Commit Graph

1281321 Commits

Author SHA1 Message Date
Xiu Jianfeng
c2fad56b3c mm: memcg: adjust the warning when seq_buf overflows
Currently it uses WARN_ON_ONCE() if seq_buf overflows when user reads
memory.stat, the only advantage of WARN_ON_ONCE is that the splat is so
verbose that it gets noticed.  And also it panics the system if
panic_on_warn is enabled.  It seems like the warning is just an over
reaction and a simple pr_warn should just achieve the similar effect.

Link: https://lkml.kernel.org/r/20240628072333.2496527-1-xiujianfeng@huawei.com
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Suggested-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:59 -07:00
Xiu Jianfeng
1c46cc0989 mm: memcg: remove redundant seq_buf_has_overflowed()
Both the end of memory_stat_format() and memcg_stat_format() will call
WARN_ON_ONCE(seq_buf_has_overflowed()).  However, memory_stat_format() is
the only caller of memcg_stat_format(), when memcg is on the default
hierarchy, seq_buf_has_overflowed() will be executed twice, so remove the
redundant one.

Link: https://lkml.kernel.org/r/20240626094232.2432891-1-xiujianfeng@huawei.com
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:59 -07:00
Audra Mitchell
a591d35c40 mm: turn off test_uffdio_wp if CONFIG_PTE_MARKER_UFFD_WP is not configured.
If CONFIG_PTE_MARKER_UFFD_WP is disabled, then we turn off three features
in userfaultfd_api (UFFD_FEATURE_WP_HUGETLBFS_SHMEM,
UFFD_FEATURE_WP_UNPOPULATED, and UFFD_FEATURE_WP_ASYNC).

Currently this test always will call uffdio_regsiter with the flag
UFFDIO_REGISTER_MODE_WP.  However, the kernel ensures in vma_can_userfault
that if the feature UFFD_FEATURE_WP_HUGETLBFS_SHMEM is disabled, only
allow the VM_UFFD_WP on anonymous vmas, meaning our call to
uffdio_regsiter will fail.

We still want to be able to run the test even if we have
CONFIG_PTE_MARKER_UFFD_WP disabled, so check to see if the feature
UFFD_FEATURE_WP_HUGETLBFS_SHMEM has been turned off in the test and if so,
disable us from calling uffdio_regsiter with the flag
UFFDIO_REGISTER_MODE_WP.

Link: https://lkml.kernel.org/r/20240626130513.120193-3-audra@redhat.com
Signed-off-by: Audra Mitchell <audra@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Rafael Aquini <raquini@redhat.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:58 -07:00
Audra Mitchell
a47a7af9b5 mm: update uffd-stress to handle EINVAL for unset config features
Now that we have updated userfaultfd_api to correctly return EINVAL when a
feature is requested but not available, let's fix the uffd-stress test to
only set the UFFD_FEATURE_WP_UNPOPULATED feature when the config is set. 
In addition, still run the test if the CONFIG_PTE_MARKER_UFFD_WP is not
set, just dont use the corresponding UFFD_FEATURE_WP_UNPOPULATED feature.

Link: https://lkml.kernel.org/r/20240626130513.120193-2-audra@redhat.com
Signed-off-by: Audra Mitchell <audra@redhat.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Rafael Aquini <raquini@redhat.com>
Cc: Shaohua Li <shli@fb.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:58 -07:00
Oleg Nesterov
8ac5dc6659 get_task_mm: check PF_KTHREAD lockless
Nowadays PF_KTHREAD is sticky and it was never protected by ->alloc_lock. 
Move the PF_KTHREAD check outside of task_lock() section to make this code
more understandable.

Link: https://lkml.kernel.org/r/20240626191017.GA20031@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:58 -07:00
Oleg Nesterov
d73d003521 memcg: mm_update_next_owner: move for_each_thread() into try_to_set_owner()
mm_update_next_owner() checks the children / real_parent->children to
avoid the "everything else" loop in the likely case, but this won't work
if a child/sibling has a zombie leader with ->mm == NULL.

Move the for_each_thread() logic into try_to_set_owner(), if nothing else
this makes the children/siblings/everything searches more consistent.

Link: https://lkml.kernel.org/r/20240626152930.GA17936@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jinliang Zheng <alexjlzheng@tencent.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Tycho Andersen <tandersen@netflix.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:58 -07:00
Oleg Nesterov
2a22b773b1 memcg: mm_update_next_owner: kill the "retry" logic
Add the new helper, try_to_set_owner(), which tries to update mm->owner
once we see c->mm == mm.  This way mm_update_next_owner() doesn't need to
restart the list_for_each_entry/for_each_process loops from the very
beginning if it races with exit/exec, it can just continue.

Unlike the current code, try_to_set_owner() re-checks tsk->mm == mm before
it drops tasklist_lock, so it doesn't need get/put_task_struct().

