Commit Graph

716 Commits

Author SHA1 Message Date
Linus Torvalds
8cb1ae19bf x86/fpu updates:
- Cleanup of extable fixup handling to be more robust, which in turn
    allows to make the FPU exception fixups more robust as well.
 
  - Change the return code for signal frame related failures from explicit
    error codes to a boolean fail/success as that's all what the calling
    code evaluates.
 
  - A large refactoring of the FPU code to prepare for adding AMX support:
 
    - Distangle the public header maze and remove especially the misnomed
      kitchen sink internal.h which is despite it's name included all over
      the place.
 
    - Add a proper abstraction for the register buffer storage (struct
      fpstate) which allows to dynamically size the buffer at runtime by
      flipping the pointer to the buffer container from the default
      container which is embedded in task_struct::tread::fpu to a
      dynamically allocated container with a larger register buffer.
 
    - Convert the code over to the new fpstate mechanism.
 
    - Consolidate the KVM FPU handling by moving the FPU related code into
      the FPU core which removes the number of exports and avoids adding
      even more export when AMX has to be supported in KVM. This also
      removes duplicated code which was of course unnecessary different and
      incomplete in the KVM copy.
 
    - Simplify the KVM FPU buffer handling by utilizing the new fpstate
      container and just switching the buffer pointer from the user space
      buffer to the KVM guest buffer when entering vcpu_run() and flipping
      it back when leaving the function. This cuts the memory requirements
      of a vCPU for FPU buffers in half and avoids pointless memory copy
      operations.
 
      This also solves the so far unresolved problem of adding AMX support
      because the current FPU buffer handling of KVM inflicted a circular
      dependency between adding AMX support to the core and to KVM.  With
      the new scheme of switching fpstate AMX support can be added to the
      core code without affecting KVM.
 
    - Replace various variables with proper data structures so the extra
      information required for adding dynamically enabled FPU features (AMX)
      can be added in one place
 
  - Add AMX (Advanved Matrix eXtensions) support (finally):
 
     AMX is a large XSTATE component which is going to be available with
     Saphire Rapids XEON CPUs. The feature comes with an extra MSR (MSR_XFD)
     which allows to trap the (first) use of an AMX related instruction,
     which has two benefits:
 
     1) It allows the kernel to control access to the feature
 
     2) It allows the kernel to dynamically allocate the large register
        state buffer instead of burdening every task with the the extra 8K
        or larger state storage.
 
     It would have been great to gain this kind of control already with
     AVX512.
 
     The support comes with the following infrastructure components:
 
     1) arch_prctl() to
        - read the supported features (equivalent to XGETBV(0))
        - read the permitted features for a task
        - request permission for a dynamically enabled feature
 
        Permission is granted per process, inherited on fork() and cleared
        on exec(). The permission policy of the kernel is restricted to
        sigaltstack size validation, but the syscall obviously allows
        further restrictions via seccomp etc.
 
     2) A stronger sigaltstack size validation for sys_sigaltstack(2) which
        takes granted permissions and the potentially resulting larger
        signal frame into account. This mechanism can also be used to
        enforce factual sigaltstack validation independent of dynamic
        features to help with finding potential victims of the 2K
        sigaltstack size constant which is broken since AVX512 support was
        added.
 
     3) Exception handling for #NM traps to catch first use of a extended
        feature via a new cause MSR. If the exception was caused by the use
        of such a feature, the handler checks permission for that
        feature. If permission has not been granted, the handler sends a
        SIGILL like the #UD handler would do if the feature would have been
        disabled in XCR0. If permission has been granted, then a new fpstate
        which fits the larger buffer requirement is allocated.
 
        In the unlikely case that this allocation fails, the handler sends
        SIGSEGV to the task. That's not elegant, but unavoidable as the
        other discussed options of preallocation or full per task
        permissions come with their own set of horrors for kernel and/or
        userspace. So this is the lesser of the evils and SIGSEGV caused by
        unexpected memory allocation failures is not a fundamentally new
        concept either.
 
        When allocation succeeds, the fpstate properties are filled in to
        reflect the extended feature set and the resulting sizes, the
        fpu::fpstate pointer is updated accordingly and the trap is disarmed
        for this task permanently.
 
     4) Enumeration and size calculations
 
     5) Trap switching via MSR_XFD
 
        The XFD (eXtended Feature Disable) MSR is context switched with the
        same life time rules as the FPU register state itself. The mechanism
        is keyed off with a static key which is default disabled so !AMX
        equipped CPUs have zero overhead. On AMX enabled CPUs the overhead
        is limited by comparing the tasks XFD value with a per CPU shadow
        variable to avoid redundant MSR writes. In case of switching from a
        AMX using task to a non AMX using task or vice versa, the extra MSR
        write is obviously inevitable.
 
        All other places which need to be aware of the variable feature sets
        and resulting variable sizes are not affected at all because they
        retrieve the information (feature set, sizes) unconditonally from
        the fpstate properties.
 
     6) Enable the new AMX states
 
   Note, this is relatively new code despite the fact that AMX support is in
   the works for more than a year now.
 
   The big refactoring of the FPU code, which allowed to do a proper
   integration has been started exactly 3 weeks ago. Refactoring of the
   existing FPU code and of the original AMX patches took a week and has
   been subject to extensive review and testing. The only fallout which has
   not been caught in review and testing right away was restricted to AMX
   enabled systems, which is completely irrelevant for anyone outside Intel
   and their early access program. There might be dragons lurking as usual,
   but so far the fine grained refactoring has held up and eventual yet
   undetected fallout is bisectable and should be easily addressable before
   the 5.16 release. Famous last words...
 
