mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-06 02:24:14 +08:00
d3345fecf9
41 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Dmitry Vyukov
|
68a6772f11 |
perf bench: Add breakpoint benchmarks
Add 2 benchmarks: 1. Performance of thread creation/exiting in presence of breakpoints. 2. Performance of breakpoint modification in presence of threads. The benchmarks capture use cases that we are interested in: using inheritable breakpoints in large highly-threaded applications. The benchmarks show significant slowdown imposed by breakpoints (even when they don't fire). Testing on Intel 8173M with 112 HW threads show: perf bench --repeat=56 breakpoint thread --breakpoints=0 --parallelism=56 --threads=20 78.675000 usecs/op perf bench --repeat=56 breakpoint thread --breakpoints=4 --parallelism=56 --threads=20 12967.135714 usecs/op That's 165x slowdown due to presence of the breakpoints. perf bench --repeat=20000 breakpoint enable --passive=0 --active=0 1.433250 usecs/op perf bench --repeat=20000 breakpoint enable --passive=224 --active=0 585.318400 usecs/op perf bench --repeat=20000 breakpoint enable --passive=0 --active=111 635.953000 usecs/op That's 408x and 444x slowdown due to presence of threads. Profiles show some overhead in toggle_bp_slot, but also very high contention: 90.83% breakpoint-thre [kernel.kallsyms] [k] osq_lock 4.69% breakpoint-thre [kernel.kallsyms] [k] mutex_spin_on_owner 2.06% breakpoint-thre [kernel.kallsyms] [k] __reserve_bp_slot 2.04% breakpoint-thre [kernel.kallsyms] [k] toggle_bp_slot 79.01% breakpoint-enab [kernel.kallsyms] [k] smp_call_function_single 9.94% breakpoint-enab [kernel.kallsyms] [k] llist_add_batch 5.70% breakpoint-enab [kernel.kallsyms] [k] _raw_spin_lock_irq 1.84% breakpoint-enab [kernel.kallsyms] [k] event_function_call 1.12% breakpoint-enab [kernel.kallsyms] [k] send_call_function_single_ipi 0.37% breakpoint-enab [kernel.kallsyms] [k] generic_exec_single 0.24% breakpoint-enab [kernel.kallsyms] [k] __perf_event_disable 0.20% breakpoint-enab [kernel.kallsyms] [k] _perf_event_enable 0.18% breakpoint-enab [kernel.kallsyms] [k] toggle_bp_slot Committer notes: Fixup struct init for older compilers: 3 32.90 alpine:3.5 : FAIL clang version 3.8.1 (tags/RELEASE_381/final) bench/breakpoint.c:49:34: error: missing field 'size' initializer [-Werror,-Wmissing-field-initializers] struct perf_event_attr attr = {0}; ^ 1 error generated. 7 37.31 alpine:3.9 : FAIL gcc version 8.3.0 (Alpine 8.3.0) bench/breakpoint.c:49:34: error: missing field 'size' initializer [-Werror,-Wmissing-field-initializers] struct perf_event_attr attr = {0}; ^ 1 error generated. Signed-off-by: Dmitriy Vyukov <dvyukov@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Ian Rogers <irogers@google.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Marco Elver <elver@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/20220505155745.1690906-1-dvyukov@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Sohaib Mohamed
|
f0a29c9647 |
perf bench: Use unbuffered output when pipe/tee'ing to a file
The output of 'perf bench' gets buffered when I pipe it to a file or to tee, in such a way that I can see it only at the end. E.g. $ perf bench internals synthesize -t < output comes out fine after each test run > $ perf bench internals synthesize -t | tee file.txt < output comes out only at the end of all tests > This patch resolves this issue for 'bench' and 'test' subcommands. See, also: $ perf bench mem all | tee file.txt $ perf bench sched all | tee file.txt $ perf bench internals all -t | tee file.txt $ perf bench internals all | tee file.txt Committer testing: It really gets staggered, i.e. outputs in bursts, when the buffer fills up and has to be drained to make up space for more output. Suggested-by: Riccardo Mancini <rickyman7@gmail.com> Signed-off-by: Sohaib Mohamed <sohaib.amhmd@gmail.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Fabian Hemmer <copy@copy.sh> Cc: Ian Rogers <irogers@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/20211119061409.78004-1-sohaib.amhmd@gmail.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Riccardo Mancini
|
4241eabf59 |
perf bench: Add benchmark for evlist open/close operations
This new benchmark finds the total time that is taken to open, mmap, enable, disable, munmap, close an evlist (time taken for new, create_maps, config, delete is not counted in). The evlist can be configured as in perf-record using the -a,-C,-e,-u,--per-thread,-t,-p options. The events can be duplicated in the evlist to quickly test performance with many events using the -n options. Furthermore, also the number of iterations used to calculate the statistics is customizable. Examples: - Open one dummy event system-wide: $ sudo ./perf bench internals evlist-open-close Number of cpus: 4 Number of threads: 1 Number of events: 1 (4 fds) Number of iterations: 100 Average open-close took: 613.870 usec (+- 32.852 usec) - Open the group '{cs,cycles}' on CPU 0 $ sudo ./perf bench internals evlist-open-close -e '{cs,cycles}' -C 0 Number of cpus: 1 Number of threads: 1 Number of events: 2 (2 fds) Number of iterations: 100 Average open-close took: 8503.220 usec (+- 252.652 usec) - Open 10 'cycles' events for user 0, calculate average over 100 runs $ sudo ./perf bench internals evlist-open-close -e cycles -n 10 -u 0 -i 100 Number of cpus: 4 Number of threads: 328 Number of events: 10 (13120 fds) Number of iterations: 100 Average open-close took: 180043.140 usec (+- 2295.889 usec) Committer notes: Replaced a deprecated bzero() call with designated initialized zeroing. Added some missing evlist allocation checks, one noted by Riccardo on the mailing list. Minor cosmetic changes (sent in private). Signed-off-by: Riccardo Mancini <rickyman7@gmail.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Ian Rogers <irogers@google.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lore.kernel.org/lkml/20210809201101.277594-1-rickyman7@gmail.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Namhyung Kim
|
0bf02a0d80 |
perf bench: Add build-id injection benchmark
Sometimes I can see that 'perf record' piped with 'perf inject' take a long time processing build-ids. So introduce a inject-build-id benchmark to the internals benchmark suite to measure its overhead regularly. It runs the 'perf inject' command internally and feeds the given number of synthesized events (MMAP2 + SAMPLE basically). Usage: perf bench internals inject-build-id <options> -i, --iterations <n> Number of iterations used to compute average (default: 100) -m, --nr-mmaps <n> Number of mmap events for each iteration (default: 100) -n, --nr-samples <n> Number of sample events per mmap event (default: 100) -v, --verbose be more verbose (show iteration count, DSO name, etc) By default, it measures average processing time of 100 MMAP2 events and 10000 SAMPLE events. Below is a result on my laptop. $ perf bench internals inject-build-id # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 25.789 msec (+- 0.202 msec) Average time per event: 2.528 usec (+- 0.020 usec) Average memory usage: 8411 KB (+- 7 KB) Committer testing: $ perf bench Usage: perf bench [<common options>] <collection> <benchmark> [<options>] # List of all available benchmark collections: sched: Scheduler and IPC benchmarks syscall: System call benchmarks mem: Memory access benchmarks numa: NUMA scheduling and MM benchmarks futex: Futex stressing benchmarks epoll: Epoll stressing benchmarks internals: Perf-internals benchmarks all: All benchmarks $ perf bench internals # List of available benchmarks for collection 'internals': synthesize: Benchmark perf event synthesis kallsyms-parse: Benchmark kallsyms parsing inject-build-id: Benchmark build-id injection $ perf bench internals inject-build-id # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.202 msec (+- 0.059 msec) Average time per event: 1.392 usec (+- 0.006 usec) Average memory usage: 12650 KB (+- 10 KB) Average build-id-all injection took: 12.831 msec (+- 0.071 msec) Average time per event: 1.258 usec (+- 0.007 usec) Average memory usage: 11895 KB (+- 10 KB) $ $ perf stat -r5 perf bench internals inject-build-id # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.380 msec (+- 0.056 msec) Average time per event: 1.410 usec (+- 0.006 usec) Average memory usage: 12608 KB (+- 11 KB) Average build-id-all injection took: 11.889 msec (+- 0.064 msec) Average time per event: 1.166 usec (+- 0.006 usec) Average memory usage: 11838 KB (+- 10 KB) # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.246 msec (+- 0.065 msec) Average time per event: 1.397 usec (+- 0.006 usec) Average memory usage: 12744 KB (+- 10 KB) Average build-id-all injection took: 12.019 msec (+- 0.066 msec) Average time per event: 1.178 usec (+- 0.006 usec) Average memory usage: 11963 KB (+- 10 KB) # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.321 msec (+- 0.067 msec) Average time per event: 1.404 usec (+- 0.007 usec) Average memory usage: 12690 KB (+- 10 