Assign shadow_me_value, not shadow_me_mask, to PAE root entries,
a.k.a. shadow PDPTRs, when host memory encryption is supported. The
"mask" is the set of all possible memory encryption bits, e.g. MKTME
KeyIDs, whereas "value" holds the actual value that needs to be
stuffed into host page tables.
Using shadow_me_mask results in a failed VM-Entry due to setting
reserved PA bits in the PDPTRs, and ultimately causes an OOPS due to
physical addresses with non-zero MKTME bits sending to_shadow_page()
into the weeds:
set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.
BUG: unable to handle page fault for address: ffd43f00063049e8
PGD 86dfd8067 P4D 0
Oops: 0000 [#1] PREEMPT SMP
RIP: 0010:mmu_free_root_page+0x3c/0x90 [kvm]
kvm_mmu_free_roots+0xd1/0x200 [kvm]
__kvm_mmu_unload+0x29/0x70 [kvm]
kvm_mmu_unload+0x13/0x20 [kvm]
kvm_arch_destroy_vm+0x8a/0x190 [kvm]
kvm_put_kvm+0x197/0x2d0 [kvm]
kvm_vm_release+0x21/0x30 [kvm]
__fput+0x8e/0x260
____fput+0xe/0x10
task_work_run+0x6f/0xb0
do_exit+0x327/0xa90
do_group_exit+0x35/0xa0
get_signal+0x911/0x930
arch_do_signal_or_restart+0x37/0x720
exit_to_user_mode_prepare+0xb2/0x140
syscall_exit_to_user_mode+0x16/0x30
do_syscall_64+0x4e/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Fixes: e54f1ff244 ("KVM: x86/mmu: Add shadow_me_value and repurpose shadow_me_mask")
Signed-off-by: Yuan Yao <yuan.yao@intel.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20220608012015.19566-1-yuan.yao@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If a vCPU is outside guest mode and is scheduled out, it might be in the
process of making a memory access. A problem occurs if another vCPU uses
the PV TLB flush feature during the period when the vCPU is scheduled
out, and a virtual address has already been translated but has not yet
been accessed, because this is equivalent to using a stale TLB entry.
To avoid this, only report a vCPU as preempted if sure that the guest
is at an instruction boundary. A rescheduling request will be delivered
to the host physical CPU as an external interrupt, so for simplicity
consider any vmexit *not* instruction boundary except for external
interrupts.
It would in principle be okay to report the vCPU as preempted also
if it is sleeping in kvm_vcpu_block(): a TLB flush IPI will incur the
vmentry/vmexit overhead unnecessarily, and optimistic spinning is
also unlikely to succeed. However, leave it for later because right
now kvm_vcpu_check_block() is doing memory accesses. Even
though the TLB flush issue only applies to virtual memory address,
it's very much preferrable to be conservative.
Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Similar to the Xen path, only change the vCPU's reported state if the vCPU
was actually preempted. The reason for KVM's behavior is that for example
optimistic spinning might not be a good idea if the guest is doing repeated
exits to userspace; however, it is confusing and unlikely to make a difference,
because well-tuned guests will hardly ever exit KVM_RUN in the first place.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SVM uses a per-cpu variable to cache the current value of the
tsc scaling multiplier msr on each cpu.
Commit 1ab9287add
("KVM: X86: Add vendor callbacks for writing the TSC multiplier")
broke this caching logic.
Refactor the code so that all TSC scaling multiplier writes go through
a single function which checks and updates the cache.
This fixes the following scenario:
1. A CPU runs a guest with some tsc scaling ratio.
2. New guest with different tsc scaling ratio starts on this CPU
and terminates almost immediately.
This ensures that the short running guest had set the tsc scaling ratio just
once when it was set via KVM_SET_TSC_KHZ. Due to the bug,
the per-cpu cache is not updated.
3. The original guest continues to run, it doesn't restore the msr
value back to its own value, because the cache matches,
and thus continues to run with a wrong tsc scaling ratio.
Fixes: 1ab9287add ("KVM: X86: Add vendor callbacks for writing the TSC multiplier")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220606181149.103072-1-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Currently disabling dirty logging with the TDP MMU is extremely slow.
On a 96 vCPU / 96G VM backed with gigabyte pages, it takes ~200 seconds
to disable dirty logging with the TDP MMU, as opposed to ~4 seconds with
the shadow MMU.
When disabling dirty logging, zap non-leaf parent entries to allow
replacement with huge pages instead of recursing and zapping all of the
child, leaf entries. This reduces the number of TLB flushes required.
and reduces the disable dirty log time with the TDP MMU to ~3 seconds.
Opportunistically add a WARN() to catch GFNs that are mapped at a
higher level than their max level.
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220525230904.1584480-1-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When freeing obsolete previous roots, check prev_roots as intended, not
the current root.
Signed-off-by: Shaoqin Huang <shaoqin.huang@intel.com>
Fixes: 527d5cd7ee ("KVM: x86/mmu: Zap only obsolete roots if a root shadow page is zapped")
Message-Id: <20220607005905.2933378-1-shaoqin.huang@intel.com>
Cc: stable@vger.kernel.org
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Remove unused headers in the IDT code
- Kconfig indendation and comment fixes
- Fix all 'the the' typos in one go instead of waiting for bots to fix
one at a time.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmKcdUsTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYofu/EACJEYM67sgOGX/OPxSI2QrcqIPajI/u
EMrNi69jR8XBgFUwnYRLC+eoC7nvYdpTaUHzQklS2xhE8lcZ4PcMejy9nHECe8MI
sYA38gXeGamM4pzFQgpsX0Eoq1OX3iH165dCnSgRfGg2Zv6YovmcGk2fkHtA0fXn
Sqp5fy33wK2U+ghY5MrJwVQ2SshbDp4p7SJ80iLCfdHvtKzQi02EH4CjrZ/guoJL
bjdiWXA+eIDrPXhoPiBkFQ3cG/vHPc/oj2SEAnBV5oC+hdgjFebiz6CNYbFw0QI9
MnJQlvhu/oe66J6sRGfqPABm4yh4omNSbjNjbWr9ahoVPvprH9gJ2EMBx6qOT3pe
sG6pluiQAZXBoOpRqR45vws4Ypq5onyv4OwMzEFNZVT9kzr1qrMJtsXIlffM/hHE
zgygCV1nqWznUueZKcI6XkXVtawte9wfpujDuZhCgoD/UaIixulW8zpK/0h9iUI5
03u0lXse20h7kEmJYZ+vgQwSci/6i10U1X7+VngIrBAt24gtzigdKd6FLljSPp0y
GOc9c79qNdm0Ayofko/m+XtwXw8UJ2Pbtkvku8qmyUR3ffUlBD+qcTPIZ6TZ8aPb
w17k64zxEMQRYlMm8uHRg8KVJXuWD8nO3BSzwpwPVyckpsL4CkEcgdij7HMN7dLO
+GCpzbvafupD6Q==
=vSDr
-----END PGP SIGNATURE-----
Merge tag 'x86-cleanups-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Thomas Gleixner:
"A set of small x86 cleanups:
- Remove unused headers in the IDT code
- Kconfig indendation and comment fixes
- Fix all 'the the' typos in one go instead of waiting for bots to
fix one at a time"
* tag 'x86-cleanups-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86: Fix all occurences of the "the the" typo
x86/idt: Remove unused headers
x86/Kconfig: Fix indentation of arch/x86/Kconfig.debug
x86/Kconfig: Fix indentation and add endif comments to arch/x86/Kconfig
This series includes the following patchsets:
- bitmap: optimize bitmap_weight() usage(w/o bitmap_weight_cmp), from me;
- lib/bitmap.c make bitmap_print_bitmask_to_buf parseable, from Mauro
Carvalho Chehab;
- include/linux/find: Fix documentation, from Anna-Maria Behnsen;
- bitmap: fix conversion from/to fix-sized arrays, from me;
- bitmap: Fix return values to be unsigned, from Kees Cook.