   Many thanks to Chang Bae and Dave Hansen for working hard on this and
   also to the various test teams at Intel who reserved extra capacity to
   follow the rapid development of this closely which provides the
   confidence level required to offer this rather large update for inclusion
   into 5.16-rc1.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmF/NkITHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYodDkEADH4+/nN/QoSUHIuuha5Zptj3g2b16a
 /3TxT9fhwPen/kzMGsUk70s3iWJMA+I5dCfkSZexJ2hfhcRe9cBzZIa1HCawKwf3
 YCISTsO/M+LpeORuZ+TpfFLJKnxNr1SEOl+EYffGhq0AkCjifb9Cnr0JZuoMUzGU
 jpfJZ2bj28ri5lG812DtzSMBM9E3SAwgJv+GNjmZbxZKb9mAfhbAMdBUXHirX7Ej
 jmx6koQjYOKwYIW8w1BrdC270lUKQUyJTbQgdRkN9Mh/HnKyFixQ18JqGlgaV2cT
 EtYePUfTEdaHdAhUINLIlEug1MfOslHU+HyGsdywnoChNB4GHPQuePC5Tz60VeFN
 RbQ9aKcBUu8r95rjlnKtAtBijNMA4bjGwllVxNwJ/ZoA9RPv1SbDZ07RX3qTaLVY
 YhVQl8+shD33/W24jUTJv1kMMexpHXIlv0gyfMryzpwI7uzzmGHRPAokJdbYKctC
 dyMPfdE90rxTiMUdL/1IQGhnh3awjbyfArzUhHyQ++HyUyzCFh0slsO0CD18vUy8
 FofhCugGBhjuKw3XwLNQ+KsWURz5qHctSzBc3qMOSyqFHbAJCVRANkhsFvWJo2qL
 75+Z7OTRebtsyOUZIdq26r4roSxHrps3dupWTtN70HWx2NhQG1nLEw986QYiQu1T
 hcKvDmehQLrUvg==
 =x3WL
 -----END PGP SIGNATURE-----

Merge tag 'x86-fpu-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 fpu updates from Thomas Gleixner:

 - Cleanup of extable fixup handling to be more robust, which in turn
   allows to make the FPU exception fixups more robust as well.

 - Change the return code for signal frame related failures from
   explicit error codes to a boolean fail/success as that's all what the
   calling code evaluates.

 - A large refactoring of the FPU code to prepare for adding AMX
   support:

      - Distangle the public header maze and remove especially the
        misnomed kitchen sink internal.h which is despite it's name
        included all over the place.

      - Add a proper abstraction for the register buffer storage (struct
        fpstate) which allows to dynamically size the buffer at runtime
        by flipping the pointer to the buffer container from the default
        container which is embedded in task_struct::tread::fpu to a
        dynamically allocated container with a larger register buffer.

      - Convert the code over to the new fpstate mechanism.

      - Consolidate the KVM FPU handling by moving the FPU related code
        into the FPU core which removes the number of exports and avoids
        adding even more export when AMX has to be supported in KVM.
        This also removes duplicated code which was of course
        unnecessary different and incomplete in the KVM copy.

      - Simplify the KVM FPU buffer handling by utilizing the new
        fpstate container and just switching the buffer pointer from the
        user space buffer to the KVM guest buffer when entering
        vcpu_run() and flipping it back when leaving the function. This
        cuts the memory requirements of a vCPU for FPU buffers in half
        and avoids pointless memory copy operations.

        This also solves the so far unresolved problem of adding AMX
        support because the current FPU buffer handling of KVM inflicted
        a circular dependency between adding AMX support to the core and
        to KVM. With the new scheme of switching fpstate AMX support can
        be added to the core code without affecting KVM.

      - Replace various variables with proper data structures so the
        extra information required for adding dynamically enabled FPU
        features (AMX) can be added in one place

 - Add AMX (Advanced Matrix eXtensions) support (finally):

   AMX is a large XSTATE component which is going to be available with
   Saphire Rapids XEON CPUs. The feature comes with an extra MSR
   (MSR_XFD) which allows to trap the (first) use of an AMX related
   instruction, which has two benefits:

    1) It allows the kernel to control access to the feature

    2) It allows the kernel to dynamically allocate the large register
       state buffer instead of burdening every task with the the extra
       8K or larger state storage.

   It would have been great to gain this kind of control already with
   AVX512.

   The support comes with the following infrastructure components:

    1) arch_prctl() to
        - read the supported features (equivalent to XGETBV(0))
        - read the permitted features for a task
        - request permission for a dynamically enabled feature

       Permission is granted per process, inherited on fork() and
       cleared on exec(). The permission policy of the kernel is
       restricted to sigaltstack size validation, but the syscall
       obviously allows further restrictions via seccomp etc.

    2) A stronger sigaltstack size validation for sys_sigaltstack(2)
       which takes granted permissions and the potentially resulting
       larger signal frame into account. This mechanism can also be used
       to enforce factual sigaltstack validation independent of dynamic
       features to help with finding potential victims of the 2K
       sigaltstack size constant which is broken since AVX512 support
       was added.