KB) Average build-id-all injection took: 11.909 msec (+- 0.041 msec) Average time per event: 1.168 usec (+- 0.004 usec) Average memory usage: 11938 KB (+- 10 KB) # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.287 msec (+- 0.059 msec) Average time per event: 1.401 usec (+- 0.006 usec) Average memory usage: 12864 KB (+- 10 KB) Average build-id-all injection took: 11.862 msec (+- 0.058 msec) Average time per event: 1.163 usec (+- 0.006 usec) Average memory usage: 12103 KB (+- 10 KB) # Running 'internals/inject-build-id' benchmark: Average build-id injection took: 14.402 msec (+- 0.053 msec) Average time per event: 1.412 usec (+- 0.005 usec) Average memory usage: 12876 KB (+- 10 KB) Average build-id-all injection took: 11.826 msec (+- 0.061 msec) Average time per event: 1.159 usec (+- 0.006 usec) Average memory usage: 12111 KB (+- 10 KB) Performance counter stats for 'perf bench internals inject-build-id' (5 runs): 4,267.48 msec task-clock:u # 1.502 CPUs utilized ( +- 0.14% ) 0 context-switches:u # 0.000 K/sec 0 cpu-migrations:u # 0.000 K/sec 102,092 page-faults:u # 0.024 M/sec ( +- 0.08% ) 3,894,589,578 cycles:u # 0.913 GHz ( +- 0.19% ) (83.49%) 140,078,421 stalled-cycles-frontend:u # 3.60% frontend cycles idle ( +- 0.77% ) (83.34%) 948,581,189 stalled-cycles-backend:u # 24.36% backend cycles idle ( +- 0.46% ) (83.25%) 5,835,587,719 instructions:u # 1.50 insn per cycle # 0.16 stalled cycles per insn ( +- 0.21% ) (83.24%) 1,267,423,636 branches:u # 296.996 M/sec ( +- 0.22% ) (83.12%) 17,484,290 branch-misses:u # 1.38% of all branches ( +- 0.12% ) (83.55%) 2.84176 +- 0.00222 seconds time elapsed ( +- 0.08% ) $ Acked-by: Jiri Olsa <jolsa@redhat.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Signed-off-by: Namhyung Kim <namhyung@kernel.org> Link: https://lore.kernel.org/r/20201012070214.2074921-2-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Ian Rogers
|
7c43b0c1d4 |
perf bench: Add benchmark of find_next_bit
for_each_set_bit, or similar functions like for_each_cpu, may be hot within the kernel. If many bits were set then one could imagine on Intel a "bt" instruction with every bit may be faster than the function call and word length find_next_bit logic. Add a benchmark to measure this. This benchmark on AMD rome and Intel skylakex shows "bt" is not a good option except for very small bitmaps. Committer testing: # perf bench Usage: perf bench [<common options>] <collection> <benchmark> [<options>] # List of all available benchmark collections: sched: Scheduler and IPC benchmarks syscall: System call benchmarks mem: Memory access benchmarks numa: NUMA scheduling and MM benchmarks futex: Futex stressing benchmarks epoll: Epoll stressing benchmarks internals: Perf-internals benchmarks all: All benchmarks # perf bench mem # List of available benchmarks for collection 'mem': memcpy: Benchmark for memcpy() functions memset: Benchmark for memset() functions find_bit: Benchmark for find_bit() functions all: Run all memory access benchmarks # perf bench mem find_bit # Running 'mem/find_bit' benchmark: 100000 operations 1 bits set of 1 bits Average for_each_set_bit took: 730.200 usec (+- 6.468 usec) Average test_bit loop took: 366.200 usec (+- 4.652 usec) 100000 operations 1 bits set of 2 bits Average for_each_set_bit took: 781.000 usec (+- 24.247 usec) Average test_bit loop took: 550.200 usec (+- 4.152 usec) 100000 operations 2 bits set of 2 bits Average for_each_set_bit took: 1113.400 usec (+- 112.340 usec) Average test_bit loop took: 1098.500 usec (+- 182.834 usec) 100000 operations 1 bits set of 4 bits Average for_each_set_bit took: 843.800 usec (+- 8.772 usec) Average test_bit loop took: 948.800 usec (+- 10.278 usec) 100000 operations 2 bits set of 4 bits Average for_each_set_bit took: 1185.800 usec (+- 114.345 usec) Average test_bit loop took: 1473.200 usec (+- 175.498 usec) 100000 operations 4 bits set of 4 bits Average for_each_set_bit took: 1769.667 usec (+- 233.177 usec) Average test_bit loop took: 1864.933 usec (+- 187.470 usec) 100000 operations 1 bits set of 8 bits Average for_each_set_bit took: 898.000 usec (+- 21.755 usec) Average test_bit loop took: 1768.400 usec (+- 23.672 usec) 100000 operations 2 bits set of 8 bits Average for_each_set_bit took: 1244.900 usec (+- 116.396 usec) Average test_bit loop took: 2201.800 usec (+- 145.398 usec) 100000 operations 4 bits set of 8 bits Average for_each_set_bit took: 1822.533 usec (+- 231.554 usec) Average test_bit loop took: 2569.467 usec (+- 168.453 usec) 100000 operations 8 bits set of 8 bits Average for_each_set_bit took: 2845.100 usec (+- 441.365 usec) Average test_bit loop took: 3023.300 usec (+- 219.575 usec) 100000 operations 1 bits set of 16 bits Average for_each_set_bit took: 923.400 usec (+- 17.560 usec) Average test_bit loop took: 3240.000 usec (+- 16.492 usec) 100000 operations 2 bits set of 16 bits Average for_each_set_bit took: 1264.300 usec (+- 114.034 usec) Average test_bit loop took: 3714.400 usec (+- 158.898 usec) 100000 operations 4 bits set of 16 bits Average for_each_set_bit took: 1817.867 usec (+- 222.199 usec) Average test_bit loop took: 4015.333 usec (+- 154.162 usec) 100000 operations 8 bits set of 16 bits Average for_each_set_bit took: 2826.350 usec (+- 433.457 usec) Average test_bit loop took: 4460.350 usec (+- 210.762 usec) 100000 operations 16 bits set of 16 bits Average for_each_set_bit took: 4615.600 usec (+- 809.350 usec) Average test_bit loop took: 5129.960 usec (+- 320.821 usec) 100000 operations 1 bits set of 32 bits Average for_each_set_bit took: 904.400 usec (+- 14.250 usec) Average test_bit loop took: 6194.000 usec (+- 29.254 usec) 100000 operations 2 bits set of 32 bits Average for_each_set_bit took: 1252.700 usec (+- 116.432 usec) Average test_bit loop took: 6652.400 usec (+- 154.352 usec) 100000 operations 4 bits set of 32 bits Average for_each_set_bit took: 1824.200 usec (+- 229.133 usec) Average test_bit loop took: 6961.733 usec (+- 154.682 usec) 100000 operations 8 bits set of 32 bits Average for_each_set_bit took: 2823.950 usec (+- 432.296 usec) Average test_bit loop took: 7351.900 usec (+- 193.626 usec) 100000 operations 16 bits set of 32 bits Average for_each_set_bit took: 4552.560 usec (+- 785.141 usec) Average test_bit loop took: 7998.360 usec (+- 305.629 usec) 100000 operations 32 bits set of 32 bits Average for_each_set_bit took: 7557.067 usec (+- 1407.702 usec) Average test_bit loop took: 9072.400 usec (+- 513.209 usec) 100000 operations 1 bits set of 64 bits Average for_each_set_bit took: 896.800 usec (+- 14.389 usec) Average test_bit loop took: 11927.200 usec (+- 68.862 usec) 100000 operations 2 bits set of 64 bits Average for_each_set_bit took: 1230.400 usec (+- 111.731 usec) Average test_bit loop took: 12478.600 usec (+- 189.382 usec) 100000 operations 4 bits set of 64 bits Average for_each_set_bit took: 1844.733 usec (+- 244.826 usec) Average test_bit loop took: 12911.467 usec (+- 206.246 usec) 100000 operations 8 bits set of 64 bits Average for_each_set_bit took: 2779.300 usec (+- 413.612 usec) Average test_bit loop took: 13372.650 usec (+- 239.623 usec) 100000 operations 16 bits set of 64 bits Average for_each_set_bit took: 4423.920 usec (+- 748.240 usec) Average test_bit loop took: 13995.800 usec (+- 318.427 usec) 100000 operations 32 bits set of 64 bits Average for_each_set_bit took: 7580.600 usec (+- 1462.407 usec) Average test_bit loop took: 15063.067 usec (+- 516.477 usec) 100000 operations 64 bits set of 64 bits Average for_each_set_bit took: 13391.514 usec (+- 2765.371 usec) Average test_bit loop took: 16974.914 usec (+- 916.936 usec) 100000 operations 1 bits set of 128 bits Average for_each_set_bit took: 1153.800 usec (+- 124.245 usec) Average test_bit loop took: 26959.000 usec (+- 714.047 usec) 100000 operations 2 bits set of 128 bits Average for_each_set_bit took: 1445.200 usec (+- 113.587 usec) Average test_bit loop took: 25798.800 usec (+- 512.908 usec) 100000 operations 4 bits set of 128 bits Average for_each_set_bit took: 1990.933 usec (+- 219.362 usec) Average test_bit loop took: 25589.400 usec (+- 348.288 usec) 100000 operations 8 bits set of 128 bits Average for_each_set_bit took: 2963.000 usec (+- 419.487 usec) Average test_bit loop took: 25690.050 usec (+- 262.025 usec) 100000 operations 16 bits set of 128 bits Average for_each_set_bit took: 4585.200 usec (+- 741.734 usec) Average test_bit loop took: 26125.040 usec (+- 274.127 usec) 100000 operations 32 bits set of 128 bits Average for_each_set_bit took: 7626.200 usec (+- 1404.950 usec) Average test_bit loop took: 27038.867 usec (+- 442.554 usec) 100000 operations 64 bits set of 128 bits Average for_each_set_bit took: 13343.371 usec (+- 2686.460 usec) Average test_bit loop took: 28936.543 usec (+- 883.257 usec) 100000 operations 128 bits set of 128 bits Average for_each_set_bit took: 23442.950 usec (+- 4880.541 usec) Average test_bit loop took: 32484.125 usec (+- 1691.931 usec) 100000 operations 1 bits set of 256 bits Average for_each_set_bit