It has been in linux-next for at least a week with no problems.
-----BEGIN PGP SIGNATURE-----
iQGzBAABCgAdFiEEi8GdvG6xMhdgpu/4sUSA/TofvsgFAmKaEzYACgkQsUSA/Tof
vsiGKwv8Dgr3G0mLbSfmHZqdFMIsmSmwhxlEH6eBNtX6vjQbGafe/Buhj/1oSY8N
NYC4+5Br6s7MmMRth3Kp6UECdl94TS3Ka06T+lVBKkG+C+B1w1/svqUMM2ZCQF3e
Z5R/HhR6av9X9Qb2mWSasWLkWp629NjdtRsJSDWiVt1emVVwh+iwxQnMH9VuE+ao
z3mvaQfSRhe4h+xCZOiohzFP+0jZb1EnPrQAIVzNUjigo7mglpNvVyO7p/8LU7gD
dIjfGmSbtsHU72J+/0lotRqjhjORl1F/EILf8pIzx5Ga7ExUGhOzGWAj7/3uZxfA
Cp1Z/QV271MGwv/sNdSPwCCJHf51eOmsbyOyUScjb3gFRwIStEa1jB4hKwLhS5wF
3kh4kqu3WGuIQAdxkUpDBsy3CQjAPDkvtRJorwyWGbjwa9xUETESAgH7XCCTsgWc
0sIuldWWaxC581+fAP1Dzmo8uuWBURTaOrVmRMILQHMTw54zoFyLY+VI9gEAT9aV
gnPr3M4F
=U7DN
-----END PGP SIGNATURE-----
Merge tag 'bitmap-for-5.19-rc1' of https://github.com/norov/linux
Pull bitmap updates from Yury Norov:
- bitmap: optimize bitmap_weight() usage, from me
- lib/bitmap.c make bitmap_print_bitmask_to_buf parseable, from Mauro
Carvalho Chehab
- include/linux/find: Fix documentation, from Anna-Maria Behnsen
- bitmap: fix conversion from/to fix-sized arrays, from me
- bitmap: Fix return values to be unsigned, from Kees Cook
It has been in linux-next for at least a week with no problems.
* tag 'bitmap-for-5.19-rc1' of https://github.com/norov/linux: (31 commits)
nodemask: Fix return values to be unsigned
bitmap: Fix return values to be unsigned
KVM: x86: hyper-v: replace bitmap_weight() with hweight64()
KVM: x86: hyper-v: fix type of valid_bank_mask
ia64: cleanup remove_siblinginfo()
drm/amd/pm: use bitmap_{from,to}_arr32 where appropriate
KVM: s390: replace bitmap_copy with bitmap_{from,to}_arr64 where appropriate
lib/bitmap: add test for bitmap_{from,to}_arr64
lib: add bitmap_{from,to}_arr64
lib/bitmap: extend comment for bitmap_(from,to)_arr32()
include/linux/find: Fix documentation
lib/bitmap.c make bitmap_print_bitmask_to_buf parseable
MAINTAINERS: add cpumask and nodemask files to BITMAP_API
arch/x86: replace nodes_weight with nodes_empty where appropriate
mm/vmstat: replace cpumask_weight with cpumask_empty where appropriate
clocksource: replace cpumask_weight with cpumask_empty in clocksource.c
genirq/affinity: replace cpumask_weight with cpumask_empty where appropriate
irq: mips: replace cpumask_weight with cpumask_empty where appropriate
drm/i915/pmu: replace cpumask_weight with cpumask_empty where appropriate
arch/x86: replace cpumask_weight with cpumask_empty where appropriate
...
kvm_hv_flush_tlb() applies bitmap API to a u64 variable valid_bank_mask.
Since valid_bank_mask has a fixed size, we can use hweight64() and avoid
excessive bloating.
CC: Borislav Petkov <bp@alien8.de>
CC: Dave Hansen <dave.hansen@linux.intel.com>
CC: H. Peter Anvin <hpa@zytor.com>
CC: Ingo Molnar <mingo@redhat.com>
CC: Jim Mattson <jmattson@google.com>
CC: Joerg Roedel <joro@8bytes.org>
CC: Paolo Bonzini <pbonzini@redhat.com>
CC: Sean Christopherson <seanjc@google.com>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Vitaly Kuznetsov <vkuznets@redhat.com>
CC: Wanpeng Li <wanpengli@tencent.com>
CC: kvm@vger.kernel.org
CC: linux-kernel@vger.kernel.org
CC: x86@kernel.org
Acked-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Yury Norov <yury.norov@gmail.com>
In kvm_hv_flush_tlb(), valid_bank_mask is declared as unsigned long,
but is used as u64, which is wrong for i386, and has been spotted by
LKP after applying "KVM: x86: hyper-v: replace bitmap_weight() with
hweight64()"
https://lore.kernel.org/lkml/20220510154750.212913-12-yury.norov@gmail.com/
But it's wrong even without that patch because now bitmap_weight()
dereferences a word after valid_bank_mask on i386.
>> include/asm-generic/bitops/const_hweight.h:21:76: warning: right shift count >= width of type
+[-Wshift-count-overflow]
21 | #define __const_hweight64(w) (__const_hweight32(w) + __const_hweight32((w) >> 32))
| ^~
include/asm-generic/bitops/const_hweight.h:10:16: note: in definition of macro '__const_hweight8'
10 | ((!!((w) & (1ULL << 0))) + \
| ^
include/asm-generic/bitops/const_hweight.h:20:31: note: in expansion of macro '__const_hweight16'
20 | #define __const_hweight32(w) (__const_hweight16(w) + __const_hweight16((w) >> 16))
| ^~~~~~~~~~~~~~~~~
include/asm-generic/bitops/const_hweight.h:21:54: note: in expansion of macro '__const_hweight32'
21 | #define __const_hweight64(w) (__const_hweight32(w) + __const_hweight32((w) >> 32))
| ^~~~~~~~~~~~~~~~~
include/asm-generic/bitops/const_hweight.h:29:49: note: in expansion of macro '__const_hweight64'
29 | #define hweight64(w) (__builtin_constant_p(w) ? __const_hweight64(w) : __arch_hweight64(w))
| ^~~~~~~~~~~~~~~~~
arch/x86/kvm/hyperv.c:1983:36: note: in expansion of macro 'hweight64'
1983 | if (hc->var_cnt != hweight64(valid_bank_mask))
| ^~~~~~~~~
CC: Borislav Petkov <bp@alien8.de>
CC: Dave Hansen <dave.hansen@linux.intel.com>
CC: H. Peter Anvin <hpa@zytor.com>
CC: Ingo Molnar <mingo@redhat.com>
CC: Jim Mattson <jmattson@google.com>
CC: Joerg Roedel <joro@8bytes.org>
CC: Paolo Bonzini <pbonzini@redhat.com>
CC: Sean Christopherson <seanjc@google.com>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Vitaly Kuznetsov <vkuznets@redhat.com>
CC: Wanpeng Li <wanpengli@tencent.com>
CC: kvm@vger.kernel.org
CC: linux-kernel@vger.kernel.org
CC: x86@kernel.org
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Yury Norov <yury.norov@gmail.com>
Message-Id: <20220519171504.1238724-1-yury.norov@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rather than waiting for the bots to fix these one-by-one,
fix all occurences of "the the" throughout arch/x86.
