- Compaction costs have increased, but nowhere near as much as the
  non-THP case.  Again, the patches should be worth the gained
  determininsm.

- Patches 5 and 6 somewhat increase the number of migrate-scanned pages.
   This is most likely due to __GFP_NO_KSWAPD flag, which means the cached
  pfn's and pageblock skip bits are not reset by kswapd that often (at
  least in phase 3 where no concurrent activity would wake up kswapd) and
  the patches thus help the sync-after-async compaction.  It doesn't
  however show that the sync compaction would help so much with success
  rates, which can be again seen as a limitation of the benchmark
  scenario.

This patch (of 6):

Add two tracepoints for compaction begin and end of a zone.  Using this it
is possible to calculate how much time a workload is spending within
compaction and potentially debug problems related to cached pfns for
scanning.  In combination with the direct reclaim and slab trace points it
should be possible to estimate most allocation-related overhead for a
workload.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Rik van Riel <riel@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-01-21 16:19:48 -08:00
Joonsoo Kim
6815bf3f23 mm/compaction: respect ignore_skip_hint in update_pageblock_skip
update_pageblock_skip() only fits to compaction which tries to isolate
by pageblock unit.  If isolate_migratepages_range() is called by CMA, it
try to isolate regardless of pageblock unit and it don't reference
get_pageblock_skip() by ignore_skip_hint.  We should also respect it on
update_pageblock_skip() to prevent from setting the wrong information.

Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Cc: <stable@vger.kernel.org>	[3.7+]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-12-18 19:04:52 -08:00
Jerome Marchand
9e4be4708e mm/compaction.c: update comment about zone lock in isolate_freepages_block
Since commit f40d1e42bb ("mm: compaction: acquire the zone->lock as
late as possible"), isolate_freepages_block() takes the zone->lock
itself.  The function description however still states that the
zone->lock must be held.

This patch removes this outdated statement.

Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-11-13 12:09:03 +09:00
David Rientjes
f6ea3adb70 mm/compaction.c: periodically schedule when freeing pages
We've been getting warnings about an excessive amount of time spent
allocating pages for migration during memory compaction without
scheduling.  isolate_freepages_block() already periodically checks for
contended locks or the need to schedule, but isolate_freepages() never
does.

When a zone is massively long and no suitable targets can be found, this
iteration can be quite expensive without ever doing cond_resched().

Check periodically for the need to reschedule while the compaction free
scanner iterates.

Signed-off-by: David Rientjes <rientjes@google.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Wanpeng Li <liwanp@linux.vnet.ibm.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-30 14:31:01 -07:00
Mel Gorman
3a7200af3d mm: compaction: do not compact pgdat for order-0
If kswapd was reclaiming for a high order and resets it to 0 due to
fragmentation it will still call compact_pgdat.  For the most part, this
will fail a compaction_suitable() test and not compact but it is
unnecessarily sloppy.  It could be fixed in the caller but fix it in the
API instead.

[dhillf@gmail.com: pointed out that it was a potential problem]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Hillf Danton <dhillf@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11 15:57:55 -07:00
Cody P Schafer
108bcc96ef mm: add & use zone_end_pfn() and zone_spans_pfn()
Add 2 helpers (zone_end_pfn() and zone_spans_pfn()) to reduce code
duplication.

This also switches to using them in compaction (where an additional
variable needed to be renamed), page_alloc, vmstat, memory_hotplug, and
kmemleak.

Note that in compaction.c I avoid calling zone_end_pfn() repeatedly
because I expect at some point the sycronization issues with start_pfn &
spanned_pages will need fixing, either by actually using the seqlock or
clever memory barrier usage.

Signed-off-by: Cody P Schafer <cody@linux.vnet.ibm.com>
Cc: David Hansen <dave@linux.vnet.ibm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 17:50:20 -08:00
Hugh Dickins
9c620e2bc5 mm: remove offlining arg to migrate_pages
No functional change, but the only purpose of the offlining argument to
migrate_pages() etc, was to ensure that __unmap_and_move() could migrate a
KSM page for memory hotremove (which took ksm_thread_mutex) but not for
other callers.  Now all cases are safe, remove the arg.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Petr Holasek <pholasek@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Izik Eidus <izik.eidus@ravellosystems.com>
Cc: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 17:50:19 -08:00
Minchan Kim
194159fbcc mm: remove MIGRATE_ISOLATE check in hotpath
Several functions test MIGRATE_ISOLATE and some of those are hotpath but
MIGRATE_ISOLATE is used only if we enable CONFIG_MEMORY_ISOLATION(ie,
CMA, memory-hotplug and memory-failure) which are not common config
option.  So let's not add unnecessary overhead and code when we don't
enable CONFIG_MEMORY_ISOLATION.

Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 17:50:15 -08:00
Andrew Morton
7103f16dbf mm: compaction: make __compact_pgdat() and compact_pgdat() return void
These functions always return 0.  Formalise this.

Cc: Jason Liu <r64343@freescale.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 17:50:10 -08:00
Mel Gorman
a9aacbccf3 mm: compaction: do not accidentally skip pageblocks in the migrate scanner
Compaction uses the ALIGN macro incorrectly with the migrate scanner by
adding pageblock_nr_pages to a PFN.  It happened to work when initially
implemented as the starting PFN was also aligned but with caching
restarts and isolating in smaller chunks this is no longer always true.

The impact is that the migrate scanner scans outside its current
pageblock.  As pfn_valid() is still checked properly it does not cause
any failure and the impact of the bug is that in some cases it will scan
more than necessary when it crosses a page boundary but by no more than
COMPACT_CLUSTER_MAX.  It is highly unlikely this is even measurable but
it's still wrong so this patch addresses the problem.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-02-23 17:50:10 -08:00
Mel Gorman
8fb74b9fb2 mm: compaction: partially revert capture of suitable high-order page
Eric Wong reported on 3.7 and 3.8-rc2 that ppoll() got stuck when
waiting for POLLIN on a local TCP socket.  It was easier to trigger if
there was disk IO and dirty pages at the same time and he bisected it to
commit 1fb3f8ca0e ("mm: compaction: capture a suitable high-order page
immediately when it is made available").

The intention of that patch was to improve high-order allocations under
memory pressure after changes made to reclaim in 3.6 drastically hurt
THP allocations but the approach was flawed.  For Eric, the problem was
that page->pfmemalloc was not being cleared for captured pages leading
to a poor interaction with swap-over-NFS support causing the packets to
be dropped.  However, I identified a few more problems with the patch
including the fact that it can increase contention on zone->lock in some
cases which could result in async direct compaction being aborted early.

In retrospect the capture patch took the wrong approach.  What it should
have done is mark the pageblock being migrated as MIGRATE_ISOLATE if it
was allocating for THP and avoided races that way.  While the patch was
showing to improve allocation success rates at the time, the benefit is
marginal given the relative complexity and it should be revisited from
scratch in the context of the other reclaim-related changes that have
taken place since the patch was first written and tested.  This patch
partially reverts commit 1fb3f8ca0e ("mm: compaction: capture a
suitable high-order page immediately when it is made available").

Reported-and-tested-by: Eric Wong <normalperson@yhbt.net>
Tested-by: Eric Dumazet <eric.dumazet@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-01-11 14:54:56 -08:00
Jason Liu
7964c06d66 mm: compaction: fix echo 1 > compact_memory return error issue
when run the folloing command under shell, it will return error

  sh/$ echo 1 > /proc/sys/vm/compact_memory
  sh/$ sh: write error: Bad address

After strace, I found the following log:

  ...
  write(1, "1\n", 2)               = 3
  write(1, "", 4294967295)         = -1 EFAULT (Bad address)
  write(2, "echo: write error: Bad address\n", 31echo: write error: Bad address
  ) = 31

This tells system return 3(COMPACT_COMPLETE) after write data to
compact_memory.