took: 1183.000 usec (+- 32.073 usec) Average test_bit loop took: 50114.600 usec (+- 198.880 usec) 100000 operations 2 bits set of 256 bits Average for_each_set_bit took: 1550.000 usec (+- 124.550 usec) Average test_bit loop took: 50334.200 usec (+- 128.425 usec) 100000 operations 4 bits set of 256 bits Average for_each_set_bit took: 2164.333 usec (+- 246.359 usec) Average test_bit loop took: 49959.867 usec (+- 188.035 usec) 100000 operations 8 bits set of 256 bits Average for_each_set_bit took: 3211.200 usec (+- 454.829 usec) Average test_bit loop took: 50140.850 usec (+- 176.046 usec) 100000 operations 16 bits set of 256 bits Average for_each_set_bit took: 5181.640 usec (+- 882.726 usec) Average test_bit loop took: 51003.160 usec (+- 419.601 usec) 100000 operations 32 bits set of 256 bits Average for_each_set_bit took: 8369.333 usec (+- 1513.150 usec) Average test_bit loop took: 52096.700 usec (+- 573.022 usec) 100000 operations 64 bits set of 256 bits Average for_each_set_bit took: 13866.857 usec (+- 2649.393 usec) Average test_bit loop took: 53989.600 usec (+- 938.808 usec) 100000 operations 128 bits set of 256 bits Average for_each_set_bit took: 23588.350 usec (+- 4724.222 usec) Average test_bit loop took: 57300.625 usec (+- 1625.962 usec) 100000 operations 256 bits set of 256 bits Average for_each_set_bit took: 42752.200 usec (+- 9202.084 usec) Average test_bit loop took: 64426.933 usec (+- 3402.326 usec) 100000 operations 1 bits set of 512 bits Average for_each_set_bit took: 1632.000 usec (+- 229.954 usec) Average test_bit loop took: 98090.000 usec (+- 1120.435 usec) 100000 operations 2 bits set of 512 bits Average for_each_set_bit took: 1937.700 usec (+- 148.902 usec) Average test_bit loop took: 100364.100 usec (+- 1433.219 usec) 100000 operations 4 bits set of 512 bits Average for_each_set_bit took: 2528.000 usec (+- 243.654 usec) Average test_bit loop took: 99932.067 usec (+- 955.868 usec) 100000 operations 8 bits set of 512 bits Average for_each_set_bit took: 3734.100 usec (+- 512.359 usec) Average test_bit loop took: 98944.750 usec (+- 812.070 usec) 100000 operations 16 bits set of 512 bits Average for_each_set_bit took: 5551.400 usec (+- 846.605 usec) Average test_bit loop took: 98691.600 usec (+- 654.753 usec) 100000 operations 32 bits set of 512 bits Average for_each_set_bit took: 8594.500 usec (+- 1446.072 usec) Average test_bit loop took: 99176.867 usec (+- 579.990 usec) 100000 operations 64 bits set of 512 bits Average for_each_set_bit took: 13840.743 usec (+- 2527.055 usec) Average test_bit loop took: 100758.743 usec (+- 833.865 usec) 100000 operations 128 bits set of 512 bits Average for_each_set_bit took: 23185.925 usec (+- 4532.910 usec) Average test_bit loop took: 103786.700 usec (+- 1475.276 usec) 100000 operations 256 bits set of 512 bits Average for_each_set_bit took: 40322.400 usec (+- 8341.802 usec) Average test_bit loop took: 109433.378 usec (+- 2742.615 usec) 100000 operations 512 bits set of 512 bits Average for_each_set_bit took: 71804.540 usec (+- 15436.546 usec) Average test_bit loop took: 120255.440 usec (+- 5252.777 usec) 100000 operations 1 bits set of 1024 bits Average for_each_set_bit took: 1859.600 usec (+- 27.969 usec) Average test_bit loop took: 187676.000 usec (+- 1337.770 usec) 100000 operations 2 bits set of 1024 bits Average for_each_set_bit took: 2273.600 usec (+- 139.420 usec) Average test_bit loop took: 188176.000 usec (+- 684.357 usec) 100000 operations 4 bits set of 1024 bits Average for_each_set_bit took: 2940.400 usec (+- 268.213 usec) Average test_bit loop took: 189172.600 usec (+- 593.295 usec) 100000 operations 8 bits set of 1024 bits Average for_each_set_bit took: 4224.200 usec (+- 547.933 usec) Average test_bit loop took: 190257.250 usec (+- 621.021 usec) 100000 operations 16 bits set of 1024 bits Average for_each_set_bit took: 6090.560 usec (+- 877.975 usec) Average test_bit loop took: 190143.880 usec (+- 503.753 usec) 100000 operations 32 bits set of 1024 bits Average for_each_set_bit took: 9178.800 usec (+- 1475.136 usec) Average test_bit loop took: 190757.100 usec (+- 494.757 usec) 100000 operations 64 bits set of 1024 bits Average for_each_set_bit took: 14441.457 usec (+- 2545.497 usec) Average test_bit loop took: 192299.486 usec (+- 795.251 usec) 100000 operations 128 bits set of 1024 bits Average for_each_set_bit took: 23623.825 usec (+- 4481.182 usec) Average test_bit loop took: 194885.550 usec (+- 1300.817 usec) 100000 operations 256 bits set of 1024 bits Average for_each_set_bit took: 40194.956 usec (+- 8109.056 usec) Average test_bit loop took: 200259.311 usec (+- 2566.085 usec) 100000 operations 512 bits set of 1024 bits Average for_each_set_bit took: 70983.560 usec (+- 15074.982 usec) Average test_bit loop took: 210527.460 usec (+- 4968.980 usec) 100000 operations 1024 bits set of 1024 bits Average for_each_set_bit took: 136530.345 usec (+- 31584.400 usec) Average test_bit loop took: 233329.691 usec (+- 10814.036 usec) 100000 operations 1 bits set of 2048 bits Average for_each_set_bit took: 3077.600 usec (+- 76.376 usec) Average test_bit loop took: 402154.400 usec (+- 518.571 usec) 100000 operations 2 bits set of 2048 bits Average for_each_set_bit took: 3508.600 usec (+- 148.350 usec) Average test_bit loop took: 403814.500 usec (+- 1133.027 usec) 100000 operations 4 bits set of 2048 bits Average for_each_set_bit took: 4219.333 usec (+- 285.844 usec) Average test_bit loop took: 404312.533 usec (+- 985.751 usec) 100000 operations 8 bits set of 2048 bits Average for_each_set_bit took: 5670.550 usec (+- 615.238 usec) Average test_bit loop took: 405321.800 usec (+- 1038.487 usec) 100000 operations 16 bits set of 2048 bits Average for_each_set_bit took: 7785.080 usec (+- 992.522 usec) Average test_bit loop took: 406746.160 usec (+- 1015.478 usec) 100000 operations 32 bits set of 2048 bits Average for_each_set_bit took: 11163.800 usec (+- 1627.320 usec) Average test_bit loop took: 406124.267 usec (+- 898.785 usec) 100000 operations 64 bits set of 2048 bits Average for_each_set_bit took: 16964.629 usec (+- 2806.130 usec) Average test_bit loop took: 406618.514 usec (+- 798.356 usec) 100000 operations 128 bits set of 2048 bits Average for_each_set_bit took: 27219.625 usec (+- 4988.458 usec) Average test_bit loop took: 410149.325 usec (+- 1705.641 usec) 100000 operations 256 bits set of 2048 bits Average for_each_set_bit took: 45138.578 usec (+- 8831.021 usec) Average test_bit loop took: 415462.467 usec (+- 2725.418 usec) 100000 operations 512 bits set of 2048 bits Average for_each_set_bit took: 77450.540 usec (+- 15962.238 usec) Average test_bit loop took: 426089.180 usec (+- 5171.788 usec) 100000 operations 1024 bits set of 2048 bits Average for_each_set_bit took: 138023.636 usec (+- 29826.959 usec) Average test_bit loop took: 446346.636 usec (+- 9904.417 usec) 100000 operations 2048 bits set of 2048 bits Average for_each_set_bit took: 251072.600 usec (+- 55947.692 usec) Average test_bit loop took: 484855.983 usec (+- 18970.431 usec) # Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200729220034.1337168-1-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Davidlohr Bueso
|
c2a0820305 |
perf bench: Add basic syscall benchmark
The usefulness of having a standard way of testing syscall performance has come up from time to time[0]. Furthermore, some of our testing machinery (such as 'mmtests') already makes use of a simplified version of the microbenchmark. This patch mainly takes the same idea to measure syscall throughput compatible with 'perf-bench' via getppid(2), yet without any of the additional template stuff from Ingo's version (based on numa.c). The code is identical to what mmtests uses. [0] https://lore.kernel.org/lkml/20160201074156.GA27156@gmail.com/ Committer notes: Add mising stdlib.h and unistd.h to get the prototypes for exit() and getppid(). Committer testing: $ perf bench Usage: perf bench [<common options>] <collection> <benchmark> [<options>] # List of all available benchmark collections: sched: Scheduler and IPC benchmarks syscall: System call benchmarks mem: Memory access benchmarks numa: NUMA scheduling and MM benchmarks futex: Futex stressing benchmarks epoll: Epoll stressing benchmarks internals: Perf-internals benchmarks all: All benchmarks $ $ perf bench syscall # List of available benchmarks for collection 'syscall': basic: Benchmark for basic getppid(2) calls all: Run all syscall benchmarks $ perf bench syscall basic # Running 'syscall/basic' benchmark: # Executed 10000000 getppid() calls Total time: 3.679 [sec] 0.367957 usecs/op 2717708 ops/sec $ perf bench syscall all # Running syscall/basic benchmark... # Executed 10000000 getppid() calls Total time: 3.644 [sec] 0.364456 usecs/op 2743815 ops/sec $ Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Acked-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Mel Gorman <mgorman@techsingularity.net> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Link: http://lore.kernel.org/lkml/20190308181747.l36zqz2avtivrr3c@linux-r8p5 Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Arnaldo Carvalho de Melo
