This typedef is unnecessary and should just be removed.
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is an orphaned prehistoric comment , which used to be against
get_dirty_limits(), the dawn of global_dirtyable_memory().
Back then, the implementation of get_dirty_limits() is complicated and
full of magic numbers, so this comment is necessary. But we now use the
clear and neat global_dirtyable_memory(), which renders this comment
ambiguous and useless. Remove it.
Signed-off-by: Jianyu Zhan <nasa4836@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Replace places where __get_cpu_var() is used for an address calculation
with this_cpu_ptr().
Signed-off-by: Christoph Lameter <cl@linux.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
When we perform a data integrity sync we tag all the dirty pages with
PAGECACHE_TAG_TOWRITE at start of ext4_da_writepages. Later we check
for this tag in write_cache_pages_da and creates a struct
mpage_da_data containing contiguously indexed pages tagged with this
tag and sync these pages with a call to mpage_da_map_and_submit. This
process is done in while loop until all the PAGECACHE_TAG_TOWRITE
pages are synced. We also do journal start and stop in each iteration.
journal_stop could initiate journal commit which would call
ext4_writepage which in turn will call ext4_bio_write_page even for
delayed OR unwritten buffers. When ext4_bio_write_page is called for
such buffers, even though it does not sync them but it clears the
PAGECACHE_TAG_TOWRITE of the corresponding page and hence these pages
are also not synced by the currently running data integrity sync. We
will end up with dirty pages although sync is completed.
This could cause a potential data loss when the sync call is followed
by a truncate_pagecache call, which is exactly the case in
collapse_range. (It will cause generic/127 failure in xfstests)
To avoid this issue, we can use set_page_writeback_keepwrite instead of
set_page_writeback, which doesn't clear TOWRITE tag.
Cc: stable@vger.kernel.org
Signed-off-by: Namjae Jeon <namjae.jeon@samsung.com>
Signed-off-by: Ashish Sangwan <a.sangwan@samsung.com>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
Reviewed-by: Jan Kara <jack@suse.cz>
It is possible for "limit - setpoint + 1" to equal zero, after getting
truncated to a 32 bit variable, and resulting in a divide by zero error.
Using the fully 64 bit divide functions avoids this problem. It also
will cause pos_ratio_polynom() to return the correct value when
(setpoint - limit) exceeds 2^32.
Also uninline pos_ratio_polynom, at Andrew's request.
Signed-off-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Nishanth Aravamudan <nacc@linux.vnet.ibm.com>
Cc: Luiz Capitulino <lcapitulino@redhat.com>
Cc: Masayoshi Mizuma <m.mizuma@jp.fujitsu.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There's only one caller of set_page_dirty_balance() and that will call it
with page_mkwrite == 0.
The page_mkwrite argument was unused since commit b827e496c8 "mm: close
page_mkwrite races".
Signed-off-by: Miklos Szeredi <mszeredi@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
During aio stress test, we observed the following lockdep warning. This
mean AIO+numa_balancing is currently deadlockable.
The problem is, aio_migratepage disable interrupt, but
__set_page_dirty_nobuffers unintentionally enable it again.
Generally, all helper function should use spin_lock_irqsave() instead of
spin_lock_irq() because they don't know caller at all.
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&(&ctx->completion_lock)->rlock);
<Interrupt>
lock(&(&ctx->completion_lock)->rlock);
*** DEADLOCK ***
dump_stack+0x19/0x1b
print_usage_bug+0x1f7/0x208
mark_lock+0x21d/0x2a0
mark_held_locks+0xb9/0x140
trace_hardirqs_on_caller+0x105/0x1d0
trace_hardirqs_on+0xd/0x10
_raw_spin_unlock_irq+0x2c/0x50
__set_page_dirty_nobuffers+0x8c/0xf0
migrate_page_copy+0x434/0x540
aio_migratepage+0xb1/0x140
move_to_new_page+0x7d/0x230
migrate_pages+0x5e5/0x700
migrate_misplaced_page+0xbc/0xf0
do_numa_page+0x102/0x190
handle_pte_fault+0x241/0x970
handle_mm_fault+0x265/0x370
__do_page_fault+0x172/0x5a0
do_page_fault+0x1a/0x70
page_fault+0x28/0x30
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Larry Woodman <lwoodman@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Acked-by: David Rientjes <rientjes@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The VM is currently heavily tuned to avoid swapping. Whether that is
good or bad is a separate discussion, but as long as the VM won't swap
to make room for dirty cache, we can not consider anonymous pages when
calculating the amount of dirtyable memory, the baseline to which
dirty_background_ratio and dirty_ratio are applied.
A simple workload that occupies a significant size (40+%, depending on
memory layout, storage speeds etc.) of memory with anon/tmpfs pages and
uses the remainder for a streaming writer demonstrates this problem. In
that case, the actual cache pages are a small fraction of what is
considered dirtyable overall, which results in an relatively large
portion of the cache pages to be dirtied. As kswapd starts rotating
these, random tasks enter direct reclaim and stall on IO.
Only consider free pages and file pages dirtyable.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Tejun Heo <tj@kernel.org>
Tested-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Tejun reported stuttering and latency spikes on a system where random
tasks would enter direct reclaim and get stuck on dirty pages. Around
50% of memory was occupied by tmpfs backed by an SSD, and another disk
(rotating) was reading and writing at max speed to shrink a partition.
: The problem was pretty ridiculous. It's a 8gig machine w/ one ssd and 10k
: rpm harddrive and I could reliably reproduce constant stuttering every
: several seconds for as long as buffered IO was going on on the hard drive
: either with tmpfs occupying somewhere above 4gig or a test program which
: allocates about the same amount of anon memory. Although swap usage was
: zero, turning off swap also made the problem go away too.
:
: The trigger conditions seem quite plausible - high anon memory usage w/
: heavy buffered IO and swap configured - and it's highly likely that this
: is happening in the wild too. (this can happen with copying large files
: to usb sticks too, right?)
This patch (of 2):
The dirty_balance_reserve is an approximation of the fraction of free
pages that the page allocator does not make available for page cache
allocations. As a result, it has to be taken into account when
calculating the amount of "dirtyable memory", the baseline to which
dirty_background_ratio and dirty_ratio are applied.
However, currently the reserve is subtracted from the sum of free and
reclaimable pages, which is non-sensical and leads to erroneous results
when the system is dominated by unreclaimable pages and the
dirty_balance_reserve is bigger than free+reclaimable. In that case, at
least the already allocated cache should be considered dirtyable.
Fix the calculation by subtracting the reserve from the amount of free
pages, then adding the reclaimable pages on top.
[akpm@linux-foundation.org: fix CONFIG_HIGHMEM build]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reported-by: Tejun Heo <tj@kernel.org>
Tested-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Toralf runs trinity on UML/i386. After some time it hangs and the last
message line is
BUG: soft lockup - CPU#0 stuck for 22s! [trinity-child0:1521]
It's found that pages_dirtied becomes very large. More than 1000000000
pages in this case:
period = HZ * pages_dirtied / task_ratelimit;
BUG_ON(pages_dirtied > 2000000000);
BUG_ON(pages_dirtied > 1000000000); <---------
UML debug printf shows that we got negative pause here:
ick: pause : -984
ick: pages_dirtied : 0
ick: task_ratelimit: 0
pause:
+ if (pause < 0) {
+ extern int printf(char *, ...);
+ printf("ick : pause : %li\n", pause);
+ printf("ick: pages_dirtied : %lu\n", pages_dirtied);
+ printf("ick: task_ratelimit: %lu\n", task_ratelimit);
+ BUG_ON(1);
+ }
trace_balance_dirty_pages(bdi,
Since pause is bounded by [min_pause, max_pause] where min_pause is also
bounded by max_pause. It's suspected and demonstrated that the
max_pause calculation goes wrong:
ick: pause : -717
ick: min_pause : -177
ick: max_pause : -717
ick: pages_dirtied : 14
ick: task_ratelimit: 0
The problem lies in the two "long = unsigned long" assignments in
bdi_max_pause() which might go negative if the highest bit is 1, and the
min_t(long, ...) check failed to protect it falling under 0. Fix all of
them by using "unsigned long" throughout the function.
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Reported-by: Toralf Förster <toralf.foerster@gmx.de>
Tested-by: Toralf Förster <toralf.foerster@gmx.de>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Richard Weinberger <richard@nod.at>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add memcg routines to count writeback pages, later dirty pages will also
be accounted.
After Kame's commit 89c06bd52f ("memcg: use new logic for page stat
accounting"), we can use 'struct page' flag to test page state instead
of per page_cgroup flag. But memcg has a feature to move a page from a
cgroup to another one and may have race between "move" and "page stat
accounting". So in order to avoid the race we have designed a new lock:
mem_cgroup_begin_update_page_stat()
modify page information -->(a)
mem_cgroup_update_page_stat() -->(b)
mem_cgroup_end_update_page_stat()
It requires both (a) and (b)(writeback pages accounting) to be pretected
in mem_cgroup_{begin/end}_update_page_stat(). It's full no-op for
!CONFIG_MEMCG, almost no-op if memcg is disabled (but compiled in), rcu
read lock in the most cases (no task is moving), and spin_lock_irqsave
on top in the slow path.
There're two writeback interfaces to modify: test_{clear/set}_page_writeback().
And the lock order is:
--> memcg->move_lock
--> mapping->tree_lock
Signed-off-by: Sha Zhengju <handai.szj@taobao.com>
Acked-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Greg Thelen <gthelen@google.com>
Cc: Fengguang Wu <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The feature prevents mistrusted filesystems (ie: FUSE mounts created by
unprivileged users) to grow a large number of dirty pages before
throttling. For such filesystems balance_dirty_pages always check bdi
counters against bdi limits. I.e. even if global "nr_dirty" is under
"freerun", it's not allowed to skip bdi checks. The only use case for now
is fuse: it sets bdi max_ratio to 1% by default and system administrators
are supposed to expect that this limit won't be exceeded.
The feature is on if a BDI is marked by BDI_CAP_STRICTLIMIT flag. A
filesystem may set the flag when it initializes its BDI.
The problematic scenario comes from the fact that nobody pays attention to
the NR_WRITEBACK_TEMP counter (i.e. number of pages under fuse
writeback). The implementation of fuse writeback releases original page
(by calling end_page_writeback) almost immediately. A fuse request queued
for real processing bears a copy of original page. Hence, if userspace
fuse daemon doesn't finalize write requests in timely manner, an
aggressive mmap writer can pollute virtually all memory by those temporary
fuse page copies. They are carefully accounted in NR_WRITEBACK_TEMP, but
nobody cares.
To make further explanations shorter, let me use "NR_WRITEBACK_TEMP
problem" as a shortcut for "a possibility of uncontrolled grow of amount
of RAM consumed by temporary pages allocated by kernel fuse to process
writeback".
The problem was very easy to reproduce. There is a trivial example
filesystem implementation in fuse userspace distribution: fusexmp_fh.c. I
added "sleep(1);" to the write methods, then recompiled and mounted it.
Then created a huge file on the mount point and run a simple program which
mmap-ed the file to a memory region, then wrote a data to the region. An
hour later I observed almost all RAM consumed by fuse writeback. Since
then some unrelated changes in kernel fuse made it more difficult to
reproduce, but it is still possible now.
Putting this theoretical happens-in-the-lab thing aside, there is another
thing that really hurts real world (FUSE) users. This is write-through
page cache policy FUSE currently uses. I.e. handling write(2), kernel
fuse populates page cache and flushes user data to the server
synchronously. This is excessively suboptimal. Pavel Emelyanov's patches
("writeback cache policy") solve the problem, but they also make resolving
NR_WRITEBACK_TEMP problem absolutely necessary. Otherwise, simply copying
a huge file to a fuse mount would result in memory starvation. Miklos,
the maintainer of FUSE, believes strictlimit feature the way to go.
And eventually putting FUSE topics aside, there is one more use-case for
strictlimit feature. Using a slow USB stick (mass storage) in a machine
with huge amount of RAM installed is a well-known pain. Let's make simple
computations. Assuming 64GB of RAM installed, existing implementation of
balance_dirty_pages will start throttling only after 9.6GB of RAM becomes
dirty (freerun == 15% of total RAM). So, the command "cp 9GB_file
/media/my-usb-storage/" may return in a few seconds, but subsequent
"umount /media/my-usb-storage/" will take more than two hours if effective
throughput of the storage is, to say, 1MB/sec.
After inclusion of strictlimit feature, it will be trivial to add a knob
(e.g. /sys/devices/virtual/bdi/x:y/strictlimit) to enable it on demand.
Manually or via udev rule. May be I'm wrong, but it seems to be quite a
natural desire to limit the amount of dirty memory for some devices we are
not fully trust (in the sense of sustainable throughput).
[akpm@linux-foundation.org: fix warning in page-writeback.c]
Signed-off-by: Maxim Patlasov <MPatlasov@parallels.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: James Bottomley <James.Bottomley@HansenPartnership.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch is based on KOSAKI's work and I add a little more description,
please refer https://lkml.org/lkml/2012/6/14/74.
Currently, I found system can enter a state that there are lots of free
pages in a zone but only order-0 and order-1 pages which means the zone is
heavily fragmented, then high order allocation could make direct reclaim
path's long stall(ex, 60 seconds) especially in no swap and no compaciton
enviroment. This problem happened on v3.4, but it seems issue still lives
in current tree, the reason is do_try_to_free_pages enter live lock:
kswapd will go to sleep if the zones have been fully scanned and are still
not balanced. As kswapd thinks there's little point trying all over again
to avoid infinite loop. Instead it changes order from high-order to
0-order because kswapd think order-0 is the most important. Look at
73ce02e9 in detail. If watermarks are ok, kswapd will go back to sleep
and may leave zone->all_unreclaimable =3D 0. It assume high-order users
can still perform direct reclaim if they wish.
Direct reclaim continue to reclaim for a high order which is not a
COSTLY_ORDER without oom-killer until kswapd turn on
zone->all_unreclaimble= . This is because to avoid too early oom-kill.
So it means direct_reclaim depends on kswapd to break this loop.
In worst case, direct-reclaim may continue to page reclaim forever when
kswapd sleeps forever until someone like watchdog detect and finally kill
the process. As described in:
http://thread.gmane.org/gmane.linux.kernel.mm/103737
We can't turn on zone->all_unreclaimable from direct reclaim path because
direct reclaim path don't take any lock and this way is racy. Thus this
patch removes zone->all_unreclaimable field completely and recalculates
zone reclaimable state every time.
Note: we can't take the idea that direct-reclaim see zone->pages_scanned
directly and kswapd continue to use zone->all_unreclaimable. Because, it
is racy. commit 929bea7c71 (vmscan: all_unreclaimable() use
zone->all_unreclaimable as a name) describes the detail.