The fix is to make the system just return 0 instead 3(COMPACT_COMPLETE)
from sysctl_compaction_handler after compaction_nodes finished.

Signed-off-by: Jason Liu <r64343@freescale.com>
Suggested-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-01-11 14:54:54 -08:00
Minchan Kim
010fc29a45 compaction: fix build error in CMA && !COMPACTION
isolate_freepages_block() and isolate_migratepages_range() are used for
CMA as well as compaction so it breaks build for CONFIG_CMA &&
!CONFIG_COMPACTION.

This patch fixes it.

[akpm@linux-foundation.org: add "do { } while (0)", per Mel]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-20 17:40:18 -08:00
Linus Torvalds
3d59eebc5e Automatic NUMA Balancing V11
-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.18 (GNU/Linux)
 
 iQIcBAABAgAGBQJQx0kQAAoJEHzG/DNEskfi4fQP/R5PRovayroZALBMLnVJDaLD
 Ttr9p40VNXbiJ+MfRgatJjSSJZ4Jl+fC3NEqBhcwVZhckZZb9R2s0WtrSQo5+ZbB
 vdRfiuKoCaKM4cSZ08C12uTvsF6xjhjd27CTUlMkyOcDoKxMEFKelv0hocSxe4Wo
 xqlv3eF+VsY7kE1BNbgBP06SX4tDpIHRxXfqJPMHaSKQmre+cU0xG2GcEu3QGbHT
 DEDTI788YSaWLmBfMC+kWoaQl1+bV/FYvavIAS8/o4K9IKvgR42VzrXmaFaqrbgb
 72ksa6xfAi57yTmZHqyGmts06qYeBbPpKI+yIhCMInxA9CY3lPbvHppRf0RQOyzj
 YOi4hovGEMJKE+BCILukhJcZ9jCTtS3zut6v1rdvR88f4y7uhR9RfmRfsxuW7PNj
 3Rmh191+n0lVWDmhOs2psXuCLJr3LEiA0dFffN1z8REUTtTAZMsj8Rz+SvBNAZDR
 hsJhERVeXB6X5uQ5rkLDzbn1Zic60LjVw7LIp6SF2OYf/YKaF8vhyWOA8dyCEu8W
 CGo7AoG0BO8tIIr8+LvFe8CweypysZImx4AjCfIs4u9pu/v11zmBvO9NO5yfuObF
 BreEERYgTes/UITxn1qdIW4/q+Nr0iKO3CTqsmu6L1GfCz3/XzPGs3U26fUhllqi
 Ka0JKgnWvsa6ez6FSzKI
 =ivQa
 -----END PGP SIGNATURE-----

Merge tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma

Pull Automatic NUMA Balancing bare-bones from Mel Gorman:
 "There are three implementations for NUMA balancing, this tree
  (balancenuma), numacore which has been developed in tip/master and
  autonuma which is in aa.git.

  In almost all respects balancenuma is the dumbest of the three because
  its main impact is on the VM side with no attempt to be smart about
  scheduling.  In the interest of getting the ball rolling, it would be
  desirable to see this much merged for 3.8 with the view to building
  scheduler smarts on top and adapting the VM where required for 3.9.

  The most recent set of comparisons available from different people are

    mel:    https://lkml.org/lkml/2012/12/9/108
    mingo:  https://lkml.org/lkml/2012/12/7/331
    tglx:   https://lkml.org/lkml/2012/12/10/437
    srikar: https://lkml.org/lkml/2012/12/10/397

  The results are a mixed bag.  In my own tests, balancenuma does
  reasonably well.  It's dumb as rocks and does not regress against
  mainline.  On the other hand, Ingo's tests shows that balancenuma is
  incapable of converging for this workloads driven by perf which is bad
  but is potentially explained by the lack of scheduler smarts.  Thomas'
  results show balancenuma improves on mainline but falls far short of
  numacore or autonuma.  Srikar's results indicate we all suffer on a
  large machine with imbalanced node sizes.

  My own testing showed that recent numacore results have improved
  dramatically, particularly in the last week but not universally.
  We've butted heads heavily on system CPU usage and high levels of
  migration even when it shows that overall performance is better.
  There are also cases where it regresses.  Of interest is that for
  specjbb in some configurations it will regress for lower numbers of
  warehouses and show gains for higher numbers which is not reported by
  the tool by default and sometimes missed in treports.  Recently I
  reported for numacore that the JVM was crashing with
  NullPointerExceptions but currently it's unclear what the source of
  this problem is.  Initially I thought it was in how numacore batch
  handles PTEs but I'm no longer think this is the case.  It's possible
  numacore is just able to trigger it due to higher rates of migration.

  These reports were quite late in the cycle so I/we would like to start
  with this tree as it contains much of the code we can agree on and has
  not changed significantly over the last 2-3 weeks."

* tag 'balancenuma-v11' of git://git.kernel.org/pub/scm/linux/kernel/git/mel/linux-balancenuma: (50 commits)
  mm/rmap, migration: Make rmap_walk_anon() and try_to_unmap_anon() more scalable
  mm/rmap: Convert the struct anon_vma::mutex to an rwsem
  mm: migrate: Account a transhuge page properly when rate limiting
  mm: numa: Account for failed allocations and isolations as migration failures
  mm: numa: Add THP migration for the NUMA working set scanning fault case build fix
  mm: numa: Add THP migration for the NUMA working set scanning fault case.
  mm: sched: numa: Delay PTE scanning until a task is scheduled on a new node
  mm: sched: numa: Control enabling and disabling of NUMA balancing if !SCHED_DEBUG
  mm: sched: numa: Control enabling and disabling of NUMA balancing
  mm: sched: Adapt the scanning rate if a NUMA hinting fault does not migrate
  mm: numa: Use a two-stage filter to restrict pages being migrated for unlikely task<->node relationships
  mm: numa: migrate: Set last_nid on newly allocated page
  mm: numa: split_huge_page: Transfer last_nid on tail page
  mm: numa: Introduce last_nid to the page frame
  sched: numa: Slowly increase the scanning period as NUMA faults are handled
  mm: numa: Rate limit setting of pte_numa if node is saturated
  mm: numa: Rate limit the amount of memory that is migrated between nodes
  mm: numa: Structures for Migrate On Fault per NUMA migration rate limiting
  mm: numa: Migrate pages handled during a pmd_numa hinting fault
  mm: numa: Migrate on reference policy
  ...
2012-12-16 15:18:08 -08:00
Thierry Reding
c8bf2d8ba4 mm: compaction: Fix compiler warning
compact_capture_page() is only used if compaction is enabled so it should
be moved into the corresponding #ifdef.

Signed-off-by: Thierry Reding <thierry.reding@avionic-design.de>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-12 17:38:32 -08:00
Rafael Aquini
5733c7d11d mm: introduce putback_movable_pages()
The PATCH "mm: introduce compaction and migration for virtio ballooned pages"
hacks around putback_lru_pages() in order to allow ballooned pages to be
re-inserted on balloon page list as if a ballooned page was like a LRU page.

As ballooned pages are not legitimate LRU pages, this patch introduces
putback_movable_pages() to properly cope with cases where the isolated
pageset contains ballooned pages and LRU pages, thus fixing the mentioned
inelegant hack around putback_lru_pages().

Signed-off-by: Rafael Aquini <aquini@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-11 17:22:27 -08:00
Rafael Aquini
bf6bddf192 mm: introduce compaction and migration for ballooned pages
Memory fragmentation introduced by ballooning might reduce significantly
the number of 2MB contiguous memory blocks that can be used within a guest,
thus imposing performance penalties associated with the reduced number of
transparent huge pages that could be used by the guest workload.

This patch introduces the helper functions as well as the necessary changes
to teach compaction and migration bits how to cope with pages which are
part of a guest memory balloon, in order to make them movable by memory
compaction procedures.