    3) Exception handling for #NM traps to catch first use of a extended
       feature via a new cause MSR. If the exception was caused by the
       use of such a feature, the handler checks permission for that
       feature. If permission has not been granted, the handler sends a
       SIGILL like the #UD handler would do if the feature would have
       been disabled in XCR0. If permission has been granted, then a new
       fpstate which fits the larger buffer requirement is allocated.

       In the unlikely case that this allocation fails, the handler
       sends SIGSEGV to the task. That's not elegant, but unavoidable as
       the other discussed options of preallocation or full per task
       permissions come with their own set of horrors for kernel and/or
       userspace. So this is the lesser of the evils and SIGSEGV caused
       by unexpected memory allocation failures is not a fundamentally
       new concept either.

       When allocation succeeds, the fpstate properties are filled in to
       reflect the extended feature set and the resulting sizes, the
       fpu::fpstate pointer is updated accordingly and the trap is
       disarmed for this task permanently.

    4) Enumeration and size calculations

    5) Trap switching via MSR_XFD

       The XFD (eXtended Feature Disable) MSR is context switched with
       the same life time rules as the FPU register state itself. The
       mechanism is keyed off with a static key which is default
       disabled so !AMX equipped CPUs have zero overhead. On AMX enabled
       CPUs the overhead is limited by comparing the tasks XFD value
       with a per CPU shadow variable to avoid redundant MSR writes. In
       case of switching from a AMX using task to a non AMX using task
       or vice versa, the extra MSR write is obviously inevitable.

       All other places which need to be aware of the variable feature
       sets and resulting variable sizes are not affected at all because
       they retrieve the information (feature set, sizes) unconditonally
       from the fpstate properties.

    6) Enable the new AMX states

   Note, this is relatively new code despite the fact that AMX support
   is in the works for more than a year now.

   The big refactoring of the FPU code, which allowed to do a proper
   integration has been started exactly 3 weeks ago. Refactoring of the
   existing FPU code and of the original AMX patches took a week and has
   been subject to extensive review and testing. The only fallout which
   has not been caught in review and testing right away was restricted
   to AMX enabled systems, which is completely irrelevant for anyone
   outside Intel and their early access program. There might be dragons
   lurking as usual, but so far the fine grained refactoring has held up
   and eventual yet undetected fallout is bisectable and should be
   easily addressable before the 5.16 release. Famous last words...

   Many thanks to Chang Bae and Dave Hansen for working hard on this and
   also to the various test teams at Intel who reserved extra capacity
   to follow the rapid development of this closely which provides the
   confidence level required to offer this rather large update for
   inclusion into 5.16-rc1

* tag 'x86-fpu-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (110 commits)
  Documentation/x86: Add documentation for using dynamic XSTATE features
  x86/fpu: Include vmalloc.h for vzalloc()
  selftests/x86/amx: Add context switch test
  selftests/x86/amx: Add test cases for AMX state management
  x86/fpu/amx: Enable the AMX feature in 64-bit mode
  x86/fpu: Add XFD handling for dynamic states
  x86/fpu: Calculate the default sizes independently
  x86/fpu/amx: Define AMX state components and have it used for boot-time checks
  x86/fpu/xstate: Prepare XSAVE feature table for gaps in state component numbers
  x86/fpu/xstate: Add fpstate_realloc()/free()
  x86/fpu/xstate: Add XFD #NM handler
  x86/fpu: Update XFD state where required
  x86/fpu: Add sanity checks for XFD
  x86/fpu: Add XFD state to fpstate
  x86/msr-index: Add MSRs for XFD
  x86/cpufeatures: Add eXtended Feature Disabling (XFD) feature bit
  x86/fpu: Reset permission and fpstate on exec()
  x86/fpu: Prepare fpu_clone() for dynamically enabled features
  x86/fpu/signal: Prepare for variable sigframe length
  x86/signal: Use fpu::__state_user_size for sigalt stack validation
  ...
2021-11-01 14:03:56 -07:00
Thomas Gleixner
1bdda24c4a signal: Add an optional check for altstack size
New x86 FPU features will be very large, requiring ~10k of stack in
signal handlers.  These new features require a new approach called
"dynamic features".

The kernel currently tries to ensure that altstacks are reasonably
sized. Right now, on x86, sys_sigaltstack() requires a size of >=2k.
However, that 2k is a constant. Simply raising that 2k requirement
to >10k for the new features would break existing apps which have a
compiled-in size of 2k.

Instead of universally enforcing a larger stack, prohibit a process from
using dynamic features without properly-sized altstacks. This must be
enforced in two places:

 * A dynamic feature can not be enabled without an large-enough altstack
   for each process thread.
 * Once a dynamic feature is enabled, any request to install a too-small
   altstack will be rejected

The dynamic feature enabling code must examine each thread in a
process to ensure that the altstacks are large enough. Add a new lock
(sigaltstack_lock()) to ensure that threads can not race and change
their altstack after being examined.

Add the infrastructure in form of a config option and provide empty
stubs for architectures which do not need dynamic altstack size checks.

This implementation will be fleshed out for x86 in a future patch called

  x86/arch_prctl: Add controls for dynamic XSTATE components

  [dhansen: commit message. ]

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-2-chang.seok.bae@intel.com
2021-10-26 10:15:12 +02:00
Linus Torvalds
9d235ac01f Merge branch 'ucount-fixes-for-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull ucounts fixes from Eric Biederman:
 "There has been one very hard to track down bug in the ucount code that
  we have been tracking since roughly v5.14 was released. Alex managed
  to find a reliable reproducer a few days ago and then I was able to
  instrument the code and figure out what the issue was.