[akpm@linux-foundation.org: uninline zone_reclaimable_pages() and zone_reclaimable()]
Cc: Aaditya Kumar <aaditya.kumar.30@gmail.com>
Cc: Ying Han <yinghan@google.com>
Cc: Nick Piggin <npiggin@gmail.com>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mel@csn.ul.ie>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Bob Liu <lliubbo@gmail.com>
Cc: Neil Zhang <zhangwm@marvell.com>
Cc: Russell King - ARM Linux <linux@arm.linux.org.uk>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Minchan Kim <minchan@kernel.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Lisa Du <cldu@marvell.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit 75f7ad8e04. It was the result of a problem
observed with a 3.2 kernel and merged in 3.9, while the issue had been
resolved upstream in 3.3 (commit ab8fabd46f: "mm: exclude reserved
pages from dirtyable memory").
The "reserved pages" are a superset of min_free_kbytes, thus this change
is redundant and confusing. Revert it.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Paul Szabo <psz@maths.usyd.edu.au>
Cc: Rik van Riel <riel@redhat.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
This removes all the uses of the __cpuinit macros from C files in
the core kernel directories (kernel, init, lib, mm, and include)
that don't really have a specific maintainer.
[1] https://lkml.org/lkml/2013/5/20/589
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Walking a bio's page mappings has proved problematic, so create a new
bio flag to indicate that a bio's data needs to be snapshotted in order
to guarantee stable pages during writeback. Next, for the one user
(ext3/jbd) of snapshotting, hook all the places where writes can be
initiated without PG_writeback set, and set BIO_SNAP_STABLE there.
We must also flag journal "metadata" bios for stable writeout, since
file data can be written through the journal. Finally, the
MS_SNAP_STABLE mount flag (only used by ext3) is now superfluous, so get
rid of it.
[akpm@linux-foundation.org: rename _submit_bh()'s `flags' to `bio_flags', delobotomize the _submit_bh declaration]
[akpm@linux-foundation.org: teeny cleanup]
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Artem Bityutskiy <dedekind1@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Pull block IO core bits from Jens Axboe:
"Below are the core block IO bits for 3.9. It was delayed a few days
since my workstation kept crashing every 2-8h after pulling it into
current -git, but turns out it is a bug in the new pstate code (divide
by zero, will report separately). In any case, it contains:
- The big cfq/blkcg update from Tejun and and Vivek.
- Additional block and writeback tracepoints from Tejun.
- Improvement of the should sort (based on queues) logic in the plug
flushing.
- _io() variants of the wait_for_completion() interface, using
io_schedule() instead of schedule() to contribute to io wait
properly.
- Various little fixes.
You'll get two trivial merge conflicts, which should be easy enough to
fix up"
Fix up the trivial conflicts due to hlist traversal cleanups (commit
b67bfe0d42: "hlist: drop the node parameter from iterators").
* 'for-3.9/core' of git://git.kernel.dk/linux-block: (39 commits)
block: remove redundant check to bd_openers()
block: use i_size_write() in bd_set_size()
cfq: fix lock imbalance with failed allocations
drivers/block/swim3.c: fix null pointer dereference
block: don't select PERCPU_RWSEM
block: account iowait time when waiting for completion of IO request
sched: add wait_for_completion_io[_timeout]
writeback: add more tracepoints
block: add block_{touch|dirty}_buffer tracepoint
buffer: make touch_buffer() an exported function
block: add @req to bio_{front|back}_merge tracepoints
block: add missing block_bio_complete() tracepoint
block: Remove should_sort judgement when flush blk_plug
block,elevator: use new hashtable implementation
cfq-iosched: add hierarchical cfq_group statistics
cfq-iosched: collect stats from dead cfqgs
cfq-iosched: separate out cfqg_stats_reset() from cfq_pd_reset_stats()
blkcg: make blkcg_print_blkgs() grab q locks instead of blkcg lock
block: RCU free request_queue
blkcg: implement blkg_[rw]stat_recursive_sum() and blkg_[rw]stat_merge()
...
When calculating amount of dirtyable memory, min_free_kbytes should be
subtracted because it is not intended for dirty pages.
Addresses http://bugs.debian.org/695182
[akpm@linux-foundation.org: fix up min_free_kbytes extern declarations]
[akpm@linux-foundation.org: fix min() warning]
Signed-off-by: Paul Szabo <psz@maths.usyd.edu.au>
Acked-by: Rik van Riel <riel@redhat.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This provides a band-aid to provide stable page writes on jbd without
needing to backport the fixed locking and page writeback bit handling
schemes of jbd2. The band-aid works by using bounce buffers to snapshot
page contents instead of waiting.
For those wondering about the ext3 bandage -- fixing the jbd locking
(which was done as part of ext4dev years ago) is a lot of surgery, and
setting PG_writeback on data pages when we actually hold the page lock
dropped ext3 performance by nearly an order of magnitude. If we're
going to migrate iscsi and raid to use stable page writes, the
complaints about high latency will likely return. We might as well
centralize their page snapshotting thing to one place.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Tested-by: Andy Lutomirski <luto@amacapital.net>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Artem Bityutskiy <dedekind1@gmail.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Steven Whitehouse <swhiteho@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Eric Van Hensbergen <ericvh@gmail.com>
Cc: Ron Minnich <rminnich@sandia.gov>
Cc: Latchesar Ionkov <lucho@ionkov.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Create a helper function to check if a backing device requires stable
page writes and, if so, performs the necessary wait. Then, make it so
that all points in the memory manager that handle making pages writable
use the helper function. This should provide stable page write support
to most filesystems, while eliminating unnecessary waiting for devices
that don't require the feature.
Before this patchset, all filesystems would block, regardless of whether
or not it was necessary. ext3 would wait, but still generate occasional
checksum errors. The network filesystems were left to do their own
thing, so they'd wait too.
After this patchset, all the disk filesystems except ext3 and btrfs will
wait only if the hardware requires it. ext3 (if necessary) snapshots
pages instead of blocking, and btrfs provides its own bdi so the mm will
never wait. Network filesystems haven't been touched, so either they
provide their own stable page guarantees or they don't block at all.
The blocking behavior is back to what it was before 3.0 if you don't
have a disk requiring stable page writes.
Here's the result of using dbench to test latency on ext2:
3.8.0-rc3:
Operation Count AvgLat MaxLat
----------------------------------------
WriteX 109347 0.028 59.817
ReadX 347180 0.004 3.391
Flush 15514 29.828 287.283
Throughput 57.429 MB/sec 4 clients 4 procs max_latency=287.290 ms
3.8.0-rc3 + patches:
WriteX 105556 0.029 4.273
ReadX 335004 0.005 4.112
Flush 14982 30.540 298.634
Throughput 55.4496 MB/sec 4 clients 4 procs max_latency=298.650 ms
As you can see, the maximum write latency drops considerably with this
patch enabled. The other filesystems (ext3/ext4/xfs/btrfs) behave
similarly, but see the cover letter for those results.
Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
Acked-by: Steven Whitehouse <swhiteho@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Cc: Adrian Hunter <adrian.hunter@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Artem Bityutskiy <dedekind1@gmail.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Mark Fasheh <mfasheh@suse.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Eric Van Hensbergen <ericvh@gmail.com>
Cc: Ron Minnich <rminnich@sandia.gov>
Cc: Latchesar Ionkov <lucho@ionkov.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move rt scheduler definitions out of include/linux/sched.h into
new file include/linux/sched/rt.h
Signed-off-by: Clark Williams <williams@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20130207094707.7b9f825f@riff.lan
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In bdi_position_ratio(), get difference (setpoint-dirty) right even when
negative. Both setpoint and dirty are unsigned long, the difference was
zero-padded thus wrongly sign-extended to s64. This issue affects all
32-bit architectures, does not affect 64-bit architectures where long
and s64 are equivalent.
In this function, dirty is between freerun and limit, the pseudo-float x
is between [-1,1], expected to be negative about half the time. With
zero-padding, instead of a small negative x we obtained a large positive
one so bdi_position_ratio() returned garbage.
Casting the difference to s64 also prevents overflow with left-shift;
though normally these numbers are small and I never observed a 32-bit
overflow there.
(This patch does not solve the PAE OOM issue.)
Paul Szabo psz@maths.usyd.edu.auhttp://www.maths.usyd.edu.au/u/psz/
School of Mathematics and Statistics University of Sydney Australia
Reviewed-by: Jan Kara <jack@suse.cz>
Reported-by: Paul Szabo <psz@maths.usyd.edu.au>
Reference: http://bugs.debian.org/695182
Signed-off-by: Paul Szabo <psz@maths.usyd.edu.au>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Add tracepoints for page dirtying, writeback_single_inode start, inode
dirtying and writeback. For the latter two inode events, a pair of
events are defined to denote start and end of the operations (the
starting one has _start suffix and the one w/o suffix happens after
the operation is complete). These inode ops are FS specific and can
be non-trivial and having enclosing tracepoints is useful for external
tracers.
This is part of tracepoint additions to improve visiblity into
dirtying / writeback operations for io tracer and userland.
v2: writeback_dirty_inode[_start] TPs may be called for files on
pseudo FSes w/ unregistered bdi. Check whether bdi->dev is %NULL
before dereferencing.
v3: buffer dirtying moved to a block TP.
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
The system uses global_dirtyable_memory() to calculate number of
dirtyable pages/pages that can be allocated to the page cache. A bug
causes an underflow thus making the page count look like a big unsigned
number. This in turn confuses the dirty writeback throttling to
aggressively write back pages as they become dirty (usually 1 page at a
time). This generally only affects systems with highmem because the
underflowed count gets subtracted from the global count of dirtyable
memory.
The problem was introduced with v3.2-4896-gab8fabd
Fix is to ensure we don't get an underflowed total of either highmem or
global dirtyable memory.
Signed-off-by: Sonny Rao <sonnyrao@chromium.org>
Signed-off-by: Puneet Kumar <puneetster@chromium.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Damien Wyart <damien.wyart@free.fr>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
There is no reason to pass the nr_pages_dirtied argument, because
nr_pages_dirtied value from the caller is unused in
balance_dirty_pages_ratelimited_nr().
Signed-off-by: Namjae Jeon <linkinjeon@gmail.com>
Signed-off-by: Vivek Trivedi <vtrivedi018@gmail.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The CPU hotplug callback related to writeback calls writeback_set_ratelimit()
during every state change in the hotplug sequence. This is unnecessary
since num_online_cpus() changes only once during the entire hotplug operation.
So invoke the function only once per hotplug, thereby avoiding the
unnecessary repetition of those costly calculations.
Signed-off-by: Srivatsa S. Bhat <srivatsa.bhat@linux.vnet.ibm.com>
Finally we can kill the 'sync_supers' kernel thread along with the
'->write_super()' superblock operation because all the users are gone.
Now every file-system is supposed to self-manage own superblock and
its dirty state.
The nice thing about killing this thread is that it improves power management.
Indeed, 'sync_supers' is a source of monotonic system wake-ups - it woke up
every 5 seconds no matter what - even if there were no dirty superblocks and
even if there were no file-systems using this service (e.g., btrfs and
journalled ext4 do not need it). So it was wasting power most of the time. And
because the thread was in the core of the kernel, all systems had to have it.
So I am quite happy to make it go away.
Interestingly, this thread is a left-over from the pdflush kernel thread which
was a self-forking kernel thread responsible for all the write-back in old
Linux kernels. It was turned into per-block device BDI threads, and
'sync_supers' was a left-over. Thus, R.I.P, pdflush as well.
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Convert calculations of proportion of writeback each bdi does to new flexible
proportion code. That allows us to use aging period of fixed wallclock time
which gives better proportion estimates given the hugely varying throughput of
different devices.
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
This prevents global_dirty_limit from remaining 0 (the initial value)
for long time, since it's only updated in update_dirty_limit() when
above the dirty freerun area.
It will avoid unexpected consequences when some random code use it as a
convenient approximation of the global dirty threshold.
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
The function global_dirtyable_memory is only referenced in this file and
should be marked static to prevent it from being exposed globally.
This quiets the sparse warning:
warning: symbol 'global_dirtyable_memory' was not declared. Should it be static?
Signed-off-by: H Hartley Sweeten <hsweeten@visionengravers.com>
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
The changes to export dirty_writeback_interval are from Artem's s_dirt
cleanup patch series. The same is true of the change to remove the
s_dirt helper functions which never got used by anyone in-tree. I've
run these changes by Al Viro, and am carrying them so that Artem can
more easily fix up the rest of the file systems during the next merge
window. (Originally we had hopped to remove the use of s_dirt from
ext4 during this merge window, but his patches had some bugs, so I
ultimately ended dropping them from the ext4 tree.)
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.4.10 (GNU/Linux)
iQIcBAABCAAGBQJPb39rAAoJENNvdpvBGATwVz8P/3V1NqSsk20VJOLbmEE45GxL
GDzQJ6OsFG0UiQk6ISSrSdwxfav/KTCGySsU9UtAoOdPcBwnnsf8S7wc6OggwwuC
hBFGwwFzk6YSQaZ58sUxWRGeOJuP/FPem6Id6buC4DQ1KIcznP/hEEgEnh/ir4Ec
vrsfexY93TR8BE2Mi23v2epDVLU0B6bY/w9nDqbTXif3xN/gh/ypoHHouuM6Bs2n
TyWHOwD15NwfnvRHd8PfDDqQM/D29x3QI0FMrWj9McpwIz4d4cBfhN4LQ/G+yLDY
izv5DM10GbinwHPrsOTGVAW3KIdSS9rP3jCJGVuOrJZ9ufGXosvHuIYVhI7J3SBK
JhBu6QEsN1IsvlVYpz9q8mqVKaDXQLsz2eaTw+i4yfmyOk1kOX7nIEOxYFF78G+V
Of/W1SpIpJQaXvLHRcDj9fDj0fZTciUZA8v7/HOFS+co2dzIl0iZbcfBFp0/56RY
sWdQoeRlx1ciVDPR+w2TQO5w3VWQw1gT5aqux0NiPj0XFoiUHScxgNGAYbqENMQw
v9chvyDMlorqj0rF/Vey5SssgEDi7MTdYuYTi4YyMqr7pcvOJaO85pf+wH9g2eKW
XhW33PhPGuwCJDP5Pg8Y0Z2Hp/Q3DCqhLqhGfTyAs/NG9+hR4wgp3VWb8CUqhA1t
C/yzNeOYqScAefCzQx2V
=+9zk
-----END PGP SIGNATURE-----
Merge tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4
Pull ext4 updates for 3.4 from Ted Ts'o:
"Ext4 commits for 3.3 merge window; mostly cleanups and bug fixes
The changes to export dirty_writeback_interval are from Artem's s_dirt
cleanup patch series. The same is true of the change to remove the
s_dirt helper functions which never got used by anyone in-tree. I've
run these changes by Al Viro, and am carrying them so that Artem can
more easily fix up the rest of the file systems during the next merge
window. (Originally we had hopped to remove the use of s_dirt from
ext4 during this merge window, but his patches had some bugs, so I
ultimately ended dropping them from the ext4 tree.)"
* tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: (66 commits)
vfs: remove unused superblock helpers
mm: export dirty_writeback_interval
ext4: remove useless s_dirt assignment
ext4: write superblock only once on unmount
ext4: do not mark superblock as dirty unnecessarily
ext4: correct ext4_punch_hole return codes
ext4: remove restrictive checks for EOFBLOCKS_FL
ext4: always set then trimmed blocks count into len
ext4: fix trimmed block count accunting
ext4: fix start and len arguments handling in ext4_trim_fs()
ext4: update s_free_{inodes,blocks}_count during online resize
ext4: change some printk() calls to use ext4_msg() instead
ext4: avoid output message interleaving in ext4_error_<foo>()
ext4: remove trailing newlines from ext4_msg() and ext4_error() messages
ext4: add no_printk argument validation, fix fallout
ext4: remove redundant "EXT4-fs: " from uses of ext4_msg
ext4: give more helpful error message in ext4_ext_rm_leaf()
ext4: remove unused code from ext4_ext_map_blocks()
ext4: rewrite punch hole to use ext4_ext_remove_space()
jbd2: cleanup journal tail after transaction commit
...
Export 'dirty_writeback_interval' to make it visible to
file-systems. We are going to push superblock management down to
file-systems and get rid of the 'sync_supers' kernel thread completly.
Signed-off-by: Artem Bityutskiy <artem.bityutskiy@linux.intel.com>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Signed-off-by: "Theodore Ts'o" <tytso@mit.edu>
When starting a memory hog task, a desktop box w/o swap is found to go
unresponsive for a long time. It's solely caused by lots of congestion
waits in throttle_vm_writeout():
gnome-system-mo-4201 553.073384: congestion_wait: throttle_vm_writeout+0x70/0x7f shrink_mem_cgroup_zone+0x48f/0x4a1
gnome-system-mo-4201 553.073386: writeback_congestion_wait: usec_timeout=100000 usec_delayed=100000
gtali-4237 553.080377: congestion_wait: throttle_vm_writeout+0x70/0x7f shrink_mem_cgroup_zone+0x48f/0x4a1
gtali-4237 553.080378: writeback_congestion_wait: usec_timeout=100000 usec_delayed=100000
Xorg-3483 553.103375: congestion_wait: throttle_vm_writeout+0x70/0x7f shrink_mem_cgroup_zone+0x48f/0x4a1
Xorg-3483 553.103377: writeback_congestion_wait: usec_timeout=100000 usec_delayed=100000
The root cause is, the dirty threshold is knocked down a lot by the memory
hog task. Fixed by using global_dirty_limit which decreases gradually on
such events and can guarantee we stay above (the also decreasing) nr_dirty
in the progress of following down to the new dirty threshold.
Signed-off-by: Fengguang Wu <fengguang.wu@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ying Han <yinghan@google.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The maximum number of dirty pages that exist in the system at any time is
determined by a number of pages considered dirtyable and a user-configured
percentage of those, or an absolute number in bytes.
This number of dirtyable pages is the sum of memory provided by all the
zones in the system minus their lowmem reserves and high watermarks, so
that the system can retain a healthy number of free pages without having
to reclaim dirty pages.
But there is a flaw in that we have a zoned page allocator which does not
care about the global state but rather the state of individual memory
zones. And right now there is nothing that prevents one zone from filling
up with dirty pages while other zones are spared, which frequently leads
to situations where kswapd, in order to restore the watermark of free
pages, does indeed have to write pages from that zone's LRU list. This
can interfere so badly with IO from the flusher threads that major
filesystems (btrfs, xfs, ext4) mostly ignore write requests from reclaim
already, taking away the VM's only possibility to keep such a zone
balanced, aside from hoping the flushers will soon clean pages from that
zone.
Enter per-zone dirty limits. They are to a zone's dirtyable memory what
the global limit is to the global amount of dirtyable memory, and try to
make sure that no single zone receives more than its fair share of the
globally allowed dirty pages in the first place. As the number of pages
considered dirtyable excludes the zones' lowmem reserves and high
watermarks, the maximum number of dirty pages in a zone is such that the
zone can always be balanced without requiring page cleaning.
As this is a placement decision in the page allocator and pages are
dirtied only after the allocation, this patch allows allocators to pass
__GFP_WRITE when they know in advance that the page will be written to and
become dirty soon. The page allocator will then attempt to allocate from
the first zone of the zonelist - which on NUMA is determined by the task's
NUMA memory policy - that has not exceeded its dirty limit.
At first glance, it would appear that the diversion to lower zones can
increase pressure on them, but this is not the case. With a full high
zone, allocations will be diverted to lower zones eventually, so it is
more of a shift in timing of the lower zone allocations. Workloads that
previously could fit their dirty pages completely in the higher zone may
be forced to allocate from lower zones, but the amount of pages that
"spill over" are limited themselves by the lower zones' dirty constraints,
and thus unlikely to become a problem.
For now, the problem of unfair dirty page distribution remains for NUMA
configurations where the zones allowed for allocation are in sum not big
enough to trigger the global dirty limits, wake up the flusher threads and
remedy the situation. Because of this, an allocation that could not
succeed on any of the considered zones is allowed to ignore the dirty
limits before going into direct reclaim or even failing the allocation,
until a future patch changes the global dirty throttling and flusher
thread activation so that they take individual zone states into account.
Test results
15M DMA + 3246M DMA32 + 504 Normal = 3765M memory
40% dirty ratio
16G USB thumb drive
10 runs of dd if=/dev/zero of=disk/zeroes bs=32k count=$((10 << 15))
seconds nr_vmscan_write
(stddev) min| median| max
xfs
vanilla: 549.747( 3.492) 0.000| 0.000| 0.000
patched: 550.996( 3.802) 0.000| 0.000| 0.000
fuse-ntfs
vanilla: 1183.094(53.178) 54349.000| 59341.000| 65163.000
patched: 558.049(17.914) 0.000| 0.000| 43.000
btrfs
vanilla: 573.679(14.015) 156657.000| 460178.000| 606926.000
patched: 563.365(11.368) 0.000| 0.000| 1362.000
ext4
vanilla: 561.197(15.782) 0.000|2725438.000|4143837.000
patched: 568.806(17.496) 0.000| 0.000| 0.000
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Tested-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The next patch will introduce per-zone dirty limiting functions in
addition to the traditional global dirty limiting.
Rename determine_dirtyable_memory() to global_dirtyable_memory() before
adding the zone-specific version, and fix up its documentation.
Also, move the functions to determine the dirtyable memory and the
function to calculate the dirty limit based on that together so that their
relationship is more apparent and that they can be commented on as a
group.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Mel Gorman <mel@suse.de>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Per-zone dirty limits try to distribute page cache pages allocated for
writing across zones in proportion to the individual zone sizes, to reduce
the likelihood of reclaim having to write back individual pages from the
LRU lists in order to make progress.
This patch:
The amount of dirtyable pages should not include the full number of free
pages: there is a number of reserved pages that the page allocator and
kswapd always try to keep free.
The closer (reclaimable pages - dirty pages) is to the number of reserved
pages, the more likely it becomes for reclaim to run into dirty pages:
+----------+ ---
| anon | |
+----------+ |
| | |
| | -- dirty limit new -- flusher new
| file | | |
| | | |
| | -- dirty limit old -- flusher old
| | |
+----------+ --- reclaim
| reserved |
+----------+
| kernel |
+----------+
This patch introduces a per-zone dirty reserve that takes both the lowmem
reserve as well as the high watermark of the zone into account, and a
global sum of those per-zone values that is subtracted from the global
amount of dirtyable pages. The lowmem reserve is unavailable to page
cache allocations and kswapd tries to keep the high watermark free. We
don't want to end up in a situation where reclaim has to clean pages in
order to balance zones.
Not treating reserved pages as dirtyable on a global level is only a
conceptual fix. In reality, dirty pages are not distributed equally
across zones and reclaim runs into dirty pages on a regular basis.
But it is important to get this right before tackling the problem on a
per-zone level, where the distance between reclaim and the dirty pages is
mostly much smaller in absolute numbers.
[akpm@linux-foundation.org: fix highmem build]
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Shaohua Li <shaohua.li@intel.com>
Cc: Chris Mason <chris.mason@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The tracing ring-buffer used this function briefly, but not anymore.
Make it local to the writeback code again.
Also, move the function so that no forward declaration needs to be
reintroduced.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Michal Hocko <mhocko@suse.cz>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Move invalidate_bdev, block_sync_page into fs/block_dev.c. Export
kill_bdev as well, so brd doesn't have to open code it. Reduce
buffer_head.h requirement accordingly.
Removed a rather large comment from invalidate_bdev, as it looked a bit
obsolete to bother moving. The small comment replacing it says enough.
Signed-off-by: Nick Piggin <npiggin@suse.de>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Add an upper limit to balanced_rate according to the below inequality.
This filters out some rare but huge singular points, which at least
enables more readable gnuplot figures.
When there are N dd dirtiers,
balanced_dirty_ratelimit = write_bw / N
So it holds that
balanced_dirty_ratelimit <= write_bw
The singular points originate from dirty_rate in the below formular:
balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate
where
dirty_rate = (number of page dirties in the past 200ms) / 200ms
In the extreme case, if all dd tasks suddenly get blocked on something
else and hence no pages are dirtied at all, dirty_rate will be 0 and
balanced_dirty_ratelimit will be inf. This could happen in reality.
Note that these huge singular points are not a real threat, since they
are _guaranteed_ to be filtered out by the
min(balanced_dirty_ratelimit, task_ratelimit)
line in bdi_update_dirty_ratelimit(). task_ratelimit is based on the
number of dirty pages, which will never _suddenly_ fly away like
balanced_dirty_ratelimit. So any weirdly large balanced_dirty_ratelimit
will be cut down to the level of task_ratelimit.
There won't be tiny singular points though, as long as the dirty pages
lie inside the dirty throttling region (above the freerun region).
Because there the dd tasks will be throttled by balanced_dirty_pages()
and won't be able to suddenly dirty much more pages than average.
Acked-by: Jan Kara <jack@suse.cz>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
This helps to reduce dirty throttling polls and hence CPU overheads.
bdi->dirty_exceeded typically only helps when suddenly starting 100+
dd's on a disk, in which case the dd's may need to poll
balance_dirty_pages() earlier than tsk->nr_dirtied_pause.
CC: Jan Kara <jack@suse.cz>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
The LKP tests see big 56% regression for the case fio_mmap_randwrite_64k.
Shaohua manages to root cause it to be the much smaller dirty pause times
and hence much more frequent invocations to the IO-less balance_dirty_pages().
Since fio_mmap_randwrite_64k effectively contains both reads and writes,
the more frequent pauses triggered more idling in the cfq IO scheduler.
The solution is to increase pause time all the way up to the max 200ms
in this case, which is found to restore most performance. This will help
reduce CPU overheads in other cases, too.
Note that I don't expect many performance critical workloads to run this
access pattern: the mmap read-on-write is rather inefficient and could
be avoided by doing normal writes syscalls.
CC: Jan Kara <jack@suse.cz>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reported-by: Li Shaohua <shaohua.li@intel.com>
Tested-by: Li Shaohua <shaohua.li@intel.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Control the pause time and the call intervals to balance_dirty_pages()
with three parameters:
1) max_pause, limited by bdi_dirty and MAX_PAUSE
2) the target pause time, grows with the number of dd tasks
and is normally limited by max_pause/2
3) the minimal pause, set to half the target pause
and is used to skip short sleeps and accumulate them into bigger ones
The typical behaviors after patch:
- if ever task_ratelimit is far below dirty_ratelimit, the pause time
will remain constant at max_pause and nr_dirtied_pause will be
fluctuating with task_ratelimit
- in the normal cases, nr_dirtied_pause will remain stable (keep in the
same pace with dirty_ratelimit) and the pause time will be fluctuating
with task_ratelimit
In summary, someone has to fluctuate with task_ratelimit, because
task_ratelimit = nr_dirtied_pause / pause
We normally prefer a stable nr_dirtied_pause, until reaching max_pause.
The notable behavior changes are:
- in stable workloads, there will no longer be sudden big trajectory
switching of nr_dirtied_pause as concerned by Peter. It will be as
smooth as dirty_ratelimit and changing proportionally with it (as
always, assuming bdi bandwidth does not fluctuate across 2^N lines,
otherwise nr_dirtied_pause will show up in 2+ parallel trajectories)
- in the rare cases when something keeps task_ratelimit far below
dirty_ratelimit, the smoothness can no longer be retained and
nr_dirtied_pause will be "dancing" with task_ratelimit. This fixes a
(not that destructive but still not good) bug that
dirty_ratelimit gets brought down undesirably
<= balanced_dirty_ratelimit is under estimated
<= weakly executed task_ratelimit
<= pause goes too large and gets trimmed down to max_pause
<= nr_dirtied_pause (based on dirty_ratelimit) is set too large
<= dirty_ratelimit being much larger than task_ratelimit
- introduce min_pause to avoid small pause sleeps
- when pause is trimmed down to max_pause, try to compensate it at the
next pause time
The "refactor" type of changes are:
The max_pause equation is slightly transformed to make it slightly more
efficient.
We now scale target_pause by (N * 10ms) on 2^N concurrent tasks, which
is effectively equal to the original scaling max_pause by (N * 20ms)
because the original code does implicit target_pause ~= max_pause / 2.
Based on the same implicit ratio, target_pause starts with 10ms on 1 dd.
CC: Jan Kara <jack@suse.cz>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Compensate the task's think time when computing the final pause time,
so that ->dirty_ratelimit can be executed accurately.
think time := time spend outside of balance_dirty_pages()
In the rare case that the task slept longer than the 200ms period time
(result in negative pause time), the sleep time will be compensated in
the following periods, too, if it's less than 1 second.
Accumulated errors are carefully avoided as long as the max pause area
is not hitted.
Pseudo code:
period = pages_dirtied / task_ratelimit;
think = jiffies - dirty_paused_when;
pause = period - think;
1) normal case: period > think
pause = period - think
dirty_paused_when = jiffies + pause
nr_dirtied = 0
period time
|===============================>|
think time pause time
|===============>|==============>|
------|----------------|---------------|------------------------
dirty_paused_when jiffies
2) no pause case: period <= think
don't pause; reduce future pause time by:
dirty_paused_when += period
nr_dirtied = 0
period time
|===============================>|
think time
|===================================================>|
------|--------------------------------+-------------------|----
dirty_paused_when jiffies
Acked-by: Jan Kara <jack@suse.cz>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
De-account the accumulative dirty counters on page redirty.
Page redirties (very common in ext4) will introduce mismatch between
counters (a) and (b)
a) NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied
b) NR_WRITTEN, BDI_WRITTEN
This will introduce systematic errors in balanced_rate and result in
dirty page position errors (ie. the dirty pages are no longer balanced
around the global/bdi setpoints).
Acked-by: Jan Kara <jack@suse.cz>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
When dd in 512bytes, generic_perform_write() calls
balance_dirty_pages_ratelimited() 8 times for the same page, but
obviously the page is only dirtied once.