Signed-off-by: Rafael Aquini <aquini@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-11 17:22:27 -08:00
Mel Gorman
397487db69 mm: compaction: Add scanned and isolated counters for compaction
Compaction already has tracepoints to count scanned and isolated pages
but it requires that ftrace be enabled and if that information has to be
written to disk then it can be disruptive. This patch adds vmstat counters
for compaction called compact_migrate_scanned, compact_free_scanned and
compact_isolated.

With these counters, it is possible to define a basic cost model for
compaction. This approximates of how much work compaction is doing and can
be compared that with an oprofile showing TLB misses and see if the cost of
compaction is being offset by THP for example. Minimally a compaction patch
can be evaluated in terms of whether it increases or decreases cost. The
basic cost model looks like this

Fundamental unit u:	a word	sizeof(void *)

Ca  = cost of struct page access = sizeof(struct page) / u

Cmc = Cost migrate page copy = (Ca + PAGE_SIZE/u) * 2
Cmf = Cost migrate failure   = Ca * 2
Ci  = Cost page isolation    = (Ca + Wi)
	where Wi is a constant that should reflect the approximate
	cost of the locking operation.

Csm = Cost migrate scanning = Ca
Csf = Cost free    scanning = Ca

Overall cost =	(Csm * compact_migrate_scanned) +
	      	(Csf * compact_free_scanned)    +
	      	(Ci  * compact_isolated)	+
		(Cmc * pgmigrate_success)	+
		(Cmf * pgmigrate_failed)

Where the values are read from /proc/vmstat.

This is very basic and ignores certain costs such as the allocation cost
to do a migrate page copy but any improvement to the model would still
use the same vmstat counters.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
2012-12-11 14:28:35 +00:00
Mel Gorman
7b2a2d4a18 mm: migrate: Add a tracepoint for migrate_pages
The pgmigrate_success and pgmigrate_fail vmstat counters tells the user
about migration activity but not the type or the reason. This patch adds
a tracepoint to identify the type of page migration and why the page is
being migrated.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
2012-12-11 14:28:35 +00:00
Mel Gorman
5647bc293a mm: compaction: Move migration fail/success stats to migrate.c
The compact_pages_moved and compact_pagemigrate_failed events are
convenient for determining if compaction is active and to what
degree migration is succeeding but it's at the wrong level. Other
users of migration may also want to know if migration is working
properly and this will be particularly true for any automated
NUMA migration. This patch moves the counters down to migration
with the new events called pgmigrate_success and pgmigrate_fail.
The compact_blocks_moved counter is removed because while it was
useful for debugging initially, it's worthless now as no meaningful
conclusions can be drawn from its value.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
2012-12-11 14:28:35 +00:00
Mel Gorman
60177d31d2 mm: compaction: validate pfn range passed to isolate_freepages_block
Commit 0bf380bc70 ("mm: compaction: check pfn_valid when entering a
new MAX_ORDER_NR_PAGES block during isolation for migration") added a
check for pfn_valid() when isolating pages for migration as the scanner
does not necessarily start pageblock-aligned.

Since commit c89511ab2f ("mm: compaction: Restart compaction from near
where it left off"), the free scanner has the same problem.  This patch
makes sure that the pfn range passed to isolate_freepages_block() is
within the same block so that pfn_valid() checks are unnecessary.

In answer to Henrik's wondering why others have not reported this:
reproducing this requires a large enough hole with the right aligment to
have compaction walk into a PFN range with no memmap.  Size and
alignment depends in the memory model - 4M for FLATMEM and 128M for
SPARSEMEM on x86.  It needs a "lucky" machine.

Reported-by: Henrik Rydberg <rydberg@euromail.se>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-12-06 11:17:33 -08:00
Mel Gorman
0db63d7e25 mm: compaction: correct the nr_strict va isolated check for CMA
Thierry reported that the "iron out" patch for isolate_freepages_block()
had problems due to the strict check being too strict with "mm:
compaction: Iron out isolate_freepages_block() and
isolate_freepages_range() -fix1".  It's possible that more pages than
necessary are isolated but the check still fails and I missed that this
fix was not picked up before RC1.  This same problem has been identified
in 3.7-RC1 by Tony Prisk and should be addressed by the following patch.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Tested-by: Tony Prisk <linux@prisktech.co.nz>
Reported-by: Thierry Reding <thierry.reding@avionic-design.de>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Richard Davies <richard@arachsys.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-19 14:07:47 -07:00
Minchan Kim
e46a28790e CMA: migrate mlocked pages
Presently CMA cannot migrate mlocked pages so it ends up failing to allocate
contiguous memory space.

This patch makes mlocked pages be migrated out.  Of course, it can affect
realtime processes but in CMA usecase, contiguous memory allocation failing
is far worse than access latency to an mlocked page being variable while
CMA is running.  If someone wants to make the system realtime, he shouldn't
enable CMA because stalls can still happen at random times.

[akpm@linux-foundation.org: tweak comment text, per Mel]
Signed-off-by: Minchan Kim <minchan@kernel.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:23:00 +09:00
Mel Gorman
62997027ca mm: compaction: clear PG_migrate_skip based on compaction and reclaim activity
Compaction caches if a pageblock was scanned and no pages were isolated so
that the pageblocks can be skipped in the future to reduce scanning.  This
information is not cleared by the page allocator based on activity due to
the impact it would have to the page allocator fast paths.  Hence there is
a requirement that something clear the cache or pageblocks will be skipped
forever.  Currently the cache is cleared if there were a number of recent
allocation failures and it has not been cleared within the last 5 seconds.
Time-based decisions like this are terrible as they have no relationship
to VM activity and is basically a big hammer.

Unfortunately, accurate heuristics would add cost to some hot paths so
this patch implements a rough heuristic.  There are two cases where the
cache is cleared.

1. If a !kswapd process completes a compaction cycle (migrate and free
   scanner meet), the zone is marked compact_blockskip_flush. When kswapd
   goes to sleep, it will clear the cache. This is expected to be the
   common case where the cache is cleared. It does not really matter if
   kswapd happens to be asleep or going to sleep when the flag is set as
   it will be woken on the next allocation request.

2. If there have been multiple failures recently and compaction just
   finished being deferred then a process will clear the cache and start a
   full scan.  This situation happens if there are multiple high-order
   allocation requests under heavy memory pressure.

The clearing of the PG_migrate_skip bits and other scans is inherently
racy but the race is harmless.  For allocations that can fail such as THP,
they will simply fail.  For requests that cannot fail, they will retry the
allocation.  Tests indicated that scanning rates were roughly similar to
when the time-based heuristic was used and the allocation success rates
were similar.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: Richard Davies <richard@arachsys.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Avi Kivity <avi@redhat.com>
Cc: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:51 +09:00
Mel Gorman
c89511ab2f mm: compaction: Restart compaction from near where it left off
This is almost entirely based on Rik's previous patches and discussions
with him about how this might be implemented.

Order > 0 compaction stops when enough free pages of the correct page
order have been coalesced.  When doing subsequent higher order
allocations, it is possible for compaction to be invoked many times.

However, the compaction code always starts out looking for things to
compact at the start of the zone, and for free pages to compact things to
at the end of the zone.

This can cause quadratic behaviour, with isolate_freepages starting at the
end of the zone each time, even though previous invocations of the
compaction code already filled up all free memory on that end of the zone.
 This can cause isolate_freepages to take enormous amounts of CPU with
certain workloads on larger memory systems.

