[ Upstream commit fac76f2260 ]
Otherwise, we could fail to compile.
ld: arch/arm64/crypto/ghash-ce-glue.o: in function 'ghash_ce_mod_exit':
ghash-ce-glue.c:(.exit.text+0x24): undefined reference to 'crypto_unregister_aead'
ld: arch/arm64/crypto/ghash-ce-glue.o: in function 'ghash_ce_mod_init':
ghash-ce-glue.c:(.init.text+0x34): undefined reference to 'crypto_register_aead'
Fixes: 537c1445ab ("crypto: arm64/gcm - implement native driver using v8 Crypto Extensions")
Signed-off-by: Qian Cai <quic_qiancai@quicinc.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 7ae19d422c upstream.
A kasan error was reported during fuzzing:
BUG: KASAN: slab-out-of-bounds in neon_poly1305_blocks.constprop.0+0x1b4/0x250 [poly1305_neon]
Read of size 4 at addr ffff0010e293f010 by task syz-executor.5/1646715
CPU: 4 PID: 1646715 Comm: syz-executor.5 Kdump: loaded Not tainted 5.10.0.aarch64 #1
Hardware name: Huawei TaiShan 2280 /BC11SPCD, BIOS 1.59 01/31/2019
Call trace:
dump_backtrace+0x0/0x394
show_stack+0x34/0x4c arch/arm64/kernel/stacktrace.c:196
__dump_stack lib/dump_stack.c:77 [inline]
dump_stack+0x158/0x1e4 lib/dump_stack.c:118
print_address_description.constprop.0+0x68/0x204 mm/kasan/report.c:387
__kasan_report+0xe0/0x140 mm/kasan/report.c:547
kasan_report+0x44/0xe0 mm/kasan/report.c:564
check_memory_region_inline mm/kasan/generic.c:187 [inline]
__asan_load4+0x94/0xd0 mm/kasan/generic.c:252
neon_poly1305_blocks.constprop.0+0x1b4/0x250 [poly1305_neon]
neon_poly1305_do_update+0x6c/0x15c [poly1305_neon]
neon_poly1305_update+0x9c/0x1c4 [poly1305_neon]
crypto_shash_update crypto/shash.c:131 [inline]
shash_finup_unaligned+0x84/0x15c crypto/shash.c:179
crypto_shash_finup+0x8c/0x140 crypto/shash.c:193
shash_digest_unaligned+0xb8/0xe4 crypto/shash.c:201
crypto_shash_digest+0xa4/0xfc crypto/shash.c:217
crypto_shash_tfm_digest+0xb4/0x150 crypto/shash.c:229
essiv_skcipher_setkey+0x164/0x200 [essiv]
crypto_skcipher_setkey+0xb0/0x160 crypto/skcipher.c:612
skcipher_setkey+0x3c/0x50 crypto/algif_skcipher.c:305
alg_setkey+0x114/0x2a0 crypto/af_alg.c:220
alg_setsockopt+0x19c/0x210 crypto/af_alg.c:253
__sys_setsockopt+0x190/0x2e0 net/socket.c:2123
__do_sys_setsockopt net/socket.c:2134 [inline]
__se_sys_setsockopt net/socket.c:2131 [inline]
__arm64_sys_setsockopt+0x78/0x94 net/socket.c:2131
__invoke_syscall arch/arm64/kernel/syscall.c:36 [inline]
invoke_syscall+0x64/0x100 arch/arm64/kernel/syscall.c:48
el0_svc_common.constprop.0+0x220/0x230 arch/arm64/kernel/syscall.c:155
do_el0_svc+0xb4/0xd4 arch/arm64/kernel/syscall.c:217
el0_svc+0x24/0x3c arch/arm64/kernel/entry-common.c:353
el0_sync_handler+0x160/0x164 arch/arm64/kernel/entry-common.c:369
el0_sync+0x160/0x180 arch/arm64/kernel/entry.S:683
This error can be reproduced by the following code compiled as ko on a
system with kasan enabled:
#include <linux/module.h>
#include <linux/crypto.h>
#include <crypto/hash.h>
#include <crypto/poly1305.h>
char test_data[] = "\x00\x01\x02\x03\x04\x05\x06\x07"
"\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f"
"\x10\x11\x12\x13\x14\x15\x16\x17"
"\x18\x19\x1a\x1b\x1c\x1d\x1e";
int init(void)
{
struct crypto_shash *tfm = NULL;
char *data = NULL, *out = NULL;
tfm = crypto_alloc_shash("poly1305", 0, 0);
data = kmalloc(POLY1305_KEY_SIZE - 1, GFP_KERNEL);
out = kmalloc(POLY1305_DIGEST_SIZE, GFP_KERNEL);
memcpy(data, test_data, POLY1305_KEY_SIZE - 1);
crypto_shash_tfm_digest(tfm, data, POLY1305_KEY_SIZE - 1, out);
kfree(data);
kfree(out);
return 0;
}
void deinit(void)
{
}
module_init(init)
module_exit(deinit)
MODULE_LICENSE("GPL");
The root cause of the bug sits in neon_poly1305_blocks. The logic
neon_poly1305_blocks() performed is that if it was called with both s[]
and r[] uninitialized, it will first try to initialize them with the
data from the first "block" that it believed to be 32 bytes in length.