Link: https://lkml.kernel.org/r/20240626152924.GA17933@redhat.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jinliang Zheng <alexjlzheng@tencent.com>
Cc: Mateusz Guzik <mjguzik@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Tycho Andersen <tandersen@netflix.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:57 -07:00
Roman Gushchin
1419ff984a mm: memcg: put struct task_struct::in_user_fault under CONFIG_MEMCG_V1
The struct task_struct's in_user_fault member is not used by the cgroup
v2's memory controller, so it can be put under the CONFIG_MEMCG_V1 config
option.  To do so, mem_cgroup_enter_user_fault() and
mem_cgroup_exit_user_fault() are moved under the CONFIG_MEMCG_V1 option as
well.

Link: https://lkml.kernel.org/r/20240628210317.272856-10-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:57 -07:00
Roman Gushchin
1c3a0b3d0b mm: memcg: put struct task_struct::memcg_in_oom under CONFIG_MEMCG_V1
The memcg_in_oom field of the struct task_struct is not used by the cgroup
v2's memory controller, so it can be happily compiled out if
CONFIG_MEMCG_V1 is not set.

Link: https://lkml.kernel.org/r/20240628210317.272856-9-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:57 -07:00
Roman Gushchin
98c9daf5ae mm: memcg: guard memcg1-specific members of struct mem_cgroup_per_node
Put memcg1-specific members of struct mem_cgroup_per_node under the
CONFIG_MEMCG_V1 config option.

Link: https://lkml.kernel.org/r/20240628210317.272856-8-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:57 -07:00
Roman Gushchin
94b7e5bf09 mm: memcg: put memcg1-specific struct mem_cgroup's members under CONFIG_MEMCG_V1
Put memcg1-specific members of struct mem_cgroup under the CONFIG_MEMCG_V1
config option.  Also group them close to the end of struct mem_cgroup just
before the dynamic per-node part.

Link: https://lkml.kernel.org/r/20240628210317.272856-7-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:56 -07:00
Roman Gushchin
05dfec123d mm: memcg: guard memcg1-specific fields accesses in mm/memcontrol.c
There are only few memcg1-specific struct mem_cgroup's members accesses
left in mm/memcontrol.c.  Let's guard them with the CONFIG_MEMCG_V1 config
option.

Link: https://lkml.kernel.org/r/20240628210317.272856-6-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:56 -07:00
Roman Gushchin
b5855a26de mm: memcg: gather memcg1-specific fields initialization in memcg1_memcg_init()
Gather all memcg1-specific struct mem_cgroup's members initialization in a
new memcg1_memcg_init() function, defined in mm/memcontrol-v1.c. 
Obviously, if CONFIG_MEMCG_V1 is not set, there is no need to initialize
these fields, so the function becomes trivial.

Link: https://lkml.kernel.org/r/20240628210317.272856-5-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:56 -07:00
Roman Gushchin
47d2702b20 mm: memcg: guard cgroup v1-specific code in mem_cgroup_print_oom_meminfo()
Put cgroup v1-specific code in mem_cgroup_print_oom_meminfo() under
CONFIG_MEMCG_V1.

Link: https://lkml.kernel.org/r/20240628210317.272856-4-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:56 -07:00
Roman Gushchin
773e9ae77f mm: memcg: factor out legacy socket memory accounting code
Move out the legacy cgroup v1 socket memory accounting code into
mm/memcontrol-v1.c.

This commit introduces three new functions: memcg1_tcpmem_active(),
memcg1_charge_skmem() and memcg1_uncharge_skmem(), which contain all
cgroup v1-specific code and become trivial if CONFIG_MEMCG_V1 isn't set.

Note, that !!memcg->tcpmem_pressure check in
mem_cgroup_under_socket_pressure() can't be easily moved into
memcontrol-v1.h without including memcontrol-v1.h from memcontrol.h which
isn't a good idea, so it's better to just #ifdef it.

Link: https://lkml.kernel.org/r/20240628210317.272856-3-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:55 -07:00
Roman Gushchin
04fbe921d3 mm: memcg: move memcg_account_kmem() to memcontrol-v1.c
Patch series "mm: memcg: put cgroup v1-specific memcg data under
CONFIG_MEMCG_V1".

This patchset puts all cgroup v1's members of struct mem_cgroup, struct
mem_cgroup_per_node and struct task_struct under the CONFIG_MEMCG_V1
config option.  If cgroup v1 support is not required (and it's true for
many cgroup users these days), it allows to save a bit of memory and
compile out some code, some of which is on relatively hot paths.  It also
structures the code a bit better by grouping cgroup v1-specific stuff in
one place.


This patch (of 9):

memcg_account_kmem() consists of a trivial statistics change via
mod_memcg_state() call and a relatively large memcg1-specific part.

Let's factor out the mod_memcg_state() call and move the rest into the
mm/memcontrol-v1.c file.  Also rename memcg_account_kmem() into
memcg1_account_kmem() for consistency.