This patch caches where the migration and free scanner should start from
on subsequent compaction invocations using the pageblock-skip information.
 When compaction starts it begins from the cached restart points and will
update the cached restart points until a page is isolated or a pageblock
is skipped that would have been scanned by synchronous compaction.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Richard Davies <richard@arachsys.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Avi Kivity <avi@redhat.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:50 +09:00
Mel Gorman
bb13ffeb9f mm: compaction: cache if a pageblock was scanned and no pages were isolated
When compaction was implemented it was known that scanning could
potentially be excessive.  The ideal was that a counter be maintained for
each pageblock but maintaining this information would incur a severe
penalty due to a shared writable cache line.  It has reached the point
where the scanning costs are a serious problem, particularly on
long-lived systems where a large process starts and allocates a large
number of THPs at the same time.

Instead of using a shared counter, this patch adds another bit to the
pageblock flags called PG_migrate_skip.  If a pageblock is scanned by
either migrate or free scanner and 0 pages were isolated, the pageblock is
marked to be skipped in the future.  When scanning, this bit is checked
before any scanning takes place and the block skipped if set.

The main difficulty with a patch like this is "when to ignore the cached
information?" If it's ignored too often, the scanning rates will still be
excessive.  If the information is too stale then allocations will fail
that might have otherwise succeeded.  In this patch

o CMA always ignores the information
o If the migrate and free scanner meet then the cached information will
  be discarded if it's at least 5 seconds since the last time the cache
  was discarded
o If there are a large number of allocation failures, discard the cache.

The time-based heuristic is very clumsy but there are few choices for a
better event.  Depending solely on multiple allocation failures still
allows excessive scanning when THP allocations are failing in quick
succession due to memory pressure.  Waiting until memory pressure is
relieved would cause compaction to continually fail instead of using
reclaim/compaction to try allocate the page.  The time-based mechanism is
clumsy but a better option is not obvious.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Richard Davies <richard@arachsys.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Avi Kivity <avi@redhat.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Mark Brown <broonie@opensource.wolfsonmicro.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:50 +09:00
Mel Gorman
753341a4b8 revert "mm: have order > 0 compaction start off where it left"
This reverts commit 7db8889ab0 ("mm: have order > 0 compaction start
off where it left") and commit de74f1cc ("mm: have order > 0 compaction
start near a pageblock with free pages").  These patches were a good
idea and tests confirmed that they massively reduced the amount of
scanning but the implementation is complex and tricky to understand.  A
later patch will cache what pageblocks should be skipped and
reimplements the concept of compact_cached_free_pfn on top for both
migration and free scanners.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Richard Davies <richard@arachsys.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Avi Kivity <avi@redhat.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:50 +09:00
Mel Gorman
f40d1e42bb mm: compaction: acquire the zone->lock as late as possible
Compaction's free scanner acquires the zone->lock when checking for
PageBuddy pages and isolating them.  It does this even if there are no
PageBuddy pages in the range.

This patch defers acquiring the zone lock for as long as possible.  In the
event there are no free pages in the pageblock then the lock will not be
acquired at all which reduces contention on zone->lock.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Richard Davies <richard@arachsys.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Avi Kivity <avi@redhat.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Tested-by: Peter Ujfalusi <peter.ujfalusi@ti.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:49 +09:00
Mel Gorman
2a1402aa04 mm: compaction: acquire the zone->lru_lock as late as possible
Richard Davies and Shaohua Li have both reported lock contention problems
in compaction on the zone and LRU locks as well as significant amounts of
time being spent in compaction.  This series aims to reduce lock
contention and scanning rates to reduce that CPU usage.  Richard reported
at https://lkml.org/lkml/2012/9/21/91 that this series made a big
different to a problem he reported in August:

   http://marc.info/?l=kvm&m=134511507015614&w=2

Patch 1 defers acquiring the zone->lru_lock as long as possible.

Patch 2 defers acquiring the zone->lock as lock as possible.

Patch 3 reverts Rik's "skip-free" patches as the core concept gets
	reimplemented later and the remaining patches are easier to
	understand if this is reverted first.

Patch 4 adds a pageblock-skip bit to the pageblock flags to cache what
	pageblocks should be skipped by the migrate and free scanners.
	This drastically reduces the amount of scanning compaction has
	to do.

Patch 5 reimplements something similar to Rik's idea except it uses the
	pageblock-skip information to decide where the scanners should
	restart from and does not need to wrap around.

I tested this on 3.6-rc6 + linux-next/akpm. Kernels tested were

akpm-20120920	3.6-rc6 + linux-next/akpm as of Septeber 20th, 2012
lesslock	Patches 1-6
revert		Patches 1-7
cachefail	Patches 1-8
skipuseless	Patches 1-9

Stress high-order allocation tests looked ok.  Success rates are more or
less the same with the full series applied but there is an expectation
that there is less opportunity to race with other allocation requests if
there is less scanning.  The time to complete the tests did not vary that
much and are uninteresting as were the vmstat statistics so I will not
present them here.

Using ftrace I recorded how much scanning was done by compaction and got this

                            3.6.0-rc6     3.6.0-rc6   3.6.0-rc6  3.6.0-rc6 3.6.0-rc6
                            akpm-20120920 lockless  revert-v2r2  cachefail skipuseless

Total   free    scanned         360753976  515414028  565479007   17103281   18916589
Total   free    isolated          2852429    3597369    4048601     670493     727840
Total   free    efficiency        0.0079%    0.0070%    0.0072%    0.0392%    0.0385%
Total   migrate scanned         247728664  822729112 1004645830   17946827   14118903
Total   migrate isolated          2555324    3245937    3437501     616359     658616
Total   migrate efficiency        0.0103%    0.0039%    0.0034%    0.0343%    0.0466%

The efficiency is worthless because of the nature of the test and the
number of failures.  The really interesting point as far as this patch
series is concerned is the number of pages scanned.  Note that reverting
Rik's patches massively increases the number of pages scanned indicating
that those patches really did make a difference to CPU usage.

However, caching what pageblocks should be skipped has a much higher
impact.  With patches 1-8 applied, free page and migrate page scanning are
both reduced by 95% in comparison to the akpm kernel.  If the basic
concept of Rik's patches are implemened on top then scanning then the free
scanner barely changed but migrate scanning was further reduced.  That
said, tests on 3.6-rc5 indicated that the last patch had greater impact
than what was measured here so it is a bit variable.

One way or the other, this series has a large impact on the amount of
scanning compaction does when there is a storm of THP allocations.

This patch:

Compaction's migrate scanner acquires the zone->lru_lock when scanning a
range of pages looking for LRU pages to acquire.  It does this even if
there are no LRU pages in the range.  If multiple processes are compacting
then this can cause severe locking contention.  To make matters worse
commit b2eef8c0 ("mm: compaction: minimise the time IRQs are disabled
while isolating pages for migration") releases the lru_lock every
SWAP_CLUSTER_MAX pages that are scanned.

This patch makes two changes to how the migrate scanner acquires the LRU
lock.  First, it only releases the LRU lock every SWAP_CLUSTER_MAX pages
if the lock is contended.  This reduces the number of times it
unnecessarily disables and re-enables IRQs.  The second is that it defers
acquiring the LRU lock for as long as possible.  If there are no LRU pages
or the only LRU pages are transhuge then the LRU lock will not be acquired
at all which reduces contention on zone->lru_lock.

[minchan@kernel.org: augment comment]
[akpm@linux-foundation.org: tweak comment text]
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Richard Davies <richard@arachsys.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Avi Kivity <avi@redhat.com>
Acked-by: Rafael Aquini <aquini@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:49 +09:00
Mel Gorman
661c4cb9b8 mm: compaction: Update try_to_compact_pages()kerneldoc comment
Parameters were added without documentation, tut tut.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:49 +09:00
Mel Gorman
3cc668f4e3 mm: compaction: move fatal signal check out of compact_checklock_irqsave
Commit c67fe3752a ("mm: compaction: Abort async compaction if locks
are contended or taking too long") addressed a lock contention problem
in compaction by introducing compact_checklock_irqsave() that effecively
aborting async compaction in the event of compaction.