First 16 bytes are used as the key and the next 16 bytes for s[]. This
would lead to the aforementioned read out-of-bound. However, after
calling poly1305_init_arch(), only 16 bytes were deducted from the input
and s[] is initialized yet again with the following 16 bytes. The second
initialization of s[] is certainly redundent which indicates that the
first initialization should be for r[] only.
This patch fixes the issue by calling poly1305_init_arm64() instead of
poly1305_init_arch(). This is also the implementation for the same
algorithm on arm platform.
Fixes: f569ca1647 ("crypto: arm64/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementation")
Cc: stable@vger.kernel.org
Signed-off-by: GUO Zihua <guozihua@huawei.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
SM4 library is abstracted from sm4-generic algorithm, sm4-ce can depend on
the SM4 library instead of sm4-generic, and some functions in sm4-generic
do not need to be exported.
Signed-off-by: Tianjia Zhang <tianjia.zhang@linux.alibaba.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Unify similar build rules.
sha256-core.S opts out it because it is generated from sha512-armv8.pl.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Generate *.S by Perl like arch/{mips,x86}/crypto/Makefile.
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
- MTE asynchronous support for KASan. Previously only synchronous
(slower) mode was supported. Asynchronous is faster but does not allow
precise identification of the illegal access.
- Run kernel mode SIMD with softirqs disabled. This allows using NEON in
softirq context for crypto performance improvements. The conditional
yield support is modified to take softirqs into account and reduce the
latency.
- Preparatory patches for Apple M1: handle CPUs that only have the VHE
mode available (host kernel running at EL2), add FIQ support.
- arm64 perf updates: support for HiSilicon PA and SLLC PMU drivers, new
functions for the HiSilicon HHA and L3C PMU, cleanups.
- Re-introduce support for execute-only user permissions but only when
the EPAN (Enhanced Privileged Access Never) architecture feature is
available.
- Disable fine-grained traps at boot and improve the documented boot
requirements.
- Support CONFIG_KASAN_VMALLOC on arm64 (only with KASAN_GENERIC).
- Add hierarchical eXecute Never permissions for all page tables.
- Add arm64 prctl(PR_PAC_{SET,GET}_ENABLED_KEYS) allowing user programs
to control which PAC keys are enabled in a particular task.
- arm64 kselftests for BTI and some improvements to the MTE tests.
- Minor improvements to the compat vdso and sigpage.
- Miscellaneous cleanups.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAmB5xkkACgkQa9axLQDI
XvEBgRAAsr6r8gsBQJP3FDHmbtbVf2ej5QJTCOAQAGHbTt0JH7Pk03pWSBr7h5nF
vsddRDxxeDgB6xd7jWP7EvDaPxHeB0CdSj5gG8EP/ZdOm8sFAwB1ZIHWikgUgSwW
nu6R28yXTMSj+EkyFtahMhTMJ1EMF4sCPuIgAo59ST5w/UMMqLCJByOu4ej6RPKZ
aeSJJWaDLBmbgnTKWxRvCc/MgIx4J/LAHWGkdpGjuMK6SLp38Kdf86XcrklXtzwf
K30ZYeoKq8zZ+nFOsK9gBVlOlocZcbS1jEbN842jD6imb6vKLQtBWrKk9A6o4v5E
XulORWcSBhkZb3ItIU9+6SmelUExf0VeVlSp657QXYPgquoIIGvFl6rCwhrdGMGO
bi6NZKCfJvcFZJoIN1oyhuHejgZSBnzGEcvhvzNdg7ItvOCed7q3uXcGHz/OI6tL
2TZKddzHSEMVfTo0D+RUsYfasZHI1qAiQ0mWVC31c+YHuRuW/K/jlc3a5TXlSBUa
Dwu0/zzMLiqx65ISx9i7XNMrngk55uzrS6MnwSByPoz4M4xsElZxt3cbUxQ8YAQz
jhxTHs1Pwes8i7f4n61ay/nHCFbmVvN/LlsPRpZdwd8JumThLrDolF3tc6aaY0xO
hOssKtnGY4Xvh/WitfJ5uvDb1vMObJKTXQEoZEJh4hlNQDxdeUE=
=6NGI
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- MTE asynchronous support for KASan. Previously only synchronous
(slower) mode was supported. Asynchronous is faster but does not
allow precise identification of the illegal access.
- Run kernel mode SIMD with softirqs disabled. This allows using NEON
in softirq context for crypto performance improvements. The
conditional yield support is modified to take softirqs into account
and reduce the latency.
- Preparatory patches for Apple M1: handle CPUs that only have the VHE
mode available (host kernel running at EL2), add FIQ support.
- arm64 perf updates: support for HiSilicon PA and SLLC PMU drivers,
new functions for the HiSilicon HHA and L3C PMU, cleanups.
- Re-introduce support for execute-only user permissions but only when
the EPAN (Enhanced Privileged Access Never) architecture feature is
available.
- Disable fine-grained traps at boot and improve the documented boot
requirements.
- Support CONFIG_KASAN_VMALLOC on arm64 (only with KASAN_GENERIC).
- Add hierarchical eXecute Never permissions for all page tables.
- Add arm64 prctl(PR_PAC_{SET,GET}_ENABLED_KEYS) allowing user programs
to control which PAC keys are enabled in a particular task.
- arm64 kselftests for BTI and some improvements to the MTE tests.
- Minor improvements to the compat vdso and sigpage.
- Miscellaneous cleanups.