Link: https://lkml.kernel.org/r/20240628210317.272856-1-roman.gushchin@linux.dev
Link: https://lkml.kernel.org/r/20240628210317.272856-2-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:55 -07:00
Dan Schatzberg
68cd9050d8 mm: add swappiness= arg to memory.reclaim
Allow proactive reclaimers to submit an additional swappiness=<val>
argument to memory.reclaim.  This overrides the global or per-memcg
swappiness setting for that reclaim attempt.

For example:

echo "2M swappiness=0" > /sys/fs/cgroup/memory.reclaim

will perform reclaim on the rootcg with a swappiness setting of 0 (no
swap) regardless of the vm.swappiness sysctl setting.

Userspace proactive reclaimers use the memory.reclaim interface to trigger
reclaim.  The memory.reclaim interface does not allow for any way to
effect the balance of file vs anon during proactive reclaim.  The only
approach is to adjust the vm.swappiness setting.  However, there are a few
reasons we look to control the balance of file vs anon during proactive
reclaim, separately from reactive reclaim:

* Swapout should be limited to manage SSD write endurance.  In near-OOM
  situations we are fine with lots of swap-out to avoid OOMs.  As these
  are typically rare events, they have relatively little impact on write
  endurance.  However, proactive reclaim runs continuously and so its
  impact on SSD write endurance is more significant.  Therefore it is
  desireable to control swap-out for proactive reclaim separately from
  reactive reclaim

* Some userspace OOM killers like systemd-oomd[1] support OOM killing on
  swap exhaustion.  This makes sense if the swap exhaustion is triggered
  due to reactive reclaim but less so if it is triggered due to proactive
  reclaim (e.g.  one could see OOMs when free memory is ample but anon is
  just particularly cold).  Therefore, it's desireable to have proactive
  reclaim reduce or stop swap-out before the threshold at which OOM
  killing occurs.

In the case of Meta's Senpai proactive reclaimer, we adjust vm.swappiness
before writes to memory.reclaim[2].  This has been in production for
nearly two years and has addressed our needs to control proactive vs
reactive reclaim behavior but is still not ideal for a number of reasons:

* vm.swappiness is a global setting, adjusting it can race/interfere
  with other system administration that wishes to control vm.swappiness. 
  In our case, we need to disable Senpai before adjusting vm.swappiness.

* vm.swappiness is stateful - so a crash or restart of Senpai can leave
  a misconfigured setting.  This requires some additional management to
  record the "desired" setting and ensure Senpai always adjusts to it.

With this patch, we avoid these downsides of adjusting vm.swappiness
globally.

[1]https://www.freedesktop.org/software/systemd/man/latest/systemd-oomd.service.html
[2]https://github.com/facebookincubator/oomd/blob/main/src/oomd/plugins/Senpai.cpp#L585-L598

Link: https://lkml.kernel.org/r/20240103164841.2800183-3-schatzberg.dan@gmail.com
Signed-off-by: Dan Schatzberg <schatzberg.dan@gmail.com>
Suggested-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Chris Li <chrisl@kernel.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Yue Zhao <findns94@gmail.com>
Cc: Zefan Li <lizefan.x@bytedance.com>
Cc: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:55 -07:00
Dan Schatzberg
410abb20ac mm: add defines for min/max swappiness
Patch series "Add swappiness argument to memory.reclaim", v6.

This patch proposes augmenting the memory.reclaim interface with a
swappiness=<val> argument that overrides the swappiness value for that
instance of proactive reclaim.

Userspace proactive reclaimers use the memory.reclaim interface to trigger
reclaim.  The memory.reclaim interface does not allow for any way to
effect the balance of file vs anon during proactive reclaim.  The only
approach is to adjust the vm.swappiness setting.  However, there are a few
reasons we look to control the balance of file vs anon during proactive
reclaim, separately from reactive reclaim:

* Swapout should be limited to manage SSD write endurance.  In near-OOM
  situations we are fine with lots of swap-out to avoid OOMs.  As these
  are typically rare events, they have relatively little impact on write
  endurance.  However, proactive reclaim runs continuously and so its
  impact on SSD write endurance is more significant.  Therefore it is
  desireable to control swap-out for proactive reclaim separately from
  reactive reclaim

* Some userspace OOM killers like systemd-oomd[1] support OOM killing on
  swap exhaustion.  This makes sense if the swap exhaustion is triggered
  due to reactive reclaim but less so if it is triggered due to proactive
  reclaim (e.g.  one could see OOMs when free memory is ample but anon is
  just particularly cold).  Therefore, it's desireable to have proactive
  reclaim reduce or stop swap-out before the threshold at which OOM
  killing occurs.

In the case of Meta's Senpai proactive reclaimer, we adjust vm.swappiness
before writes to memory.reclaim[2].  This has been in production for
nearly two years and has addressed our needs to control proactive vs
reactive reclaim behavior but is still not ideal for a number of reasons:

* vm.swappiness is a global setting, adjusting it can race/interfere
  with other system administration that wishes to control vm.swappiness. 
  In our case, we need to disable Senpai before adjusting vm.swappiness.