To preserve existing behaviour it also moved a fatal_signal_pending()
check into compact_checklock_irqsave() but that is very misleading.  It
"hides" the check within a locking function but has nothing to do with
locking as such.  It just happens to work in a desirable fashion.

This patch moves the fatal_signal_pending() check to
isolate_migratepages_range() where it belongs.  Arguably the same check
should also happen when isolating pages for freeing but it's overkill.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Cc: Rik van Riel <riel@redhat.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:48 +09:00
Shaohua Li
e64c5237cf mm: compaction: abort compaction loop if lock is contended or run too long
isolate_migratepages_range() might isolate no pages if for example when
zone->lru_lock is contended and running asynchronous compaction. In this
case, we should abort compaction, otherwise, compact_zone will run a
useless loop and make zone->lru_lock is even contended.

An additional check is added to ensure that cc.migratepages and
cc.freepages get properly drained whan compaction is aborted.

[minchan@kernel.org: Putback pages isolated for migration if aborting]
[akpm@linux-foundation.org: compact_zone_order requires non-NULL arg contended]
[akpm@linux-foundation.org: make compact_zone_order() require non-NULL arg `contended']
[minchan@kernel.org: Putback pages isolated for migration if aborting]
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Shaohua Li <shli@fusionio.com>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:48 +09:00
Bartlomiej Zolnierkiewicz
d95ea5d18e cma: fix watermark checking
* Add ALLOC_CMA alloc flag and pass it to [__]zone_watermark_ok()
  (from Minchan Kim).

* During watermark check decrease available free pages number by
  free CMA pages number if necessary (unmovable allocations cannot
  use pages from CMA areas).

Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:45 +09:00
Mel Gorman
1fb3f8ca0e mm: compaction: capture a suitable high-order page immediately when it is made available
While compaction is migrating pages to free up large contiguous blocks
for allocation it races with other allocation requests that may steal
these blocks or break them up.  This patch alters direct compaction to
capture a suitable free page as soon as it becomes available to reduce
this race.  It uses similar logic to split_free_page() to ensure that
watermarks are still obeyed.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:21 +09:00
Mel Gorman
4ffb6335da mm: compaction: update comment in try_to_compact_pages
Allocation success rates have been far lower since 3.4 due to commit
fe2c2a1066 ("vmscan: reclaim at order 0 when compaction is enabled").
This commit was introduced for good reasons and it was known in advance
that the success rates would suffer but it was justified on the grounds
that the high allocation success rates were achieved by aggressive
reclaim.  Success rates are expected to suffer even more in 3.6 due to
commit 7db8889ab0 ("mm: have order > 0 compaction start off where it
left") which testing has shown to severely reduce allocation success
rates under load - to 0% in one case.

This series aims to improve the allocation success rates without
regressing the benefits of commit fe2c2a1066.  The series is based on
latest mmotm and takes into account the __GFP_NO_KSWAPD flag is going
away.

Patch 1 updates a stale comment seeing as I was in the general area.

Patch 2 updates reclaim/compaction to reclaim pages scaled on the number
	of recent failures.

Patch 3 captures suitable high-order pages freed by compaction to reduce
	races with parallel allocation requests.

Patch 4 fixes the upstream commit [7db8889a: mm: have order > 0 compaction
	start off where it left] to enable compaction again

Patch 5 identifies when compacion is taking too long due to contention
	and aborts.

STRESS-HIGHALLOC
		 3.6-rc1-akpm	  full-series
Pass 1          36.00 ( 0.00%)    51.00 (15.00%)
Pass 2          42.00 ( 0.00%)    63.00 (21.00%)
while Rested    86.00 ( 0.00%)    86.00 ( 0.00%)

From

  http://www.csn.ul.ie/~mel/postings/mmtests-20120424/global-dhp__stress-highalloc-performance-ext3/hydra/comparison.html

I know that the allocation success rates in 3.3.6 was 78% in comparison
to 36% in in the current akpm tree.  With the full series applied, the
success rates are up to around 51% with some variability in the results.
This is not as high a success rate but it does not reclaim excessively
which is a key point.

MMTests Statistics: vmstat
Page Ins                                     3050912     3078892
Page Outs                                    8033528     8039096
Swap Ins                                           0           0
Swap Outs                                          0           0

Note that swap in/out rates remain at 0. In 3.3.6 with 78% success rates
there were 71881 pages swapped out.

Direct pages scanned                           70942      122976
Kswapd pages scanned                         1366300     1520122
Kswapd pages reclaimed                       1366214     1484629
Direct pages reclaimed                         70936      105716
Kswapd efficiency                                99%         97%
Kswapd velocity                             1072.550    1182.615
Direct efficiency                                99%         85%
Direct velocity                               55.690      95.672

The kswapd velocity changes very little as expected.  kswapd velocity is
around the 1000 pages/sec mark where as in kernel 3.3.6 with the high
allocation success rates it was 8140 pages/second.  Direct velocity is
higher as a result of patch 2 of the series but this is expected and is
acceptable.  The direct reclaim and kswapd velocities change very little.

If these get accepted for merging then there is a difficulty in how they
should be handled.  7db8889a ("mm: have order > 0 compaction start off
where it left") is broken but it is already in 3.6-rc1 and needs to be
fixed.  However, if just patch 4 from this series is applied then Jim
Schutt's workload is known to break again as his workload also requires
patch 5.  While it would be preferred to have all these patches in 3.6 to
improve compaction in general, it would at least be acceptable if just
patches 4 and 5 were merged to 3.6 to fix a known problem without breaking
compaction completely.  On the face of it, that would force
__GFP_NO_KSWAPD patches to be merged at the same time but I can do a
version of this series with __GFP_NO_KSWAPD change reverted and then
rebase it on top of this series.  That might be best overall because I
note that the __GFP_NO_KSWAPD patch should have removed
deferred_compaction from page_alloc.c but it didn't but fixing that causes
collisions with this series.

This patch:

The comment about order applied when the check was order >
PAGE_ALLOC_COSTLY_ORDER which has not been the case since c5a73c3d ("thp:
use compaction for all allocation orders").  Fixing the comment while I'm
in the general area.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-10-09 16:22:20 +09:00
Mel Gorman
c67fe3752a mm: compaction: Abort async compaction if locks are contended or taking too long
Jim Schutt reported a problem that pointed at compaction contending
heavily on locks.  The workload is straight-forward and in his own words;

	The systems in question have 24 SAS drives spread across 3 HBAs,
	running 24 Ceph OSD instances, one per drive.  FWIW these servers
	are dual-socket Intel 5675 Xeons w/48 GB memory.  I've got ~160
	Ceph Linux clients doing dd simultaneously to a Ceph file system
	backed by 12 of these servers.

Early in the test everything looks fine

  procs -------------------memory------------------ ---swap-- -----io---- --system-- -----cpu-------
   r  b       swpd       free       buff      cache   si   so    bi    bo   in   cs  us sy  id wa st
  31 15          0     287216        576   38606628    0    0     2  1158    2   14   1  3  95  0  0
  27 15          0     225288        576   38583384    0    0    18 2222016 203357 134876  11 56  17 15  0
  28 17          0     219256        576   38544736    0    0    11 2305932 203141 146296  11 49  23 17  0
   6 18          0     215596        576   38552872    0    0     7 2363207 215264 166502  12 45  22 20  0
  22 18          0     226984        576   38596404    0    0     3 2445741 223114 179527  12 43  23 22  0

and then it goes to pot

  procs -------------------memory------------------ ---swap-- -----io---- --system-- -----cpu-------
   r  b       swpd       free       buff      cache   si   so    bi    bo   in   cs  us sy  id wa st
  163  8          0     464308        576   36791368    0    0    11 22210  866  536   3 13  79  4  0
  207 14          0     917752        576   36181928    0    0   712 1345376 134598 47367   7 90   1  2  0
  123 12          0     685516        576   36296148    0    0   429 1386615 158494 60077   8 84   5  3  0
  123 12          0     598572        576   36333728    0    0  1107 1233281 147542 62351   7 84   5  4  0
  622  7          0     660768        576   36118264    0    0   557 1345548 151394 59353   7 85   4  3  0
  223 11          0     283960        576   36463868    0    0    46 1107160 121846 33006   6 93   1  1  0