Signed-off-by: Bo Liu <liubo03@inspur.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20220527061400.5694-1-liubo03@inspur.com
* ultravisor communication device driver
* fix TEID on terminating storage key ops
RISC-V:
* Added Sv57x4 support for G-stage page table
* Added range based local HFENCE functions
* Added remote HFENCE functions based on VCPU requests
* Added ISA extension registers in ONE_REG interface
* Updated KVM RISC-V maintainers entry to cover selftests support
ARM:
* Add support for the ARMv8.6 WFxT extension
* Guard pages for the EL2 stacks
* Trap and emulate AArch32 ID registers to hide unsupported features
* Ability to select and save/restore the set of hypercalls exposed
to the guest
* Support for PSCI-initiated suspend in collaboration with userspace
* GICv3 register-based LPI invalidation support
* Move host PMU event merging into the vcpu data structure
* GICv3 ITS save/restore fixes
* The usual set of small-scale cleanups and fixes
x86:
* New ioctls to get/set TSC frequency for a whole VM
* Allow userspace to opt out of hypercall patching
* Only do MSR filtering for MSRs accessed by rdmsr/wrmsr
AMD SEV improvements:
* Add KVM_EXIT_SHUTDOWN metadata for SEV-ES
* V_TSC_AUX support
Nested virtualization improvements for AMD:
* Support for "nested nested" optimizations (nested vVMLOAD/VMSAVE,
nested vGIF)
* Allow AVIC to co-exist with a nested guest running
* Fixes for LBR virtualizations when a nested guest is running,
and nested LBR virtualization support
* PAUSE filtering for nested hypervisors
Guest support:
* Decoupling of vcpu_is_preempted from PV spinlocks
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmKN9M4UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNLeAf+KizAlQwxEehHHeNyTkZuKyMawrD6
zsqAENR6i1TxiXe7fDfPFbO2NR0ZulQopHbD9mwnHJ+nNw0J4UT7g3ii1IAVcXPu
rQNRGMVWiu54jt+lep8/gDg0JvPGKVVKLhxUaU1kdWT9PhIOC6lwpP3vmeWkUfRi
PFL/TMT0M8Nfryi0zHB0tXeqg41BiXfqO8wMySfBAHUbpv8D53D2eXQL6YlMM0pL
2quB1HxHnpueE5vj3WEPQ3PCdy1M2MTfCDBJAbZGG78Ljx45FxSGoQcmiBpPnhJr
C6UGP4ZDWpml5YULUoA70k5ylCbP+vI61U4vUtzEiOjHugpPV5wFKtx5nw==
=ozWx
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"S390:
- ultravisor communication device driver
- fix TEID on terminating storage key ops
RISC-V:
- Added Sv57x4 support for G-stage page table
- Added range based local HFENCE functions
- Added remote HFENCE functions based on VCPU requests
- Added ISA extension registers in ONE_REG interface
- Updated KVM RISC-V maintainers entry to cover selftests support
ARM:
- Add support for the ARMv8.6 WFxT extension
- Guard pages for the EL2 stacks
- Trap and emulate AArch32 ID registers to hide unsupported features
- Ability to select and save/restore the set of hypercalls exposed to
the guest
- Support for PSCI-initiated suspend in collaboration with userspace
- GICv3 register-based LPI invalidation support
- Move host PMU event merging into the vcpu data structure
- GICv3 ITS save/restore fixes
- The usual set of small-scale cleanups and fixes
x86:
- New ioctls to get/set TSC frequency for a whole VM
- Allow userspace to opt out of hypercall patching
- Only do MSR filtering for MSRs accessed by rdmsr/wrmsr
AMD SEV improvements:
- Add KVM_EXIT_SHUTDOWN metadata for SEV-ES
- V_TSC_AUX support
Nested virtualization improvements for AMD:
- Support for "nested nested" optimizations (nested vVMLOAD/VMSAVE,
nested vGIF)
- Allow AVIC to co-exist with a nested guest running
- Fixes for LBR virtualizations when a nested guest is running, and
nested LBR virtualization support
- PAUSE filtering for nested hypervisors
Guest support:
- Decoupling of vcpu_is_preempted from PV spinlocks"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (199 commits)
KVM: x86: Fix the intel_pt PMI handling wrongly considered from guest
KVM: selftests: x86: Sync the new name of the test case to .gitignore
Documentation: kvm: reorder ARM-specific section about KVM_SYSTEM_EVENT_SUSPEND
x86, kvm: use correct GFP flags for preemption disabled
KVM: LAPIC: Drop pending LAPIC timer injection when canceling the timer
x86/kvm: Alloc dummy async #PF token outside of raw spinlock
KVM: x86: avoid calling x86 emulator without a decoded instruction
KVM: SVM: Use kzalloc for sev ioctl interfaces to prevent kernel data leak
x86/fpu: KVM: Set the base guest FPU uABI size to sizeof(struct kvm_xsave)
s390/uv_uapi: depend on CONFIG_S390
KVM: selftests: x86: Fix test failure on arch lbr capable platforms
KVM: LAPIC: Trace LAPIC timer expiration on every vmentry
KVM: s390: selftest: Test suppression indication on key prot exception
KVM: s390: Don't indicate suppression on dirtying, failing memop
selftests: drivers/s390x: Add uvdevice tests
drivers/s390/char: Add Ultravisor io device
MAINTAINERS: Update KVM RISC-V entry to cover selftests support
RISC-V: KVM: Introduce ISA extension register
RISC-V: KVM: Cleanup stale TLB entries when host CPU changes
RISC-V: KVM: Add remote HFENCE functions based on VCPU requests
...
When kernel handles the vm-exit caused by external interrupts and NMI,
it always sets kvm_intr_type to tell if it's dealing an IRQ or NMI. For
the PMI scenario, it could be IRQ or NMI.
However, intel_pt PMIs are only generated for HARDWARE perf events, and
HARDWARE events are always configured to generate NMIs. Use
kvm_handling_nmi_from_guest() to precisely identify if the intel_pt PMI
came from the guest; this avoids false positives if an intel_pt PMI/NMI
arrives while the host is handling an unrelated IRQ VM-Exit.