|
ba35fe9358 |
tools feature: Rename HAVE_EVENTFD to HAVE_EVENTFD_SUPPORT
To be consistent with other such auto-detected features. Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Anand K Mistry <amistry@google.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Ian Rogers
|
51876bd452 |
perf bench: Add kallsyms parsing
Add a benchmark for kallsyms parsing. Example output: Running 'internals/kallsyms-parse' benchmark: Average kallsyms__parse took: 103.971 ms (+- 0.121 ms) Committer testing: Test Machine: AMD Ryzen 5 3600X 6-Core Processor [root@five ~]# perf bench internals kallsyms-parse # Running 'internals/kallsyms-parse' benchmark: Average kallsyms__parse took: 79.692 ms (+- 0.101 ms) [root@five ~]# perf stat -r5 perf bench internals kallsyms-parse # Running 'internals/kallsyms-parse' benchmark: Average kallsyms__parse took: 80.563 ms (+- 0.079 ms) # Running 'internals/kallsyms-parse' benchmark: Average kallsyms__parse took: 81.046 ms (+- 0.155 ms) # Running 'internals/kallsyms-parse' benchmark: Average kallsyms__parse took: 80.874 ms (+- 0.104 ms) # Running 'internals/kallsyms-parse' benchmark: Average kallsyms__parse took: 81.173 ms (+- 0.133 ms) # Running 'internals/kallsyms-parse' benchmark: Average kallsyms__parse took: 81.169 ms (+- 0.074 ms) Performance counter stats for 'perf bench internals kallsyms-parse' (5 runs): 8,093.54 msec task-clock # 0.999 CPUs utilized ( +- 0.14% ) 3,165 context-switches # 0.391 K/sec ( +- 0.18% ) 10 cpu-migrations # 0.001 K/sec ( +- 23.13% ) 744 page-faults # 0.092 K/sec ( +- 0.21% ) 34,551,564,954 cycles # 4.269 GHz ( +- 0.05% ) (83.33%) 1,160,584,308 stalled-cycles-frontend # 3.36% frontend cycles idle ( +- 1.60% ) (83.33%) 14,974,323,985 stalled-cycles-backend # 43.34% backend cycles idle ( +- 0.24% ) (83.33%) 58,712,905,705 instructions # 1.70 insn per cycle # 0.26 stalled cycles per insn ( +- 0.01% ) (83.34%) 14,136,433,778 branches # 1746.632 M/sec ( +- 0.01% ) (83.33%) 141,943,217 branch-misses # 1.00% of all branches ( +- 0.04% ) (83.33%) 8.1040 +- 0.0115 seconds time elapsed ( +- 0.14% ) [root@five ~]# Signed-off-by: Ian Rogers <irogers@google.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200501221315.54715-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Ian Rogers
|
2a4b51666a |
perf bench: Add event synthesis benchmark
Event synthesis may occur at the start or end (tail) of a perf command. In system-wide mode it can scan every process in /proc, which may add seconds of latency before event recording. Add a new benchmark that times how long event synthesis takes with and without data synthesis. An example execution looks like: $ perf bench internals synthesize # Running 'internals/synthesize' benchmark: Average synthesis took: 168.253800 usec Average data synthesis took: 208.104700 usec Signed-off-by: Ian Rogers <irogers@google.com> Acked-by: Jiri Olsa <jolsa@redhat.com> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Andrey Zhizhikin <andrey.z@gmail.com> Cc: Kan Liang <kan.liang@linux.intel.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lore.kernel.org/lkml/20200402154357.107873-2-irogers@google.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Arnaldo Carvalho de Melo
|
0ac25fd0a0 |
perf tools: Remove perf.h from source files not needing it
With the movement of lots of stuff out of perf.h to other headers we ended up not needing it in lots of places, remove it from those places. Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Link: https://lkml.kernel.org/n/tip-c718m0sxxwp73lp9d8vpihb4@git.kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Arnaldo Carvalho de Melo
|
7f7c536f23 |
tools lib: Adopt zalloc()/zfree() from tools/perf
Eroding a bit more the tools/perf/util/util.h hodpodge header. Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Link: https://lkml.kernel.org/n/tip-natazosyn9rwjka25tvcnyi0@git.kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Davidlohr Bueso
|
231457ec70 |
perf bench: Add epoll_ctl(2) benchmark
Benchmark the various operations allowed for epoll_ctl(2). The idea is to concurrently stress a single epoll instance doing add/mod/del operations. Committer testing: # perf bench epoll ctl # Running 'epoll/ctl' benchmark: Run summary [PID 20344]: 4 threads doing epoll_ctl ops 64 file-descriptors for 8 secs. [thread 0] fdmap: 0x21a46b0 ... 0x21a47ac [ add: 1680960 ops; mod: 1680960 ops; del: 1680960 ops ] [thread 1] fdmap: 0x21a4960 ... 0x21a4a5c [ add: 1685440 ops; mod: 1685440 ops; del: 1685440 ops ] [thread 2] fdmap: 0x21a4c10 ... 0x21a4d0c [ add: 1674368 ops; mod: 1674368 ops; del: 1674368 ops ] [thread 3] fdmap: 0x21a4ec0 ... 0x21a4fbc [ add: 1677568 ops; mod: 1677568 ops; del: 1677568 ops ] Averaged 1679584 ADD operations (+- 0.14%) Averaged 1679584 MOD operations (+- 0.14%) Averaged 1679584 DEL operations (+- 0.14%) # Lets measure those calls with 'perf trace' to get a glympse at what this benchmark is doing in terms of syscalls: # perf trace -m32768 -s perf bench epoll ctl # Running 'epoll/ctl' benchmark: Run summary [PID 20405]: 4 threads doing epoll_ctl ops 64 file-descriptors for 8 secs. [thread 0] fdmap: 0x21764e0 ... 0x21765dc [ add: 1100480 ops; mod: 1100480 ops; del: 1100480 ops ] [thread 1] fdmap: 0x2176790 ... 0x217688c [ add: 1250176 ops; mod: 1250176 ops; del: 1250176 ops ] [thread 2] fdmap: 0x2176a40 ... 0x2176b3c [ add: 1022464 ops; mod: 1022464 ops; del: 1022464 ops ] [thread 3] fdmap: 0x2176cf0 ... 0x2176dec [ add: 705472 ops; mod: 705472 ops; del: 705472 ops ] Averaged 1019648 ADD operations (+- 11.27%) Averaged 1019648 MOD operations (+- 11.27%) Averaged 1019648 DEL operations (+- 11.27%) Summary of events: epoll-ctl (20405), 1264 events, 0.0% syscall calls total min avg max stddev (msec) (msec) (msec) (msec) (%) --------------- -------- --------- --------- --------- --------- ------ eventfd2 256 9.514 0.001 0.037 5.243 68.00% clone 4 1.245 0.204 0.311 0.531 24.13% mprotect 66 0.345 0.002 0.005 0.021 7.43% openat 45 0.313 0.004 0.007 0.073 21.93% mmap 88 0.302 0.002 0.003 0.013 5.02% futex 4 0.160 0.002 0.040 0.140 83.43% sched_setaffinity 4 0.124 0.005 0.031 0.070 49.39% read 44 0.103 0.001 0.002 0.013 15.54% fstat 40 0.052 0.001 0.001 0.003 5.43% close 39 0.039 0.001 0.001 0.001 1.48% stat 9 0.034 0.003 0.004 0.006 7.30% access 3 0.023 0.007 0.008 0.008 4.25% open 2 0.021 0.008 0.011 0.013 22.60% getdents 4 0.019 0.001 0.005 0.009 37.15% write 2 0.013 0.004 0.007 0.009 38.48% munmap 1 0.010 0.010 0.010 0.010 0.00% brk 3 0.006 0.001 0.002 0.003 26.34% rt_sigprocmask 2 0.004 0.001 0.002 0.003 43.95% rt_sigaction 3 0.004 0.001 0.001 0.002 16.07% prlimit64 3 0.004 0.001 0.001 0.001 5.39% prctl 1 0.003 0.003 0.003 0.003 0.00% epoll_create 1 0.003 0.003 0.003 0.003 0.00% lseek 2 0.002 0.001 0.001 0.001 11.42% sched_getaffinity 1 0.002 0.002 0.002 0.002 0.00% arch_prctl 1 0.002 0.002 0.002 0.002 0.00% set_tid_address 1 0.001 0.001 0.001 0.001 0.00% getpid 1 0.001 0.001 0.001 0.001 0.00% set_robust_list 1 0.001 0.001 0.001 0.001 0.00% execve 1 0.000 0.000 0.000 0.000 0.00% epoll-ctl (20406), 1245480 events, 14.6% syscall calls total min avg max stddev (msec) (msec) (msec) (msec) (%) --------------- -------- --------- --------- --------- --------- ------ epoll_ctl 619511 1034.927 0.001 0.002 6.691 0.67% nanosleep 3226 616.114 0.006 0.191 10.376 7.57% futex 2 11.336 0.002 5.668 11.334 99.97% set_robust_list 1 0.001 0.001 0.001 0.001 0.00% clone 1 0.000 0.000 0.000 0.000 0.00% epoll-ctl (20407), 1243151 events, 14.5% syscall calls total min avg max stddev (msec) (msec) (msec) (msec) (%) --------------- -------- --------- --------- --------- --------- ------ epoll_ctl 618350 1042.181 0.001 0.002 2.512 0.40% nanosleep 3220 366.261 0.012 0.114 18.162 9.59% futex 4 5.463 0.001 1.366 5.427 99.12% set_robust_list 1 0.002 0.002 0.002 0.002 0.00% epoll-ctl (20408), 1801690 events, 21.1% syscall calls total min avg max stddev (msec) (msec) (msec) (msec) (%) --------------- -------- --------- --------- --------- --------- ------ epoll_ctl 896174 1540.581 0.001 0.002 6.987 0.74% nanosleep 4667 783.393 0.006 0.168 10.419 7.10% futex 2 4.682 0.002 2.341 4.681 99.93% set_robust_list 1 0.002 0.002 0.002 0.002 0.00% clone 1 0.000 0.000 0.000 0.000 0.00% epoll-ctl (20409), 4254890 events, 49.8% syscall calls total min avg max stddev (msec) (msec) (msec) (msec) (%) --------------- -------- --------- --------- --------- --------- ------ epoll_ctl 2116416 3768.097 0.001 0.002 9.956 0.41% nanosleep 11023 1141.778 0.006 0.104 9.447 4.95% futex 3 0.037 0.002 0.012 0.029 70.50% set_robust_list 1 0.008 0.008 0.008 0.008 0.00% madvise 1 0.005 0.005 0.005 0.005 0.00% clone 1 0.000 0.000 0.000 0.000 0.00% # Committer notes: Fix build on fedora:24-x-ARC-uClibc, debian:experimental-x-mips, debian:experimental-x-mipsel, ubuntu:16.04-x-arm and ubuntu:16.04-x-powerpc CC /tmp/build/perf/bench/epoll-ctl.o bench/epoll-ctl.c: In function 'init_fdmaps': bench/epoll-ctl.c:214:16: error: comparison between signed and unsigned integer expressions [-Werror=sign-compare] for (i = 0; i < nfds; i+=inc) { ^ bench/epoll-ctl.c: In function 'bench_epoll_ctl': bench/epoll-ctl.c:377:16: error: comparison between signed and unsigned integer expressions [-Werror=sign-compare] for (i = 0; i < nthreads; i++) { ^ bench/epoll-ctl.c:388:16: error: comparison between signed and unsigned integer expressions [-Werror=sign-compare] for (i = 0; i < nthreads; i++) { ^ cc1: all warnings being treated as errors Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: Jason Baron <jbaron@akamai.com> Link: http://lkml.kernel.org/r/20181106152226.20883-3-dave@stgolabs.net [ Use inttypes.h to print rlim_t fields, fixing the build on Alpine Linux / musl libc ] [ Check if eventfd() is available, i.e. if HAVE_EVENTFD is defined ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Davidlohr Bueso