Note that system CPU usage is very high blocks being written out has
dropped by 42%. He analysed this with perf and found

  perf record -g -a sleep 10
  perf report --sort symbol --call-graph fractal,5
    34.63%  [k] _raw_spin_lock_irqsave
            |
            |--97.30%-- isolate_freepages
            |          compaction_alloc
            |          unmap_and_move
            |          migrate_pages
            |          compact_zone
            |          compact_zone_order
            |          try_to_compact_pages
            |          __alloc_pages_direct_compact
            |          __alloc_pages_slowpath
            |          __alloc_pages_nodemask
            |          alloc_pages_vma
            |          do_huge_pmd_anonymous_page
            |          handle_mm_fault
            |          do_page_fault
            |          page_fault
            |          |
            |          |--87.39%-- skb_copy_datagram_iovec
            |          |          tcp_recvmsg
            |          |          inet_recvmsg
            |          |          sock_recvmsg
            |          |          sys_recvfrom
            |          |          system_call
            |          |          __recv
            |          |          |
            |          |           --100.00%-- (nil)
            |          |
            |           --12.61%-- memcpy
             --2.70%-- [...]

There was other data but primarily it is all showing that compaction is
contended heavily on the zone->lock and zone->lru_lock.

commit [b2eef8c0: mm: compaction: minimise the time IRQs are disabled
while isolating pages for migration] noted that it was possible for
migration to hold the lru_lock for an excessive amount of time. Very
broadly speaking this patch expands the concept.

This patch introduces compact_checklock_irqsave() to check if a lock
is contended or the process needs to be scheduled. If either condition
is true then async compaction is aborted and the caller is informed.
The page allocator will fail a THP allocation if compaction failed due
to contention. This patch also introduces compact_trylock_irqsave()
which will acquire the lock only if it is not contended and the process
does not need to schedule.

Reported-by: Jim Schutt <jaschut@sandia.gov>
Tested-by: Jim Schutt <jaschut@sandia.gov>
Signed-off-by: Mel Gorman <mgorman@suse.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-21 16:45:03 -07:00
Mel Gorman
de74f1cc3b mm: have order > 0 compaction start near a pageblock with free pages
Commit 7db8889ab0 ("mm: have order > 0 compaction start off where it
left") introduced a caching mechanism to reduce the amount work the free
page scanner does in compaction.  However, it has a problem.  Consider
two process simultaneously scanning free pages

					    			C
	Process A		M     S     			F
			|---------------------------------------|
	Process B		M 	FS

	C is zone->compact_cached_free_pfn
	S is cc->start_pfree_pfn
	M is cc->migrate_pfn
	F is cc->free_pfn

In this diagram, Process A has just reached its migrate scanner, wrapped
around and updated compact_cached_free_pfn accordingly.

Simultaneously, Process B finishes isolating in a block and updates
compact_cached_free_pfn again to the location of its free scanner.

Process A moves to "end_of_zone - one_pageblock" and runs this check

                if (cc->order > 0 && (!cc->wrapped ||
                                      zone->compact_cached_free_pfn >
                                      cc->start_free_pfn))
                        pfn = min(pfn, zone->compact_cached_free_pfn);

compact_cached_free_pfn is above where it started so the free scanner
skips almost the entire space it should have scanned.  When there are
multiple processes compacting it can end in a situation where the entire
zone is not being scanned at all.  Further, it is possible for two
processes to ping-pong update to compact_cached_free_pfn which is just
random.

Overall, the end result wrecks allocation success rates.

There is not an obvious way around this problem without introducing new
locking and state so this patch takes a different approach.

First, it gets rid of the skip logic because it's not clear that it
matters if two free scanners happen to be in the same block but with
racing updates it's too easy for it to skip over blocks it should not.

Second, it updates compact_cached_free_pfn in a more limited set of
circumstances.

If a scanner has wrapped, it updates compact_cached_free_pfn to the end
	of the zone. When a wrapped scanner isolates a page, it updates
	compact_cached_free_pfn to point to the highest pageblock it
	can isolate pages from.

If a scanner has not wrapped when it has finished isolated pages it
	checks if compact_cached_free_pfn is pointing to the end of the
	zone. If so, the value is updated to point to the highest
	pageblock that pages were isolated from. This value will not
	be updated again until a free page scanner wraps and resets
	compact_cached_free_pfn.

This is not optimal and it can still race but the compact_cached_free_pfn
will be pointing to or very near a pageblock with free pages.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-21 16:45:03 -07:00
Minchan Kim
c81758fbe0 mm/compaction.c: fix deferring compaction mistake
Commit aff622495c ("vmscan: only defer compaction for failed order and
higher") fixed bad deferring policy but made mistake about checking
compact_order_failed in __compact_pgdat().  So it can't update
compact_order_failed with the new order.  This ends up preventing
correct operation of policy deferral.  This patch fixes it.

Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-08-21 16:45:03 -07:00
Rik van Riel
7db8889ab0 mm: have order > 0 compaction start off where it left
Order > 0 compaction stops when enough free pages of the correct page
order have been coalesced.  When doing subsequent higher order
allocations, it is possible for compaction to be invoked many times.

However, the compaction code always starts out looking for things to
compact at the start of the zone, and for free pages to compact things to
at the end of the zone.

This can cause quadratic behaviour, with isolate_freepages starting at the
end of the zone each time, even though previous invocations of the
compaction code already filled up all free memory on that end of the zone.

This can cause isolate_freepages to take enormous amounts of CPU with
certain workloads on larger memory systems.

The obvious solution is to have isolate_freepages remember where it left
off last time, and continue at that point the next time it gets invoked
for an order > 0 compaction.  This could cause compaction to fail if
cc->free_pfn and cc->migrate_pfn are close together initially, in that
case we restart from the end of the zone and try once more.

Forced full (order == -1) compactions are left alone.

[akpm@linux-foundation.org: checkpatch fixes]
[akpm@linux-foundation.org: s/laste/last/, use 80 cols]
Signed-off-by: Rik van Riel <riel@redhat.com>
Reported-by: Jim Schutt <jaschut@sandia.gov>
Tested-by: Jim Schutt <jaschut@sandia.gov>
Cc: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-31 18:42:43 -07:00
David Rientjes
4bf2bba375 mm, thp: abort compaction if migration page cannot be charged to memcg
If page migration cannot charge the temporary page to the memcg,
migrate_pages() will return -ENOMEM.  This isn't considered in memory
compaction however, and the loop continues to iterate over all
pageblocks trying to isolate and migrate pages.  If a small number of
very large memcgs happen to be oom, however, these attempts will mostly
be futile leading to an enormous amout of cpu consumption due to the
page migration failures.

This patch will short circuit and fail memory compaction if
migrate_pages() returns -ENOMEM.  COMPACT_PARTIAL is returned in case
some migrations were successful so that the page allocator will retry.

Signed-off-by: David Rientjes <rientjes@google.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Kamezawa Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-07-11 16:04:43 -07:00
Linus Torvalds
68e3e92620 Revert "mm: compaction: handle incorrect MIGRATE_UNMOVABLE type pageblocks"
This reverts commit 5ceb9ce6fe.

That commit seems to be the cause of the mm compation list corruption
issues that Dave Jones reported.  The locking (or rather, absense
there-of) is dubious, as is the use of the 'page' variable once it has
been found to be outside the pageblock range.

So revert it for now, we can re-visit this for 3.6.  If we even need to:
as Minchan Kim says, "The patch wasn't a bug fix and even test workload
was very theoretical".

