Currently the i2400m driver was resetting by just calling
i2400m->bus_reset(). However, this was missing stopping the TX queue
and downing the carrier. This was causing, for the corner case of the
driver reseting a device that refuses to go out of idle mode, that a
few packets would be queued and more than one reset would go through,
making the recovery a wee bit messy.
To avoid introducing the same cleanup in all the bus-specific driver,
introduced a i2400m_reset() function that takes care of house cleaning
and then calling the bus-level reset implementation.
The bulk of the changes in all files are just to rename the call from
i2400m->bus_reset() to i2400m_reset().
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Some versions of the user space Intel WiMAX daemon need to have full
control over the device initialization sequence. By setting the module
option i2400.passive_mode to 1, the driver defers all device
configuration and initialization to user space.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Ensure that index `status' remains within ms_to_errno[]
Signed-off-by: Roel Kluin <roel.kluin@gmail.com>
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
When the i2400m device resets, the driver code will force some
functions to return a -ERESTARTSYS error code, which can is used by
the caller to determine which recovery actions to take.
However, in certain situations the only thing that can be done is to
bubble up said error code to user space, for handling.
However, -ERESTARSYS was a poor choice, as it is supposed to be used
by the kernel only.
As such, replace -ERESTARTSYS with -EL3RST; as well, in
i2400m_msg_to_dev(), when the device is in boot mode (following a
recent reset), return -EL3RST instead of -ENODEV (meaning the device
is in bootrom mode after a reset, not that the device was
disconnected, and thus, normal commands cannot be executed).
Signed-off-by: Cindy H Kao <cindy.h.kao@intel.com>
When a device reboot happens when we are under probe, with init_mutex
taken, make sure we can recover. Have dev_reset_handle set boot mode
and i2400m_msg_to_dev() will see it and fail gracefully instead of
timing out.
Found and diagnosed by Cindy H. Kao.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
i2400m_dev_shutdown() tried to reset the device to put it in a known
state before shutting down.
But that turned out to be pointless. We reach this case in two paths:
1 - when the device resets, to clean up state
2 - when the driver is unloaded, for the same
however, in both cases it is pointless; in (1) the device is already
reset, why do it again? in (2) we can't -- the USB stack, for example,
doesn't allow communicating with the device when the driver is being
unbound and if the device is disconnected, the device is gone already.
So just remove it. Leave the function as a placeholder for future
cleanups that will be done from data allocated by the driver during
device operation.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
The i2400m driver waits for the device to report being ready for
entering power save before asking it to do so. This module parameter
allows control of said operation; if disabled, the driver won't ask
the device to enter power save mode.
This is useful in setups where power saving is not so important or
when the overhead imposed by network reentry after power save is not
acceptable; by combining this with parameter 'idle_mode_disabled', the
driver will always maintain both the connection and the device in
active state.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Functions i2400m_report_tlv*() are only called from
i2400m_report_hook(), called in a workqueue by
i2400m_report_hook_work(). The scheduler checks for device readiness
before scheduling.
Added an extra check for readiness in i2400m_report_hook_work(), which
makes all the checks down the line redundant.
Obviously the device state could change in the middle, but error
handling would take care of that.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
By running 'echo 1 > /sys/kernel/debug/wimax:wmxX/i2400m/trace_msg_from_user',
the driver will echo to user space all the commands being sent to the
device from user space, along with the responses.
However, this only helps with the commands being sent from user space;
with this patch, the trace hook is moved to i2400m_msg_to_dev(), which
is the single access point for running commands to the device (both by
user space and the kernel driver). This allows better debugging by
having a complete stream of commands/acks and reports.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Allow the device to give the driver RX data with reorder information.
When that is done, the device will indicate the driver if a packet has
to be held in a (sorted) queue. It will also tell the driver when held
packets have to be released to the OS.
This is done to improve the WiMAX-protocol level retransmission
support when missing frames are detected.
The code docs provide details about the implementation.
In general, this just hooks into the RX path in rx.c; if a packet with
the reorder bit in the RX header is detected, the reorder information
in the header is extracted and one of the four main reorder operations
are executed. In one case (queue) no packet will be delivered to the
networking stack, just queued, whereas in the others (reset, update_ws
and queue_update_ws), queued packet might be delivered depending on
the window start for the specific queue.