|
121dd9ea01 |
perf bench: Add epoll parallel epoll_wait benchmark
This program benchmarks concurrent epoll_wait(2) for file descriptors that are monitored with with EPOLLIN along various semantics, by a single epoll instance. Such conditions can be found when using single/combined or multiple queuing when load balancing. Each thread has a number of private, nonblocking file descriptors, referred to as fdmap. A writer thread will constantly be writing to the fdmaps of all threads, minimizing each threads's chances of epoll_wait not finding any ready read events and blocking as this is not what we want to stress. Full details in the start of the C file. Committer testing: # perf bench Usage: perf bench [<common options>] <collection> <benchmark> [<options>] # List of all available benchmark collections: sched: Scheduler and IPC benchmarks mem: Memory access benchmarks numa: NUMA scheduling and MM benchmarks futex: Futex stressing benchmarks epoll: Epoll stressing benchmarks all: All benchmarks # perf bench epoll # List of available benchmarks for collection 'epoll': wait: Benchmark epoll concurrent epoll_waits all: Run all futex benchmarks # perf bench epoll wait # Running 'epoll/wait' benchmark: Run summary [PID 19295]: 3 threads monitoring on 64 file-descriptors for 8 secs. [thread 0] fdmap: 0xdaa650 ... 0xdaa74c [ 328241 ops/sec ] [thread 1] fdmap: 0xdaa900 ... 0xdaa9fc [ 351695 ops/sec ] [thread 2] fdmap: 0xdaabb0 ... 0xdaacac [ 381423 ops/sec ] Averaged 353786 operations/sec (+- 4.35%), total secs = 8 # Committer notes: Fix the build on debian:experimental-x-mips, debian:experimental-x-mipsel and others: CC /tmp/build/perf/bench/epoll-wait.o bench/epoll-wait.c: In function 'writerfn': bench/epoll-wait.c:399:12: error: format '%ld' expects argument of type 'long int', but argument 2 has type 'size_t' {aka 'unsigned int'} [-Werror=format=] printinfo("exiting writer-thread (total full-loops: %ld)\n", iter); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~ bench/epoll-wait.c:86:31: note: in definition of macro 'printinfo' do { if (__verbose) { printf(fmt, ## arg); fflush(stdout); } } while (0) ^~~ cc1: all warnings being treated as errors Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Davidlohr Bueso <dbueso@suse.de> Cc: Jason Baron <jbaron@akamai.com> <jbaron@akamai.com> Link: http://lkml.kernel.org/r/20181106152226.20883-2-dave@stgolabs.net Link: http://lkml.kernel.org/r/20181106182349.thdkpvshkna5vd7o@linux-r8p5> [ Applied above fixup as per Davidlohr's request ] [ Use inttypes.h to print rlim_t fields, fixing the build on Alpine Linux / musl libc ] [ Check if eventfd() is available, i.e. if HAVE_EVENTFD is defined ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Greg Kroah-Hartman
|
b24413180f |
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Arnaldo Carvalho de Melo
|
b0ad8ea664 |
perf tools: Remove unused 'prefix' from builtin functions
We got it from the git sources but never used it for anything, with the place where this would be somehow used remaining: static int run_builtin(struct cmd_struct *p, int argc, const char **argv) { prefix = NULL; if (p->option & RUN_SETUP) prefix = NULL; /* setup_perf_directory(); */ Ditch it. Cc: Adrian Hunter <adrian.hunter@intel.com> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Wang Nan <wangnan0@huawei.com> Link: http://lkml.kernel.org/n/tip-uw5swz05vol0qpr32c5lpvus@git.kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Josh Poimboeuf
|
4b6ab94eab |
perf subcmd: Create subcmd library
Move the subcommand-related files from perf to a new library named libsubcmd.a. Since we're moving files anyway, go ahead and rename 'exec_cmd.*' to 'exec-cmd.*' to be consistent with the naming of all the other files. Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/c0a838d4c878ab17fee50998811612b2281355c1.1450193761.git.jpoimboe@redhat.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Ingo Molnar
|
aa254af25c |
perf bench: Run benchmarks, don't test them
So right now we output this text: memcpy: Benchmark for memcpy() functions memset: Benchmark for memset() functions all: Test all memory access benchmarks But the right verb to use with benchmarks is to 'run' them, not 'test' them. So change this (and all similar texts) to: memcpy: Benchmark for memcpy() functions memset: Benchmark for memset() functions all: Run all memory access benchmarks Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: David Ahern <dsahern@gmail.com> Cc: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1445241870-24854-15-git-send-email-mingo@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Ingo Molnar
|
13b1fdce8d |
perf bench mem: Improve user visible strings
- fix various typos in user visible output strings - make the output consistent (wrt. capitalization and spelling) - offer the list of routines to benchmark on '-r help'. Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: David Ahern <dsahern@gmail.com> Cc: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1445241870-24854-11-git-send-email-mingo@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Ingo Molnar
|
7a46a8fd13 |
perf bench: List output formatting options on 'perf bench -h'
So 'perf bench -h' is not very helpful when printing the help line about the output formatting options: -f, --format <default> Specify format style There are two output format styles, 'default' and 'simple', so improve the help text to: -f, --format <default|simple> Specify the output formatting style Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: David Ahern <dsahern@gmail.com> Cc: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1445241870-24854-7-git-send-email-mingo@kernel.org [ Removed leftovers from the mem-functions.c rename ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Davidlohr Bueso
|
d2f3f5d2e9 |
perf bench futex: Add lock_pi stresser
Allows a way of measuring low level kernel implementation of FUTEX_LOCK_PI and FUTEX_UNLOCK_PI. The program comes in two flavors: (i) single futex (default), all threads contend on the same uaddr. For the sake of the benchmark, we call into kernel space even when the lock is uncontended. The kernel will set it to TID, any waters that come in and contend for the pi futex will be handled respectively by the kernel. (ii) -M option for multiple futexes, each thread deals with its own futex. This is a trivial scenario and only measures kernel handling of 0->TID transition. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Cc: Mel Gorman <mgorman@suse.de> Link: http://lkml.kernel.org/r/1436259353.12255.78.camel@stgolabs.net Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Davidlohr Bueso
|
d65817b4e7 |
perf bench futex: Support parallel waker threads
The futex-wake benchmark only measures wakeups done within a single process. While this has value in its own, it does not really generate any hb->lock contention. A new benchmark 'wake-parallel' is added, by extending the futex-wake code such that we can measure parallel waker threads. The program output shows the avg per-thread latency in order to complete its share of wakeups: Run summary [PID 13474]: blocking on 512 threads (at [private] futex 0xa88668), 8 threads waking up 64 at a time. [Run 1]: Avg per-thread latency (waking 64/512 threads) in 0.6230 ms (+-15.31%) [Run 2]: Avg per-thread latency (waking 64/512 threads) in 0.5175 ms (+-29.95%) [Run 3]: Avg per-thread latency (waking 64/512 threads) in 0.7578 ms (+-18.03%) [Run 4]: Avg per-thread latency (waking 64/512 threads) in 0.8944 ms (+-12.54%) [Run 5]: Avg per-thread latency (waking 64/512 threads) in 1.1204 ms (+-23.85%) Avg per-thread latency (waking 64/512 threads) in 0.7826 ms (+-9.91%) Naturally, different combinations of numbers of blocking and waker threads will exhibit different information. Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Tested-by: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Davidlohr Bueso <dbueso@suse.de> Link: http://lkml.kernel.org/r/1431110280-20231-1-git-send-email-dave@stgolabs.net Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Davidlohr Bueso