Fixes: db215756ae ("KVM: x86: More precisely identify NMI from guest when handling PMI")
Signed-off-by: Yanfei Xu <yanfei.xu@intel.com>
Message-Id: <20220523140821.1345605-1-yanfei.xu@intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The timer is disarmed when switching between TSC deadline and other modes;
however, the pending timer is still in-flight, so let's accurately remove
any traces of the previous mode.
Fixes: 4427593258 ("KVM: x86: thoroughly disarm LAPIC timer around TSC deadline switch")
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Whenever x86_decode_emulated_instruction() detects a breakpoint, it
returns the value that kvm_vcpu_check_breakpoint() writes into its
pass-by-reference second argument. Unfortunately this is completely
bogus because the expected outcome of x86_decode_emulated_instruction
is an EMULATION_* value.
Then, if kvm_vcpu_check_breakpoint() does "*r = 0" (corresponding to
a KVM_EXIT_DEBUG userspace exit), it is misunderstood as EMULATION_OK
and x86_emulate_instruction() is called without having decoded the
instruction. This causes various havoc from running with a stale
emulation context.
The fix is to move the call to kvm_vcpu_check_breakpoint() where it was
before commit 4aa2691dcb ("KVM: x86: Factor out x86 instruction
emulation with decoding") introduced x86_decode_emulated_instruction().
The other caller of the function does not need breakpoint checks,
because it is invoked as part of a vmexit and the processor has already
checked those before executing the instruction that #GP'd.
This fixes CVE-2022-1852.
Reported-by: Qiuhao Li <qiuhao@sysec.org>
Reported-by: Gaoning Pan <pgn@zju.edu.cn>
Reported-by: Yongkang Jia <kangel@zju.edu.cn>
Fixes: 4aa2691dcb ("KVM: x86: Factor out x86 instruction emulation with decoding")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220311032801.3467418-2-seanjc@google.com>
[Rewrote commit message according to Qiuhao's report, since a patch
already existed to fix the bug. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For some sev ioctl interfaces, the length parameter that is passed maybe
less than or equal to SEV_FW_BLOB_MAX_SIZE, but larger than the data
that PSP firmware returns. In this case, kmalloc will allocate memory
that is the size of the input rather than the size of the data.
Since PSP firmware doesn't fully overwrite the allocated buffer, these
sev ioctl interface may return uninitialized kernel slab memory.
Reported-by: Andy Nguyen <theflow@google.com>
Suggested-by: David Rientjes <rientjes@google.com>
Suggested-by: Peter Gonda <pgonda@google.com>
Cc: kvm@vger.kernel.org
Cc: stable@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Fixes: eaf78265a4 ("KVM: SVM: Move SEV code to separate file")
Fixes: 2c07ded064 ("KVM: SVM: add support for SEV attestation command")
Fixes: 4cfdd47d6d ("KVM: SVM: Add KVM_SEV SEND_START command")
Fixes: d3d1af85e2 ("KVM: SVM: Add KVM_SEND_UPDATE_DATA command")
Fixes: eba04b20e4 ("KVM: x86: Account a variety of miscellaneous allocations")
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Reviewed-by: Peter Gonda <pgonda@google.com>
Message-Id: <20220516154310.3685678-1-Ashish.Kalra@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Added Sv57x4 support for G-stage page table
- Added range based local HFENCE functions
- Added remote HFENCE functions based on VCPU requests
- Added ISA extension registers in ONE_REG interface
- Updated KVM RISC-V maintainers entry to cover selftests support
-----BEGIN PGP SIGNATURE-----
iQIyBAABCgAdFiEEZdn75s5e6LHDQ+f/rUjsVaLHLAcFAmKHGu8ACgkQrUjsVaLH
LAe1sQ/40ltbl/v0cW+zkuUOem+apmJMhtoCfh2Pv00yUYftUNw01Uu+NN04T70x
PYwbu0O8j4dgIFNRPU7VQBVI+fJydkgEr3kpk8UOCCGKiE0NAcFoQv70ngPObc4W
L425i2RviZuQUXLTFsoLOb246p8V8lkfbEQKqWksFEROYWFbdNKmaLpfVqq3Bia2
+G8L2OyAHGjUXgIdOnflZHxowJg4ueGob3iH+4AhZNUpIQYtlKSfi/eo0vmzf5Uz
bD35o6y4G7NnZJyZoKb3QAEt0WQ55YDsNN62XrULQ7GEuWnpez+Jhw3jtrAr59Q7
m8n93NMKKJ9CbnsspFJ+4nHCd2Gb4i99Py70IW6Ro22DL8KRrLDv2ZQi3dJCGrAT
MtER+12coglkgjhDmLn6MMEjWkgbXXxQCEs4OQ8VMORtHAsOQEszu5TCEnihXr2q
+uUZ5O0G6eDowctOVMTdqVMtj1u1AT7fZ68evvk4omNnoFWjkQzd4sVPNDJtK+nC
7mA9IUyC2LSvr/oNNpcuIZsKU6OzQUQ5ISTMpbP/HJInFcvYbJTl0I8UcvjzlImo
81CZTUQOY9kQE+VUTHcGqPr0TjN/YlfF//koiCfeTycN0jbRZZ9rpcRQ38R8sDsS
yy7JQqwpi/x8me9ldt5r19ky5zMlCKpnQfGX6ws+umhqVEHBKw==
=Xznv
-----END PGP SIGNATURE-----
Merge tag 'kvm-riscv-5.19-1' of https://github.com/kvm-riscv/linux into HEAD
KVM/riscv changes for 5.19
- Added Sv57x4 support for G-stage page table
- Added range based local HFENCE functions
- Added remote HFENCE functions based on VCPU requests
- Added ISA extension registers in ONE_REG interface
- Updated KVM RISC-V maintainers entry to cover selftests support
- Add support for the ARMv8.6 WFxT extension
- Guard pages for the EL2 stacks
- Trap and emulate AArch32 ID registers to hide unsupported features
- Ability to select and save/restore the set of hypercalls exposed
to the guest
- Support for PSCI-initiated suspend in collaboration with userspace
- GICv3 register-based LPI invalidation support
- Move host PMU event merging into the vcpu data structure
- GICv3 ITS save/restore fixes
- The usual set of small-scale cleanups and fixes
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmKGAGsPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDB/gQAMhyZ+wCG0OMEZhwFF6iDfxVEX2Kw8L41NtD
a/e6LDWuIOGihItpRkYROc5myG74D7XckF2Bz3G7HJoU4vhwHOV/XulE26GFizoC
O1GVRekeSUY81wgS1yfo0jojLupBkTjiq3SjTHoDP7GmCM0qDPBtA0QlMRzd2bMs
Kx0+UUXZUHFSTXc7Lp4vqNH+tMp7se+yRx7hxm6PCM5zG+XYJjLxnsZ0qpchObgU
7f6YFojsLUs1SexgiUqJ1RChVQ+FkgICh5HyzORvGtHNNzK6D2sIbsW6nqMGAMql
Kr3A5O/VOkCztSYnLxaa76/HqD21mvUrXvr3grhabNc7rOmuzWV0dDgr6c6wHKHb
uNCtH4d7Ra06gUrEOrfsgLOLn0Zqik89y6aIlMsnTudMg9gMNgFHy1jz4LM7vMkY
FS5AVj059heg2uJcfgTvzzcqneyuBLBmF3dS4coowO6oaj8SycpaEmP5e89zkPMI
1kk8d0e6RmXuCh/2AJ8GxxnKvBPgqp2mMKXOCJ8j4AmHEDX/CKpEBBqIWLKkplUU
8DGiOWJUtRZJg398dUeIpiVLoXJthMODjAnkKkuhiFcQbXomlwgg7YSnNAz6TRED
Z7KR2leC247kapHnnagf02q2wED8pBeyrxbQPNdrHtSJ9Usm4nTkY443HgVTJW3s
aTwPZAQ7
=mh7W
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for 5.19
- Add support for the ARMv8.6 WFxT extension
- Guard pages for the EL2 stacks
- Trap and emulate AArch32 ID registers to hide unsupported features
- Ability to select and save/restore the set of hypercalls exposed
to the guest
- Support for PSCI-initiated suspend in collaboration with userspace
- GICv3 register-based LPI invalidation support
- Move host PMU event merging into the vcpu data structure
- GICv3 ITS save/restore fixes
- The usual set of small-scale cleanups and fixes
[Due to the conflict, KVM_SYSTEM_EVENT_SEV_TERM is relocated
from 4 to 6. - Paolo]
In commit ec0671d568 ("KVM: LAPIC: Delay trace_kvm_wait_lapic_expire
tracepoint to after vmexit", 2019-06-04), trace_kvm_wait_lapic_expire
was moved after guest_exit_irqoff() because invoking tracepoints within
kvm_guest_enter/kvm_guest_exit caused a lockdep splat.