Reported-and-tested-by: Dave Jones <davej@redhat.com>
Acked-by: Hugh Dickins <hughd@google.com>
Acked-by: KOSAKI Motohiro <kosaki.motohiro@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Cc: Kyungmin Park <kyungmin.park@samsung.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-06-03 20:05:57 -07:00
Hugh Dickins
fa9add641b mm/memcg: apply add/del_page to lruvec
Take lruvec further: pass it instead of zone to add_page_to_lru_list() and
del_page_from_lru_list(); and pagevec_lru_move_fn() pass lruvec down to
its target functions.

This cleanup eliminates a swathe of cruft in memcontrol.c, including
mem_cgroup_lru_add_list(), mem_cgroup_lru_del_list() and
mem_cgroup_lru_move_lists() - which never actually touched the lists.

In their place, mem_cgroup_page_lruvec() to decide the lruvec, previously
a side-effect of add, and mem_cgroup_update_lru_size() to maintain the
lru_size stats.

Whilst these are simplifications in their own right, the goal is to bring
the evaluation of lruvec next to the spin_locking of the lrus, in
preparation for a future patch.

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 16:22:28 -07:00
Konstantin Khlebnikov
f3fd4a6192 mm: remove lru type checks from __isolate_lru_page()
After patch "mm: forbid lumpy-reclaim in shrink_active_list()" we can
completely remove anon/file and active/inactive lru type filters from
__isolate_lru_page(), because isolation for 0-order reclaim always
isolates pages from right lru list.  And pages-isolation for lumpy
shrink_inactive_list() or memory-compaction anyway allowed to isolate
pages from all evictable lru lists.

Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Hugh Dickins <hughd@google.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Cc: Glauber Costa <glommer@parallels.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 16:22:25 -07:00
Bartlomiej Zolnierkiewicz
5ceb9ce6fe mm: compaction: handle incorrect MIGRATE_UNMOVABLE type pageblocks
When MIGRATE_UNMOVABLE pages are freed from MIGRATE_UNMOVABLE type
pageblock (and some MIGRATE_MOVABLE pages are left in it) waiting until an
allocation takes ownership of the block may take too long.  The type of
the pageblock remains unchanged so the pageblock cannot be used as a
migration target during compaction.

Fix it by:

* Adding enum compact_mode (COMPACT_ASYNC_[MOVABLE,UNMOVABLE], and
  COMPACT_SYNC) and then converting sync field in struct compact_control
  to use it.

* Adding nr_pageblocks_skipped field to struct compact_control and
  tracking how many destination pageblocks were of MIGRATE_UNMOVABLE type.
   If COMPACT_ASYNC_MOVABLE mode compaction ran fully in
  try_to_compact_pages() (COMPACT_COMPLETE) it implies that there is not a
  suitable page for allocation.  In this case then check how if there were
  enough MIGRATE_UNMOVABLE pageblocks to try a second pass in
  COMPACT_ASYNC_UNMOVABLE mode.

* Scanning the MIGRATE_UNMOVABLE pageblocks (during COMPACT_SYNC and
  COMPACT_ASYNC_UNMOVABLE compaction modes) and building a count based on
  finding PageBuddy pages, page_count(page) == 0 or PageLRU pages.  If all
  pages within the MIGRATE_UNMOVABLE pageblock are in one of those three
  sets change the whole pageblock type to MIGRATE_MOVABLE.

My particular test case (on a ARM EXYNOS4 device with 512 MiB, which means
131072 standard 4KiB pages in 'Normal' zone) is to:

- allocate 120000 pages for kernel's usage
- free every second page (60000 pages) of memory just allocated
- allocate and use 60000 pages from user space
- free remaining 60000 pages of kernel memory
  (now we have fragmented memory occupied mostly by user space pages)
- try to allocate 100 order-9 (2048 KiB) pages for kernel's usage

The results:
- with compaction disabled I get 11 successful allocations
- with compaction enabled - 14 successful allocations
- with this patch I'm able to get all 100 successful allocations

NOTE: If we can make kswapd aware of order-0 request during compaction, we
can enhance kswapd with changing mode to COMPACT_ASYNC_FULL
(COMPACT_ASYNC_MOVABLE + COMPACT_ASYNC_UNMOVABLE).  Please see the
following thread:

	http://marc.info/?l=linux-mm&m=133552069417068&w=2

[minchan@kernel.org: minor cleanups]
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Bartlomiej Zolnierkiewicz <b.zolnierkie@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29 16:22:22 -07:00
Michal Nazarewicz
47118af076 mm: mmzone: MIGRATE_CMA migration type added
The MIGRATE_CMA migration type has two main characteristics:
(i) only movable pages can be allocated from MIGRATE_CMA
pageblocks and (ii) page allocator will never change migration
type of MIGRATE_CMA pageblocks.

This guarantees (to some degree) that page in a MIGRATE_CMA page
block can always be migrated somewhere else (unless there's no
memory left in the system).

It is designed to be used for allocating big chunks (eg. 10MiB)
of physically contiguous memory.  Once driver requests
contiguous memory, pages from MIGRATE_CMA pageblocks may be
migrated away to create a contiguous block.

To minimise number of migrations, MIGRATE_CMA migration type
is the last type tried when page allocator falls back to other
migration types when requested.

Signed-off-by: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Tested-by: Rob Clark <rob.clark@linaro.org>
Tested-by: Ohad Ben-Cohen <ohad@wizery.com>
Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org>
Tested-by: Robert Nelson <robertcnelson@gmail.com>
Tested-by: Barry Song <Baohua.Song@csr.com>
2012-05-21 15:09:32 +02:00
Michal Nazarewicz
ff9543fd32 mm: compaction: export some of the functions
This commit exports some of the functions from compaction.c file
outside of it adding their declaration into internal.h header
file so that other mm related code can use them.

This forced compaction.c to always be compiled (as opposed to being
compiled only if CONFIG_COMPACTION is defined) but as to avoid
introducing code that user did not ask for, part of the compaction.c
is now wrapped in on #ifdef.

Signed-off-by: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Tested-by: Rob Clark <rob.clark@linaro.org>
Tested-by: Ohad Ben-Cohen <ohad@wizery.com>
Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org>
Tested-by: Robert Nelson <robertcnelson@gmail.com>
Tested-by: Barry Song <Baohua.Song@csr.com>
2012-05-21 15:09:30 +02:00
Michal Nazarewicz
85aa125f00 mm: compaction: introduce isolate_freepages_range()
This commit introduces isolate_freepages_range() function which
generalises isolate_freepages_block() so that it can be used on
arbitrary PFN ranges.

isolate_freepages_block() is left with only minor changes.

Signed-off-by: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Tested-by: Rob Clark <rob.clark@linaro.org>
Tested-by: Ohad Ben-Cohen <ohad@wizery.com>
Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org>
Tested-by: Robert Nelson <robertcnelson@gmail.com>
Tested-by: Barry Song <Baohua.Song@csr.com>
2012-05-21 15:09:29 +02:00
Michal Nazarewicz
03d44192f6 mm: compaction: introduce map_pages()
This commit creates a map_pages() function which map pages freed
using split_free_pages().  This merely moves some code from
isolate_freepages() so that it can be reused in other places.

Signed-off-by: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Tested-by: Robert Nelson <robertcnelson@gmail.com>
Tested-by: Barry Song <Baohua.Song@csr.com>
2012-05-21 15:09:28 +02:00
Michal Nazarewicz
2fe86e0004 mm: compaction: introduce isolate_migratepages_range()
This commit introduces isolate_migratepages_range() function which
extracts functionality from isolate_migratepages() so that it can be
used on arbitrary PFN ranges.

isolate_migratepages() function is implemented as a simple wrapper
around isolate_migratepages_range().