Fix it by accounting tsk->nr_dirtied and bdp_ratelimits at page dirty time.
Acked-by: Jan Kara <jack@suse.cz>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
It's a years long problem that a large number of short-lived dirtiers
(eg. gcc instances in a fast kernel build) may starve long-run dirtiers
(eg. dd) as well as pushing the dirty pages to the global hard limit.
The solution is to charge the pages dirtied by the exited gcc to the
other random dirtying tasks. It sounds not perfect, however should
behave good enough in practice, seeing as that throttled tasks aren't
actually running so those that are running are more likely to pick it up
and get throttled, therefore promoting an equal spread.
Randy: fix compile error: 'dirty_throttle_leaks' undeclared in exit.c
Acked-by: Jan Kara <jack@suse.cz>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Randy Dunlap <rdunlap@xenotime.net>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Some trace shows lots of bdi_dirty=0 lines where it's actually some
small value if w/o the accounting errors in the per-cpu bdi stats.
In this case the max pause time should really be set to the smallest
(non-zero) value to avoid IO queue underrun and improve throughput.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
On a system with 1 local mount and 1 NFS mount, if the NFS server
becomes not responding when dd to the NFS mount, the NFS dirty pages may
exceed the global dirty limit and _every_ task involving writing will be
blocked. The whole system appears unresponsive.
The workaround is to permit through the bdi's that only has a small
number of dirty pages. The number chosen (bdi_stat_error pages) is not
enough to enable the local disk to run in optimal throughput, however is
enough to make the system responsive on a broken NFS mount. The user can
then kill the dirtiers on the NFS mount and increase the global dirty
limit to bring up the local disk's throughput.
It risks allowing dirty pages to grow much larger than the global dirty
limit when there are 1000+ mounts, however that's very unlikely to happen,
especially in low memory profiles.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
We do "floating proportions" to let active devices to grow its target
share of dirty pages and stalled/inactive devices to decrease its target
share over time.
It works well except in the case of "an inactive disk suddenly goes
busy", where the initial target share may be too small. To mitigate
this, bdi_position_ratio() has the below line to raise a small
bdi_thresh when it's safe to do so, so that the disk be feed with enough
dirty pages for efficient IO and in turn fast rampup of bdi_thresh:
bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
balance_dirty_pages() normally does negative feedback control which
adjusts ratelimit to balance the bdi dirty pages around the target.
In some extreme cases when that is not enough, it will have to block
the tasks completely until the bdi dirty pages drop below bdi_thresh.
Acked-by: Jan Kara <jack@suse.cz>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
The sleep based balance_dirty_pages() can pause at most MAX_PAUSE=200ms
on every 1 4KB-page, which means it cannot throttle a task under
4KB/200ms=20KB/s. So when there are more than 512 dd writing to a
10MB/s USB stick, its bdi dirty pages could grow out of control.
Even if we can increase MAX_PAUSE, the minimal (task_ratelimit = 1)
means a limit of 4KB/s.
They can eventually be safeguarded by the global limit check
(nr_dirty < dirty_thresh). However if someone is also writing to an
HDD at the same time, it'll get poor HDD write performance.
We at least want to maintain good write performance for other devices
when one device is attacked by some "massive parallel" workload, or
suffers from slow write bandwidth, or somehow get stalled due to some
error condition (eg. NFS server not responding).
For a stalled device, we need to completely block its dirtiers, too,
before its bdi dirty pages grow all the way up to the global limit and
leave no space for the other functional devices.
So change the loop exit condition to
/*
* Always enforce global dirty limit; also enforce bdi dirty limit
* if the normal max_pause sleeps cannot keep things under control.
*/
if (nr_dirty < dirty_thresh &&
(bdi_dirty < bdi_thresh || bdi->dirty_ratelimit > 1))
break;
which can be further simplified to
if (task_ratelimit)
break;
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
There is no reason why task in balance_dirty_pages() shouldn't be killable
and it helps in recovering from some error conditions (like when filesystem
goes in error state and cannot accept writeback anymore but we still want to
kill processes using it to be able to unmount it).
There will be follow up patches to further abort the generic_perform_write()
and other filesystem write loops, to avoid large write + SIGKILL combination
exceeding the dirty limit and possibly strange OOM.
Reported-by: Kazuya Mio <k-mio@sx.jp.nec.com>
Tested-by: Kazuya Mio <k-mio@sx.jp.nec.com>
Reviewed-by: Neil Brown <neilb@suse.de>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
In balance_dirty_pages() task_ratelimit may be not initialized
(initialization skiped by goto pause), and then used when calling
tracing hook.
Fix it by moving the task_ratelimit assignment before goto pause.
Reported-by: Witold Baryluk <baryluk@smp.if.uj.edu.pl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
* 'modsplit-Oct31_2011' of git://git.kernel.org/pub/scm/linux/kernel/git/paulg/linux: (230 commits)
Revert "tracing: Include module.h in define_trace.h"
irq: don't put module.h into irq.h for tracking irqgen modules.
bluetooth: macroize two small inlines to avoid module.h
ip_vs.h: fix implicit use of module_get/module_put from module.h
nf_conntrack.h: fix up fallout from implicit moduleparam.h presence
include: replace linux/module.h with "struct module" wherever possible
include: convert various register fcns to macros to avoid include chaining
crypto.h: remove unused crypto_tfm_alg_modname() inline
uwb.h: fix implicit use of asm/page.h for PAGE_SIZE
pm_runtime.h: explicitly requires notifier.h
linux/dmaengine.h: fix implicit use of bitmap.h and asm/page.h
miscdevice.h: fix up implicit use of lists and types
stop_machine.h: fix implicit use of smp.h for smp_processor_id
of: fix implicit use of errno.h in include/linux/of.h
of_platform.h: delete needless include <linux/module.h>
acpi: remove module.h include from platform/aclinux.h
miscdevice.h: delete unnecessary inclusion of module.h
device_cgroup.h: delete needless include <linux/module.h>
net: sch_generic remove redundant use of <linux/module.h>
net: inet_timewait_sock doesnt need <linux/module.h>
...
Fix up trivial conflicts (other header files, and removal of the ab3550 mfd driver) in
- drivers/media/dvb/frontends/dibx000_common.c
- drivers/media/video/{mt9m111.c,ov6650.c}
- drivers/mfd/ab3550-core.c
- include/linux/dmaengine.h
* 'writeback-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/wfg/linux:
writeback: Add a 'reason' to wb_writeback_work
writeback: send work item to queue_io, move_expired_inodes
writeback: trace event balance_dirty_pages
writeback: trace event bdi_dirty_ratelimit
writeback: fix ppc compile warnings on do_div(long long, unsigned long)
writeback: per-bdi background threshold
writeback: dirty position control - bdi reserve area
writeback: control dirty pause time
writeback: limit max dirty pause time
writeback: IO-less balance_dirty_pages()
writeback: per task dirty rate limit
writeback: stabilize bdi->dirty_ratelimit
writeback: dirty rate control
writeback: add bg_threshold parameter to __bdi_update_bandwidth()
writeback: dirty position control
writeback: account per-bdi accumulated dirtied pages
Looks like someone got distracted after adding the comment characters.
Signed-off-by: Johannes Weiner <jweiner@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The files changed within are only using the EXPORT_SYMBOL
macro variants. They are not using core modular infrastructure
and hence don't need module.h but only the export.h header.
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
This creates a new 'reason' field in a wb_writeback_work
structure, which unambiguously identifies who initiates
writeback activity. A 'wb_reason' enumeration has been
added to writeback.h, to enumerate the possible reasons.
The 'writeback_work_class' and tracepoint event class and
'writeback_queue_io' tracepoints are updated to include the
symbolic 'reason' in all trace events.
And the 'writeback_inodes_sbXXX' family of routines has had
a wb_stats parameter added to them, so callers can specify
why writeback is being started.
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Curt Wohlgemuth <curtw@google.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Useful for analyzing the dynamics of the throttling algorithms and
debugging user reported problems.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Fix powerpc compile warnings
mm/page-writeback.c: In function 'bdi_position_ratio':
mm/page-writeback.c:622:3: warning: comparison of distinct pointer types lacks a cast [enabled by default]
page-writeback.c:635:4: warning: comparison of distinct pointer types lacks a cast [enabled by default]
Also fix gcc "uninitialized var" warnings.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Keep a minimal pool of dirty pages for each bdi, so that the disk IO
queues won't underrun. Also gently increase a small bdi_thresh to avoid
it stuck in 0 for some light dirtied bdi.
It's particularly useful for JBOD and small memory system.
It may result in (pos_ratio > 1) at the setpoint and push the dirty
pages high. This is more or less intended because the bdi is in the
danger of IO queue underflow.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
The dirty pause time shall ultimately be controlled by adjusting
nr_dirtied_pause, since there is relationship
pause = pages_dirtied / task_ratelimit
Assuming
pages_dirtied ~= nr_dirtied_pause
task_ratelimit ~= dirty_ratelimit
We get
nr_dirtied_pause ~= dirty_ratelimit * desired_pause
Here dirty_ratelimit is preferred over task_ratelimit because it's
more stable.
It's also important to limit possible large transitional errors:
- bw is changing quickly
- pages_dirtied << nr_dirtied_pause on entering dirty exceeded area
- pages_dirtied >> nr_dirtied_pause on btrfs (to be improved by a
separate fix, but still expect non-trivial errors)
So we end up using the above formula inside clamp_val().
The best test case for this code is to run 100 "dd bs=4M" tasks on
btrfs and check its pause time distribution.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Apply two policies to scale down the max pause time for
1) small number of concurrent dirtiers
2) small memory system (comparing to storage bandwidth)
MAX_PAUSE=200ms may only be suitable for high end servers with lots of
concurrent dirtiers, where the large pause time can reduce much overheads.
Otherwise, smaller pause time is desirable whenever possible, so as to
get good responsiveness and smooth user experiences. It's actually
required for good disk utilization in the case when all the dirty pages
can be synced to disk within MAX_PAUSE=200ms.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
As proposed by Chris, Dave and Jan, don't start foreground writeback IO
inside balance_dirty_pages(). Instead, simply let it idle sleep for some
time to throttle the dirtying task. In the mean while, kick off the
per-bdi flusher thread to do background writeback IO.
RATIONALS
=========
- disk seeks on concurrent writeback of multiple inodes (Dave Chinner)
If every thread doing writes and being throttled start foreground
writeback, it leads to N IO submitters from at least N different
inodes at the same time, end up with N different sets of IO being
issued with potentially zero locality to each other, resulting in
much lower elevator sort/merge efficiency and hence we seek the disk
all over the place to service the different sets of IO.
OTOH, if there is only one submission thread, it doesn't jump between
inodes in the same way when congestion clears - it keeps writing to
the same inode, resulting in large related chunks of sequential IOs
being issued to the disk. This is more efficient than the above
foreground writeback because the elevator works better and the disk
seeks less.
- lock contention and cache bouncing on concurrent IO submitters (Dave Chinner)
With this patchset, the fs_mark benchmark on a 12-drive software RAID0 goes
from CPU bound to IO bound, freeing "3-4 CPUs worth of spinlock contention".
* "CPU usage has dropped by ~55%", "it certainly appears that most of
the CPU time saving comes from the removal of contention on the
inode_wb_list_lock" (IMHO at least 10% comes from the reduction of
cacheline bouncing, because the new code is able to call much less
frequently into balance_dirty_pages() and hence access the global
page states)
* the user space "App overhead" is reduced by 20%, by avoiding the
cacheline pollution by the complex writeback code path
* "for a ~5% throughput reduction", "the number of write IOs have
dropped by ~25%", and the elapsed time reduced from 41:42.17 to
40:53.23.
* On a simple test of 100 dd, it reduces the CPU %system time from 30% to 3%,
and improves IO throughput from 38MB/s to 42MB/s.
- IO size too small for fast arrays and too large for slow USB sticks
The write_chunk used by current balance_dirty_pages() cannot be
directly set to some large value (eg. 128MB) for better IO efficiency.
Because it could lead to more than 1 second user perceivable stalls.
Even the current 4MB write size may be too large for slow USB sticks.
The fact that balance_dirty_pages() starts IO on itself couples the
IO size to wait time, which makes it hard to do suitable IO size while
keeping the wait time under control.
Now it's possible to increase writeback chunk size proportional to the
disk bandwidth. In a simple test of 50 dd's on XFS, 1-HDD, 3GB ram,
the larger writeback size dramatically reduces the seek count to 1/10
(far beyond my expectation) and improves the write throughput by 24%.
- long block time in balance_dirty_pages() hurts desktop responsiveness
Many of us may have the experience: it often takes a couple of seconds
or even long time to stop a heavy writing dd/cp/tar command with
Ctrl-C or "kill -9".
- IO pipeline broken by bumpy write() progress
There are a broad class of "loop {read(buf); write(buf);}" applications
whose read() pipeline will be under-utilized or even come to a stop if
the write()s have long latencies _or_ don't progress in a constant rate.
The current threshold based throttling inherently transfers the large
low level IO completion fluctuations to bumpy application write()s,
and further deteriorates with increasing number of dirtiers and/or bdi's.
For example, when doing 50 dd's + 1 remote rsync to an XFS partition,
the rsync progresses very bumpy in legacy kernel, and throughput is
improved by 67% by this patchset. (plus the larger write chunk size,
it will be 93% speedup).
The new rate based throttling can support 1000+ dd's with excellent
smoothness, low latency and low overheads.
For the above reasons, it's much better to do IO-less and low latency
pauses in balance_dirty_pages().
Jan Kara, Dave Chinner and me explored the scheme to let
balance_dirty_pages() wait for enough writeback IO completions to
safeguard the dirty limit. However it's found to have two problems:
- in large NUMA systems, the per-cpu counters may have big accounting
errors, leading to big throttle wait time and jitters.
- NFS may kill large amount of unstable pages with one single COMMIT.
Because NFS server serves COMMIT with expensive fsync() IOs, it is
desirable to delay and reduce the number of COMMITs. So it's not
likely to optimize away such kind of bursty IO completions, and the
resulted large (and tiny) stall times in IO completion based throttling.
So here is a pause time oriented approach, which tries to control the
pause time in each balance_dirty_pages() invocations, by controlling
the number of pages dirtied before calling balance_dirty_pages(), for
smooth and efficient dirty throttling:
- avoid useless (eg. zero pause time) balance_dirty_pages() calls
- avoid too small pause time (less than 4ms, which burns CPU power)
- avoid too large pause time (more than 200ms, which hurts responsiveness)
- avoid big fluctuations of pause times
It can control pause times at will. The default policy (in a followup
patch) will be to do ~10ms pauses in 1-dd case, and increase to ~100ms
in 1000-dd case.
BEHAVIOR CHANGE
===============
(1) dirty threshold
Users will notice that the applications will get throttled once crossing
the global (background + dirty)/2=15% threshold, and then balanced around
17.5%. Before patch, the behavior is to just throttle it at 20% dirtyable
memory in 1-dd case.