These days this is not necessary, because commit 87fa7f3e98 ("x86/kvm:
Move context tracking where it belongs", 2020-07-09) restricted
the RCU extended quiescent state to be closer to vmentry/vmexit.
Moving the tracepoint back to __kvm_wait_lapic_expire is more accurate,
because it will be reported even if vcpu_enter_guest causes multiple
vmentries via the IPI/Timer fast paths, and it allows the removal of
advance_expire_delta.
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Message-Id: <1650961551-38390-1-git-send-email-wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add to confidential guests the necessary memory integrity protection
against malicious hypervisor-based attacks like data replay, memory
remapping and others, thus achieving a stronger isolation from the
hypervisor.
At the core of the functionality is a new structure called a reverse
map table (RMP) with which the guest has a say in which pages get
assigned to it and gets notified when a page which it owns, gets
accessed/modified under the covers so that the guest can take an
appropriate action.
In addition, add support for the whole machinery needed to launch a SNP
guest, details of which is properly explained in each patch.
And last but not least, the series refactors and improves parts of the
previous SEV support so that the new code is accomodated properly and
not just bolted on.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmKLU2AACgkQEsHwGGHe
VUpb/Q//f4LGiJf4nw1flzpe90uIsHNwAafng3NOjeXmhI/EcOlqPf23WHPCgg3Z
2umfa4sRZyj4aZubDd7tYAoq4qWrQ7pO7viWCNTh0InxBAILOoMPMuq2jSAbq0zV
ASUJXeQ2bqjYxX4JV4N5f3HT2l+k68M0mpGLN0H+O+LV9pFS7dz7Jnsg+gW4ZP25
PMPLf6FNzO/1tU1aoYu80YDP1ne4eReLrNzA7Y/rx+S2NAetNwPn21AALVgoD4Nu
vFdKh4MHgtVbwaQuh0csb/+4vD+tDXAhc8lbIl+Abl9ZxJaDWtAJW5D9e2CnsHk1
NOkHwnrzizzhtGK1g56YPUVRFAWhZYMOI1hR0zGPLQaVqBnN4b+iahPeRiV0XnGE
PSbIHSfJdeiCkvLMCdIAmpE5mRshhRSUfl1CXTCdetMn8xV/qz/vG6bXssf8yhTV
cfLGPHU7gfVmsbR9nk5a8KZ78PaytxOxfIDXvCy8JfQwlIWtieaCcjncrj+sdMJy
0fdOuwvi4jma0cyYuPolKiS1Hn4ldeibvxXT7CZQlIx6jZShMbpfpTTJs11XdtHm
PdDAc1TY3AqI33mpy9DhDQmx/+EhOGxY3HNLT7evRhv4CfdQeK3cPVUWgo4bGNVv
ZnFz7nvmwpyufltW9K8mhEZV267174jXGl6/idxybnlVE7ESr2Y=
=Y8kW
-----END PGP SIGNATURE-----
Merge tag 'x86_sev_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull AMD SEV-SNP support from Borislav Petkov:
"The third AMD confidential computing feature called Secure Nested
Paging.
Add to confidential guests the necessary memory integrity protection
against malicious hypervisor-based attacks like data replay, memory
remapping and others, thus achieving a stronger isolation from the
hypervisor.
At the core of the functionality is a new structure called a reverse
map table (RMP) with which the guest has a say in which pages get
assigned to it and gets notified when a page which it owns, gets
accessed/modified under the covers so that the guest can take an
appropriate action.
In addition, add support for the whole machinery needed to launch a
SNP guest, details of which is properly explained in each patch.
And last but not least, the series refactors and improves parts of the
previous SEV support so that the new code is accomodated properly and
not just bolted on"
* tag 'x86_sev_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
x86/entry: Fixup objtool/ibt validation
x86/sev: Mark the code returning to user space as syscall gap
x86/sev: Annotate stack change in the #VC handler
x86/sev: Remove duplicated assignment to variable info
x86/sev: Fix address space sparse warning
x86/sev: Get the AP jump table address from secrets page
x86/sev: Add missing __init annotations to SEV init routines
virt: sevguest: Rename the sevguest dir and files to sev-guest
virt: sevguest: Change driver name to reflect generic SEV support
x86/boot: Put globals that are accessed early into the .data section
x86/boot: Add an efi.h header for the decompressor
virt: sevguest: Fix bool function returning negative value
virt: sevguest: Fix return value check in alloc_shared_pages()
x86/sev-es: Replace open-coded hlt-loop with sev_es_terminate()
virt: sevguest: Add documentation for SEV-SNP CPUID Enforcement
virt: sevguest: Add support to get extended report
virt: sevguest: Add support to derive key
virt: Add SEV-SNP guest driver
x86/sev: Register SEV-SNP guest request platform device
x86/sev: Provide support for SNP guest request NAEs
...
With shadow paging enabled, the INVPCID instruction results in a call
to kvm_mmu_invpcid_gva. If INVPCID is executed with CR0.PG=0, the
invlpg callback is not set and the result is a NULL pointer dereference.
Fix it trivially by checking for mmu->invlpg before every call.
There are other possibilities:
- check for CR0.PG, because KVM (like all Intel processors after P5)
flushes guest TLB on CR0.PG changes so that INVPCID/INVLPG are a
nop with paging disabled
- check for EFER.LMA, because KVM syncs and flushes when switching
MMU contexts outside of 64-bit mode
All of these are tricky, go for the simple solution. This is CVE-2022-1789.