|
b6f0629a94 |
perf bench: Add --repeat option
There are a number of benchmarks that do single runs and as a result does not really help users gain a general idea of how the workload performs. So the user must either manually do multiple runs or just use single bogus results. This option will enable users to specify the amount of runs (arbitrarily defaulted to 10, to use the existing benchmarks default) through the '--repeat' option. Add it to perf-bench instead of implementing it always in each specific benchmark. Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> Cc: Aswin Chandramouleeswaran <aswin@hp.com> Cc: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp> Cc: Jiri Olsa <jolsa@kernel.org> Link: http://lkml.kernel.org/r/1402942467-10671-2-git-send-email-davidlohr@hp.com [ Kept the existing default of 10, changing it to something else should be done on separate patch ] Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Linus Torvalds
|
8c292f1174 |
Merge branch 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf changes from Ingo Molnar: "Main changes: Kernel side changes: - Add SNB/IVB/HSW client uncore memory controller support (Stephane Eranian) - Fix various x86/P4 PMU driver bugs (Don Zickus) Tooling, user visible changes: - Add several futex 'perf bench' microbenchmarks (Davidlohr Bueso) - Speed up thread map generation (Don Zickus) - Introduce 'perf kvm --list-cmds' command line option for use by scripts (Ramkumar Ramachandra) - Print the evsel name in the annotate stdio output, prep to fix support outputting annotation for multiple events, not just for the first one (Arnaldo Carvalho de Melo) - Allow setting preferred callchain method in .perfconfig (Jiri Olsa) - Show in what binaries/modules 'perf probe's are set (Masami Hiramatsu) - Support distro-style debuginfo for uprobe in 'perf probe' (Masami Hiramatsu) Tooling, internal changes and fixes: - Use tid in mmap/mmap2 events to find maps (Don Zickus) - Record the reason for filtering an address_location (Namhyung Kim) - Apply all filters to an addr_location (Namhyung Kim) - Merge al->filtered with hist_entry->filtered in report/hists (Namhyung Kim) - Fix memory leak when synthesizing thread records (Namhyung Kim) - Use ui__has_annotation() in 'report' (Namhyung Kim) - hists browser refactorings to reuse code accross UIs (Namhyung Kim) - Add support for the new DWARF unwinder library in elfutils (Jiri Olsa) - Fix build race in the generation of bison files (Jiri Olsa) - Further streamline the feature detection display, trimming it a bit to show just the libraries detected, using VF=1 gets a more verbose output, showing the less interesting feature checks as well (Jiri Olsa). - Check compatible symtab type before loading dso (Namhyung Kim) - Check return value of filename__read_debuglink() (Stephane Eranian) - Move some hashing and fs related code from tools/perf/util/ to tools/lib/ so that it can be used by more tools/ living utilities (Borislav Petkov) - Prepare DWARF unwinding code for using an elfutils alternative unwinding library (Jiri Olsa) - Fix DWARF unwind max_stack processing (Jiri Olsa) - Add dwarf unwind 'perf test' entry (Jiri Olsa) - 'perf probe' improvements including memory leak fixes, sharing the intlist class with other tools, uprobes/kprobes code sharing and use of ref_reloc_sym (Masami Hiramatsu) - Shorten sample symbol resolving by adding cpumode to struct addr_location (Arnaldo Carvalho de Melo) - Fix synthesizing mmaps for threads (Don Zickus) - Fix invalid output on event group stdio report (Namhyung Kim) - Fixup header alignment in 'perf sched latency' output (Ramkumar Ramachandra) - Fix off-by-one error in 'perf timechart record' argv handling (Ramkumar Ramachandra) Tooling, cleanups: - Remove unused thread__find_map function (Jiri Olsa) - Remove unused simple_strtoul() function (Ramkumar Ramachandra) Tooling, documentation updates: - Update function names in debug messages (Ramkumar Ramachandra) - Update some code references in design.txt (Ramkumar Ramachandra) - Clarify load-latency information in the 'perf mem' docs (Andi Kleen) - Clarify x86 register naming in 'perf probe' docs (Andi Kleen)" * 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (96 commits) perf tools: Remove unused simple_strtoul() function perf tools: Update some code references in design.txt perf evsel: Update function names in debug messages perf tools: Remove thread__find_map function perf annotate: Print the evsel name in the stdio output perf report: Use ui__has_annotation() perf tools: Fix memory leak when synthesizing thread records perf tools: Use tid in mmap/mmap2 events to find maps perf report: Merge al->filtered with hist_entry->filtered perf symbols: Apply all filters to an addr_location perf symbols: Record the reason for filtering an address_location perf sched: Fixup header alignment in 'latency' output perf timechart: Fix off-by-one error in 'record' argv handling perf machine: Factor machine__find_thread to take tid argument perf tools: Speed up thread map generation perf kvm: introduce --list-cmds for use by scripts perf ui hists: Pass evsel to hpp->header/width functions explicitly perf symbols: Introduce thread__find_cpumode_addr_location perf session: Change header.misc dump from decimal to hex perf ui/tui: Reuse generic __hpp__fmt() code ... |
||
Patrick Palka
|
6eeefccdcf |
perf bench: Fix NULL pointer dereference in "perf bench all"
The for_each_bench() macro must check that the "benchmarks" field of a collection is not NULL before dereferencing it because the "all" collection in particular has a NULL "benchmarks" field (signifying that it has no benchmarks to iterate over). This fixes this NULL pointer dereference when running "perf bench all": [root@ssdandy ~]# perf bench all <SNIP> # Running mem/memset benchmark... # Copying 1MB Bytes ... 2.453675 GB/Sec 12.056327 GB/Sec (with prefault) Segmentation fault (core dumped) [root@ssdandy ~]# Signed-off-by: Patrick Palka <patrick@parcs.ath.cx> Cc: Ingo Molnar <mingo@redhat.com> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1394664051-6037-1-git-send-email-patrick@parcs.ath.cx Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Davidlohr Bueso
|
0fb298cf95 |
perf bench: Add futex-requeue microbenchmark
Block a bunch of threads on a futex and requeue them on another, N at a time. This program is particularly useful to measure the latency of nthread requeues without waking up any tasks -- thus mimicking a regular futex_wait. An example run: $ perf bench futex requeue -r 100 -t 64 Run summary [PID 151011]: Requeuing 64 threads (from 0x7d15c4 to 0x7d15c8), 1 at a time. [Run 1]: Requeued 64 of 64 threads in 0.0400 ms [Run 2]: Requeued 64 of 64 threads in 0.0390 ms [Run 3]: Requeued 64 of 64 threads in 0.0400 ms ... [Run 100]: Requeued 64 of 64 threads in 0.0390 ms Requeued 64 of 64 threads in 0.0399 ms (+-0.37%) Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> Acked-by: Darren Hart <dvhart@linux.intel.com> Cc: Aswin Chandramouleeswaran <aswin@hp.com> Cc: Darren Hart <dvhart@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Low <jason.low2@hp.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Scott J Norton <scott.norton@hp.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <Waiman.Long@hp.com> Link: http://lkml.kernel.org/r/1387081917-9102-4-git-send-email-davidlohr@hp.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Davidlohr Bueso
|
27db783074 |
perf bench: Add futex-wake microbenchmark
Block a bunch of threads on a futex and wake them up, N at a time. This program is particularly useful to measure the latency of nthread wakeups in non-error situations: all waiters are queued and all wake calls wakeup one or more tasks. An example run: $ perf bench futex wake -t 512 -r 100 Run summary [PID 27823]: blocking on 512 threads (at futex 0x7e10d4), waking up 1 at a time. [Run 1]: Wokeup 512 of 512 threads in 6.0080 ms [Run 2]: Wokeup 512 of 512 threads in 5.2280 ms [Run 3]: Wokeup 512 of 512 threads in 4.8300 ms ... [Run 100]: Wokeup 512 of 512 threads in 5.0100 ms Wokeup 512 of 512 threads in 5.0109 ms (+-2.25%) Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> Acked-by: Darren Hart <dvhart@linux.intel.com> Cc: Aswin Chandramouleeswaran <aswin@hp.com> Cc: Darren Hart <dvhart@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Low <jason.low2@hp.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Scott J Norton <scott.norton@hp.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <Waiman.Long@hp.com> Link: http://lkml.kernel.org/r/1387081917-9102-3-git-send-email-davidlohr@hp.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Davidlohr Bueso
|
a043971141 |
perf bench: Add futex-hash microbenchmark