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (86 commits)
arm64/sve: Add compile time checks for SVE hooks in generic functions
arm64/kernel/probes: Use BUG_ON instead of if condition followed by BUG.
arm64: pac: Optimize kernel entry/exit key installation code paths
arm64: Introduce prctl(PR_PAC_{SET,GET}_ENABLED_KEYS)
arm64: mte: make the per-task SCTLR_EL1 field usable elsewhere
arm64/sve: Remove redundant system_supports_sve() tests
arm64: fpsimd: run kernel mode NEON with softirqs disabled
arm64: assembler: introduce wxN aliases for wN registers
arm64: assembler: remove conditional NEON yield macros
kasan, arm64: tests supports for HW_TAGS async mode
arm64: mte: Report async tag faults before suspend
arm64: mte: Enable async tag check fault
arm64: mte: Conditionally compile mte_enable_kernel_*()
arm64: mte: Enable TCO in functions that can read beyond buffer limits
kasan: Add report for async mode
arm64: mte: Drop arch_enable_tagging()
kasan: Add KASAN mode kernel parameter
arm64: mte: Add asynchronous mode support
arm64: Get rid of CONFIG_ARM64_VHE
arm64: Cope with CPUs stuck in VHE mode
...
The new carry handling code in the CTR driver can deal with a carry
occurring in the 4x/5x parallel code path, by using a computed goto to
jump into the carry sequence at the right place as to only apply the
carry to a subset of the blocks being processed.
If the lower half of the counter wraps and ends up at exactly 0x0, a
carry needs to be applied to the counter, but not to the counter values
taken for the 4x/5x parallel sequence. In this case, the computed goto
skips all register assignments, and branches straight to the jump
instruction that gets us back to the fast path. This produces the
correct result, but due to the fact that this branch target does not
carry the correct BTI annotation, this fails when BTI is enabled.
Let's omit the computed goto entirely in this case, and jump straight
back to the fast path after applying the carry to the main counter.
Fixes: 5318d3db46 ("crypto: arm64/aes-ctr - improve tail handling")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Kernel mode NEON can be used in task or softirq context, but only in
a non-nesting manner, i.e., softirq context is only permitted if the
interrupt was not taken at a point where the kernel was using the NEON
in task context.
This means all users of kernel mode NEON have to be aware of this
limitation, and either need to provide scalar fallbacks that may be much
slower (up to 20x for AES instructions) and potentially less safe, or
use an asynchronous interface that defers processing to a later time
when the NEON is guaranteed to be available.
Given that grabbing and releasing the NEON is cheap, we can relax this
restriction, by increasing the granularity of kernel mode NEON code, and
always disabling softirq processing while the NEON is being used in task
context.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210302090118.30666-4-ardb@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
gcc-11 points out a mismatch between the declaration and the definition
of poly1305_core_setkey():
lib/crypto/poly1305-donna32.c:13:67: error: argument 2 of type ‘const u8[16]’ {aka ‘const unsigned char[16]’} with mismatched bound [-Werror=array-parameter=]
13 | void poly1305_core_setkey(struct poly1305_core_key *key, const u8 raw_key[16])
| ~~~~~~~~~^~~~~~~~~~~
In file included from lib/crypto/poly1305-donna32.c:11:
include/crypto/internal/poly1305.h:21:68: note: previously declared as ‘const u8 *’ {aka ‘const unsigned char *’}
21 | void poly1305_core_setkey(struct poly1305_core_key *key, const u8 *raw_key);
This is harmless in principle, as the calling conventions are the same,
but the more specific prototype allows better type checking in the
caller.
Change the declaration to match the actual function definition.
The poly1305_simd_init() is a bit suspicious here, as it previously
had a 32-byte argument type, but looks like it needs to take the
16-byte POLY1305_BLOCK_SIZE array instead.
Fixes: 1c08a10436 ("crypto: poly1305 - add new 32 and 64-bit generic versions")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Instead of yielding from the bowels of the asm routine if a reschedule
is needed, divide up the input into 4 KB chunks in the C glue. This
simplifies the code substantially, and avoids scheduling out the task
with the asm routine on the call stack, which is undesirable from a
CFI/instrumentation point of view.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
There is no need for elaborate yield handling in the bit-sliced NEON
implementation of AES, given that skciphers are naturally bounded by the
size of the chunks returned by the skcipher_walk API. So remove the
yield calls from the asm code.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Instead of calling into kernel_neon_end() and kernel_neon_begin() (and
potentially into schedule()) from the assembler code when running in
task mode and a reschedule is pending, perform only the preempt count
check in assembler, but simply return early in this case, and let the C
code deal with the consequences.
This reverts commit 6caf7adc5e.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Instead of calling into kernel_neon_end() and kernel_neon_begin() (and
potentially into schedule()) from the assembler code when running in
task mode and a reschedule is pending, perform only the preempt count
check in assembler, but simply return early in this case, and let the C
code deal with the consequences.
This reverts commit 7edc86cb1c.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Instead of calling into kernel_neon_end() and kernel_neon_begin() (and
potentially into schedule()) from the assembler code when running in
task mode and a reschedule is pending, perform only the preempt count
check in assembler, but simply return early in this case, and let the C
code deal with the consequences.
This reverts commit d82f37ab5e.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Instead of calling into kernel_neon_end() and kernel_neon_begin() (and
potentially into schedule()) from the assembler code when running in
task mode and a reschedule is pending, perform only the preempt count
check in assembler, but simply return early in this case, and let the C
code deal with the consequences.