Reported-by: Yongkang Jia <kangel@zju.edu.cn>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In kvm_hv_flush_tlb(), valid_bank_mask is declared as unsigned long,
but is used as u64, which is wrong for i386, and has been spotted by
LKP after applying "KVM: x86: hyper-v: replace bitmap_weight() with
hweight64()"
https://lore.kernel.org/lkml/20220510154750.212913-12-yury.norov@gmail.com/
But it's wrong even without that patch because now bitmap_weight()
dereferences a word after valid_bank_mask on i386.
>> include/asm-generic/bitops/const_hweight.h:21:76: warning: right shift count >= width of type
+[-Wshift-count-overflow]
21 | #define __const_hweight64(w) (__const_hweight32(w) + __const_hweight32((w) >> 32))
| ^~
include/asm-generic/bitops/const_hweight.h:10:16: note: in definition of macro '__const_hweight8'
10 | ((!!((w) & (1ULL << 0))) + \
| ^
include/asm-generic/bitops/const_hweight.h:20:31: note: in expansion of macro '__const_hweight16'
20 | #define __const_hweight32(w) (__const_hweight16(w) + __const_hweight16((w) >> 16))
| ^~~~~~~~~~~~~~~~~
include/asm-generic/bitops/const_hweight.h:21:54: note: in expansion of macro '__const_hweight32'
21 | #define __const_hweight64(w) (__const_hweight32(w) + __const_hweight32((w) >> 32))
| ^~~~~~~~~~~~~~~~~
include/asm-generic/bitops/const_hweight.h:29:49: note: in expansion of macro '__const_hweight64'
29 | #define hweight64(w) (__builtin_constant_p(w) ? __const_hweight64(w) : __arch_hweight64(w))
| ^~~~~~~~~~~~~~~~~
arch/x86/kvm/hyperv.c:1983:36: note: in expansion of macro 'hweight64'
1983 | if (hc->var_cnt != hweight64(valid_bank_mask))
| ^~~~~~~~~
CC: Borislav Petkov <bp@alien8.de>
CC: Dave Hansen <dave.hansen@linux.intel.com>
CC: H. Peter Anvin <hpa@zytor.com>
CC: Ingo Molnar <mingo@redhat.com>
CC: Jim Mattson <jmattson@google.com>
CC: Joerg Roedel <joro@8bytes.org>
CC: Paolo Bonzini <pbonzini@redhat.com>
CC: Sean Christopherson <seanjc@google.com>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Vitaly Kuznetsov <vkuznets@redhat.com>
CC: Wanpeng Li <wanpengli@tencent.com>
CC: kvm@vger.kernel.org
CC: linux-kernel@vger.kernel.org
CC: x86@kernel.org
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Yury Norov <yury.norov@gmail.com>
Message-Id: <20220519171504.1238724-1-yury.norov@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When returning from the compare function the u64 is truncated to an
int. This results in a loss of the high nybble[1] in the event select
and its sign if that nybble is in use. Switch from using a result that
can end up being truncated to a result that can only be: 1, 0, -1.
[1] bits 35:32 in the event select register and bits 11:8 in the event
select.
Fixes: 7ff775aca4 ("KVM: x86/pmu: Use binary search to check filtered events")
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220517051238.2566934-1-aaronlewis@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When zapping obsolete pages, update the running count of zapped pages
regardless of whether or not the list has become unstable due to zapping
a shadow page with its own child shadow pages. If the VM is backed by
mostly 4kb pages, KVM can zap an absurd number of SPTEs without bumping
the batch count and thus without yielding. In the worst case scenario,
this can cause a soft lokcup.
watchdog: BUG: soft lockup - CPU#12 stuck for 22s! [dirty_log_perf_:13020]
RIP: 0010:workingset_activation+0x19/0x130
mark_page_accessed+0x266/0x2e0
kvm_set_pfn_accessed+0x31/0x40
mmu_spte_clear_track_bits+0x136/0x1c0
drop_spte+0x1a/0xc0
mmu_page_zap_pte+0xef/0x120
__kvm_mmu_prepare_zap_page+0x205/0x5e0
kvm_mmu_zap_all_fast+0xd7/0x190
kvm_mmu_invalidate_zap_pages_in_memslot+0xe/0x10
kvm_page_track_flush_slot+0x5c/0x80
kvm_arch_flush_shadow_memslot+0xe/0x10
kvm_set_memslot+0x1a8/0x5d0
__kvm_set_memory_region+0x337/0x590
kvm_vm_ioctl+0xb08/0x1040
Fixes: fbb158cb88 ("KVM: x86/mmu: Revert "Revert "KVM: MMU: zap pages in batch""")
Reported-by: David Matlack <dmatlack@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220511145122.3133334-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Avoid calling handlers on empty rmap entries and skip to the next non
empty rmap entry.
Empty rmap entries are noop in handlers.
Signed-off-by: Vipin Sharma <vipinsh@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220502220347.174664-1-vipinsh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel MKTME KeyID bits (including Intel TDX private KeyID bits) should
never be set to SPTE. Set shadow_me_value to 0 and shadow_me_mask to
include all MKTME KeyID bits to include them to shadow_zero_check.
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <27bc10e97a3c0b58a4105ff9107448c190328239.1650363789.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel Multi-Key Total Memory Encryption (MKTME) repurposes couple of
high bits of physical address bits as 'KeyID' bits. Intel Trust Domain
Extentions (TDX) further steals part of MKTME KeyID bits as TDX private
KeyID bits. TDX private KeyID bits cannot be set in any mapping in the
host kernel since they can only be accessed by software running inside a
new CPU isolated mode. And unlike to AMD's SME, host kernel doesn't set
any legacy MKTME KeyID bits to any mapping either. Therefore, it's not
legitimate for KVM to set any KeyID bits in SPTE which maps guest
memory.
KVM maintains shadow_zero_check bits to represent which bits must be
zero for SPTE which maps guest memory. MKTME KeyID bits should be set
to shadow_zero_check. Currently, shadow_me_mask is used by AMD to set
the sme_me_mask to SPTE, and shadow_me_shadow is excluded from
shadow_zero_check. So initializing shadow_me_mask to represent all
MKTME keyID bits doesn't work for VMX (as oppositely, they must be set
to shadow_zero_check).
Introduce a new 'shadow_me_value' to replace existing shadow_me_mask,
and repurpose shadow_me_mask as 'all possible memory encryption bits'.
The new schematic of them will be:
- shadow_me_value: the memory encryption bit(s) that will be set to the
SPTE (the original shadow_me_mask).
- shadow_me_mask: all possible memory encryption bits (which is a super
set of shadow_me_value).
- For now, shadow_me_value is supposed to be set by SVM and VMX
respectively, and it is a constant during KVM's life time. This
perhaps doesn't fit MKTME but for now host kernel doesn't support it
(and perhaps will never do).
- Bits in shadow_me_mask are set to shadow_zero_check, except the bits
in shadow_me_value.
Introduce a new helper kvm_mmu_set_me_spte_mask() to initialize them.
Replace shadow_me_mask with shadow_me_value in almost all code paths,
except the one in PT64_PERM_MASK, which is used by need_remote_flush()
to determine whether remote TLB flush is needed. This should still use
shadow_me_mask as any encryption bit change should need a TLB flush.