  It turns out the sigqueue_alloc single atomic operation optimization
  did not play nicely with ucounts multiple level rlimits. It turned out
  that either sigqueue_alloc or sigqueue_free could be operating on
  multiple levels and trigger the conditions for the optimization on
  more than one level at the same time.

  To deal with that situation I have introduced inc_rlimit_get_ucounts
  and dec_rlimit_put_ucounts that just focuses on the optimization and
  the rlimit and ucount changes.

  While looking into the big bug I found I couple of other little issues
  so I am including those fixes here as well.

  When I have time I would very much like to dig into process ownership
  of the shared signal queue and see if we could pick a single owner for
  the entire queue so that all of the rlimits can count to that owner.
  That should entirely remove the need to call get_ucounts and
  put_ucounts in sigqueue_alloc and sigqueue_free. It is difficult
  because Linux unlike POSIX supports setuid that works on a single
  thread"

* 'ucount-fixes-for-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
  ucounts: Move get_ucounts from cred_alloc_blank to key_change_session_keyring
  ucounts: Proper error handling in set_cred_ucounts
  ucounts: Pair inc_rlimit_ucounts with dec_rlimit_ucoutns in commit_creds
  ucounts: Fix signal ucount refcounting
2021-10-21 17:27:17 -10:00
Eric W. Biederman
15bc01effe ucounts: Fix signal ucount refcounting
In commit fda31c5029 ("signal: avoid double atomic counter
increments for user accounting") Linus made a clever optimization to
how rlimits and the struct user_struct.  Unfortunately that
optimization does not work in the obvious way when moved to nested
rlimits.  The problem is that the last decrement of the per user
namespace per user sigpending counter might also be the last decrement
of the sigpending counter in the parent user namespace as well.  Which
means that simply freeing the leaf ucount in __free_sigqueue is not
enough.

Maintain the optimization and handle the tricky cases by introducing
inc_rlimit_get_ucounts and dec_rlimit_put_ucounts.

By moving the entire optimization into functions that perform all of
the work it becomes possible to ensure that every level is handled
properly.

The new function inc_rlimit_get_ucounts returns 0 on failure to
increment the ucount.  This is different than inc_rlimit_ucounts which
increments the ucounts and returns LONG_MAX if the ucount counter has
exceeded it's maximum or it wrapped (to indicate the counter needs to
decremented).

I wish we had a single user to account all pending signals to across
all of the threads of a process so this complexity was not necessary

Cc: stable@vger.kernel.org
Fixes: d646969055 ("Reimplement RLIMIT_SIGPENDING on top of ucounts")
v1: https://lkml.kernel.org/r/87mtnavszx.fsf_-_@disp2133
Link: https://lkml.kernel.org/r/87fssytizw.fsf_-_@disp2133
Reviewed-by: Alexey Gladkov <legion@kernel.org>
Tested-by: Rune Kleveland <rune.kleveland@infomedia.dk>
Tested-by: Yu Zhao <yuzhao@google.com>
Tested-by: Jordan Glover <Golden_Miller83@protonmail.ch>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-10-18 16:02:30 -05:00
Linus Torvalds
14726903c8 Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton:
 "173 patches.

  Subsystems affected by this series: ia64, ocfs2, block, and mm (debug,
  pagecache, gup, swap, shmem, memcg, selftests, pagemap, mremap,
  bootmem, sparsemem, vmalloc, kasan, pagealloc, memory-failure,
  hugetlb, userfaultfd, vmscan, compaction, mempolicy, memblock,
  oom-kill, migration, ksm, percpu, vmstat, and madvise)"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (173 commits)
  mm/madvise: add MADV_WILLNEED to process_madvise()
  mm/vmstat: remove unneeded return value
  mm/vmstat: simplify the array size calculation
  mm/vmstat: correct some wrong comments
  mm/percpu,c: remove obsolete comments of pcpu_chunk_populated()
  selftests: vm: add COW time test for KSM pages
  selftests: vm: add KSM merging time test
  mm: KSM: fix data type
  selftests: vm: add KSM merging across nodes test
  selftests: vm: add KSM zero page merging test
  selftests: vm: add KSM unmerge test
  selftests: vm: add KSM merge test
  mm/migrate: correct kernel-doc notation
  mm: wire up syscall process_mrelease
  mm: introduce process_mrelease system call
  memblock: make memblock_find_in_range method private
  mm/mempolicy.c: use in_task() in mempolicy_slab_node()
  mm/mempolicy: unify the create() func for bind/interleave/prefer-many policies
  mm/mempolicy: advertise new MPOL_PREFERRED_MANY
  mm/hugetlb: add support for mempolicy MPOL_PREFERRED_MANY
  ...
2021-09-03 10:08:28 -07:00
Vasily Averin
5f58c39819 memcg: enable accounting for signals
When a user send a signal to any another processes it forces the kernel to
allocate memory for 'struct sigqueue' objects.  The number of signals is
limited by RLIMIT_SIGPENDING resource limit, but even the default settings
allow each user to consume up to several megabytes of memory.

It makes sense to account for these allocations to restrict the host's
memory consumption from inside the memcg-limited container.