* vm.swappiness is stateful - so a crash or restart of Senpai can leave
  a misconfigured setting.  This requires some additional management to
  record the "desired" setting and ensure Senpai always adjusts to it.

With this patch, we avoid these downsides of adjusting vm.swappiness
globally.

Previously, this exact interface addition was proposed by Yosry[3].  In
response, Roman proposed instead an interface to specify precise
file/anon/slab reclaim amounts[4].  More recently Huan also proposed this
as well[5] and others similarly questioned if this was the proper
interface.

Previous proposals sought to use this to allow proactive reclaimers to
effectively perform a custom reclaim algorithm by issuing proactive
reclaim with different settings to control file vs anon reclaim (e.g.  to
only reclaim anon from some applications).  Responses argued that
adjusting swappiness is a poor interface for custom reclaim.

In contrast, I argue in favor of a swappiness setting not as a way to
implement custom reclaim algorithms but rather to bias the balance of anon
vs file due to differences of proactive vs reactive reclaim.  In this
context, swappiness is the existing interface for controlling this balance
and this patch simply allows for it to be configured differently for
proactive vs reactive reclaim.

Specifying explicit amounts of anon vs file pages to reclaim feels
inappropriate for this prupose.  Proactive reclaimers are un-aware of the
relative age of file vs anon for a cgroup which makes it difficult to
manage proactive reclaim of different memory pools.  A proactive reclaimer
would need some amount of anon reclaim attempts separate from the amount
of file reclaim attempts which seems brittle given that it's difficult to
observe the impact.

[1]https://www.freedesktop.org/software/systemd/man/latest/systemd-oomd.service.html
[2]https://github.com/facebookincubator/oomd/blob/main/src/oomd/plugins/Senpai.cpp#L585-L598
[3]https://lore.kernel.org/linux-mm/CAJD7tkbDpyoODveCsnaqBBMZEkDvshXJmNdbk51yKSNgD7aGdg@mail.gmail.com/
[4]https://lore.kernel.org/linux-mm/YoPHtHXzpK51F%2F1Z@carbon/
[5]https://lore.kernel.org/lkml/20231108065818.19932-1-link@vivo.com/


This patch (of 2):

We use the constants 0 and 200 in a few places in the mm code when
referring to the min and max swappiness.  This patch adds MIN_SWAPPINESS
and MAX_SWAPPINESS #defines to improve clarity.  There are no functional
changes.

Link: https://lkml.kernel.org/r/20240103164841.2800183-1-schatzberg.dan@gmail.com
Link: https://lkml.kernel.org/r/20240103164841.2800183-2-schatzberg.dan@gmail.com
Signed-off-by: Dan Schatzberg <schatzberg.dan@gmail.com>
Acked-by: David Rientjes <rientjes@google.com>
Acked-by: Chris Li <chrisl@kernel.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Yue Zhao <findns94@gmail.com>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:55 -07:00
Roman Gushchin
5ff3bd0c54 MAINTAINERS: add mm/memcontrol-v1.c/h to the list of maintained files
Link: https://lkml.kernel.org/r/20240625005906.106920-15-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:54 -07:00
Roman Gushchin
e93d4166b4 mm: memcg: put cgroup v1-specific code under a config option
Put legacy cgroup v1 memory controller code under a new CONFIG_MEMCG_V1
config option.  The option is turned off by default.  Nobody except those
who are still using cgroup v1 should turn it on.

If the option is not set, memory controller can still be mounted under
cgroup v1, but none of memcg-specific control files are present.

Please note, that not all cgroup v1's memory controller code is guarded
yet (but most of it), it's a subject for some follow-up work.

Thanks to Michal Hocko for providing a better Kconfig option description.

[roman.gushchin@linux.dev: better config option description provided by Michal]
  Link: https://lkml.kernel.org/r/ZnxXNtvqllc9CDoo@google.com
Link: https://lkml.kernel.org/r/20240625005906.106920-14-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:54 -07:00
Roman Gushchin
6f1173d684 mm: memcg: group cgroup v1 memcg related declarations
Group all cgroup v1-related declarations at the end of memcontrol.h and
mm/memcontrol-v1.h with an intention to put them all together under a
config option later on.  It should make things easier to follow and
maintain too.

Link: https://lkml.kernel.org/r/20240625005906.106920-13-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:54 -07:00
Roman Gushchin
34926e10bb mm: memcg: make memcg1_update_tree() static
memcg1_update_tree() is not used outside of mm/memcontrol-v1.c anymore,
define it as static and remove the declaration from the header file.

Link: https://lkml.kernel.org/r/20240625005906.106920-12-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:54 -07:00
Roman Gushchin
ea1e879631 mm: memcg: move cgroup v1 interface files to memcontrol-v1.c
Move legacy cgroup v1 memory controller interfaces and corresponding code
into memcontrol-v1.c.