And for AMD, move initializing shadow_me_value/shadow_me_mask from
kvm_mmu_reset_all_pte_masks() to svm_hardware_setup().
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <f90964b93a3398b1cf1c56f510f3281e0709e2ab.1650363789.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename reset_rsvds_bits_mask() to reset_guest_rsvds_bits_mask() to make
it clearer that it resets the reserved bits check for guest's page table
entries.
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <efdc174b85d55598880064b8bf09245d3791031d.1650363789.git.kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Expand and clean up the page fault stats. The current stats are at best
incomplete, and at worst misleading. Differentiate between faults that
are actually fixed vs those that result in an MMIO SPTE being created,
track faults that are spurious, faults that trigger emulation, faults
that that are fixed in the fast path, and last but not least, track the
number of faults that are taken.
Note, the number of faults that require emulation for write-protected
shadow pages can roughly be calculated by subtracting the number of MMIO
SPTEs created from the overall number of faults that trigger emulation.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use IS_ENABLED() instead of an #ifdef to activate the anti-RETPOLINE fast
path for TDP page faults. The generated code is identical, and the #ifdef
makes it dangerously difficult to extend the logic (guess who forgot to
add an "else" inside the #ifdef and ran through the page fault handler
twice).
No functional or binary change intented.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move kvm_arch_async_page_ready() to mmu.c where it belongs, and move all
of the page fault handling collateral that was in mmu.h purely for the
async #PF handler into mmu_internal.h, where it belongs. This will allow
kvm_mmu_do_page_fault() to act on the RET_PF_* return without having to
expose those enums outside of the MMU.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add RET_PF_CONTINUE and use it in handle_abnormal_pfn() and
kvm_faultin_pfn() to signal that the page fault handler should continue
doing its thing. Aside from being gross and inefficient, using a boolean
return to signal continue vs. stop makes it extremely difficult to add
more helpers and/or move existing code to a helper.
E.g. hypothetically, if nested MMUs were to gain a separate page fault
handler in the future, everything up to the "is self-modifying PTE" check
can be shared by all shadow MMUs, but communicating up the stack whether
to continue on or stop becomes a nightmare.
More concretely, proposed support for private guest memory ran into a
similar issue, where it'll be forced to forego a helper in order to yield
sane code: https://lore.kernel.org/all/YkJbxiL%2FAz7olWlq@google.com.
No functional change intended.
Cc: David Matlack <dmatlack@google.com>
Cc: Chao Peng <chao.p.peng@linux.intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Tweak the "page fault can be fast" logic to explicitly check for !PRESENT
faults in the access tracking case, and drop the exec/NX check that
becomes redundant as a result. No sane hardware will generate an access
that is both an instruct fetch and a write, i.e. it's a waste of cycles.
If hardware goes off the rails, or KVM runs under a misguided hypervisor,
spuriously running throught fast path is benign (KVM has been uknowingly
being doing exactly that for years).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Check for A/D bits being disabled instead of the access tracking mask
being non-zero when deciding whether or not to attempt to fix a page
fault vian the fast path. Originally, the access tracking mask was
non-zero if and only if A/D bits were disabled by _KVM_ (including not
being supported by hardware), but that hasn't been true since nVMX was
fixed to honor EPTP12's A/D enabling, i.e. since KVM allowed L1 to cause
KVM to not use A/D bits while running L2 despite KVM using them while
running L1.
In other words, don't attempt the fast path just because EPT is enabled.
Note, attempting the fast path for all !PRESENT faults can "fix" a very,
_VERY_ tiny percentage of faults out of mmu_lock by detecting that the
fault is spurious, i.e. has been fixed by a different vCPU, but again the
odds of that happening are vanishingly small. E.g. booting an 8-vCPU VM
gets less than 10 successes out of 30k+ faults, and that's likely one of
the more favorable scenarios. Disabling dirty logging can likely lead to
a rash of collisions between vCPUs for some workloads that operate on a
common set of pages, but penalizing _all_ !PRESENT faults for that one
case is unlikely to be a net positive, not to mention that that problem
is best solved by not zapping in the first place.
The number of spurious faults does scale with the number of vCPUs, e.g. a
255-vCPU VM using TDP "jumps" to ~60 spurious faults detected in the fast
path (again out of 30k), but that's all of 0.2% of faults. Using legacy
shadow paging does get more spurious faults, and a few more detected out
of mmu_lock, but the percentage goes _down_ to 0.08% (and that's ignoring
faults that are reflected into the guest), i.e. the extra detections are
purely due to the sheer number of faults observed.
On the other hand, getting a "negative" in the fast path takes in the
neighborhood of 150-250 cycles. So while it is tempting to keep/extend
the current behavior, such a change needs to come with hard numbers
showing that it's actually a win in the grand scheme, or any scheme for
that matter.
Fixes: 995f00a619 ("x86: kvm: mmu: use ept a/d in vmcs02 iff used in vmcs12")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Passing per_cpu() to list_for_each_entry() causes the macro to be
evaluated N+1 times for N sleeping vCPUs. This is a very small
inefficiency, and the code is cleaner if the address of the per-CPU
variable is loaded earlier. Do this for both the list and the spinlock.
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Message-Id: <1649244302-6777-1-git-send-email-lirongqing@baidu.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This shows up as a TDP MMU leak when running nested. Non-working cmpxchg on L0
relies makes L1 install two different shadow pages under same spte, and one of
them is leaked.
Fixes: 1c2361f667 ("KVM: x86: Use __try_cmpxchg_user() to emulate atomic accesses")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220512101420.306759-1-mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Exit to userspace with an emulation error if KVM encounters an injected
exception with invalid guest state, in addition to the existing check of
bailing if there's a pending exception (KVM doesn't support emulating
exceptions except when emulating real mode via vm86).
In theory, KVM should never get to such a situation as KVM is supposed to
exit to userspace before injecting an exception with invalid guest state.
But in practice, userspace can intervene and manually inject an exception
and/or stuff registers to force invalid guest state while a previously
injected exception is awaiting reinjection.
Fixes: fc4fad79fc ("KVM: VMX: Reject KVM_RUN if emulation is required with pending exception")
Reported-by: syzbot+cfafed3bb76d3e37581b@syzkaller.appspotmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220502221850.131873-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
svm_vm_migrate_from() uses sev_lock_vcpus_for_migration() to lock all
source and target vcpu->locks. Unfortunately there is an 8 subclass
limit, so a new subclass cannot be used for each vCPU. Instead maintain
ownership of the first vcpu's mutex.dep_map using a role specific
subclass: source vs target. Release the other vcpu's mutex.dep_maps.
Fixes: b56639318b ("KVM: SEV: Add support for SEV intra host migration")
Reported-by: John Sperbeck<jsperbeck@google.com>
Suggested-by: David Rientjes <rientjes@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Cc: Hillf Danton <hdanton@sina.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Peter Gonda <pgonda@google.com>
Message-Id: <20220502165807.529624-1-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On some x86 processors, CPUID leaf 0xA provides information
on Architectural Performance Monitoring features. It
advertises a PMU version which Qemu uses to determine the
availability of additional MSRs to manage the PMCs.