Link: https://lkml.kernel.org/r/e34e958c-e785-712e-a62a-2c7b66c646c7@virtuozzo.com
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexey Dobriyan <adobriyan@gmail.com>
Cc: Andrei Vagin <avagin@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Borislav Petkov <bp@suse.de>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Cc: Dmitry Safonov <0x7f454c46@gmail.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "J. Bruce Fields" <bfields@fieldses.org>
Cc: Jeff Layton <jlayton@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jiri Slaby <jirislaby@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill Tkhai <ktkhai@virtuozzo.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Roman Gushchin <guro@fb.com>
Cc: Serge Hallyn <serge@hallyn.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Yutian Yang <nglaive@gmail.com>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:12 -07:00
Linus Torvalds
bcfeebbff3 Merge branch 'exit-cleanups-for-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull exit cleanups from Eric Biederman:
 "In preparation of doing something about PTRACE_EVENT_EXIT I have
  started cleaning up various pieces of code related to do_exit. Most of
  that code I did not manage to get tested and reviewed before the merge
  window opened but a handful of very useful cleanups are ready to be
  merged.

  The first change is simply the removal of the bdflush system call. The
  code has now been disabled long enough that even the oldest userspace
  working userspace setups anyone can find to test are fine with the
  bdflush system call being removed.

  Changing m68k fsp040_die to use force_sigsegv(SIGSEGV) instead of
  calling do_exit directly is interesting only in that it is nearly the
  most difficult of the incorrect uses of do_exit to remove.

  The change to the seccomp code to simply send a signal instead of
  calling do_coredump directly is a very nice little cleanup made
  possible by realizing the existing signal sending helpers were missing
  a little bit of functionality that is easy to provide"

* 'exit-cleanups-for-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
  signal/seccomp: Dump core when there is only one live thread
  signal/seccomp: Refactor seccomp signal and coredump generation
  signal/m68k: Use force_sigsegv(SIGSEGV) in fpsp040_die
  exit/bdflush: Remove the deprecated bdflush system call
2021-09-01 14:52:05 -07:00
Linus Torvalds
48983701a1 Merge branch 'siginfo-si_trapno-for-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull siginfo si_trapno updates from Eric Biederman:
 "The full set of si_trapno changes was not appropriate as a fix for the
  newly added SIGTRAP TRAP_PERF, and so I postponed the rest of the
  related cleanups.

  This is the rest of the cleanups for si_trapno that reduces it from
  being a really weird arch special case that is expect to be always
  present (but isn't) on the architectures that support it to being yet
  another field in the _sigfault union of struct siginfo.

  The changes have been reviewed and marinated in linux-next. With the
  removal of this awkward special case new code (like SIGTRAP TRAP_PERF)
  that works across architectures should be easier to write and
  maintain"

* 'siginfo-si_trapno-for-v5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
  signal: Rename SIL_PERF_EVENT SIL_FAULT_PERF_EVENT for consistency
  signal: Verify the alignment and size of siginfo_t
  signal: Remove the generic __ARCH_SI_TRAPNO support
  signal/alpha: si_trapno is only used with SIGFPE and SIGTRAP TRAP_UNK
  signal/sparc: si_trapno is only used with SIGILL ILL_ILLTRP
  arm64: Add compile-time asserts for siginfo_t offsets
  arm: Add compile-time asserts for siginfo_t offsets
  sparc64: Add compile-time asserts for siginfo_t offsets
2021-09-01 14:42:36 -07:00
Eric W. Biederman
307d522f5e signal/seccomp: Refactor seccomp signal and coredump generation
Factor out force_sig_seccomp from the seccomp signal generation and
place it in kernel/signal.c.  The function force_sig_seccomp takes a
parameter force_coredump to indicate that the sigaction field should
be reset to SIGDFL so that a coredump will be generated when the
signal is delivered.

force_sig_seccomp is then used to replace both seccomp_send_sigsys
and seccomp_init_siginfo.

force_sig_info_to_task gains an extra parameter to force using
the default signal action.

With this change seccomp is no longer a special case and there
becomes exactly one place do_coredump is called from.

Further it no longer becomes necessary for __seccomp_filter
to call do_group_exit.

Acked-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/87r1gr6qc4.fsf_-_@disp2133
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-08-26 10:30:12 -05:00
Frederic Weisbecker
a5dec9f82a posix-cpu-timers: Assert task sighand is locked while starting cputime counter
Starting the process wide cputime counter needs to be done in the same
sighand locking sequence than actually arming the related timer otherwise
this races against concurrent timers setting/expiring in the same
threadgroup.

Detecting that the cputime counter is started without holding the sighand
lock is a first step toward debugging such situations.

Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210726125513.271824-2-frederic@kernel.org
2021-08-10 17:09:58 +02:00
Eric W. Biederman
f4ac730234 signal: Rename SIL_PERF_EVENT SIL_FAULT_PERF_EVENT for consistency
It helps to know which part of the siginfo structure the siginfo_layout
value is talking about.

v1: https://lkml.kernel.org/r/m18s4zs7nu.fsf_-_@fess.ebiederm.org
v2: https://lkml.kernel.org/r/20210505141101.11519-9-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/87zgumw8cc.fsf_-_@disp2133
Acked-by: Marco Elver <elver@google.com>
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2021-07-23 13:16:43 -05:00
Eric W. Biederman
c7fff9288d signal: Remove the generic __ARCH_SI_TRAPNO support
Now that __ARCH_SI_TRAPNO is no longer set by any architecture remove
all of the code it enabled from the kernel.