Introduce futexes to perf-bench and add a program that stresses and measures the kernel's implementation of the hash table. This is a multi-threaded program that simply measures the amount of failed futex wait calls - we only want to deal with the hashing overhead, so a negative return of futex_wait_setup() is enough to do the trick. An example run: $ perf bench futex hash -t 32 Run summary [PID 10989]: 32 threads, each operating on 1024 [private] futexes for 10 secs. [thread 0] futexes: 0x19d9b10 ... 0x19dab0c [ 418713 ops/sec ] [thread 1] futexes: 0x19daca0 ... 0x19dbc9c [ 469913 ops/sec ] [thread 2] futexes: 0x19dbe30 ... 0x19dce2c [ 479744 ops/sec ] ... [thread 31] futexes: 0x19fbb80 ... 0x19fcb7c [ 464179 ops/sec ] Averaged 454310 operations/sec (+- 0.84%), total secs = 10 Signed-off-by: Davidlohr Bueso <davidlohr@hp.com> Acked-by: Darren Hart <dvhart@linux.intel.com> Cc: Aswin Chandramouleeswaran <aswin@hp.com> Cc: Darren Hart <dvhart@linux.intel.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Jason Low <jason.low2@hp.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Scott J Norton <scott.norton@hp.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <Waiman.Long@hp.com> Link: http://lkml.kernel.org/r/1387081917-9102-2-git-send-email-davidlohr@hp.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Ingo Molnar
|
4157922a90 |
perf bench: Change the procps visible command-name of invididual benchmark tests plus cleanups
Before this patch, looking at 'perf bench sched pipe' behavior over 'top' only told us that something related to perf is running: PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 19934 mingo 20 0 54836 1296 952 R 18.6 0.0 0:00.56 perf 19935 mingo 20 0 54836 384 36 S 18.6 0.0 0:00.56 perf After the patch it's clearly visible what's going on: PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 19744 mingo 20 0 125m 3536 2644 R 68.2 0.0 0:01.12 sched-pipe 19745 mingo 20 0 125m 1172 276 R 68.2 0.0 0:01.12 sched-pipe The benchmark-subsystem name is concatenated with the individual testcase name. Unfortunately 'perf top' does not show the reconfigured name, possibly because it caches ->comm[] values and does not recognize changes to them? Also clean up a few bits in builtin-bench.c while at it and reorganize the code and the output strings to be consistent. Use iterators to access the various arrays. Rename 'suites' concept to 'benchmark collection' and the 'bench_suite' to 'benchmark/bench'. The many repetitions of 'suite' made the code harder to read and understand. The new output is: comet:~/tip/tools/perf> ./perf bench Usage: perf bench [<common options>] <collection> <benchmark> [<options>] # List of all available benchmark collections: sched: Scheduler and IPC benchmarks mem: Memory access benchmarks numa: NUMA scheduling and MM benchmarks all: All benchmarks comet:~/tip/tools/perf> ./perf bench sched # List of available benchmarks for collection 'sched': messaging: Benchmark for scheduling and IPC pipe: Benchmark for pipe() between two processes all: Test all scheduler benchmarks comet:~/tip/tools/perf> ./perf bench mem # List of available benchmarks for collection 'mem': memcpy: Benchmark for memcpy() memset: Benchmark for memset() tests all: Test all memory benchmarks comet:~/tip/tools/perf> ./perf bench numa # List of available benchmarks for collection 'numa': mem: Benchmark for NUMA workloads all: Test all NUMA benchmarks Individual benchmark modules were not touched. Signed-off-by: Ingo Molnar <mingo@kernel.org> Cc: David Ahern <dsahern@gmail.com> Cc: Hitoshi Mitake <h.mitake@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Namhyung Kim <namhyung.kim@lge.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20131023123756.GA17871@gmail.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Ingo Molnar
|
89fe808ae7 |
tools/perf: Standardize feature support define names to: HAVE_{FEATURE}_SUPPORT
Standardize all the feature flags based on the HAVE_{FEATURE}_SUPPORT naming convention: HAVE_ARCH_X86_64_SUPPORT HAVE_BACKTRACE_SUPPORT HAVE_CPLUS_DEMANGLE_SUPPORT HAVE_DWARF_SUPPORT HAVE_ELF_GETPHDRNUM_SUPPORT HAVE_GTK2_SUPPORT HAVE_GTK_INFO_BAR_SUPPORT HAVE_LIBAUDIT_SUPPORT HAVE_LIBELF_MMAP_SUPPORT HAVE_LIBELF_SUPPORT HAVE_LIBNUMA_SUPPORT HAVE_LIBUNWIND_SUPPORT HAVE_ON_EXIT_SUPPORT HAVE_PERF_REGS_SUPPORT HAVE_SLANG_SUPPORT HAVE_STRLCPY_SUPPORT Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Namhyung Kim <namhyung@kernel.org> Cc: David Ahern <dsahern@gmail.com> Cc: Jiri Olsa <jolsa@redhat.com> Link: http://lkml.kernel.org/n/tip-u3zvqejddfZhtrbYbfhi3spa@git.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Peter Hurley
|
79d824e316 |
perf tools: Make numa benchmark optional
Commit "perf: Add 'perf bench numa mem'..." added a NUMA performance benchmark to perf. Make this optional and test for required dependencies. Signed-off-by: Peter Hurley <peter@hurleysoftware.com> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1359337882-21821-1-git-send-email-peter@hurleysoftware.com Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Ingo Molnar
|
1c13f3c904 |
perf: Add 'perf bench numa mem' NUMA performance measurement suite
Add a suite of NUMA performance benchmarks. The goal was simulate the behavior and access patterns of real NUMA workloads, via a wide range of parameters, so this tool goes well beyond simple bzero() measurements that most NUMA micro-benchmarks use: - It processes the data and creates a chain of data dependencies, like a real workload would. Neither the compiler, nor the kernel (via KSM and other optimizations) nor the CPU can eliminate parts of the workload. - It randomizes the initial state and also randomizes the target addresses of the processing - it's not a simple forward scan of addresses. - It provides flexible options to set process, thread and memory relationship information: -G sets "global" memory shared between all test processes, -P sets "process" memory shared by all threads of a process and -T sets "thread" private memory. - There's a NUMA convergence monitoring and convergence latency measurement option via -c and -m. - Micro-sleeps and synchronization can be injected to provoke lock contention and scheduling, via the -u and -S options. This simulates IO and contention. - The -x option instructs the workload to 'perturb' itself artificially every N seconds, by moving to the first and last CPU of the system periodically. This way the stability of convergence equilibrium and the number of steps taken for the scheduler to reach equilibrium again can be measured. - The amount of work can be specified via the -l loop count, and/or via a -s seconds-timeout value. - CPU and node memory binding options, to test hard binding scenarios. THP can be turned on and off via madvise() calls. - Live reporting of convergence progress in an 'at glance' output format. Printing of convergence and deconvergence events. The 'perf bench numa mem -a' option will start an array of about 30 individual tests that will each output such measurements: # Running 5x5-bw-thread, "perf bench numa mem -p 5 -t 5 -P 512 -s 20 -zZ0q --thp 1" 5x5-bw-thread, 20.276, secs, runtime-max/thread 5x5-bw-thread, 20.004, secs, runtime-min/thread 5x5-bw-thread, 20.155, secs, runtime-avg/thread 5x5-bw-thread, 0.671, %, spread-runtime/thread 5x5-bw-thread, 21.153, GB, data/thread 5x5-bw-thread, 528.818, GB, data-total 5x5-bw-thread, 0.959, nsecs, runtime/byte/thread 5x5-bw-thread, 1.043, GB/sec, thread-speed 5x5-bw-thread, 26.081, GB/sec, total-speed See the help text and the code for more details. Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> |
||
Namhyung Kim
|
9b494ea2f5 |
perf bench: Flush stdout before starting bench suite
perf bench prints header message for bench suite before starting the benchmark. However if the stdout is redirected to a file and bench suite forks child processes this (and possibly other debugging messages too) will be repeated multiple times. $ perf bench sched messaging # Running sched/messaging benchmark... # 20 sender and receiver processes per group # 10 groups == 400 processes run Total time: 0.100 [sec] $ perf bench sched messaging > result.txt $ wc -l result.txt 391 In this file, there were so many "Running sched/messaging benchmark..." lines. This was because stdout is converted to fully-buffered due to the redirection and inherited child processes. Other lines are printed after reaping all those tasks. So fix it by flushing stdout before starting bench suites. Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Hitoshi Mitake <h.mitake@gmail.com> Cc: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp> Cc: Ingo Molnar <mingo@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1357637966-8216-1-git-send-email-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Irina Tirdea
|
1d037ca164 |
perf tools: Use __maybe_used for unused variables
perf defines both __used and __unused variables to use for marking
unused variables. The variable __used is defined to
__attribute__((__unused__)), which contradicts the kernel definition to
__attribute__((__used__)) for new gcc versions. On Android, __used is
also defined in system headers and this leads to warnings like: warning:
'__used__' attribute ignored
__unused is not defined in the kernel and is not a standard definition.
If __unused is included everywhere instead of __used, this leads to
conflicts with glibc headers, since glibc has a variables with this name
in its headers.
The best approach is to use __maybe_unused, the definition used in the
kernel for __attribute__((unused)). In this way there is only one
definition in perf sources (instead of 2 definitions that point to the
same thing: __used and __unused) and it works on both Linux and Android.
This patch simply replaces all instances of __used and __unused with
__maybe_unused.
Signed-off-by: Irina Tirdea <irina.tirdea@intel.com>
Acked-by: Pekka Enberg <penberg@kernel.org>
Cc: David Ahern <dsahern@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Namhyung Kim <namhyung.kim@lge.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/1347315303-29906-7-git-send-email-irina.tirdea@intel.com
[ committer note: fixed up conflict with
|
||
Namhyung Kim
|
08942f6d5d |
perf bench: Documentation update
The current perf-bench documentation has a couple of typos and even lacks entire description of mem subsystem. Fix it. Reported-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Namhyung Kim <namhyung@kernel.org> Acked-by: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp> Cc: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp> Cc: Ingo Molnar <mingo@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1340172486-17805-1-git-send-email-namhyung@kernel.org Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Jan Beulich
|
be3de80dc2 |
perf bench: Also allow measuring memset()
This simply clones the respective memcpy() implementation. Cc: Ingo Molnar <mingo@elte.hu> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Stephane Eranian <eranian@google.com> Link: http://lkml.kernel.org/r/4F16D743020000780006D735@nat28.tlf.novell.com Signed-off-by: Jan Beulich <jbeulich@suse.com> Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Arnaldo Carvalho de Melo
|
edb7c60e27 |
perf options: Type check all the remaining OPT_ variants
OPT_SET_INT was renamed to OPT_SET_UINT since the only use in these tools is to set something that has an enum type, that is builtin compatible with unsigned int. Several string constifications were done to make OPT_STRING require a const char * type. Cc: Frédéric Weisbecker <fweisbec@gmail.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Stephane Eranian <eranian@google.com> Cc: Tom Zanussi <tzanussi@gmail.com> LKML-Reference: <new-submission> Signed-off-by: Arnaldo Carvalho de Melo <acme@redhat.com> |
||
Hitoshi Mitake
|
2044279d1e |
perf bench: Add "all" pseudo subsystem and "all" pseudo suite
This patch adds a new "all" pseudo subsystem and an "all" pseudo suite. These are for testing all subsystem and its all suite, or all suite of one subsystem. (This patch also contains a few trivial comment fixes for bench/* and output style fixes. I judged that there are no necessity to make them into individual patch.) Example of use: | % ./perf bench sched all # Test all suites of sched subsystem | # Running sched/messaging benchmark... | # 20 sender and receiver processes per group | # 10 groups == 400 processes run | | Total time: 0.414 [sec] | | # Running sched/pipe benchmark... | # Extecuted 1000000 pipe operations between two tasks | | Total time: 10.999 [sec] | | 10.999317 usecs/op | 90914 ops/sec | | % ./perf bench all # Test all suites of all subsystems | # Running sched/messaging benchmark... | # 20 sender and receiver processes per group | # 10 groups == 400 processes run | | Total time: 0.420 [sec] | | # Running sched/pipe benchmark... | # Extecuted 1000000 pipe operations between two tasks | | Total time: 11.741 [sec] | | 11.741346 usecs/op | 85169 ops/sec | | # Running mem/memcpy benchmark... | # Copying 1MB Bytes from 0x7ff33e920010 to 0x7ff3401ae010 ... | | 808.407437 MB/Sec Signed-off-by: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> LKML-Reference: <1260691319-4683-1-git-send-email-mitake@dcl.info.waseda.ac.jp> Signed-off-by: Ingo Molnar <mingo@elte.hu> |
||
Hitoshi Mitake
|
827f3b4974 |
perf bench: Add memcpy() benchmark
'perf bench mem memcpy' is a benchmark suite for measuring memcpy() performance. Example on a Intel(R) Core(TM)2 Duo CPU E6850 @ 3.00GHz: | % perf bench mem memcpy -l 1GB | # Running mem/memcpy benchmark... | # Copying 1MB Bytes from 0xb7d98008 to 0xb7e99008 ... | | 726.216412 MB/Sec Signed-off-by: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> Cc: Frederic Weisbecker <fweisbec@gmail.com> LKML-Reference: <1258471212-30281-1-git-send-email-mitake@dcl.info.waseda.ac.jp> [ v2: updated changelog, clarified history of builtin-bench.c ] Signed-off-by: Ingo Molnar <mingo@elte.hu> |
||
Hitoshi Mitake
|
79e295d4bd |
perf bench: Improve builtin-bench.c for more friendly output
This patch makes output of perf bench more friendly. Current style of putput, keeping user wait and printing everything suddenly when we finish, may confuse users. So I improved it: | % perf bench sched messaging | # Running sched/messaging benchmark... <- printed right after invocation | # 20 sender and receiver processes per group | # 10 groups == 400 processes run | | Total time: 1.476 [sec] Signed-off-by: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> LKML-Reference: <1257865442-20252-2-git-send-email-mitake@dcl.info.waseda.ac.jp> Signed-off-by: Ingo Molnar <mingo@elte.hu> |
||
Hitoshi Mitake
|
386d7e9e54 |
perf bench: Modify builtin-bench.c for processing common options
This patch modifies builtin-bench.c for processing common options. The first option added is "--format". Users of perf bench will be able to specify output style by --format. Usage example: % ./perf bench sched messaging # with no style specify (20 sender and receiver processes per group) (10 groups == 400 processes run) Total time:1.431 sec % ./perf bench --format=simple sched messaging # specified simple 1.431 Signed-off-by: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Paul Mackerras <paulus@samba.org> LKML-Reference: <1257808802-9420-3-git-send-email-mitake@dcl.info.waseda.ac.jp> Signed-off-by: Ingo Molnar <mingo@elte.hu> |
||
Hitoshi Mitake
|
629cc35665 |
perf bench: Add builtin-bench.c: General framework for benchmark suites
This patch adds builtin-bench.c builtin-bench.c is a general framework for benchmark suites. Signed-off-by: Hitoshi Mitake <mitake@dcl.info.waseda.ac.jp> Cc: Rusty Russell <rusty@rustcorp.com.au> Cc: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Mike Galbraith <efault@gmx.de> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: fweisbec@gmail.com Cc: Jiri Kosina <jkosina@suse.cz> LKML-Reference: <1257381097-4743-5-git-send-email-mitake@dcl.info.waseda.ac.jp> Signed-off-by: Ingo Molnar <mingo@elte.hu> |