Since the task will be soft throttled earlier than before, it may be
perceived by end users as performance "slow down" if his application
happens to dirty more than 15% dirtyable memory.
(2) smoothness/responsiveness
Users will notice a more responsive system during heavy writeback.
"killall dd" will take effect instantly.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Add two fields to task_struct.
1) account dirtied pages in the individual tasks, for accuracy
2) per-task balance_dirty_pages() call intervals, for flexibility
The balance_dirty_pages() call interval (ie. nr_dirtied_pause) will
scale near-sqrt to the safety gap between dirty pages and threshold.
The main problem of per-task nr_dirtied is, if 1k+ tasks start dirtying
pages at exactly the same time, each task will be assigned a large
initial nr_dirtied_pause, so that the dirty threshold will be exceeded
long before each task reached its nr_dirtied_pause and hence call
balance_dirty_pages().
The solution is to watch for the number of pages dirtied on each CPU in
between the calls into balance_dirty_pages(). If it exceeds ratelimit_pages
(3% dirty threshold), force call balance_dirty_pages() for a chance to
set bdi->dirty_exceeded. In normal situations, this safeguarding
condition is not expected to trigger at all.
On the sqrt in dirty_poll_interval():
It will serve as an initial guess when dirty pages are still in the
freerun area.
When dirty pages are floating inside the dirty control scope [freerun,
limit], a followup patch will use some refined dirty poll interval to
get the desired pause time.
thresh-dirty (MB) sqrt
1 16
2 22
4 32
8 45
16 64
32 90
64 128
128 181
256 256
512 362
1024 512
The above table means, given 1MB (or 1GB) gap and the dd tasks polling
balance_dirty_pages() on every 16 (or 512) pages, the dirty limit won't
be exceeded as long as there are less than 16 (or 512) concurrent dd's.
So sqrt naturally leads to less overheads and more safe concurrent tasks
for large memory servers, which have large (thresh-freerun) gaps.
peter: keep the per-CPU ratelimit for safeguarding the 1k+ tasks case
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Andrea Righi <andrea@betterlinux.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
There are some imperfections in balanced_dirty_ratelimit.
1) large fluctuations
The dirty_rate used for computing balanced_dirty_ratelimit is merely
averaged in the past 200ms (very small comparing to the 3s estimation
period for write_bw), which makes rather dispersed distribution of
balanced_dirty_ratelimit.
It's pretty hard to average out the singular points by increasing the
estimation period. Considering that the averaging technique will
introduce very undesirable time lags, I give it up totally. (btw, the 3s
write_bw averaging time lag is much more acceptable because its impact
is one-way and therefore won't lead to oscillations.)
The more practical way is filtering -- most singular
balanced_dirty_ratelimit points can be filtered out by remembering some
prev_balanced_rate and prev_prev_balanced_rate. However the more
reliable way is to guard balanced_dirty_ratelimit with task_ratelimit.
2) due to truncates and fs redirties, the (write_bw <=> dirty_rate)
match could become unbalanced, which may lead to large systematical
errors in balanced_dirty_ratelimit. The truncates, due to its possibly
bumpy nature, can hardly be compensated smoothly. So let's face it. When
some over-estimated balanced_dirty_ratelimit brings dirty_ratelimit
high, dirty pages will go higher than the setpoint. task_ratelimit will
in turn become lower than dirty_ratelimit. So if we consider both
balanced_dirty_ratelimit and task_ratelimit and update dirty_ratelimit
only when they are on the same side of dirty_ratelimit, the systematical
errors in balanced_dirty_ratelimit won't be able to bring
dirty_ratelimit far away.
The balanced_dirty_ratelimit estimation may also be inaccurate near
@limit or @freerun, however is less an issue.
3) since we ultimately want to
- keep the fluctuations of task ratelimit as small as possible
- keep the dirty pages around the setpoint as long time as possible
the update policy used for (2) also serves the above goals nicely:
if for some reason the dirty pages are high (task_ratelimit < dirty_ratelimit),
and dirty_ratelimit is low (dirty_ratelimit < balanced_dirty_ratelimit),
there is no point to bring up dirty_ratelimit in a hurry only to hurt
both the above two goals.
So, we make use of task_ratelimit to limit the update of dirty_ratelimit
in two ways:
1) avoid changing dirty rate when it's against the position control target
(the adjusted rate will slow down the progress of dirty pages going
back to setpoint).
2) limit the step size. task_ratelimit is changing values step by step,
leaving a consistent trace comparing to the randomly jumping
balanced_dirty_ratelimit. task_ratelimit also has the nice smaller
errors in stable state and typically larger errors when there are big
errors in rate. So it's a pretty good limiting factor for the step
size of dirty_ratelimit.
Note that bdi->dirty_ratelimit is always tracking balanced_dirty_ratelimit.
task_ratelimit is merely used as a limiting factor.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
It's all about bdi->dirty_ratelimit, which aims to be (write_bw / N)
when there are N dd tasks.
On write() syscall, use bdi->dirty_ratelimit
============================================
balance_dirty_pages(pages_dirtied)
{
task_ratelimit = bdi->dirty_ratelimit * bdi_position_ratio();
pause = pages_dirtied / task_ratelimit;
sleep(pause);
}
On every 200ms, update bdi->dirty_ratelimit
===========================================
bdi_update_dirty_ratelimit()
{
task_ratelimit = bdi->dirty_ratelimit * bdi_position_ratio();
balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate;
bdi->dirty_ratelimit = balanced_dirty_ratelimit
}
Estimation of balanced bdi->dirty_ratelimit
===========================================
balanced task_ratelimit
-----------------------
balance_dirty_pages() needs to throttle tasks dirtying pages such that
the total amount of dirty pages stays below the specified dirty limit in
order to avoid memory deadlocks. Furthermore we desire fairness in that
tasks get throttled proportionally to the amount of pages they dirty.
IOW we want to throttle tasks such that we match the dirty rate to the
writeout bandwidth, this yields a stable amount of dirty pages:
dirty_rate == write_bw (1)
The fairness requirement gives us:
task_ratelimit = balanced_dirty_ratelimit
== write_bw / N (2)
where N is the number of dd tasks. We don't know N beforehand, but
still can estimate balanced_dirty_ratelimit within 200ms.
Start by throttling each dd task at rate
task_ratelimit = task_ratelimit_0 (3)
(any non-zero initial value is OK)
After 200ms, we measured
dirty_rate = # of pages dirtied by all dd's / 200ms
write_bw = # of pages written to the disk / 200ms
For the aggressive dd dirtiers, the equality holds
dirty_rate == N * task_rate
== N * task_ratelimit_0 (4)
Or
task_ratelimit_0 == dirty_rate / N (5)
Now we conclude that the balanced task ratelimit can be estimated by
write_bw
balanced_dirty_ratelimit = task_ratelimit_0 * ---------- (6)
dirty_rate
Because with (4) and (5) we can get the desired equality (1):
write_bw
balanced_dirty_ratelimit == (dirty_rate / N) * ----------
dirty_rate
== write_bw / N
Then using the balanced task ratelimit we can compute task pause times like:
task_pause = task->nr_dirtied / task_ratelimit
task_ratelimit with position control
------------------------------------
However, while the above gives us means of matching the dirty rate to
the writeout bandwidth, it at best provides us with a stable dirty page
count (assuming a static system). In order to control the dirty page
count such that it is high enough to provide performance, but does not
exceed the specified limit we need another control.
The dirty position control works by extending (2) to
task_ratelimit = balanced_dirty_ratelimit * pos_ratio (7)
where pos_ratio is a negative feedback function that subjects to
1) f(setpoint) = 1.0
2) df/dx < 0
That is, if the dirty pages are ABOVE the setpoint, we throttle each
task a bit more HEAVY than balanced_dirty_ratelimit, so that the dirty
pages are created less fast than they are cleaned, thus DROP to the
setpoints (and the reverse).
Based on (7) and the assumption that both dirty_ratelimit and pos_ratio
remains CONSTANT for the past 200ms, we get
task_ratelimit_0 = balanced_dirty_ratelimit * pos_ratio (8)
Putting (8) into (6), we get the formula used in
bdi_update_dirty_ratelimit():
write_bw
balanced_dirty_ratelimit *= pos_ratio * ---------- (9)
dirty_rate
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
bdi_position_ratio() provides a scale factor to bdi->dirty_ratelimit, so
that the resulted task rate limit can drive the dirty pages back to the
global/bdi setpoints.
Old scheme is,
|
free run area | throttle area
----------------------------------------+---------------------------->
thresh^ dirty pages
New scheme is,
^ task rate limit
|
| *
| *
| *
|[free run] * [smooth throttled]
| *
| *
| *
..bdi->dirty_ratelimit..........*
| . *
| . *
| . *
| . *
| . *
+-------------------------------.-----------------------*------------>
setpoint^ limit^ dirty pages
The slope of the bdi control line should be
1) large enough to pull the dirty pages to setpoint reasonably fast
2) small enough to avoid big fluctuations in the resulted pos_ratio and
hence task ratelimit
Since the fluctuation range of the bdi dirty pages is typically observed
to be within 1-second worth of data, the bdi control line's slope is
selected to be a linear function of bdi write bandwidth, so that it can
adapt to slow/fast storage devices well.
Assume the bdi control line
pos_ratio = 1.0 + k * (dirty - bdi_setpoint)
where k is the negative slope.
If targeting for 12.5% fluctuation range in pos_ratio when dirty pages
are fluctuating in range
[bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2],
we get slope
k = - 1 / (8 * write_bw)
Let pos_ratio(x_intercept) = 0, we get the parameter used in code:
x_intercept = bdi_setpoint + 8 * write_bw
The global/bdi slopes are nicely complementing each other when the
system has only one major bdi (indicated by bdi_thresh ~= thresh):
1) slope of global control line => scaling to the control scope size
2) slope of main bdi control line => scaling to the writeout bandwidth
so that
- in memory tight systems, (1) becomes strong enough to squeeze dirty
pages inside the control scope
- in large memory systems where the "gravity" of (1) for pulling the
dirty pages to setpoint is too weak, (2) can back (1) up and drive
dirty pages to bdi_setpoint ~= setpoint reasonably fast.
Unfortunately in JBOD setups, the fluctuation range of bdi threshold
is related to memory size due to the interferences between disks. In
this case, the bdi slope will be weighted sum of write_bw and bdi_thresh.
Given equations
span = x_intercept - bdi_setpoint
k = df/dx = - 1 / span
and the extremum values
span = bdi_thresh
dx = bdi_thresh
we get
df = - dx / span = - 1.0
That means, when bdi_dirty deviates bdi_thresh up, pos_ratio and hence
task ratelimit will fluctuate by -100%.
peter: use 3rd order polynomial for the global control line
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Introduce the BDI_DIRTIED counter. It will be used for estimating the
bdi's dirty bandwidth.
CC: Jan Kara <jack@suse.cz>
CC: Michael Rubin <mrubin@google.com>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Revert the pass-good area introduced in ffd1f609ab ("writeback:
introduce max-pause and pass-good dirty limits") and make the max-pause
area smaller and safe.
This fixes ~30% performance regression in the ext3 data=writeback
fio_mmap_randwrite_64k/fio_mmap_randrw_64k test cases, where there are
12 JBOD disks, on each disk runs 8 concurrent tasks doing reads+writes.
Using deadline scheduler also has a regression, but not that big as CFQ,
so this suggests we have some write starvation.
The test logs show that
- the disks are sometimes under utilized
- global dirty pages sometimes rush high to the pass-good area for
several hundred seconds, while in the mean time some bdi dirty pages
drop to very low value (bdi_dirty << bdi_thresh). Then suddenly the
global dirty pages dropped under global dirty threshold and bdi_dirty
rush very high (for example, 2 times higher than bdi_thresh). During
which time balance_dirty_pages() is not called at all.
So the problems are
1) The random writes progress so slow that they break the assumption of
the max-pause logic that "8 pages per 200ms is typically more than
enough to curb heavy dirtiers".
2) The max-pause logic ignored task_bdi_thresh and thus opens the possibility
for some bdi's to over dirty pages, leading to (bdi_dirty >> bdi_thresh)
and then (bdi_thresh >> bdi_dirty) for others.
3) The higher max-pause/pass-good thresholds somehow leads to the bad
swing of dirty pages.
The fix is to allow the task to slightly dirty over task_bdi_thresh, but
no way to exceed bdi_dirty and/or global dirty_thresh.
Tests show that it fixed the JBOD regression completely (both behavior
and performance), while still being able to cut down large pause times
in balance_dirty_pages() for single-disk cases.
Reported-by: Li Shaohua <shaohua.li@intel.com>
Tested-by: Li Shaohua <shaohua.li@intel.com>
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
NR_WRITTEN is now accounted at block IO enqueue time, which is not very
accurate as to common understanding. This moves NR_WRITTEN accounting to
the IO completion time and makes it more consistent with BDI_WRITTEN,
which is used for bandwidth estimation.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
radix_tree_tagged() is lockless - it reads from a member of the raid-tree
root node. It does not require any protection.
Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
We set bdi->dirty_exceeded (and thus ratelimiting code starts to
call balance_dirty_pages() every 8 pages) when a per-bdi limit is
exceeded or global limit is exceeded. But per-bdi limit also depends
on the task. Thus different tasks reach the limit on that bdi at
different levels of dirty pages. The result is that with current code
bdi->dirty_exceeded ping-ponged between 1 and 0 depending on which task
just got into balance_dirty_pages().
We fix the issue by clearing bdi->dirty_exceeded only when per-bdi amount
of dirty pages drops below the threshold (7/8 * bdi_dirty_limit) where task
limits already do not have any influence.
Impact: The end result is, the dirty pages are kept more tightly under
control, with the average number slightly lowered than before. This
reduces the risk to throttle light dirtiers and hence more responsive.
However it may add overheads by enforcing balance_dirty_pages() calls
on every 8 pages when there are 2+ heavy dirtiers.
CC: Andrew Morton <akpm@linux-foundation.org>
CC: Christoph Hellwig <hch@infradead.org>
CC: Dave Chinner <david@fromorbit.com>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Add trace event balance_dirty_state for showing the global dirty page
counts and thresholds at each global_dirty_limits() invocation. This
will cover the callers throttle_vm_writeout(), over_bground_thresh()
and each balance_dirty_pages() loop.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
The max-pause limit helps to keep the sleep time inside
balance_dirty_pages() within MAX_PAUSE=200ms. The 200ms max sleep means
per task rate limit of 8pages/200ms=160KB/s when dirty exceeded, which
normally is enough to stop dirtiers from continue pushing the dirty
pages high, unless there are a sufficient large number of slow dirtiers
(eg. 500 tasks doing 160KB/s will still sum up to 80MB/s, exceeding the
write bandwidth of a slow disk and hence accumulating more and more dirty
pages).
The pass-good limit helps to let go of the good bdi's in the presence of
a blocked bdi (ie. NFS server not responding) or slow USB disk which for
some reason build up a large number of initial dirty pages that refuse
to go away anytime soon.