[roman.gushchin@linux.dev: move two functions]
  Link: https://lkml.kernel.org/r/20240704002712.2077812-1-roman.gushchin@linux.dev
Link: https://lkml.kernel.org/r/20240625005906.106920-11-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:53 -07:00
Roman Gushchin
8d49b69920 mm: memcg: rename memcg_oom_recover()
Rename memcg_oom_recover() into memcg1_oom_recover() for consistency with
other memory cgroup v1-related functions.

Move the declaration in mm/memcontrol-v1.h to be nearby other memcg v1 oom
handling functions.

Link: https://lkml.kernel.org/r/20240625005906.106920-10-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:53 -07:00
Roman Gushchin
292fc2e020 mm: memcg: move cgroup v1 oom handling code into memcontrol-v1.c
Cgroup v1 supports a complicated OOM handling in userspace mechanism,
which is not supported by cgroup v2.  Let's move the corresponding code
into memcontrol-v1.c.

Aside from mechanical code movement this patch introduces two new
functions: memcg1_oom_prepare() and memcg1_oom_finish().  Those are
implementing cgroup v1-specific parts of the common memcg OOM handling
path.

Link: https://lkml.kernel.org/r/20240625005906.106920-9-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:53 -07:00
Roman Gushchin
cc7b8504f6 mm: memcg: rename memcg_check_events()
Rename memcg_check_events() into memcg1_check_events() for consistency
with other cgroup v1-specific functions.

Link: https://lkml.kernel.org/r/20240625005906.106920-8-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:53 -07:00
Roman Gushchin
66d60c428b mm: memcg: move legacy memcg event code into memcontrol-v1.c
Cgroup v1's memory controller contains a pretty complicated event
notifications mechanism which is not used on cgroup v2.  Let's move the
corresponding code into memcontrol-v1.c.

Please, note, that mem_cgroup_event_ratelimit() remains in memcontrol.c,
otherwise it would require exporting too many details on memcg stats
outside of memcontrol.c.

Link: https://lkml.kernel.org/r/20240625005906.106920-7-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:52 -07:00
Roman Gushchin
b9eaacb1db mm: memcg: rename charge move-related functions
Rename exported function related to the charge move to have the memcg1_
prefix.

Link: https://lkml.kernel.org/r/20240625005906.106920-6-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:52 -07:00
Roman Gushchin
e548ad4a7c mm: memcg: move charge migration code to memcontrol-v1.c
Unlike the legacy cgroup v1 memory controller, cgroup v2 memory controller
doesn't support moving charged pages between cgroups.

It's a fairly large and complicated code which created a number of
problems in the past.  Let's move this code into memcontrol-v1.c.  It
shaves off 1k lines from memcontrol.c.  It's also another step towards
making the legacy memory controller code optionally compiled.

Link: https://lkml.kernel.org/r/20240625005906.106920-5-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:52 -07:00
Roman Gushchin
87024f5837 mm: memcg: rename soft limit reclaim-related functions
Rename exported function related to the softlimit reclaim to have memcg1_
prefix.

Link: https://lkml.kernel.org/r/20240625005906.106920-4-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:52 -07:00
Roman Gushchin
d12f6d2241 mm: memcg: move soft limit reclaim code to memcontrol-v1.c
Soft limits are cgroup v1-specific and are not supported by cgroup v2, so
let's move the corresponding code into memcontrol-v1.c.

Aside from simple moving the code, this commits introduces a trivial
memcg1_soft_limit_reset() function to reset soft limits and also moves the
global soft limit tree initialization code into a new memcg1_init()
function.

It also moves corresponding declarations shared between memcontrol.c and
memcontrol-v1.c into mm/memcontrol-v1.h.

Link: https://lkml.kernel.org/r/20240625005906.106920-3-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:51 -07:00
Roman Gushchin
1b1e13440c mm: memcg: introduce memcontrol-v1.c
Patch series "mm: memcg: separate legacy cgroup v1 code and put under
config option", v2.

Cgroups v2 have been around for a while and many users have fully adopted
them, so they never use cgroups v1 features and functionality.  Yet they
have to "pay" for the cgroup v1 support anyway:
1) the kernel binary contains an unused cgroup v1 code,
2) some code paths have additional checks which are not needed,
3) some common structures like task_struct and mem_cgroup contain unused
   cgroup v1-specific members.

Cgroup v1's memory controller has a number of features that are not
supported by cgroup v2 and their implementation is pretty much self
contained.  Most notably, these features are: soft limit reclaim, oom
handling in userspace, complicated event notification system, charge
migration.  Cgroup v1-specific code in memcontrol.c is close to 4k lines
in size and it's intervened with generic and cgroup v2-specific code. 
It's a burden on developers and maintainers.

This patchset aims to solve these problems by:
1) moving cgroup v1-specific memcg code to the new mm/memcontrol-v1.c file,
2) putting definitions shared by memcontrol.c and memcontrol-v1.c into the
   mm/memcontrol-v1.h header,
3) introducing the CONFIG_MEMCG_V1 config option, turned off by default,
4) making memcontrol-v1.c to compile only if CONFIG_MEMCG_V1 is set.