On alpha and sparc a more explict approach of using
send_sig_fault_trapno or force_sig_fault_trapno in the very limited
circumstances where si_trapno was set to a non-zero value.

The generic support that is being removed always set si_trapno on all
fault signals.  With only SIGILL ILL_ILLTRAP on sparc and SIGFPE and
SIGTRAP TRAP_UNK on alpla providing si_trapno values asking all senders
of fault signals to provide an si_trapno value does not make sense.

Making si_trapno an ordinary extension of the fault siginfo layout has
enabled the architecture generic implementation of SIGTRAP TRAP_PERF,
and enables other faulting signals to grow architecture generic
senders as well.

v1: https://lkml.kernel.org/r/m18s4zs7nu.fsf_-_@fess.ebiederm.org
v2: https://lkml.kernel.org/r/20210505141101.11519-8-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/87bl73xx6x.fsf_-_@disp2133
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-07-23 13:14:13 -05:00
Eric W. Biederman
7de5f68d49 signal/alpha: si_trapno is only used with SIGFPE and SIGTRAP TRAP_UNK
While reviewing the signal handlers on alpha it became clear that
si_trapno is only set to a non-zero value when sending SIGFPE and when
sending SITGRAP with si_code TRAP_UNK.

Add send_sig_fault_trapno and send SIGTRAP TRAP_UNK, and SIGFPE with it.

Remove the define of __ARCH_SI_TRAPNO and remove the always zero
si_trapno parameter from send_sig_fault and force_sig_fault.

v1: https://lkml.kernel.org/r/m1eeers7q7.fsf_-_@fess.ebiederm.org
v2: https://lkml.kernel.org/r/20210505141101.11519-7-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/87h7gvxx7l.fsf_-_@disp2133
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-07-23 13:10:26 -05:00
Eric W. Biederman
2c9f7eaf08 signal/sparc: si_trapno is only used with SIGILL ILL_ILLTRP
While reviewing the signal handlers on sparc it became clear that
si_trapno is only set to a non-zero value when sending SIGILL with
si_code ILL_ILLTRP.

Add force_sig_fault_trapno and send SIGILL ILL_ILLTRP with it.

Remove the define of __ARCH_SI_TRAPNO and remove the always zero
si_trapno parameter from send_sig_fault and force_sig_fault.

v1: https://lkml.kernel.org/r/m1eeers7q7.fsf_-_@fess.ebiederm.org
v2: https://lkml.kernel.org/r/20210505141101.11519-7-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/87mtqnxx89.fsf_-_@disp2133
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-07-23 13:08:57 -05:00
Alexey Gladkov
f3791f4df5 Fix UCOUNT_RLIMIT_SIGPENDING counter leak
We must properly handle an errors when we increase the rlimit counter
and the ucounts reference counter. We have to this with RCU protection
to prevent possible use-after-free that could occur due to concurrent
put_cred_rcu().

The following reproducer triggers the problem:

  $ cat testcase.sh
  case "${STEP:-0}" in
  0)
	ulimit -Si 1
	ulimit -Hi 1
	STEP=1 unshare -rU "$0"
	killall sleep
	;;
  1)
	for i in 1 2 3 4 5; do unshare -rU sleep 5 & done
	;;
  esac

with the KASAN report being along the lines of

  BUG: KASAN: use-after-free in put_ucounts+0x17/0xa0
  Write of size 4 at addr ffff8880045f031c by task swapper/2/0

  CPU: 2 PID: 0 Comm: swapper/2 Not tainted 5.13.0+ #19
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.14.0-alt4 04/01/2014
  Call Trace:
   <IRQ>
   put_ucounts+0x17/0xa0
   put_cred_rcu+0xd5/0x190
   rcu_core+0x3bf/0xcb0
   __do_softirq+0xe3/0x341
   irq_exit_rcu+0xbe/0xe0
   sysvec_apic_timer_interrupt+0x6a/0x90
   </IRQ>
   asm_sysvec_apic_timer_interrupt+0x12/0x20
   default_idle_call+0x53/0x130
   do_idle+0x311/0x3c0
   cpu_startup_entry+0x14/0x20
   secondary_startup_64_no_verify+0xc2/0xcb

  Allocated by task 127:
   kasan_save_stack+0x1b/0x40
   __kasan_kmalloc+0x7c/0x90
   alloc_ucounts+0x169/0x2b0
   set_cred_ucounts+0xbb/0x170
   ksys_unshare+0x24c/0x4e0
   __x64_sys_unshare+0x16/0x20
   do_syscall_64+0x37/0x70
   entry_SYSCALL_64_after_hwframe+0x44/0xae

  Freed by task 0:
   kasan_save_stack+0x1b/0x40
   kasan_set_track+0x1c/0x30
   kasan_set_free_info+0x20/0x30
   __kasan_slab_free+0xeb/0x120
   kfree+0xaa/0x460
   put_cred_rcu+0xd5/0x190
   rcu_core+0x3bf/0xcb0
   __do_softirq+0xe3/0x341