For example, given two bdi's A and B and the initial state
bdi_thresh_A = dirty_thresh / 2
bdi_thresh_B = dirty_thresh / 2
bdi_dirty_A = dirty_thresh / 2
bdi_dirty_B = dirty_thresh / 2
Then A get blocked, after a dozen seconds
bdi_thresh_A = 0
bdi_thresh_B = dirty_thresh
bdi_dirty_A = dirty_thresh / 2
bdi_dirty_B = dirty_thresh / 2
The (bdi_dirty_B < bdi_thresh_B) test is now useless and the dirty pages
will be effectively throttled by condition (nr_dirty < dirty_thresh).
This has two problems:
(1) we lose the protections for light dirtiers
(2) balance_dirty_pages() effectively becomes IO-less because the
(bdi_nr_reclaimable > bdi_thresh) test won't be true. This is good
for IO, but balance_dirty_pages() loses an important way to break
out of the loop which leads to more spread out throttle delays.
DIRTY_PASSGOOD_AREA can eliminate the above issues. The only problem is,
DIRTY_PASSGOOD_AREA needs to be defined as 2 to fully cover the above
example while this patch uses the more conservative value 8 so as not to
surprise people with too many dirty pages than expected.
The max-pause limit won't noticeably impact the speed dirty pages are
knocked down when there is a sudden drop of global/bdi dirty thresholds.
Because the heavy dirties will be throttled below 160KB/s which is slow
enough. It does help to avoid long dirty throttle delays and especially
will make light dirtiers more responsive.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
The start of a heavy weight application (ie. KVM) may instantly knock
down determine_dirtyable_memory() if the swap is not enabled or full.
global_dirty_limits() and bdi_dirty_limit() will in turn get global/bdi
dirty thresholds that are _much_ lower than the global/bdi dirty pages.
balance_dirty_pages() will then heavily throttle all dirtiers including
the light ones, until the dirty pages drop below the new dirty thresholds.
During this _deep_ dirty-exceeded state, the system may appear rather
unresponsive to the users.
About "deep" dirty-exceeded: task_dirty_limit() assigns 1/8 lower dirty
threshold to heavy dirtiers than light ones, and the dirty pages will
be throttled around the heavy dirtiers' dirty threshold and reasonably
below the light dirtiers' dirty threshold. In this state, only the heavy
dirtiers will be throttled and the dirty pages are carefully controlled
to not exceed the light dirtiers' dirty threshold. However if the
threshold itself suddenly drops below the number of dirty pages, the
light dirtiers will get heavily throttled.
So introduce global_dirty_limit for tracking the global dirty threshold
with policies
- follow downwards slowly
- follow up in one shot
global_dirty_limit can effectively mask out the impact of sudden drop of
dirtyable memory. It will be used in the next patch for two new type of
dirty limits. Note that the new dirty limits are not going to avoid
throttling the light dirtiers, but could limit their sleep time to 200ms.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Introduce
nr_dirty = NR_FILE_DIRTY + NR_WRITEBACK + NR_UNSTABLE_NFS
in order to simplify many tests in the following patches.
balance_dirty_pages() will eventually care only about the dirty sums
besides nr_writeback.
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
The estimation value will start from 100MB/s and adapt to the real
bandwidth in seconds.
It tries to update the bandwidth only when disk is fully utilized.
Any inactive period of more than one second will be skipped.
The estimated bandwidth will be reflecting how fast the device can
writeout when _fully utilized_, and won't drop to 0 when it goes idle.
The value will remain constant at disk idle time. At busy write time, if
not considering fluctuations, it will also remain high unless be knocked
down by possible concurrent reads that compete for the disk time and
bandwidth with async writes.
The estimation is not done purely in the flusher because there is no
guarantee for write_cache_pages() to return timely to update bandwidth.
The bdi->avg_write_bandwidth smoothing is very effective for filtering
out sudden spikes, however may be a little biased in long term.
The overheads are low because the bdi bandwidth update only occurs at
200ms intervals.
The 200ms update interval is suitable, because it's not possible to get
the real bandwidth for the instance at all, due to large fluctuations.
The NFS commits can be as large as seconds worth of data. One XFS
completion may be as large as half second worth of data if we are going
to increase the write chunk to half second worth of data. In ext4,
fluctuations with time period of around 5 seconds is observed. And there
is another pattern of irregular periods of up to 20 seconds on SSD tests.
That's why we are not only doing the estimation at 200ms intervals, but
also averaging them over a period of 3 seconds and then go further to do
another level of smoothing in avg_write_bandwidth.
CC: Li Shaohua <shaohua.li@intel.com>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Introduce the BDI_WRITTEN counter. It will be used for estimating the
bdi's write bandwidth.
Peter Zijlstra <a.p.zijlstra@chello.nl>:
Move BDI_WRITTEN accounting into __bdi_writeout_inc().
This will cover and fix fuse, which only calls bdi_writeout_inc().
CC: Michael Rubin <mrubin@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Pass struct wb_writeback_work all the way down to writeback_sb_inodes(),
and initialize the struct writeback_control there.
struct writeback_control is basically designed to control writeback of a
single file, but we keep abuse it for writing multiple files in
writeback_sb_inodes() and its callers.
It immediately clean things up, e.g. suddenly wbc.nr_to_write vs
work->nr_pages starts to make sense, and instead of saving and restoring
pages_skipped in writeback_sb_inodes it can always start with a clean
zero value.
It also makes a neat IO pattern change: large dirty files are now
written in the full 4MB writeback chunk size, rather than whatever
remained quota in wbc->nr_to_write.
Acked-by: Jan Kara <jack@suse.cz>
Proposed-by: Christoph Hellwig <hch@infradead.org>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
This helps prevent tmpfs dirtiers from skewing the per-cpu bdp_ratelimits.
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
This avoids unnecessary checks and dirty throttling on tmpfs/ramfs.
Notes about the tmpfs/ramfs behavior changes:
As for 2.6.36 and older kernels, the tmpfs writes will sleep inside
balance_dirty_pages() as long as we are over the (dirty+background)/2
global throttle threshold. This is because both the dirty pages and
threshold will be 0 for tmpfs/ramfs. Hence this test will always
evaluate to TRUE:
dirty_exceeded =
(bdi_nr_reclaimable + bdi_nr_writeback >= bdi_thresh)
|| (nr_reclaimable + nr_writeback >= dirty_thresh);
For 2.6.37, someone complained that the current logic does not allow the
users to set vm.dirty_ratio=0. So commit 4cbec4c8b9 changed the test to
dirty_exceeded =
(bdi_nr_reclaimable + bdi_nr_writeback > bdi_thresh)
|| (nr_reclaimable + nr_writeback > dirty_thresh);
So 2.6.37 will behave differently for tmpfs/ramfs: it will never get
throttled unless the global dirty threshold is exceeded (which is very
unlikely to happen; once happen, will block many tasks).
I'd say that the 2.6.36 behavior is very bad for tmpfs/ramfs. It means
for a busy writing server, tmpfs write()s may get livelocked! The
"inadvertent" throttling can hardly bring help to any workload because
of its "either no throttling, or get throttled to death" property.
So based on 2.6.37, this patch won't bring more noticeable changes.
CC: Hugh Dickins <hughd@google.com>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Clarify the bdi_dirty_limit() comment.
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Acked-by: Jan Kara <jack@suse.cz>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
sync(2) is performed in two stages: the WB_SYNC_NONE sync and the
WB_SYNC_ALL sync. Identify the first stage with .tagged_writepages and
do livelock prevention for it, too.
Jan's commit f446daaea9 ("mm: implement writeback livelock avoidance
using page tagging") is a partial fix in that it only fixed the
WB_SYNC_ALL phase livelock.
Although ext4 is tested to no longer livelock with commit f446daaea9,
it may due to some "redirty_tail() after pages_skipped" effect which
is by no means a guarantee for _all_ the file systems.
Note that writeback_inodes_sb() is called by not only sync(), they are
treated the same because the other callers also need livelock prevention.
Impact: It changes the order in which pages/inodes are synced to disk.
Now in the WB_SYNC_NONE stage, it won't proceed to write the next inode
until finished with the current inode.
Acked-by: Jan Kara <jack@suse.cz>
CC: Dave Chinner <david@fromorbit.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
* 'for-2.6.39/core' of git://git.kernel.dk/linux-2.6-block: (65 commits)
Documentation/iostats.txt: bit-size reference etc.
cfq-iosched: removing unnecessary think time checking
cfq-iosched: Don't clear queue stats when preempt.
blk-throttle: Reset group slice when limits are changed
blk-cgroup: Only give unaccounted_time under debug
cfq-iosched: Don't set active queue in preempt
block: fix non-atomic access to genhd inflight structures
block: attempt to merge with existing requests on plug flush
block: NULL dereference on error path in __blkdev_get()
cfq-iosched: Don't update group weights when on service tree
fs: assign sb->s_bdi to default_backing_dev_info if the bdi is going away
block: Require subsystems to explicitly allocate bio_set integrity mempool
jbd2: finish conversion from WRITE_SYNC_PLUG to WRITE_SYNC and explicit plugging
jbd: finish conversion from WRITE_SYNC_PLUG to WRITE_SYNC and explicit plugging
fs: make fsync_buffers_list() plug
mm: make generic_writepages() use plugging
blk-cgroup: Add unaccounted time to timeslice_used.
block: fixup plugging stubs for !CONFIG_BLOCK
block: remove obsolete comments for blkdev_issue_zeroout.
blktrace: Use rq->cmd_flags directly in blk_add_trace_rq.
...
Fix up conflicts in fs/{aio.c,super.c}
For range-cyclic writeback (e.g. kupdate), the writeback code sets a
continuation point of the next writeback to mapping->writeback_index which
is set the page after the last written page. This happens so that we
evenly write the whole file even if pages in it get continuously
redirtied.
However, in some cases, sequential writer is writing in the middle of the
page and it just redirties the last written page by continuing from that.
For example with an application which uses a file as a big ring buffer we
see:
[1st writeback session]
...
flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898514 + 8
flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898522 + 8
flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898530 + 8
flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898538 + 8
flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898546 + 8
kworker/0:1-11 4571: block_rq_issue: 8,0 W 0 () 94898514 + 40
>> flush-8:0-2743 4571: block_bio_queue: 8,0 W 94898554 + 8
>> flush-8:0-2743 4571: block_rq_issue: 8,0 W 0 () 94898554 + 8
[2nd writeback session after 35sec]
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94898562 + 8
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94898570 + 8
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94898578 + 8
...
kworker/0:1-11 4606: block_rq_issue: 8,0 W 0 () 94898562 + 640
kworker/0:1-11 4606: block_rq_issue: 8,0 W 0 () 94899202 + 72
...
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94899962 + 8
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94899970 + 8
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94899978 + 8
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94899986 + 8
flush-8:0-2743 4606: block_bio_queue: 8,0 W 94899994 + 8
kworker/0:1-11 4606: block_rq_issue: 8,0 W 0 () 94899962 + 40
>> flush-8:0-2743 4606: block_bio_queue: 8,0 W 94898554 + 8
>> flush-8:0-2743 4606: block_rq_issue: 8,0 W 0 () 94898554 + 8
So we seeked back to 94898554 after we wrote all the pages at the end of
the file.
This extra seek seems unnecessary. If we continue writeback from the last
written page, we can avoid it and do not cause harm to other cases. The
original intent of even writeout over the whole file is preserved and if
the page does not get redirtied pagevec_lookup_tag() just skips it.
As an exceptional case, when I/O error happens, set done_index to the next
page as the comment in the code suggests.
Tested-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Jun'ichi Nomura <j-nomura@ce.jp.nec.com>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
invalidate_mapping_pages is very big hint to reclaimer. It means user
doesn't want to use the page any more. So in order to prevent working set
page eviction, this patch move the page into tail of inactive list by
PG_reclaim.
Please, remember that pages in inactive list are working set as well as
active list. If we don't move pages into inactive list's tail, pages near
by tail of inactive list can be evicted although we have a big clue about
useless pages. It's totally bad.
Now PG_readahead/PG_reclaim is shared. fe3cba17 added ClearPageReclaim
into clear_page_dirty_for_io for preventing fast reclaiming readahead
marker page.
In this series, PG_reclaim is used by invalidated page, too. If VM find
the page is invalidated and it's dirty, it sets PG_reclaim to reclaim
asap. Then, when the dirty page will be writeback,
clear_page_dirty_for_io will clear PG_reclaim unconditionally. It
disturbs this serie's goal.
I think it's okay to clear PG_readahead when the page is dirty, not
writeback time. So this patch moves ClearPageReadahead. In v4,
ClearPageReadahead in set_page_dirty has a problem which is reported by
Steven Barrett. It's due to compound page. Some driver(ex, audio) calls
set_page_dirty with compound page which isn't on LRU. but my patch does
ClearPageRelcaim on compound page. In non-CONFIG_PAGEFLAGS_EXTENDED, it
breaks PageTail flag.
I think it doesn't affect THP and pass my test with THP enabling but Cced
Andrea for double check.
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Reported-by: Steven Barrett <damentz@liquorix.net>
Reviewed-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Rik van Riel <riel@redhat.com>
Acked-by: Mel Gorman <mel@csn.ul.ie>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <npiggin@kernel.dk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Code has been converted over to the new explicit on-stack plugging,
and delay users have been converted to use the new API for that.
So lets kill off the old plugging along with aops->sync_page().
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
I think determine_dirtyable_memory() is a rather costly function since it
need many atomic reads for gathering zone/global page state. But when we
use vm_dirty_bytes && dirty_background_bytes, we don't need that costly
calculation.
This patch eliminates such unnecessary overhead.
NOTE : newly added if condition might add overhead in normal path.
But it should be _really_ small because anyway we need the
access both vm_dirty_bytes and dirty_background_bytes so it is
likely to hit the cache.
[akpm@linux-foundation.org: fix used-uninitialised warning]
Signed-off-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Wu Fengguang <fengguang.wu@intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
__set_page_dirty_no_writeback() should return true if it actually
transitioned the page from a clean to dirty state although it seems nobody
uses its return value at present.
Signed-off-by: Bob Liu <lliubbo@gmail.com>
Acked-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Using TASK_INTERRUPTIBLE in balance_dirty_pages() seems wrong. If it's
going to do that then it must break out if signal_pending(), otherwise
it's pretty much guaranteed to degenerate into a busywait loop. Plus we
*do* want these processes to appear in D state and to contribute to load
average.
So it should be TASK_UNINTERRUPTIBLE. -- Andrew Morton
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The dirty_ratio was silently limited in global_dirty_limits() to >= 5%.
This is not a user expected behavior. And it's inconsistent with
calc_period_shift(), which uses the plain vm_dirty_ratio value.
Let's remove the internal bound.
At the same time, fix balance_dirty_pages() to work with the
dirty_thresh=0 case. This allows applications to proceed when
dirty+writeback pages are all cleaned.