This reverts commit 7df8d16475.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The accelerated, instruction based implementations of SHA1, SHA2 and
SHA3 are autoloaded based on CPU capabilities, given that the code is
modest in size, and widely used, which means that resolving the algo
name, loading all compatible modules and picking the one with the
highest priority is taken to be suboptimal.
However, if these algorithms are requested before this CPU feature
based matching and autoloading occurs, these modules are not even
considered, and we end up with suboptimal performance.
So add the missing module aliases for the various SHA implementations.
Cc: <stable@vger.kernel.org>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Counter mode is a stream cipher chaining mode that is typically used
with inputs that are of arbitrarily length, and so a tail block which
is smaller than a full AES block is rule rather than exception.
The current ctr(aes) implementation for arm64 always makes a separate
call into the assembler routine to process this tail block, which is
suboptimal, given that it requires reloading of the AES round keys,
and prevents us from handling this tail block using the 5-way stride
that we use for better performance on deep pipelines.
So let's update the assembler routine so it can handle any input size,
and uses NEON permutation instructions and overlapping loads and stores
to handle the tail block. This results in a ~16% speedup for 1420 byte
blocks on cores with deep pipelines such as ThunderX2.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Commit 69b6f2e817 ("crypto: arm64/aes-neon - limit exposed routines if
faster driver is enabled") intended to hide modes from the plain NEON
driver that are also implemented by the faster bit sliced NEON one if
both are enabled. However, the defined() CPP function does not detect
if the bit sliced NEON driver is enabled as a module. So instead, let's
use IS_ENABLED() here.
Fixes: 69b6f2e817 ("crypto: arm64/aes-neon - limit exposed routines if ...")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Currently <crypto/sha.h> contains declarations for both SHA-1 and SHA-2,
and <crypto/sha3.h> contains declarations for SHA-3.
This organization is inconsistent, but more importantly SHA-1 is no
longer considered to be cryptographically secure. So to the extent
possible, SHA-1 shouldn't be grouped together with any of the other SHA
versions, and usage of it should be phased out.
Therefore, split <crypto/sha.h> into two headers <crypto/sha1.h> and
<crypto/sha2.h>, and make everyone explicitly specify whether they want
the declarations for SHA-1, SHA-2, or both.
This avoids making the SHA-1 declarations visible to files that don't
want anything to do with SHA-1. It also prepares for potentially moving
sha1.h into a new insecure/ or dangerous/ directory.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Instead of copying the calculated authentication tag to memory and
calling crypto_memneq() to verify it, use vector bytewise compare and
min across vector instructions to decide whether the tag is valid. This
is more efficient, and given that the tag is only transiently held in a
NEON register, it is also safer, given that calculated tags for failed
decryptions should be withheld.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Based on lessons learnt from optimizing the 32-bit version of this driver,
we can simplify the arm64 version considerably, by reordering the final
two stores when the last block is not a multiple of 64 bytes. This removes
the need to use permutation instructions to calculate the elements that are
clobbered by the final overlapping store, given that the store of the
penultimate block now follows it, and that one carries the correct values
for those elements already.
While at it, simplify the overlapping loads as well, by calculating the
address of the final overlapping load upfront, and switching to this
address for every load that would otherwise extend past the end of the
source buffer.
There is no impact on performance, but the resulting code is substantially
smaller and easier to follow.
Cc: Eric Biggers <ebiggers@google.com>
Cc: "Jason A . Donenfeld" <Jason@zx2c4.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
PAC pointer authentication signs the return address against the value
of the stack pointer, to prevent stack overrun exploits from corrupting
the control flow. However, this requires that the AUTIASP is issued with
SP holding the same value as it held when the PAC value was generated.
The Poly1305 NEON code got this wrong, resulting in crashes on PAC
capable hardware.
Fixes: f569ca1647 ("crypto: arm64/poly1305 - incorporate OpenSSL/CRYPTOGAMS ...")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Without the barrier_data() inside memzero_explicit(), the compiler may
optimize away the state-clearing if it can tell that the state is not
used afterwards.
Signed-off-by: Arvind Sankar <nivedita@alum.mit.edu>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Pull crypto updates from Herbert Xu:
"API:
- Allow DRBG testing through user-space af_alg
- Add tcrypt speed testing support for keyed hashes
- Add type-safe init/exit hooks for ahash
Algorithms:
- Mark arc4 as obsolete and pending for future removal
- Mark anubis, khazad, sead and tea as obsolete
- Improve boot-time xor benchmark
- Add OSCCA SM2 asymmetric cipher algorithm and use it for integrity
Drivers:
- Fixes and enhancement for XTS in caam
- Add support for XIP8001B hwrng in xiphera-trng
- Add RNG and hash support in sun8i-ce/sun8i-ss
- Allow imx-rngc to be used by kernel entropy pool
- Use crypto engine in omap-sham
- Add support for Ingenic X1830 with ingenic"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (205 commits)
X.509: Fix modular build of public_key_sm2
crypto: xor - Remove unused variable count in do_xor_speed
X.509: fix error return value on the failed path
crypto: bcm - Verify GCM/CCM key length in setkey
crypto: qat - drop input parameter from adf_enable_aer()
crypto: qat - fix function parameters descriptions
crypto: atmel-tdes - use semicolons rather than commas to separate statements
crypto: drivers - use semicolons rather than commas to separate statements
hwrng: mxc-rnga - use semicolons rather than commas to separate statements
hwrng: iproc-rng200 - use semicolons rather than commas to separate statements
hwrng: stm32 - use semicolons rather than commas to separate statements
crypto: xor - use ktime for template benchmarking
crypto: xor - defer load time benchmark to a later time
crypto: hisilicon/zip - fix the uninitalized 'curr_qm_qp_num'
crypto: hisilicon/zip - fix the return value when device is busy
crypto: hisilicon/zip - fix zero length input in GZIP decompress
crypto: hisilicon/zip - fix the uncleared debug registers
lib/mpi: Fix unused variable warnings
crypto: x86/poly1305 - Remove assignments with no effect
hwrng: npcm - modify readl to readb
...