If CONFIG_MEMCG_V1 is not set, cgroup v1 memory controller is still available
for mounting, however no memory-specific control knobs are present.

This patch (of 14):


This patch introduces the mm/memcontrol-v1.c source file which will be
used for all legacy (cgroup v1) memory cgroup code.  It also introduces
mm/memcontrol-v1.h to keep declarations shared between mm/memcontrol.c and
mm/memcontrol-v1.c.

As of now, let's compile it if CONFIG_MEMCG is set, similar to
mm/memcontrol.c.  Later on it can be switched to use a separate config
option, so that the legacy code won't be compiled if not required.

Link: https://lkml.kernel.org/r/20240625005906.106920-1-roman.gushchin@linux.dev
Link: https://lkml.kernel.org/r/20240625005906.106920-2-roman.gushchin@linux.dev
Signed-off-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:51 -07:00
Chengming Zhou
a0b856b617 mm/ksm: optimize the chain()/chain_prune() interfaces
Now the implementation of stable_node_dup() causes chain()/chain_prune()
interfaces and usages are overcomplicated.

Why?  stable_node_dup() only find and return a candidate stable_node for
sharing, so the users have to recheck using stable_node_dup_any() if any
non-candidate stable_node exist.  And try to ksm_get_folio() from it
again.

Actually, stable_node_dup() can just return a best stable_node as it can,
then the users can check if it's a candidate for sharing or not.

The code is simplified too and fewer corner cases: such as stable_node and
stable_node_dup can't be NULL if returned tree_folio is not NULL.

Link: https://lkml.kernel.org/r/20240621-b4-ksm-scan-optimize-v2-3-1c328aa9e30b@linux.dev
Signed-off-by: Chengming Zhou <chengming.zhou@linux.dev>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Stefan Roesch <shr@devkernel.io>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:51 -07:00
Chengming Zhou
d58a361b03 mm/ksm: don't waste time searching stable tree for fast changing page
The code flow in cmp_and_merge_page() is suboptimal for handling the ksm
page and non-ksm page at the same time.  For example:

- ksm page
 1. Mostly just return if this ksm page is not migrated and this rmap_item
    has been on the rmap hlist. Or we have to fix this rmap_item mapping.
 2. But we absolutely don't need to checksum for this ksm page, since it
    can't change.

- non-ksm page
 1. First don't need to waste time searching stable tree if fast changing.
 2. Should try to merge with zero page before search the stable tree.
 3. Then search stable tree to find mergeable ksm page.

This patch optimizes the code flow so the handling differences between ksm
page and non-ksm page become clearer and more efficient too.

Link: https://lkml.kernel.org/r/20240621-b4-ksm-scan-optimize-v2-2-1c328aa9e30b@linux.dev
Signed-off-by: Chengming Zhou <chengming.zhou@linux.dev>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Stefan Roesch <shr@devkernel.io>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:50 -07:00
Chengming Zhou
ac90c56bbd mm/ksm: refactor out try_to_merge_with_zero_page()
Patch series "mm/ksm: cmp_and_merge_page() optimizations and cleanup", v2.

This series mainly optimizes cmp_and_merge_page() to have more efficient
separate code flow for ksm page and non-ksm anon page.

- ksm page: don't need to calculate the checksum obviously.
- anon page: don't need to search stable tree if changing fast and try
  to merge with zero page before searching ksm page on stable tree.

Please see the patch-2 for details.

Patch-3 is cleanup also a little optimization for the chain()/chain_prune
interfaces, which made the stable_tree_search()/stable_tree_insert() over
complex.

I have done simple testing using "hackbench -g 1 -l 300000" (maybe I need
to use a better workload) on my machine, have seen a little CPU usage
decrease of ksmd and some improvements of cmp_and_merge_page() latency:

We can see the latency of cmp_and_merge_page() when handling non-ksm anon
pages has been improved.


This patch (of 3):

In preparation for later changes, refactor out a new function called
try_to_merge_with_zero_page(), which tries to merge with zero page.

Link: https://lkml.kernel.org/r/20240621-b4-ksm-scan-optimize-v2-0-1c328aa9e30b@linux.dev
Link: https://lkml.kernel.org/r/20240621-b4-ksm-scan-optimize-v2-1-1c328aa9e30b@linux.dev
Signed-off-by: Chengming Zhou <chengming.zhou@linux.dev>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Stefan Roesch <shr@devkernel.io>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:50 -07:00
Aristeu Rozanski
003af997c8 hugetlb: force allocating surplus hugepages on mempolicy allowed nodes
When trying to allocate a hugepage with no reserved ones free, it may be
allowed in case a number of overcommit hugepages was configured (using
/proc/sys/vm/nr_overcommit_hugepages) and that number wasn't reached. 
This allows for a behavior of having extra hugepages allocated
dynamically, if there're resources for it.  Some sysadmins even prefer not
reserving any hugepages and setting a big number of overcommit hugepages.