Signed-off-by: Michal Nazarewicz <mina86@mina86.com>
Signed-off-by: Marek Szyprowski <m.szyprowski@samsung.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Tested-by: Rob Clark <rob.clark@linaro.org>
Tested-by: Ohad Ben-Cohen <ohad@wizery.com>
Tested-by: Benjamin Gaignard <benjamin.gaignard@linaro.org>
Tested-by: Robert Nelson <robertcnelson@gmail.com>
Tested-by: Barry Song <Baohua.Song@csr.com>
2012-05-21 15:09:27 +02:00
Dan Carpenter
aad6ec3777 mm: compaction: make compact_control order signed
"order" is -1 when compacting via /proc/sys/vm/compact_memory.  Making
it unsigned causes a bug in __compact_pgdat() when we test:

	if (cc->order < 0 || !compaction_deferred(zone, cc->order))
		compact_zone(zone, cc);

[akpm@linux-foundation.org: make __compact_pgdat()'s comparison match other code sites]
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: Minchan Kim <minchan@kernel.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:56 -07:00
Hugh Dickins
8575ec29f6 compact_pgdat: workaround lockdep warning in kswapd
I get this lockdep warning from swapping load on linux-next, due to
"vmscan: kswapd carefully call compaction".

=================================
[ INFO: inconsistent lock state ]
3.3.0-rc2-next-20120201 #5 Not tainted
---------------------------------
inconsistent {RECLAIM_FS-ON-W} -> {IN-RECLAIM_FS-W} usage.
kswapd0/28 [HC0[0]:SC0[0]:HE1:SE1] takes:
 (pcpu_alloc_mutex){+.+.?.}, at: [<ffffffff810d6684>] pcpu_alloc+0x67/0x325
{RECLAIM_FS-ON-W} state was registered at:
  [<ffffffff81099b75>] mark_held_locks+0xd7/0x103
  [<ffffffff8109a13c>] lockdep_trace_alloc+0x85/0x9e
  [<ffffffff810f6bdc>] __kmalloc+0x6c/0x14b
  [<ffffffff810d57fd>] pcpu_mem_zalloc+0x59/0x62
  [<ffffffff810d5d16>] pcpu_extend_area_map+0x26/0xb1
  [<ffffffff810d679f>] pcpu_alloc+0x182/0x325
  [<ffffffff810d694d>] __alloc_percpu+0xb/0xd
  [<ffffffff8142ebfd>] snmp_mib_init+0x1e/0x2e
  [<ffffffff8185cd8d>] ipv4_mib_init_net+0x7a/0x184
  [<ffffffff813dc963>] ops_init.clone.0+0x6b/0x73
  [<ffffffff813dc9cc>] register_pernet_operations+0x61/0xa0
  [<ffffffff813dca8e>] register_pernet_subsys+0x29/0x42
  [<ffffffff8185d044>] inet_init+0x1ad/0x252
  [<ffffffff810002e3>] do_one_initcall+0x7a/0x12f
  [<ffffffff81832bc5>] kernel_init+0x9d/0x11e
  [<ffffffff814e51e4>] kernel_thread_helper+0x4/0x10
irq event stamp: 656613
hardirqs last  enabled at (656613): [<ffffffff814e0ddc>] __mutex_unlock_slowpath+0x104/0x128
hardirqs last disabled at (656612): [<ffffffff814e0d34>] __mutex_unlock_slowpath+0x5c/0x128
softirqs last  enabled at (655568): [<ffffffff8105b4a5>] __do_softirq+0x120/0x136
softirqs last disabled at (654757): [<ffffffff814e52dc>] call_softirq+0x1c/0x30

other info that might help us debug this:
 Possible unsafe locking scenario:

       CPU0
       ----
  lock(pcpu_alloc_mutex);
  <Interrupt>
    lock(pcpu_alloc_mutex);

 *** DEADLOCK ***

no locks held by kswapd0/28.

stack backtrace:
Pid: 28, comm: kswapd0 Not tainted 3.3.0-rc2-next-20120201 #5
Call Trace:
 [<ffffffff810981f4>] print_usage_bug+0x1bf/0x1d0
 [<ffffffff81096c3e>] ? print_irq_inversion_bug+0x1d9/0x1d9
 [<ffffffff810982c0>] mark_lock_irq+0xbb/0x22e
 [<ffffffff810c5399>] ? free_hot_cold_page+0x13d/0x14f
 [<ffffffff81098684>] mark_lock+0x251/0x331
 [<ffffffff81098893>] mark_irqflags+0x12f/0x141
 [<ffffffff81098e32>] __lock_acquire+0x58d/0x753
 [<ffffffff810d6684>] ? pcpu_alloc+0x67/0x325
 [<ffffffff81099433>] lock_acquire+0x54/0x6a
 [<ffffffff810d6684>] ? pcpu_alloc+0x67/0x325
 [<ffffffff8107a5b8>] ? add_preempt_count+0xa9/0xae
 [<ffffffff814e0a21>] mutex_lock_nested+0x5e/0x315
 [<ffffffff810d6684>] ? pcpu_alloc+0x67/0x325
 [<ffffffff81098f81>] ? __lock_acquire+0x6dc/0x753
 [<ffffffff810c9fb0>] ? __pagevec_release+0x2c/0x2c
 [<ffffffff810d6684>] pcpu_alloc+0x67/0x325
 [<ffffffff810c9fb0>] ? __pagevec_release+0x2c/0x2c
 [<ffffffff810d694d>] __alloc_percpu+0xb/0xd
 [<ffffffff8106c35e>] schedule_on_each_cpu+0x23/0x110
 [<ffffffff810c9fcb>] lru_add_drain_all+0x10/0x12
 [<ffffffff810f126f>] __compact_pgdat+0x20/0x182
 [<ffffffff810f15c2>] compact_pgdat+0x27/0x29
 [<ffffffff810c306b>] ? zone_watermark_ok+0x1a/0x1c
 [<ffffffff810cdf6f>] balance_pgdat+0x732/0x751
 [<ffffffff810ce0ed>] kswapd+0x15f/0x178
 [<ffffffff810cdf8e>] ? balance_pgdat+0x751/0x751
 [<ffffffff8106fd11>] kthread+0x84/0x8c
 [<ffffffff814e51e4>] kernel_thread_helper+0x4/0x10
 [<ffffffff810787ed>] ? finish_task_switch+0x85/0xea
 [<ffffffff814e3861>] ? retint_restore_args+0xe/0xe
 [<ffffffff8106fc8d>] ? __init_kthread_worker+0x56/0x56
 [<ffffffff814e51e0>] ? gs_change+0xb/0xb

The RECLAIM_FS notations indicate that it's doing the GFP_FS checking that
Nick hacked into lockdep a while back: I think we're intended to read that
"<Interrupt>" in the DEADLOCK scenario as "<Direct reclaim>".

I'm hazy, I have not reached any conclusion as to whether it's right to
complain or not; but I believe it's uneasy about kswapd now doing the
mutex_lock(&pcpu_alloc_mutex) which lru_add_drain_all() entails.  Nor have
I reached any conclusion as to whether it's important for kswapd to do
that draining or not.

But so as not to get blocked on this, with lockdep disabled from giving
further reports, here's a patch which removes the lru_add_drain_all() from
kswapd's callpath (and calls it only once from compact_nodes(), instead of
once per node).

Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Tejun Heo <tj@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:56 -07:00
Rik van Riel
aff622495c vmscan: only defer compaction for failed order and higher
Currently a failed order-9 (transparent hugepage) compaction can lead to
memory compaction being temporarily disabled for a memory zone.  Even if
we only need compaction for an order 2 allocation, eg.  for jumbo frames
networking.

The fix is relatively straightforward: keep track of the highest order at
which compaction is succeeding, and only defer compaction for orders at
which compaction is failing.

Signed-off-by: Rik van Riel <riel@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Hillf Danton <dhillf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-03-21 17:54:56 -07:00