The AES code uses a 'br x7' as part of a function called by
a macro. That branch needs a bti_j as a target. This results
in a panic as seen below. Using x16 (or x17) with an indirect
branch keeps the target bti_c.
Bad mode in Synchronous Abort handler detected on CPU1, code 0x34000003 -- BTI
CPU: 1 PID: 265 Comm: cryptomgr_test Not tainted 5.8.11-300.fc33.aarch64 #1
pstate: 20400c05 (nzCv daif +PAN -UAO BTYPE=j-)
pc : aesbs_encrypt8+0x0/0x5f0 [aes_neon_bs]
lr : aesbs_xts_encrypt+0x48/0xe0 [aes_neon_bs]
sp : ffff80001052b730
aesbs_encrypt8+0x0/0x5f0 [aes_neon_bs]
__xts_crypt+0xb0/0x2dc [aes_neon_bs]
xts_encrypt+0x28/0x3c [aes_neon_bs]
crypto_skcipher_encrypt+0x50/0x84
simd_skcipher_encrypt+0xc8/0xe0
crypto_skcipher_encrypt+0x50/0x84
test_skcipher_vec_cfg+0x224/0x5f0
test_skcipher+0xbc/0x120
alg_test_skcipher+0xa0/0x1b0
alg_test+0x3dc/0x47c
cryptomgr_test+0x38/0x60
Fixes: 0e89640b64 ("crypto: arm64 - Use modern annotations for assembly functions")
Cc: <stable@vger.kernel.org> # 5.6.x-
Signed-off-by: Jeremy Linton <jeremy.linton@arm.com>
Suggested-by: Dave P Martin <Dave.Martin@arm.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20201006163326.2780619-1-jeremy.linton@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
This patch changes a couple u128's to be128 which is the correct
type to use and fixes a few sparse warnings.
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This patch adds declarations for variables only used by assembly
code to silence compiler warnings:
CC [M] arch/arm64/crypto/sha1-ce-glue.o
AS [M] arch/arm64/crypto/sha1-ce-core.o
CC [M] arch/arm64/crypto/sha2-ce-glue.o
AS [M] arch/arm64/crypto/sha2-ce-core.o
CHECK ../arch/arm64/crypto/sha1-ce-glue.c
CHECK ../arch/arm64/crypto/sha2-ce-glue.c
../arch/arm64/crypto/sha1-ce-glue.c:38:11: warning: symbol 'sha1_ce_offsetof_count' was not declared. Should it be static?
../arch/arm64/crypto/sha1-ce-glue.c:39:11: warning: symbol 'sha1_ce_offsetof_finalize' was not declared. Should it be static?
../arch/arm64/crypto/sha2-ce-glue.c:38:11: warning: symbol 'sha256_ce_offsetof_count' was not declared. Should it be static?
../arch/arm64/crypto/sha2-ce-glue.c:40:11: warning: symbol 'sha256_ce_offsetof_finalize' was not declared. Should it be static?
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Introduce an inline wrapper for ghash_do_update() that incorporates
the indirect call to the asm routine that is passed as an argument,
and keep the non-SIMD fallback code out of line. This ensures that
all references to the function pointer are inlined where the address
is taken, removing the need for any indirect calls to begin with.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now that the ghash and gcm drivers are split, we no longer need to allocate
a key struct for the former that carries powers of H that are only used by
the latter. Also, take this opportunity to clean up the code a little bit.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The remaining ghash implementation does not support aggregation, and so
there is no point in including the precomputed powers of H in the key
struct. So move that into the GCM setkey routine, and get rid of the
shared sub-routine entirely.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
There are two ways to implement SIMD accelerated GCM on arm64:
- using the PMULL instructions for carryless 64x64->128 multiplication,
in which case the architecture guarantees that the AES instructions are
available as well, and so we can use the AEAD implementation that combines
both,
- using the PMULL instructions for carryless 8x8->16 bit multiplication,
which is implemented as a shash, and can be combined with any ctr(aes)
implementation by the generic GCM AEAD template driver.
So let's drop the 64x64->128 shash driver, which is never needed for GCM,
and not suitable for use anywhere else.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Pull crypto updates from Herbert Xu:
"API:
- Introduce crypto_shash_tfm_digest() and use it wherever possible.
- Fix use-after-free and race in crypto_spawn_alg.
- Add support for parallel and batch requests to crypto_engine.
Algorithms:
- Update jitter RNG for SP800-90B compliance.
- Always use jitter RNG as seed in drbg.
Drivers:
- Add Arm CryptoCell driver cctrng.