But while attempting to allocate overcommit hugepages in a multi node
system (either NUMA or mempolicy/cpuset) said allocations might randomly
fail even when there're resources available for the allocation.

This happens due to allowed_mems_nr() only accounting for the number of
free hugepages in the nodes the current process belongs to and the surplus
hugepage allocation is done so it can be allocated in any node.  In case
one or more of the requested surplus hugepages are allocated in a
different node, the whole allocation will fail due allowed_mems_nr()
returning a lower value.

So allocate surplus hugepages in one of the nodes the current process
belongs to.

Easy way to reproduce this issue is to use a 2+ NUMA nodes system:

	# echo 0 >/proc/sys/vm/nr_hugepages
	# echo 1 >/proc/sys/vm/nr_overcommit_hugepages
	# numactl -m0 ./tools/testing/selftests/mm/map_hugetlb 2

Repeating the execution of map_hugetlb test application will eventually
fail when the hugepage ends up allocated in a different node.

[aris@ruivo.org: v2]
  Link: https://lkml.kernel.org/r/20240701212343.GG844599@cathedrallabs.org
Link: https://lkml.kernel.org/r/20240621190050.mhxwb65zn37doegp@redhat.com
Signed-off-by: Aristeu Rozanski <aris@redhat.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Aristeu Rozanski <aris@ruivo.org>
Cc: David Hildenbrand <david@redhat.com>
Cc: Vishal Moola <vishal.moola@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:50 -07:00
SeongJae Park
64548bc534 mm/damon/paddr: initialize nr_succeeded in __damon_pa_migrate_folio_list()
The variable is supposed to be set via later migrate_pages() call. 
However, the function does not do that when CONFIG_MIGRATION is unset. 
Initialize the variable to zero.

Link: https://lkml.kernel.org/r/20240701165332.47495-1-sj@kernel.org
Fixes: 5311c0a2ee ("mm/damon/paddr: introduce DAMOS_MIGRATE_COLD action for demotion")
Signed-off-by: SeongJae Park <sj@kernel.org>
Reported-by: kernel test robot <lkp@intel.com>
Reported-by: Dan Carpenter <dan.carpenter@linaro.org>
Closes: https://lore.kernel.org/r/202406251102.GE07hqfQ-lkp@intel.com/
Cc: Honggyu Kim <honggyu.kim@sk.com>
Cc: Hyeongtak Ji <hyeongtak.ji@sk.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:50 -07:00
Kefeng Wang
593a10dabe mm: refactor folio_undo_large_rmappable()
Folios of order <= 1 are not in deferred list, the check of order is added
into folio_undo_large_rmappable() from commit 8897277acf ("mm: support
order-1 folios in the page cache"), but there is a repeated check for
small folio (order 0) during each call of the
folio_undo_large_rmappable(), so only keep folio_order() check inside the
function.

In addition, move all the checks into header file to save a function call
for non-large-rmappable or empty deferred_list folio.

Link: https://lkml.kernel.org/r/20240521130315.46072-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vishal Moola (Oracle) <vishal.moola@gmail.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Lance Yang <ioworker0@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-04 18:05:50 -07:00
SeongJae Park
8bf890c816 selftests/damon/damon_nr_regions: test online-tuned max_nr_regions
User could update max_nr_regions parameter while DAMON is running to a
value that smaller than the current number of regions that DAMON is
seeing.  Such update could be done for reducing the monitoring overhead. 
In the case, DAMON should merge regions aggressively more than normal
situation to ensure the new limit is successfully applied.  Implement a
kselftest to ensure that.

Link: https://lkml.kernel.org/r/20240625180538.73134-9-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:30:29 -07:00
SeongJae Park
5ac9adecf0 _damon_sysfs: implement commit() for online parameters update
Users can update DAMON parameters while it is running, using 'commit'
DAMON sysfs interface command.  For testing the feature in future tests,
implement a function for doing that on the test-purpose DAMON sysfs
interface wrapper Python module.

Link: https://lkml.kernel.org/r/20240625180538.73134-8-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:30:29 -07:00
SeongJae Park
781497347d selftests/damon: implement test for min/max_nr_regions
Implement a kselftest for DAMON's {min,max}_nr_regions' parameters.  The
test ensures both the minimum and the maximum number of regions limit is
respected even if the workload's real number of regions is less than the
minimum or larger than the maximum limits.

Link: https://lkml.kernel.org/r/20240625180538.73134-7-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:30:29 -07:00
SeongJae Park
f60636047a selftests/damon/_damon_sysfs: implement kdamonds stop function
Implement DAMON stop function on the test-purpose DAMON sysfs interface
wrapper Python module, _damon_sysfs.py.  This feature will be used by
future DAMON tests that need to start/stop DAMON multiple times.

Link: https://lkml.kernel.org/r/20240625180538.73134-6-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:30:28 -07:00
SeongJae Park
c9a3003a35 selftests/damon: implement DAMOS tried regions test
Implement a test for DAMOS tried regions command of DAMON sysfs interface.
It ensures the expected number of monitoring regions are created using an
artificial memory access pattern generator program.