  The buggy address belongs to the object at ffff8880045f0300
   which belongs to the cache kmalloc-192 of size 192
  The buggy address is located 28 bytes inside of
   192-byte region [ffff8880045f0300, ffff8880045f03c0)
  The buggy address belongs to the page:
  page:000000008de0a388 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff8880045f0000 pfn:0x45f0
  flags: 0x100000000000200(slab|node=0|zone=1)
  raw: 0100000000000200 ffffea00000f4640 0000000a0000000a ffff888001042a00
  raw: ffff8880045f0000 000000008010000d 00000001ffffffff 0000000000000000
  page dumped because: kasan: bad access detected

  Memory state around the buggy address:
   ffff8880045f0200: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
   ffff8880045f0280: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
  >ffff8880045f0300: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
                              ^
   ffff8880045f0380: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
   ffff8880045f0400: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
  ==================================================================
  Disabling lock debugging due to kernel taint

Fixes: d646969055 ("Reimplement RLIMIT_SIGPENDING on top of ucounts")
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Alexey Gladkov <legion@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-08 11:43:24 -07:00
Linus Torvalds
71bd934101 Merge branch 'akpm' (patches from Andrew)
Merge more updates from Andrew Morton:
 "190 patches.

  Subsystems affected by this patch series: mm (hugetlb, userfaultfd,
  vmscan, kconfig, proc, z3fold, zbud, ras, mempolicy, memblock,
  migration, thp, nommu, kconfig, madvise, memory-hotplug, zswap,
  zsmalloc, zram, cleanups, kfence, and hmm), procfs, sysctl, misc,
  core-kernel, lib, lz4, checkpatch, init, kprobes, nilfs2, hfs,
  signals, exec, kcov, selftests, compress/decompress, and ipc"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (190 commits)
  ipc/util.c: use binary search for max_idx
  ipc/sem.c: use READ_ONCE()/WRITE_ONCE() for use_global_lock
  ipc: use kmalloc for msg_queue and shmid_kernel
  ipc sem: use kvmalloc for sem_undo allocation
  lib/decompressors: remove set but not used variabled 'level'
  selftests/vm/pkeys: exercise x86 XSAVE init state
  selftests/vm/pkeys: refill shadow register after implicit kernel write
  selftests/vm/pkeys: handle negative sys_pkey_alloc() return code
  selftests/vm/pkeys: fix alloc_random_pkey() to make it really, really random
  kcov: add __no_sanitize_coverage to fix noinstr for all architectures
  exec: remove checks in __register_bimfmt()
  x86: signal: don't do sas_ss_reset() until we are certain that sigframe won't be abandoned
  hfsplus: report create_date to kstat.btime
  hfsplus: remove unnecessary oom message
  nilfs2: remove redundant continue statement in a while-loop
  kprobes: remove duplicated strong free_insn_page in x86 and s390
  init: print out unknown kernel parameters
  checkpatch: do not complain about positive return values starting with EPOLL
  checkpatch: improve the indented label test
  checkpatch: scripts/spdxcheck.py now requires python3
  ...
2021-07-02 12:08:10 -07:00
Al Viro
97c885d585 x86: signal: don't do sas_ss_reset() until we are certain that sigframe won't be abandoned
Currently we handle SS_AUTODISARM as soon as we have stored the altstack
settings into sigframe - that's the point when we have set the things up
for eventual sigreturn to restore the old settings.  And if we manage to
set the sigframe up (we are not done with that yet), everything's fine.
However, in case of failure we end up with sigframe-to-be abandoned and
SIGSEGV force-delivered.  And in that case we end up with inconsistent
rules - late failures have altstack reset, early ones do not.

It's trivial to get consistent behaviour - just handle SS_AUTODISARM once
we have set the sigframe up and are committed to entering the handler,
i.e.  in signal_delivered().

Link: https://lore.kernel.org/lkml/20200404170604.GN23230@ZenIV.linux.org.uk/
Link: https://github.com/ClangBuiltLinux/linux/issues/876
Link: https://lkml.kernel.org/r/20210422230846.1756380-1-ndesaulniers@google.com
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Tested-by: Nathan Chancellor <natechancellor@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-01 11:06:06 -07:00
Linus Torvalds
c54b245d01 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull user namespace rlimit handling update from Eric Biederman:
 "This is the work mainly by Alexey Gladkov to limit rlimits to the
  rlimits of the user that created a user namespace, and to allow users
  to have stricter limits on the resources created within a user
  namespace."

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
  cred: add missing return error code when set_cred_ucounts() failed
  ucounts: Silence warning in dec_rlimit_ucounts
  ucounts: Set ucount_max to the largest positive value the type can hold
  kselftests: Add test to check for rlimit changes in different user namespaces
  Reimplement RLIMIT_MEMLOCK on top of ucounts
  Reimplement RLIMIT_SIGPENDING on top of ucounts
  Reimplement RLIMIT_MSGQUEUE on top of ucounts
  Reimplement RLIMIT_NPROC on top of ucounts
  Use atomic_t for ucounts reference counting
  Add a reference to ucounts for each cred
  Increase size of ucounts to atomic_long_t
2021-06-28 20:39:26 -07:00
Linus Torvalds
54a728dc5e Scheduler udpates for this cycle:
- Changes to core scheduling facilities:
 
     - Add "Core Scheduling" via CONFIG_SCHED_CORE=y, which enables
       coordinated scheduling across SMT siblings. This is a much
       requested feature for cloud computing platforms, to allow
       the flexible utilization of SMT siblings, without exposing
       untrusted domains to information leaks & side channels, plus
       to ensure more deterministic computing performance on SMT
       systems used by heterogenous workloads.
 