- Add support for SEV-ES to the PSP driver in ccp"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (114 commits)
crypto: hisilicon - fix driver compatibility issue with different versions of devices
crypto: engine - do not requeue in case of fatal error
crypto: cavium/nitrox - Fix a typo in a comment
crypto: hisilicon/qm - change debugfs file name from qm_regs to regs
crypto: hisilicon/qm - add DebugFS for xQC and xQE dump
crypto: hisilicon/zip - add debugfs for Hisilicon ZIP
crypto: hisilicon/hpre - add debugfs for Hisilicon HPRE
crypto: hisilicon/sec2 - add debugfs for Hisilicon SEC
crypto: hisilicon/qm - add debugfs to the QM state machine
crypto: hisilicon/qm - add debugfs for QM
crypto: stm32/crc32 - protect from concurrent accesses
crypto: stm32/crc32 - don't sleep in runtime pm
crypto: stm32/crc32 - fix multi-instance
crypto: stm32/crc32 - fix run-time self test issue.
crypto: stm32/crc32 - fix ext4 chksum BUG_ON()
crypto: hisilicon/zip - Use temporary sqe when doing work
crypto: hisilicon - add device error report through abnormal irq
crypto: hisilicon - remove codes of directly report device errors through MSI
crypto: hisilicon - QM memory management optimization
crypto: hisilicon - unify initial value assignment into QM
...
<linux/cryptohash.h> sounds very generic and important, like it's the
header to include if you're doing cryptographic hashing in the kernel.
But actually it only includes the library implementation of the SHA-1
compression function (not even the full SHA-1). This should basically
never be used anymore; SHA-1 is no longer considered secure, and there
are much better ways to do cryptographic hashing in the kernel.
Most files that include this header don't actually need it. So in
preparation for removing it, remove all these unneeded includes of it.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Instead of manually allocating a 'struct shash_desc' on the stack and
calling crypto_shash_digest(), switch to using the new helper function
crypto_shash_tfm_digest() which does this for us.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Rather than chunking via PAGE_SIZE, this commit changes the arch
implementations to chunk in explicit 4k parts, so that calculations on
maximum acceptable latency don't suddenly become invalid on platforms
where PAGE_SIZE isn't 4k, such as arm64.
Fixes: 0f961f9f67 ("crypto: x86/nhpoly1305 - add AVX2 accelerated NHPoly1305")
Fixes: 012c82388c ("crypto: x86/nhpoly1305 - add SSE2 accelerated NHPoly1305")
Fixes: a00fa0c887 ("crypto: arm64/nhpoly1305 - add NEON-accelerated NHPoly1305")
Fixes: 16aae3595a ("crypto: arm/nhpoly1305 - add NEON-accelerated NHPoly1305")
Cc: stable@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
The initial Zinc patchset, after some mailing list discussion, contained
code to ensure that kernel_fpu_enable would not be kept on for more than
a 4k chunk, since it disables preemption. The choice of 4k isn't totally
scientific, but it's not a bad guess either, and it's what's used in
both the x86 poly1305, blake2s, and nhpoly1305 code already (in the form
of PAGE_SIZE, which this commit corrects to be explicitly 4k for the
former two).
Ard did some back of the envelope calculations and found that
at 5 cycles/byte (overestimate) on a 1ghz processor (pretty slow), 4k
means we have a maximum preemption disabling of 20us, which Sebastian
confirmed was probably a good limit.
Unfortunately the chunking appears to have been left out of the final
patchset that added the glue code. So, this commit adds it back in.
Fixes: 84e03fa39f ("crypto: x86/chacha - expose SIMD ChaCha routine as library function")
Fixes: b3aad5bad2 ("crypto: arm64/chacha - expose arm64 ChaCha routine as library function")
Fixes: a44a3430d7 ("crypto: arm/chacha - expose ARM ChaCha routine as library function")
Fixes: d7d7b85356 ("crypto: x86/poly1305 - wire up faster implementations for kernel")
Fixes: f569ca1647 ("crypto: arm64/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementation")
Fixes: a6b803b3dd ("crypto: arm/poly1305 - incorporate OpenSSL/CRYPTOGAMS NEON implementation")
Fixes: ed0356eda1 ("crypto: blake2s - x86_64 SIMD implementation")
Cc: Eric Biggers <ebiggers@google.com>
Cc: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Cc: stable@vger.kernel.org
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Currently most of the crypto files enable the crypto extension using the
.arch directive but crct10dif-ce-core.S uses .cpu instead. Move that over
to .arch for consistency.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Here are 3 SPDX patches for 5.7-rc1.
One fixes up the SPDX tag for a single driver, while the other two go
through the tree and add SPDX tags for all of the .gitignore files as
needed.
Nothing too complex, but you will get a merge conflict with your current
tree, that should be trivial to handle (one file modified by two things,
one file deleted.)
All 3 of these have been in linux-next for a while, with no reported
issues other than the merge conflict.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCXodg5A8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykySQCgy9YDrkz7nWq6v3Gohl6+lW/L+rMAnRM4uTZm
m5AuCzO3Azt9KBi7NL+L
=2Lm5
-----END PGP SIGNATURE-----
Merge tag 'spdx-5.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/spdx
Pull SPDX updates from Greg KH:
"Here are three SPDX patches for 5.7-rc1.
One fixes up the SPDX tag for a single driver, while the other two go
through the tree and add SPDX tags for all of the .gitignore files as
needed.
Nothing too complex, but you will get a merge conflict with your
current tree, that should be trivial to handle (one file modified by
two things, one file deleted.)