Link: https://lkml.kernel.org/r/20240625180538.73134-5-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:30:28 -07:00
SeongJae Park
c94df805c7 selftests/damon: implement a program for even-numbered memory regions access
To test schemes_tried_regions feature, we need to have a program having
specific number of regions that having different access pattern.  Existing
artificial access pattern generator, 'access_memory', cannot be used for
the purpose, since it accesses only one region at a given time.  Extending
it could be an option, but since the purpose and the implementation are
pretty simple, implementing another one from the scratch is better.

Implement such another artificial memory access program that allocates
user-defined number/size regions and accesses even-numbered regions.

Link: https://lkml.kernel.org/r/20240625180538.73134-4-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:30:28 -07:00
SeongJae Park
209e6313fb selftests/damon/_damon_sysfs: support schemes_update_tried_regions
Implement schemes_update_tried_regions DAMON sysfs command on
_damon_sysfs.py, to use on implementations of future tests for the
feature.

Link: https://lkml.kernel.org/r/20240625180538.73134-3-sj@kernel.org
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:30:28 -07:00
SeongJae Park
34ec4344a5 selftests/damon/access_memory: use user-defined region size
Patch series "selftests/damon: test DAMOS tried regions and
{min,max}_nr_regions".

This patch series fix a minor issue in a program for DAMON selftest, and
implement new functionality selftests for DAMOS tried regions and
{min,max}_nr_regions.  The test for max_nr_regions also test the recovery
from online tuning-caused limit violation, which was fixed by a previous
patch [1] titled "mm/damon/core: merge regions aggressively when
max_nr_regions is unmet".

The first patch fixes a minor problem in the articial memory access
pattern generator for tests.  Following 3 patches (2-4) implement schemes
tried regions test.  Then a couple of patches (5-6) implementing static
setup based {min,max}_nr_regions functionality test follows.  Final two
patches (7-8) implement dynamic max_nr_regions update test.

[1] https://lore.kernel.org/20240624210650.53960C2BBFC@smtp.kernel.org


This patch (of 8):

'access_memory' is an artificial memory access pattern generator for DAMON
tests.  It creates and accesses memory regions that the user specified the
number and size via the command line.  However, real access part of the
program ignores the user-specified size of each region.  Instead, it uses
a hard-coded value, 10 MiB.  Fix it to use user-defined size.

Note that all existing 'access_memory' users are setting the region size
as 10 MiB.  Hence no real problem has happened so far.

Link: https://lkml.kernel.org/r/20240625180538.73134-1-sj@kernel.org
Link: https://lkml.kernel.org/r/20240625180538.73134-2-sj@kernel.org
Fixes: b5906f5f73 ("selftests/damon: add a test for update_schemes_tried_regions sysfs command")
Signed-off-by: SeongJae Park <sj@kernel.org>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:30:28 -07:00
Jan Kara
58540f5cde readahead: simplify gotos in page_cache_sync_ra()
Unify all conditions for initial readahead to simplify goto logic in
page_cache_sync_ra().  No functional changes.

Link: https://lkml.kernel.org/r/20240625101909.12234-10-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Tested-by: Zhang Peng <zhangpengpeng0808@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:30:28 -07:00
Jan Kara
a6eccd5be3 readahead: fold try_context_readahead() into its single caller
try_context_readahead() has a single caller page_cache_sync_ra().  Fold
the function there to make ra state modifications more obvious.  No
functional changes.

Link: https://lkml.kernel.org/r/20240625101909.12234-9-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Tested-by: Zhang Peng <zhangpengpeng0808@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:30:28 -07:00
Jan Kara
3a7a11a57e readahead: disentangle async and sync readahead
Both async and sync readahead are handled by ondemand_readahead()
function.  However there isn't actually much in common.  Just move async
related parts into page_cache_ra_async() and sync related parts to
page_cache_ra_sync().  No functional changes.

Link: https://lkml.kernel.org/r/20240625101909.12234-8-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Tested-by: Zhang Peng <zhangpengpeng0808@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:30:27 -07:00
Jan Kara
0b1efc3e78 readahead: drop dead code in ondemand_readahead()
ondemand_readahead() scales up the readahead window if the current read
would hit the readahead mark placed by itself.  However the condition is
mostly dead code because:

a) In case of async readahead we always increase ra->start so ra->start
   == index is never true.

b) In case of sync readahead we either go through
   try_context_readahead() in which case ra->async_size == 1 < ra->size or
   we go through initial_readahead where ra->async_size == ra->size iff
   ra->size == max_pages.

So the only practical effect is reducing async_size for large initial
reads.  Make the code more obvious.

Link: https://lkml.kernel.org/r/20240625101909.12234-7-jack@suse.cz
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Tested-by: Zhang Peng <zhangpengpeng0808@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-07-03 19:30:27 -07:00