And ">" fits with the name "exceeded" better than ">=" does. Neil thinks
it is an aesthetic improvement as well as a functional one :)
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Proposed-by: Con Kolivas <kernel@kolivas.org>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Neil Brown <neilb@suse.de>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Michael Rubin <mrubin@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To help developers and applications gain visibility into writeback
behaviour adding two entries to vm_stat_items and /proc/vmstat. This will
allow us to track the "written" and "dirtied" counts.
# grep nr_dirtied /proc/vmstat
nr_dirtied 3747
# grep nr_written /proc/vmstat
nr_written 3618
Signed-off-by: Michael Rubin <mrubin@google.com>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
To help developers and applications gain visibility into writeback
behaviour this patch adds two counters to /proc/vmstat.
# grep nr_dirtied /proc/vmstat
nr_dirtied 3747
# grep nr_written /proc/vmstat
nr_written 3618
These entries allow user apps to understand writeback behaviour over time
and learn how it is impacting their performance. Currently there is no
way to inspect dirty and writeback speed over time. It's not possible for
nr_dirty/nr_writeback.
These entries are necessary to give visibility into writeback behaviour.
We have /proc/diskstats which lets us understand the io in the block
layer. We have blktrace for more in depth understanding. We have
e2fsprogs and debugsfs to give insight into the file systems behaviour,
but we don't offer our users the ability understand what writeback is
doing. There is no way to know how active it is over the whole system, if
it's falling behind or to quantify it's efforts. With these values
exported users can easily see how much data applications are sending
through writeback and also at what rates writeback is processing this
data. Comparing the rates of change between the two allow developers to
see when writeback is not able to keep up with incoming traffic and the
rate of dirty memory being sent to the IO back end. This allows folks to
understand their io workloads and track kernel issues. Non kernel
engineers at Google often use these counters to solve puzzling performance
problems.
Patch #4 adds a pernode vmstat file with nr_dirtied and nr_written
Patch #5 add writeback thresholds to /proc/vmstat
Currently these values are in debugfs. But they should be promoted to
/proc since they are useful for developers who are writing databases
and file servers and are not debugging the kernel.
The output is as below:
# grep threshold /proc/vmstat
nr_pages_dirty_threshold 409111
nr_pages_dirty_background_threshold 818223
This patch:
This allows code outside of the mm core to safely manipulate page
writeback state and not worry about the other accounting. Not using these
routines means that some code will lose track of the accounting and we get
bugs.
Modify nilfs2 to use interface.
Signed-off-by: Michael Rubin <mrubin@google.com>
Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: KONISHI Ryusuke <konishi.ryusuke@lab.ntt.co.jp>
Cc: Jiro SEKIBA <jir@unicus.jp>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph-client:
ceph: fix get_ticket_handler() error handling
ceph: don't BUG on ENOMEM during mds reconnect
ceph: ceph_mdsc_build_path() returns an ERR_PTR
ceph: Fix warnings
ceph: ceph_get_inode() returns an ERR_PTR
ceph: initialize fields on new dentry_infos
ceph: maintain i_head_snapc when any caps are dirty, not just for data
ceph: fix osd request lru adjustment when sending request
ceph: don't improperly set dir complete when holding EXCL cap
mm: exporting account_page_dirty
ceph: direct requests in snapped namespace based on nonsnap parent
ceph: queue cap snap writeback for realm children on snap update
ceph: include dirty xattrs state in snapped caps
ceph: fix xattr cap writeback
ceph: fix multiple mds session shutdown
I noticed XFS writeback in 2.6.36-rc1 was much slower than it should have
been. Enabling writeback tracing showed:
flush-253:16-8516 [007] 1342952.351608: wbc_writepage: bdi 253:16: towrt=1024 skip=0 mode=0 kupd=0 bgrd=1 reclm=0 cyclic=1 more=0 older=0x0 start=0x0 end=0x0
flush-253:16-8516 [007] 1342952.351654: wbc_writepage: bdi 253:16: towrt=1023 skip=0 mode=0 kupd=0 bgrd=1 reclm=0 cyclic=1 more=0 older=0x0 start=0x0 end=0x0
flush-253:16-8516 [000] 1342952.369520: wbc_writepage: bdi 253:16: towrt=0 skip=0 mode=0 kupd=0 bgrd=1 reclm=0 cyclic=1 more=0 older=0x0 start=0x0 end=0x0
flush-253:16-8516 [000] 1342952.369542: wbc_writepage: bdi 253:16: towrt=-1 skip=0 mode=0 kupd=0 bgrd=1 reclm=0 cyclic=1 more=0 older=0x0 start=0x0 end=0x0
flush-253:16-8516 [000] 1342952.369549: wbc_writepage: bdi 253:16: towrt=-2 skip=0 mode=0 kupd=0 bgrd=1 reclm=0 cyclic=1 more=0 older=0x0 start=0x0 end=0x0
Writeback is not terminating in background writeback if ->writepage is
returning with wbc->nr_to_write == 0, resulting in sub-optimal single page
writeback on XFS.
Fix the write_cache_pages loop to terminate correctly when this situation
occurs and so prevent this sub-optimal background writeback pattern. This
improves sustained sequential buffered write performance from around
250MB/s to 750MB/s for a 100GB file on an XFS filesystem on my 8p test VM.
Cc:<stable@kernel.org>
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Wu Fengguang <fengguang.wu@intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
This allows code outside of the mm core to safely manipulate page state
and not worry about the other accounting. Not using these routines means
that some code will lose track of the accounting and we get bugs. This
has happened once already.
Signed-off-by: Michael Rubin <mrubin@google.com>
Signed-off-by: Sage Weil <sage@newdream.net>
When radix_tree_maxindex() is ~0UL, it can happen that scanning overflows
index and tree traversal code goes astray reading memory until it hits
unreadable memory. Check for overflow and exit in that case.
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Remove leading /** from non-kernel-doc function comments to prevent
kernel-doc warnings.
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Split get_dirty_limits() into global_dirty_limits()+bdi_dirty_limit(), so
that the latter can be avoided when under global dirty background
threshold (which is the normal state for most systems).
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Reducing the number of times balance_dirty_pages calls global_page_state
reduces the cache references and so improves write performance on a
variety of workloads.
'perf stats' of simple fio write tests shows the reduction in cache
access. Where the test is fio 'write,mmap,600Mb,pre_read' on AMD AthlonX2
with 3Gb memory (dirty_threshold approx 600 Mb) running each test 10
times, dropping the fasted & slowest values then taking the average &
standard deviation
average (s.d.) in millions (10^6)
2.6.31-rc8 648.6 (14.6)
+patch 620.1 (16.5)
Achieving this reduction is by dropping clip_bdi_dirty_limit as it rereads
the counters to apply the dirty_threshold and moving this check up into
balance_dirty_pages where it has already read the counters.
Also by rearrange the for loop to only contain one copy of the limit tests
allows the pdflush test after the loop to use the local copies of the
counters rather than rereading them.
In the common case with no throttling it now calls global_page_state 5
fewer times and bdi_stat 2 fewer.
Fengguang:
This patch slightly changes behavior by replacing clip_bdi_dirty_limit()
with the explicit check (nr_reclaimable + nr_writeback >= dirty_thresh) to
avoid exceeding the dirty limit. Since the bdi dirty limit is mostly
accurate we don't need to do routinely clip. A simple dirty limit check
would be enough.
The check is necessary because, in principle we should throttle everything
calling balance_dirty_pages() when we're over the total limit, as said by
Peter.
We now set and clear dirty_exceeded not only based on bdi dirty limits,
but also on the global dirty limit. The global limit check is added in
place of clip_bdi_dirty_limit() for safety and not intended as a behavior
change. The bdi limits should be tight enough to keep all dirty pages
under the global limit at most time; occasional small exceeding should be
OK though. The change makes the logic more obvious: the global limit is
the ultimate goal and shall be always imposed.
We may now start background writeback work based on outdated conditions.
That's safe because the bdi flush thread will (and have to) double check
the states. It reduces overall overheads because the test based on old
states still have good chance to be right.
[akpm@linux-foundation.org] fix uninitialized dirty_exceeded
Signed-off-by: Richard Kennedy <richard@rsk.demon.co.uk>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Jan Kara <jack@suse.cz>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Fix a fatal kernel-doc error due to a #define coming between a function's
kernel-doc notation and the function signature. (kernel-doc cannot handle
this)
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* 'for-2.6.36' of git://git.kernel.dk/linux-2.6-block: (149 commits)
block: make sure that REQ_* types are seen even with CONFIG_BLOCK=n
xen-blkfront: fix missing out label
blkdev: fix blkdev_issue_zeroout return value
block: update request stacking methods to support discards
block: fix missing export of blk_types.h
writeback: fix bad _bh spinlock nesting
drbd: revert "delay probes", feature is being re-implemented differently
drbd: Initialize all members of sync_conf to their defaults [Bugz 315]
drbd: Disable delay probes for the upcomming release
writeback: cleanup bdi_register
writeback: add new tracepoints
writeback: remove unnecessary init_timer call
writeback: optimize periodic bdi thread wakeups
writeback: prevent unnecessary bdi threads wakeups
writeback: move bdi threads exiting logic to the forker thread
writeback: restructure bdi forker loop a little
writeback: move last_active to bdi
writeback: do not remove bdi from bdi_list
writeback: simplify bdi code a little
writeback: do not lose wake-ups in bdi threads
...
Fixed up pretty trivial conflicts in drivers/block/virtio_blk.c and
drivers/scsi/scsi_error.c as per Jens.
We try to avoid livelocks of writeback when some steadily creates dirty
pages in a mapping we are writing out. For memory-cleaning writeback,
using nr_to_write works reasonably well but we cannot really use it for
data integrity writeback. This patch tries to solve the problem.
The idea is simple: Tag all pages that should be written back with a
special tag (TOWRITE) in the radix tree. This can be done rather quickly
and thus livelocks should not happen in practice. Then we start doing the
hard work of locking pages and sending them to disk only for those pages
that have TOWRITE tag set.
Note: Adding new radix tree tag grows radix tree node from 288 to 296
bytes for 32-bit archs and from 552 to 560 bytes for 64-bit archs.
However, the number of slab/slub items per page remains the same (13 and 7
respectively).
Signed-off-by: Jan Kara <jack@suse.cz>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Nick Piggin <nickpiggin@yahoo.com.au>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Jens Axboe <axboe@kernel.dk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add a trace event to the ->writepage loop in write_cache_pages to give
visibility into how the ->writepage call is changing variables within the
writeback control structure. Of most interest is how wbc->nr_to_write changes
from call to call, especially with filesystems that write multiple pages
in ->writepage.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
Tracing high level background writeback events is good, but it doesn't
give the entire picture. Add visibility into write throttling to catch IO
dispatched by foreground throttling of processing dirtying lots of pages.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
This was just an odd wrapper around writeback_inodes_wb. Removing this
also allows to get rid of the bdi member of struct writeback_control
which was rather out of place there.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
bdi_start_writeback now never gets a superblock passed, so we can just remove
that case. And to further untangle the code and flatten the call stack
split it into two trivial helpers for it's two callers.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
sync can currently take a really long time if a concurrent writer is
extending a file. The problem is that the dirty pages on the address
space grow in the same direction as write_cache_pages scans, so if
the writer keeps ahead of writeback, the writeback will not
terminate until the writer stops adding dirty pages.
For a data integrity sync, we only need to write the pages dirty at
the time we start the writeback, so we can stop scanning once we get
to the page that was at the end of the file at the time the scan
started.
This will prevent operations like copying a large file preventing
sync from completing as it will not write back pages that were
dirtied after the sync was started. This does not impact the
existing integrity guarantees, as any dirty page (old or new)
within the EOF range at the start of the scan will still be
captured.
This patch will not prevent sync from blocking on large writes into
holes. That requires more complex intervention while this patch only
addresses the common append-case of this sync holdoff.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
If a filesystem writes more than one page in ->writepage, write_cache_pages
fails to notice this and continues to attempt writeback when wbc->nr_to_write
has gone negative - this trace was captured from XFS:
wbc_writeback_start: towrt=1024
wbc_writepage: towrt=1024
wbc_writepage: towrt=0
wbc_writepage: towrt=-1
wbc_writepage: towrt=-5
wbc_writepage: towrt=-21
wbc_writepage: towrt=-85
This has adverse effects on filesystem writeback behaviour. write_cache_pages()
needs to terminate after a certain number of pages are written, not after a
certain number of calls to ->writepage are made. This is a regression
introduced by 17bc6c30cf ("vfs: Add
no_nrwrite_index_update writeback control flag"), but cannot be reverted
directly due to subsequent bug fixes that have gone in on top of it.
Signed-off-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This reverts commit e913fc825d.
We are investigating a hang associated with the WB_SYNC_NONE changes,
so revert them for now.
Conflicts:
fs/fs-writeback.c
mm/page-writeback.c
Signed-off-by: Jens Axboe <jaxboe@fusionio.com>
When CONFIG_BLOCK isn't enabled:
mm/page-writeback.c: In function 'laptop_mode_timer_fn':
mm/page-writeback.c:708: error: dereferencing pointer to incomplete type
mm/page-writeback.c:709: error: dereferencing pointer to incomplete type
Fix this by essentially eliminating the laptop sync handlers when
CONFIG_BLOCK isn't set, as most are only used from the block layer code.
The exception is laptop_sync_completion() which is used from sys_sync(),
make that an empty declaration in that case.
Reported-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Commit 69b62d01 fixed up most of the places where we would enter
busy schedule() spins when disabling the periodic background
writeback. This fixes up the sb timer so that it doesn't get
hammered on with the delay disabled, and ensures that it gets
rearmed if needed when /proc/sys/vm/dirty_writeback_centisecs
gets modified.
bdi_forker_task() also needs to check for !dirty_writeback_centisecs
and use schedule() appropriately, fix that up too.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
When umount calls sync_filesystem(), we first do a WB_SYNC_NONE
writeback to kick off writeback of pending dirty inodes, then follow
that up with a WB_SYNC_ALL to wait for it. Since umount already holds
the sb s_umount mutex, WB_SYNC_NONE ends up doing nothing and all
writeback happens as WB_SYNC_ALL. This can greatly slow down umount,
since WB_SYNC_ALL writeback is a data integrity operation and thus
a bigger hammer than simple WB_SYNC_NONE. For barrier aware file systems
it's a lot slower.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
One of the features of laptop-mode is that it forces a writeout of dirty
pages if something else triggers a physical read or write from a device.
The current implementation flushes pages on all devices, rather than only
the one that triggered the flush. This patch alters the behaviour so that
only the recently accessed block device is flushed, preventing other
disks being spun up for no terribly good reason.