All three of these have been in linux-next for a while, with no
reported issues other than the merge conflict"
* tag 'spdx-5.7-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/spdx:
ASoC: MT6660: make spdxcheck.py happy
.gitignore: add SPDX License Identifier
.gitignore: remove too obvious comments
Pull crypto updates from Herbert Xu:
"API:
- Fix out-of-sync IVs in self-test for IPsec AEAD algorithms
Algorithms:
- Use formally verified implementation of x86/curve25519
Drivers:
- Enhance hwrng support in caam
- Use crypto_engine for skcipher/aead/rsa/hash in caam
- Add Xilinx AES driver
- Add uacce driver
- Register zip engine to uacce in hisilicon
- Add support for OCTEON TX CPT engine in marvell"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (162 commits)
crypto: af_alg - bool type cosmetics
crypto: arm[64]/poly1305 - add artifact to .gitignore files
crypto: caam - limit single JD RNG output to maximum of 16 bytes
crypto: caam - enable prediction resistance in HRWNG
bus: fsl-mc: add api to retrieve mc version
crypto: caam - invalidate entropy register during RNG initialization
crypto: caam - check if RNG job failed
crypto: caam - simplify RNG implementation
crypto: caam - drop global context pointer and init_done
crypto: caam - use struct hwrng's .init for initialization
crypto: caam - allocate RNG instantiation descriptor with GFP_DMA
crypto: ccree - remove duplicated include from cc_aead.c
crypto: chelsio - remove set but not used variable 'adap'
crypto: marvell - enable OcteonTX cpt options for build
crypto: marvell - add the Virtual Function driver for CPT
crypto: marvell - add support for OCTEON TX CPT engine
crypto: marvell - create common Kconfig and Makefile for Marvell
crypto: arm/neon - memzero_explicit aes-cbc key
crypto: bcm - Use scnprintf() for avoiding potential buffer overflow
crypto: atmel-i2c - Fix wakeup fail
...
- In-kernel Pointer Authentication support (previously only offered to
user space).
- ARM Activity Monitors (AMU) extension support allowing better CPU
utilisation numbers for the scheduler (frequency invariance).
- Memory hot-remove support for arm64.
- Lots of asm annotations (SYM_*) in preparation for the in-kernel
Branch Target Identification (BTI) support.
- arm64 perf updates: ARMv8.5-PMU 64-bit counters, refactoring the PMU
init callbacks, support for new DT compatibles.
- IPv6 header checksum optimisation.
- Fixes: SDEI (software delegated exception interface) double-lock on
hibernate with shared events.
- Minor clean-ups and refactoring: cpu_ops accessor, cpu_do_switch_mm()
converted to C, cpufeature finalisation helper.
- sys_mremap() comment explaining the asymmetric address untagging
behaviour.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEE5RElWfyWxS+3PLO2a9axLQDIXvEFAl6DVyIACgkQa9axLQDI
XvHkqRAAiZA2EYKiQL4M1DJ1cNTADjT7xKX9+UtYBXj7GMVhgVWdunpHVE6qtfgk
cT6avmKrS/6PDqizJgr+Z1yX8x3Kvs57G4BvmIUKIw97mkdewvFQ9JKv6VA1vb86
7Qrl1WzqsGg5Kj9uUfI4h+ZoT1H4C/9PQeFxJwgZRtF9DxRh8O7VeZI+JCu8Aub2
lIkjI8rh+EpTsGT9h/PMGWUcawnKQloZ1/F+GfMAuYBvIv2RNN2xVreJtTmm4NyJ
VcpL0KCNyAI2lGdaJg5nBLRDyGuXDm5i+PLsCSXMquI4fie00txXeD8sjbeuO0ks
YTJ0EhmUUhbSE17go+SxYiEFE0v09i+lD5ud+B4Vmojp0KTczTta9VSgURlbb2/9
n9biq5G3PPDNIrZqiTT2Tf4AMz1350nkbzL2gzKecM5aIzR/u3y5yII5CgfZtFnj
7bGbyFpFpcqI7UaISPsNCxmknbTt/7ff0WM3+7SbecxI3AD2mnxsOdN9JTLyhDp+
owjyiaWxl5zMWF9DhplLG/9BKpNWSxh3skazdOdELd8GTq2MbJlXrVG2XgXTAOh3
y1s6RQrfw8zXh8TSqdmmzauComXIRWTum/sbVB3U8Z3AUsIeq/NTSbN5X9JyIbOP
HOabhlVhhkI6omN1grqPX4jwUiZLZoNfn7Ez4q71549KVK/uBtA=
=LJVX
-----END PGP SIGNATURE-----
Merge tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"The bulk is in-kernel pointer authentication, activity monitors and
lots of asm symbol annotations. I also queued the sys_mremap() patch
commenting the asymmetry in the address untagging.
Summary:
- In-kernel Pointer Authentication support (previously only offered
to user space).
- ARM Activity Monitors (AMU) extension support allowing better CPU
utilisation numbers for the scheduler (frequency invariance).
- Memory hot-remove support for arm64.
- Lots of asm annotations (SYM_*) in preparation for the in-kernel
Branch Target Identification (BTI) support.
- arm64 perf updates: ARMv8.5-PMU 64-bit counters, refactoring the
PMU init callbacks, support for new DT compatibles.
- IPv6 header checksum optimisation.
- Fixes: SDEI (software delegated exception interface) double-lock on
hibernate with shared events.
- Minor clean-ups and refactoring: cpu_ops accessor,
cpu_do_switch_mm() converted to C, cpufeature finalisation helper.