The modifications to files other than rx.c are:
- control.c: during device initialization, enable reordering support
if the rx_reorder_disabled module parameter is not enabled
- driver.c: expose a rx_reorder_disable module parameter and call
i2400m_rx_setup/release() to initialize/shutdown RX reorder
support.
- i2400m.h: introduce members in 'struct i2400m' needed for
implementing reorder support.
- linux/i2400m.h: introduce TLVs, commands and constant definitions
related to RX reorder
Last but not least, the rx reorder code includes an small circular log
where the last N reorder operations are recorded to be displayed in
case of inconsistency. Otherwise diagnosing issues would be almost
impossible.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Newer i2400m firmwares (>= v1.4) extend the data RX protocol so that
each packet has a 16 byte header. This header is mainly used to
implement host reordeing (which is addressed in later commits).
However, this header also allows us to overwrite it (once data has
been extracted) with an Ethernet header and deliver to the networking
stack without having to reallocate the skb (as it happened in fw <=
v1.3) to make room for it.
- control.c: indicate the device [dev_initialize()] that the driver
wants to use the extended data RX protocol. Also involves adding the
definition of the needed data types in include/linux/wimax/i2400m.h.
- rx.c: handle the new payload type for the extended RX data
protocol. Prepares the skb for delivery to
netdev.c:i2400m_net_erx().
- netdev.c: Introduce i2400m_net_erx() that adds the fake ethernet
address to a prepared skb and delivers it to the networking
stack.
- cleanup: in most instances in rx.c, the variable 'single' was
renamed to 'single_last' for it better conveys its meaning.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
For power saving reasons, WiMAX links can be put in idle mode while
connected after a certain time of the link not being used for tx or
rx. In this mode, the device pages the base-station regularly and when
data is ready to be transmitted, the link is revived.
This patch allows the user to control the time the device has to be
idle before it decides to go to idle mode from a sysfs
interace.
It also updates the initialization code to acknowledge the module
variable 'idle_mode_disabled' when the firmware is a newer version
(upcoming 1.4 vs 2.6.29's v1.3).
The method for setting the idle mode timeout in the older firmwares is
much more limited and can be only done at initialization time. Thus,
the sysfs file will return -ENOSYS on older ones.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Upcoming modifications will need to test for the running firmware
version before activating a feature or not. This is helpful to
implement backward compatibility with older firmware versions.
Modify i2400m_firmware_check() to encode in i2400m->fw_version the
major and minor version numbers of the firmware interface.
As well, move the call to be done as the very first operation once we
have communication with the device during probe() [in
__i2400m_dev_start()]. This is needed so any operation that is
executed afterwards can determine which fw version it is talking to.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Firmware interface version 8.x.x has long been deprecated and is no
longer supported (nor available, as it is a preproduction firmware),
so it can be safely dropped.
Add support for firmware interface v9.2.x (current is 9.1.x). Firmware
version 9.2.x is backwards compatible with 9.1.x; new features are
enabled if switches are pressed to turn them on. Forthcoming commits
to the driver will start pressing those switches when the firmware
interface supports it.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Roel Kluin reported a bug in two error paths where skbs were wrongly
being freed using kfree(). He provided a fix where it was replaced to
kfree_skb(), as it should be.
However, in i2400mu_rx(), the error path was missing returning an
indication of the failure. Changed to reset rx_skb to NULL and return
it to the caller, i2400mu_rxd(). It will be treated as a transient
error and just ignore the packet.
Depending on the buffering conditions inside the device, the data
packet might be dropped or the device will signal the host again for
data-ready-to-read and the host will retry.
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This is a collection of functions used to control the device (plus a
few helpers).
There are utilities for handling TLV buffers, hooks on the device's
reports to act on device changes of state [i2400m_report_hook()], on
acks to commands [i2400m_msg_ack_hook()], a helper for sending
commands to the device and blocking until a reply arrives
[i2400m_msg_to_dev()], a few high level commands for manipulating the
device state, powersaving mode and configuration plus the routines to
setup the device once communication is established with it
[i2400m_dev_initialize()].
Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>