Signed-off-by: Matthew Garrett <mjg@redhat.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
- no one is calling wb_writeback and write_cache_pages with
wbc.nonblocking=1 any more
- lumpy pageout will want to do nonblocking writeback without the
congestion wait
So remove the congestion checks as suggested by Chris.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Cc: Chris Mason <chris.mason@oracle.com>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Trond Myklebust <Trond.Myklebust@netapp.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Evgeniy Polyakov <zbr@ioremap.net>
Cc: Alex Elder <aelder@sgi.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
It makes sense to do IOWAIT when someone is blocked
due to IO throttle, as suggested by Kame and Peter.
There is an old comment for not doing IOWAIT on throttle,
however it has been mismatching the code for a long time.
If we stop accounting IOWAIT for 2.6.32, it could be an
undesirable behavior change. So restore the io_schedule.
CC: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
CC: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Sometimes we only want to write pages from a specific super_block,
so allow that to be passed in.
This fixes a problem with commit 56a131dcf7
causing writeback on all super_blocks on a bdi, where we only really
want to sync a specific sb from writeback_inodes_sb().
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
* 'writeback' of git://git.kernel.dk/linux-2.6-block:
writeback: writeback_inodes_sb() should use bdi_start_writeback()
writeback: don't delay inodes redirtied by a fast dirtier
writeback: make the super_block pinning more efficient
writeback: don't resort for a single super_block in move_expired_inodes()
writeback: move inodes from one super_block together
writeback: get rid to incorrect references to pdflush in comments
writeback: improve readability of the wb_writeback() continue/break logic
writeback: cleanup writeback_single_inode()
writeback: kupdate writeback shall not stop when more io is possible
writeback: stop background writeback when below background threshold
writeback: balance_dirty_pages() shall write more than dirtied pages
fs: Fix busyloop in wb_writeback()
Treat bdi_start_writeback(0) as a special request to do background write,
and stop such work when we are below the background dirty threshold.
Also simplify the (nr_pages <= 0) checks. Since we already pass in
nr_pages=LONG_MAX for WB_SYNC_ALL and background writes, we don't
need to worry about it being decreased to zero.
Reported-by: Richard Kennedy <richard@rsk.demon.co.uk>
CC: Jan Kara <jack@suse.cz>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Some filesystem may choose to write much more than ratelimit_pages
before calling balance_dirty_pages_ratelimited_nr(). So it is safer to
determine number to write based on real number of dirtied pages.
Otherwise it is possible that
loop {
btrfs_file_write(): dirty 1024 pages
balance_dirty_pages(): write up to 48 pages (= ratelimit_pages * 1.5)
}
in which the writeback rate cannot keep up with dirty rate, and the
dirty pages go all the way beyond dirty_thresh.
The increased write_chunk may make the dirtier more bumpy.
So filesystems shall be take care not to dirty too much at
a time (eg. > 4MB) without checking the ratelimit.
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
* 'hwpoison' of git://git.kernel.org/pub/scm/linux/kernel/git/ak/linux-mce-2.6: (21 commits)
HWPOISON: Enable error_remove_page on btrfs
HWPOISON: Add simple debugfs interface to inject hwpoison on arbitary PFNs
HWPOISON: Add madvise() based injector for hardware poisoned pages v4
HWPOISON: Enable error_remove_page for NFS
HWPOISON: Enable .remove_error_page for migration aware file systems
HWPOISON: The high level memory error handler in the VM v7
HWPOISON: Add PR_MCE_KILL prctl to control early kill behaviour per process
HWPOISON: shmem: call set_page_dirty() with locked page
HWPOISON: Define a new error_remove_page address space op for async truncation
HWPOISON: Add invalidate_inode_page
HWPOISON: Refactor truncate to allow direct truncating of page v2
HWPOISON: check and isolate corrupted free pages v2
HWPOISON: Handle hardware poisoned pages in try_to_unmap
HWPOISON: Use bitmask/action code for try_to_unmap behaviour
HWPOISON: x86: Add VM_FAULT_HWPOISON handling to x86 page fault handler v2
HWPOISON: Add poison check to page fault handling
HWPOISON: Add basic support for poisoned pages in fault handler v3
HWPOISON: Add new SIGBUS error codes for hardware poison signals
HWPOISON: Add support for poison swap entries v2
HWPOISON: Export some rmap vma locking to outside world
...
It's unused.
It isn't needed -- read or write flag is already passed and sysctl
shouldn't care about the rest.
It _was_ used in two places at arch/frv for some reason.
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Cc: David Howells <dhowells@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: James Morris <jmorris@namei.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
global_lru_pages() / zone_lru_pages() can be used in two ways:
- to estimate max reclaimable pages in determine_dirtyable_memory()
- to calculate the slab scan ratio
When swap is full or not present, the anon lru lists are not reclaimable
and also won't be scanned. So the anon pages shall not be counted in both
usage scenarios. Also rename to _reclaimable_pages: now they are counting
the possibly reclaimable lru pages.
It can greatly (and correctly) increase the slab scan rate under high
memory pressure (when most file pages have been reclaimed and swap is
full/absent), thus reduce false OOM kills.
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Reviewed-by: Jesse Barnes <jbarnes@virtuousgeek.org>
Cc: David Howells <dhowells@redhat.com>
Cc: "Li, Ming Chun" <macli@brc.ubc.ca>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Currently it just sleeps for a very short time, just 1 jiffy. If
we keep looping in there, continually delay for a little longer
of up to 100msec in total. That was the old limit for congestion
wait.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
bdi_start_writeback() is currently split into two paths, one for
WB_SYNC_NONE and one for WB_SYNC_ALL. Add bdi_sync_writeback()
for WB_SYNC_ALL writeback and let bdi_start_writeback() handle
only WB_SYNC_NONE.
Push down the writeback_control allocation and only accept the
parameters that make sense for each function. This cleans up
the API considerably.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Now that bdi_writeback_all() no longer handles integrity writeback,
it doesn't have to block anymore. This means that we can switch
bdi_list reader side protection to RCU.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
The dirtying of page and set_page_dirty() can be moved into the page lock.
- In shmem_write_end(), the page was dirtied while the page lock was held,
but it's being marked dirty just after dropping the page lock.
- In shmem_symlink(), both dirtying and marking can be moved into page lock.
It's valuable for the hwpoison code to know whether one bad page can be dropped
without losing data. It mainly judges by testing the PG_dirty bit after taking
the page lock. So it becomes important that the dirtying of page and the
marking of dirtiness are both done inside the page lock. Which is a common
practice, but sadly not a rule.
The noticeable exceptions are
- mapped pages
- pages with buffer_heads
The above pages could go dirty at any time. Fortunately the hwpoison will
unmap the page and release the buffer_heads beforehand anyway.
Many other types of pages (eg. metadata pages) can also be dirtied at will by
their owners, the hwpoison code cannot do meaningful things to them anyway.
Only the dirtiness of pagecache pages owned by regular files are interested.
v2: AK: Add comment about set_page_dirty rules (suggested by Peter Zijlstra)
Acked-by: Hugh Dickins <hugh.dickins@tiscali.co.uk>
Reviewed-by: WANG Cong <xiyou.wangcong@gmail.com>
Signed-off-by: Wu Fengguang <fengguang.wu@intel.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/percpu: (46 commits)
powerpc64: convert to dynamic percpu allocator
sparc64: use embedding percpu first chunk allocator
percpu: kill lpage first chunk allocator
x86,percpu: use embedding for 64bit NUMA and page for 32bit NUMA
percpu: update embedding first chunk allocator to handle sparse units
percpu: use group information to allocate vmap areas sparsely
vmalloc: implement pcpu_get_vm_areas()
vmalloc: separate out insert_vmalloc_vm()
percpu: add chunk->base_addr
percpu: add pcpu_unit_offsets[]
percpu: introduce pcpu_alloc_info and pcpu_group_info
percpu: move pcpu_lpage_build_unit_map() and pcpul_lpage_dump_cfg() upward
percpu: add @align to pcpu_fc_alloc_fn_t
percpu: make @dyn_size mandatory for pcpu_setup_first_chunk()
percpu: drop @static_size from first chunk allocators
percpu: generalize first chunk allocator selection
percpu: build first chunk allocators selectively
percpu: rename 4k first chunk allocator to page
percpu: improve boot messages
percpu: fix pcpu_reclaim() locking
...
Fix trivial conflict as by Tejun Heo in kernel/sched.c
This gets rid of pdflush for bdi writeout and kupdated style cleaning.
pdflush writeout suffers from lack of locality and also requires more
threads to handle the same workload, since it has to work in a
non-blocking fashion against each queue. This also introduces lumpy
behaviour and potential request starvation, since pdflush can be starved
for queue access if others are accessing it. A sample ffsb workload that
does random writes to files is about 8% faster here on a simple SATA drive
during the benchmark phase. File layout also seems a LOT more smooth in
vmstat:
r b swpd free buff cache si so bi bo in cs us sy id wa
0 1 0 608848 2652 375372 0 0 0 71024 604 24 1 10 48 42
0 1 0 549644 2712 433736 0 0 0 60692 505 27 1 8 48 44
1 0 0 476928 2784 505192 0 0 4 29540 553 24 0 9 53 37
0 1 0 457972 2808 524008 0 0 0 54876 331 16 0 4 38 58
0 1 0 366128 2928 614284 0 0 4 92168 710 58 0 13 53 34
0 1 0 295092 3000 684140 0 0 0 62924 572 23 0 9 53 37
0 1 0 236592 3064 741704 0 0 4 58256 523 17 0 8 48 44
0 1 0 165608 3132 811464 0 0 0 57460 560 21 0 8 54 38
0 1 0 102952 3200 873164 0 0 4 74748 540 29 1 10 48 41
0 1 0 48604 3252 926472 0 0 0 53248 469 29 0 7 47 45
where vanilla tends to fluctuate a lot in the creation phase:
r b swpd free buff cache si so bi bo in cs us sy id wa
1 1 0 678716 5792 303380 0 0 0 74064 565 50 1 11 52 36
1 0 0 662488 5864 319396 0 0 4 352 302 329 0 2 47 51
0 1 0 599312 5924 381468 0 0 0 78164 516 55 0 9 51 40
0 1 0 519952 6008 459516 0 0 4 78156 622 56 1 11 52 37
1 1 0 436640 6092 541632 0 0 0 82244 622 54 0 11 48 41
0 1 0 436640 6092 541660 0 0 0 8 152 39 0 0 51 49
0 1 0 332224 6200 644252 0 0 4 102800 728 46 1 13 49 36
1 0 0 274492 6260 701056 0 0 4 12328 459 49 0 7 50 43
0 1 0 211220 6324 763356 0 0 0 106940 515 37 1 10 51 39
1 0 0 160412 6376 813468 0 0 0 8224 415 43 0 6 49 45
1 1 0 85980 6452 886556 0 0 4 113516 575 39 1 11 54 34
0 2 0 85968 6452 886620 0 0 0 1640 158 211 0 0 46 54
A 10 disk test with btrfs performs 26% faster with per-bdi flushing. A
SSD based writeback test on XFS performs over 20% better as well, with
the throughput being very stable around 1GB/sec, where pdflush only
manages 750MB/sec and fluctuates wildly while doing so. Random buffered
writes to many files behave a lot better as well, as does random mmap'ed
writes.
A separate thread is added to sync the super blocks. In the long term,
adding sync_supers_bdi() functionality could get rid of this thread again.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
This is a first step at introducing per-bdi flusher threads. We should
have no change in behaviour, although sb_has_dirty_inodes() is now
ridiculously expensive, as there's no easy way to answer that question.
Not a huge problem, since it'll be deleted in subsequent patches.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Conflicts:
arch/sparc/kernel/smp_64.c
arch/x86/kernel/cpu/perf_counter.c
arch/x86/kernel/setup_percpu.c
drivers/cpufreq/cpufreq_ondemand.c
mm/percpu.c
Conflicts in core and arch percpu codes are mostly from commit
ed78e1e078dd44249f88b1dd8c76dafb39567161 which substituted many
num_possible_cpus() with nr_cpu_ids. As for-next branch has moved all
the first chunk allocators into mm/percpu.c, the changes are moved
from arch code to mm/percpu.c.
Signed-off-by: Tejun Heo <tj@kernel.org>
Commit 1faa16d228 accidentally broke
the bdi congestion wait queue logic, causing us to wait on congestion
for WRITE (== 1) when we really wanted BLK_RW_ASYNC (== 0) instead.
Signed-off-by: Jens Axboe <jens.axboe@oracle.com>
Pull linus#master to merge PER_CPU_DEF_ATTRIBUTES and alpha build fix
changes. As alpha in percpu tree uses 'weak' attribute instead of
inline assembly, there's no need for __used attribute.
Conflicts:
arch/alpha/include/asm/percpu.h
arch/mn10300/kernel/vmlinux.lds.S
include/linux/percpu-defs.h
balance_dirty_pages can overreact and move all of the dirty pages to
writeback unnecessarily.
balance_dirty_pages makes its decision to throttle based on the number of
dirty plus writeback pages that are over the calculated limit,so it will
continue to move pages even when there are plenty of pages in writeback
and less than the threshold still dirty.
This allows it to overshoot its limits and move all the dirty pages to
writeback while waiting for the drives to catch up and empty the writeback
list.
A simple fio test easily demonstrates this problem.
fio --name=f1 --directory=/disk1 --size=2G -rw=write --name=f2 --directory=/disk2 --size=1G --rw=write --startdelay=10
This is the simplest fix I could find, but I'm not entirely sure that it
alone will be enough for all cases. But it certainly is an improvement on
my desktop machine writing to 2 disks.
Do we need something more for machines with large arrays where
bdi_threshold * number_of_drives is greater than the dirty_ratio ?
Signed-off-by: Richard Kennedy <richard@rsk.demon.co.uk>
Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Jens Axboe <jens.axboe@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Percpu variable definition is about to be updated such that all percpu
symbols including the static ones must be unique. Update percpu
variable definitions accordingly.
* as,cfq: rename ioc_count uniquely
* cpufreq: rename cpu_dbs_info uniquely
* xen: move nesting_count out of xen_evtchn_do_upcall() and rename it
* mm: move ratelimits out of balance_dirty_pages_ratelimited_nr() and
rename it
* ipv4,6: rename cookie_scratch uniquely
* x86 perf_counter: rename prev_left to pmc_prev_left, irq_entry to
pmc_irq_entry and nmi_entry to pmc_nmi_entry
* perf_counter: rename disable_count to perf_disable_count
* ftrace: rename test_event_disable to ftrace_test_event_disable
* kmemleak: rename test_pointer to kmemleak_test_pointer
* mce: rename next_interval to mce_next_interval
[ Impact: percpu usage cleanups, no duplicate static percpu var names ]
Signed-off-by: Tejun Heo <tj@kernel.org>
Reviewed-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: Jens Axboe <jens.axboe@oracle.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Jeremy Fitzhardinge <jeremy@xensource.com>
Cc: linux-mm <linux-mm@kvack.org>
Cc: David S. Miller <davem@davemloft.net>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Steven Rostedt <srostedt@redhat.com>
Cc: Li Zefan <lizf@cn.fujitsu.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Andi Kleen <andi@firstfloor.org>