- sys_mremap() comment explaining the asymmetric address untagging
behaviour"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (81 commits)
mm/mremap: Add comment explaining the untagging behaviour of mremap()
arm64: head: Convert install_el2_stub to SYM_INNER_LABEL
arm64: Introduce get_cpu_ops() helper function
arm64: Rename cpu_read_ops() to init_cpu_ops()
arm64: Declare ACPI parking protocol CPU operation if needed
arm64: move kimage_vaddr to .rodata
arm64: use mov_q instead of literal ldr
arm64: Kconfig: verify binutils support for ARM64_PTR_AUTH
lkdtm: arm64: test kernel pointer authentication
arm64: compile the kernel with ptrauth return address signing
kconfig: Add support for 'as-option'
arm64: suspend: restore the kernel ptrauth keys
arm64: __show_regs: strip PAC from lr in printk
arm64: unwind: strip PAC from kernel addresses
arm64: mask PAC bits of __builtin_return_address
arm64: initialize ptrauth keys for kernel booting task
arm64: initialize and switch ptrauth kernel keys
arm64: enable ptrauth earlier
arm64: cpufeature: handle conflicts based on capability
arm64: cpufeature: Move cpu capability helpers inside C file
...
Pull crypto fix from Herbert Xu:
"This fixes a correctness bug in the ARM64 version of ChaCha for
lib/crypto used by WireGuard"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
crypto: arm64/chacha - correctly walk through blocks
At function exit, do not leave the expanded key in the rk struct
which got allocated on the stack.
Signed-off-by: Torsten Duwe <duwe@suse.de>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Prior, passing in chunks of 2, 3, or 4, followed by any additional
chunks would result in the chacha state counter getting out of sync,
resulting in incorrect encryption/decryption, which is a pretty nasty
crypto vuln: "why do images look weird on webpages?" WireGuard users
never experienced this prior, because we have always, out of tree, used
a different crypto library, until the recent Frankenzinc addition. This
commit fixes the issue by advancing the pointers and state counter by
the actual size processed. It also fixes up a bug in the (optional,
costly) stride test that prevented it from running on arm64.
Fixes: b3aad5bad2 ("crypto: arm64/chacha - expose arm64 ChaCha routine as library function")
Reported-and-tested-by: Emil Renner Berthing <kernel@esmil.dk>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: stable@vger.kernel.org # v5.5+
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Reviewed-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Now that the rest of the code has been converted to the modern START/END
macros the AES_ENTRY() and AES_ENDPROC() macros look out of place and
like they need updating. Rename them to AES_FUNC_START() and AES_FUNC_END()
to line up with the modern style assembly macros.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
A couple of functions were missed in the modernisation of assembly macros,
update them too.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
When an ahash algorithm fallback to another ahash and that fallback is
shaXXX-CE, doing export/import lead to error like this:
alg: ahash: sha1-sun8i-ce export() overran state buffer on test vector 0, cfg=\"import/export\"
This is due to the descsize of shaxxx-ce being larger than struct shaxxx_state
off by an u32.
For fixing this, let's implement export/import which rip the finalize
variant instead of using generic export/import.
Fixes: 6ba6c74dfc ("arm64/crypto: SHA-224/SHA-256 using ARMv8 Crypto Extensions")
Fixes: 2c98833a42 ("arm64/crypto: SHA-1 using ARMv8 Crypto Extensions")
Signed-off-by: Corentin Labbe <clabbe@baylibre.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Pull crypto updates from Herbert Xu:
"API:
- Removed CRYPTO_TFM_RES flags
- Extended spawn grabbing to all algorithm types
- Moved hash descsize verification into API code
Algorithms:
- Fixed recursive pcrypt dead-lock
- Added new 32 and 64-bit generic versions of poly1305
- Added cryptogams implementation of x86/poly1305
Drivers:
- Added support for i.MX8M Mini in caam
- Added support for i.MX8M Nano in caam
- Added support for i.MX8M Plus in caam
- Added support for A33 variant of SS in sun4i-ss
- Added TEE support for Raven Ridge in ccp
- Added in-kernel API to submit TEE commands in ccp
- Added AMD-TEE driver
- Added support for BCM2711 in iproc-rng200
- Added support for AES256-GCM based ciphers for chtls
- Added aead support on SEC2 in hisilicon"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (244 commits)
crypto: arm/chacha - fix build failured when kernel mode NEON is disabled
crypto: caam - add support for i.MX8M Plus
crypto: x86/poly1305 - emit does base conversion itself
crypto: hisilicon - fix spelling mistake "disgest" -> "digest"
crypto: chacha20poly1305 - add back missing test vectors and test chunking
crypto: x86/poly1305 - fix .gitignore typo
tee: fix memory allocation failure checks on drv_data and amdtee
crypto: ccree - erase unneeded inline funcs
crypto: ccree - make cc_pm_put_suspend() void
crypto: ccree - split overloaded usage of irq field
crypto: ccree - fix PM race condition
crypto: ccree - fix FDE descriptor sequence
crypto: ccree - cc_do_send_request() is void func
crypto: ccree - fix pm wrongful error reporting
crypto: ccree - turn errors to debug msgs
crypto: ccree - fix AEAD decrypt auth fail
crypto: ccree - fix typo in comment
crypto: ccree - fix typos in error msgs
crypto: atmel-{aes,sha,tdes} - Retire crypto_platform_data
crypto: x86/sha - Eliminate casts on asm implementations
...