Upon receiving a KVM_GET_SUPPORTED_CPUID ioctl request for
the same, the kernel constructs return values based on the
x86_pmu_capability irrespective of the vendor.
This leaf and the additional MSRs are not supported on AMD
and Hygon processors. If AMD PerfMonV2 is detected, the PMU
version is set to 2 and guest startup breaks because of an
attempt to access a non-existent MSR. Return zeros to avoid
this.
Fixes: a6c06ed1a6 ("KVM: Expose the architectural performance monitoring CPUID leaf")
Reported-by: Vasant Hegde <vasant.hegde@amd.com>
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Message-Id: <3fef83d9c2b2f7516e8ff50d60851f29a4bcb716.1651058600.git.sandipan.das@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Zen renumbered some of the performance counters that correspond to the
well known events in perf_hw_id. This code in KVM was never updated for
that, so guest that attempt to use counters on Zen that correspond to the
pre-Zen perf_hw_id values will silently receive the wrong values.
This has been observed in the wild with rr[0] when running in Zen 3
guests. rr uses the retired conditional branch counter 00d1 which is
incorrectly recognized by KVM as PERF_COUNT_HW_STALLED_CYCLES_BACKEND.
[0] https://rr-project.org/
Signed-off-by: Kyle Huey <me@kylehuey.com>
Message-Id: <20220503050136.86298-1-khuey@kylehuey.com>
Cc: stable@vger.kernel.org
[Check guest family, not host. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We are dropping A/D bits (and W bits) in the TDP MMU. Even if mmu_lock
is held for write, as volatile SPTEs can be written by other tasks/vCPUs
outside of mmu_lock.
Attempting to prove that bug exposed another notable goof, which has been
lurking for a decade, give or take: KVM treats _all_ MMU-writable SPTEs
as volatile, even though KVM never clears WRITABLE outside of MMU lock.
As a result, the legacy MMU (and the TDP MMU if not fixed) uses XCHG to
update writable SPTEs.
The fix does not seem to have an easily-measurable affect on performance;
page faults are so slow that wasting even a few hundred cycles is dwarfed
by the base cost.
We are dropping A/D bits (and W bits) in the TDP MMU. Even if mmu_lock
is held for write, as volatile SPTEs can be written by other tasks/vCPUs
outside of mmu_lock.
Attempting to prove that bug exposed another notable goof, which has been
lurking for a decade, give or take: KVM treats _all_ MMU-writable SPTEs
as volatile, even though KVM never clears WRITABLE outside of MMU lock.
As a result, the legacy MMU (and the TDP MMU if not fixed) uses XCHG to
update writable SPTEs.
The fix does not seem to have an easily-measurable affect on performance;
page faults are so slow that wasting even a few hundred cycles is dwarfed
by the base cost.
Use an atomic XCHG to write TDP MMU SPTEs that have volatile bits, even
if mmu_lock is held for write, as volatile SPTEs can be written by other
tasks/vCPUs outside of mmu_lock. If a vCPU uses the to-be-modified SPTE
to write a page, the CPU can cache the translation as WRITABLE in the TLB
despite it being seen by KVM as !WRITABLE, and/or KVM can clobber the
Accessed/Dirty bits and not properly tag the backing page.
Exempt non-leaf SPTEs from atomic updates as KVM itself doesn't modify
non-leaf SPTEs without holding mmu_lock, they do not have Dirty bits, and
KVM doesn't consume the Accessed bit of non-leaf SPTEs.
Dropping the Dirty and/or Writable bits is most problematic for dirty
logging, as doing so can result in a missed TLB flush and eventually a
missed dirty page. In the unlikely event that the only dirty page(s) is
a clobbered SPTE, clear_dirty_gfn_range() will see the SPTE as not dirty
(based on the Dirty or Writable bit depending on the method) and so not
update the SPTE and ultimately not flush. If the SPTE is cached in the
TLB as writable before it is clobbered, the guest can continue writing
the associated page without ever taking a write-protect fault.
For most (all?) file back memory, dropping the Dirty bit is a non-issue.
The primary MMU write-protects its PTEs on writeback, i.e. KVM's dirty
bit is effectively ignored because the primary MMU will mark that page
dirty when the write-protection is lifted, e.g. when KVM faults the page
back in for write.
The Accessed bit is a complete non-issue. Aside from being unused for
non-leaf SPTEs, KVM doesn't do a TLB flush when aging SPTEs, i.e. the
Accessed bit may be dropped anyways.
Lastly, the Writable bit is also problematic as an extension of the Dirty
bit, as KVM (correctly) treats the Dirty bit as volatile iff the SPTE is
!DIRTY && WRITABLE. If KVM fixes an MMU-writable, but !WRITABLE, SPTE
out of mmu_lock, then it can allow the CPU to set the Dirty bit despite
the SPTE being !WRITABLE when it is checked by KVM. But that all depends
on the Dirty bit being problematic in the first place.
Fixes: 2f2fad0897 ("kvm: x86/mmu: Add functions to handle changed TDP SPTEs")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Cc: David Matlack <dmatlack@google.com>
Cc: Venkatesh Srinivas <venkateshs@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the is_shadow_present_pte() check out of spte_has_volatile_bits()
and into its callers. Well, caller, since only one of its two callers
doesn't already do the shadow-present check.
Opportunistically move the helper to spte.c/h so that it can be used by
the TDP MMU, which is also the primary motivation for the shadow-present
change. Unlike the legacy MMU, the TDP MMU uses a single path for clear
leaf and non-leaf SPTEs, and to avoid unnecessary atomic updates, the TDP
MMU will need to check is_last_spte() prior to calling
spte_has_volatile_bits(), and calling is_last_spte() without first
calling is_shadow_present_spte() is at best odd, and at worst a violation
of KVM's loosely defines SPTE rules.
Note, mmu_spte_clear_track_bits() could likely skip the write entirely
for SPTEs that are not shadow-present. Leave that cleanup for a future
patch to avoid introducing a functional change, and because the
shadow-present check can likely be moved further up the stack, e.g.
drop_large_spte() appears to be the only path that doesn't already
explicitly check for a shadow-present SPTE.
No functional change intended.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't treat SPTEs that are truly writable, i.e. writable in hardware, as
being volatile (unless they're volatile for other reasons, e.g. A/D bits).
KVM _sets_ the WRITABLE bit out of mmu_lock, but never _clears_ the bit
out of mmu_lock, so if the WRITABLE bit is set, it cannot magically get
cleared just because the SPTE is MMU-writable.
Rename the wrapper of MMU-writable to be more literal, the previous name
of spte_can_locklessly_be_made_writable() is wrong and misleading.
Fixes: c7ba5b48cc ("KVM: MMU: fast path of handling guest page fault")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The helper function, vcpu_to_pi_desc(), is defined to get the posted
interrupt descriptor from vcpu. There is one place that doesn't use
it, and instead references vmx_vcpu->pi_desc directly. Remove the
inconsistency.
Signed-off-by: Yuan Yao <yuan.yao@intel.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Message-Id: <ee7be7832bc424546fd4f05015a844a0205b5ba2.1646422845.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>