       There's new prctls to set core scheduling groups, which
       allows more flexible management of workloads that can share
       siblings.
 
     - Fix task->state access anti-patterns that may result in missed
       wakeups and rename it to ->__state in the process to catch new
       abuses.
 
  - Load-balancing changes:
 
      - Tweak newidle_balance for fair-sched, to improve
        'memcache'-like workloads.
 
      - "Age" (decay) average idle time, to better track & improve workloads
        such as 'tbench'.
 
      - Fix & improve energy-aware (EAS) balancing logic & metrics.
 
      - Fix & improve the uclamp metrics.
 
      - Fix task migration (taskset) corner case on !CONFIG_CPUSET.
 
      - Fix RT and deadline utilization tracking across policy changes
 
      - Introduce a "burstable" CFS controller via cgroups, which allows
        bursty CPU-bound workloads to borrow a bit against their future
        quota to improve overall latencies & batching. Can be tweaked
        via /sys/fs/cgroup/cpu/<X>/cpu.cfs_burst_us.
 
      - Rework assymetric topology/capacity detection & handling.
 
  - Scheduler statistics & tooling:
 
      - Disable delayacct by default, but add a sysctl to enable
        it at runtime if tooling needs it. Use static keys and
        other optimizations to make it more palatable.
 
      - Use sched_clock() in delayacct, instead of ktime_get_ns().
 
  - Misc cleanups and fixes.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmDZcPoRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1g3yw//WfhIqy7Psa9d/MBMjQDRGbTuO4+w22Dj
 vmWFU44Q4KJxQHWeIgUlrK+dzvYWvNmflUs2CUUOiDVzxFTHMIyBtL4qCBUbx4Ns
 vKAcB9wsWZge2o3WzZqpProRhdoRaSKw8egUr2q7rACVBkckY7eGP/OjWxXU8BdA
 b7D0LPWwuIBFfN4pFYeCDLn32Dqr9s6Chyj+ZecabdG7EE6Gu+f1diVcxy7JE/mc
 4WWL0D1RqdgpGrBEuMJIxPYekdrZiuy4jtEbztz5gbTBteN1cj3BLfqn0Pc/e6rO
 Vyuc5mXCAmzRVi18z6g6bsVl+IA/nrbErENB2OHOhOYtqiZxqGTd4GPWZszMyY17
 5AsEO5+5pcaBsy4gyp09qURggBu9zhJnMVmOI3rIHZkmkhwzc6uUJlyhDCTiFWOz
 3ZF3LjbZEyCKodMD8qMHbs3axIBpIfZqjzkvSKyFnvfXEGVytVse7NUuWtQ36u92
 GnURxVeYY1TDVXvE1Y8owNKMxknKQ6YRlypP7Dtbeo/qG6hShp0xmS7qDLDi0ybZ
 ZlK+bDECiVoDf3nvJo+8v5M82IJ3CBt4UYldeRJsa1YCK/FsbK8tp91fkEfnXVue
 +U6LPX0AmMpXacR5HaZfb3uBIKRw/QMdP/7RFtBPhpV6jqCrEmuqHnpPQiEVtxwO
 UmG7bt94Trk=
 =3VDr
 -----END PGP SIGNATURE-----

Merge tag 'sched-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler udpates from Ingo Molnar:

 - Changes to core scheduling facilities:

    - Add "Core Scheduling" via CONFIG_SCHED_CORE=y, which enables
      coordinated scheduling across SMT siblings. This is a much
      requested feature for cloud computing platforms, to allow the
      flexible utilization of SMT siblings, without exposing untrusted
      domains to information leaks & side channels, plus to ensure more
      deterministic computing performance on SMT systems used by
      heterogenous workloads.

      There are new prctls to set core scheduling groups, which allows
      more flexible management of workloads that can share siblings.

    - Fix task->state access anti-patterns that may result in missed
      wakeups and rename it to ->__state in the process to catch new
      abuses.

 - Load-balancing changes:

    - Tweak newidle_balance for fair-sched, to improve 'memcache'-like
      workloads.

    - "Age" (decay) average idle time, to better track & improve
      workloads such as 'tbench'.

    - Fix & improve energy-aware (EAS) balancing logic & metrics.

    - Fix & improve the uclamp metrics.

    - Fix task migration (taskset) corner case on !CONFIG_CPUSET.

    - Fix RT and deadline utilization tracking across policy changes

    - Introduce a "burstable" CFS controller via cgroups, which allows
      bursty CPU-bound workloads to borrow a bit against their future
      quota to improve overall latencies & batching. Can be tweaked via
      /sys/fs/cgroup/cpu/<X>/cpu.cfs_burst_us.

    - Rework assymetric topology/capacity detection & handling.

 - Scheduler statistics & tooling:

    - Disable delayacct by default, but add a sysctl to enable it at
      runtime if tooling needs it. Use static keys and other
      optimizations to make it more palatable.

    - Use sched_clock() in delayacct, instead of ktime_get_ns().

 - Misc cleanups and fixes.

* tag 'sched-core-2021-06-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (72 commits)
  sched/doc: Update the CPU capacity asymmetry bits
  sched/topology: Rework CPU capacity asymmetry detection
  sched/core: Introduce SD_ASYM_CPUCAPACITY_FULL sched_domain flag
  psi: Fix race between psi_trigger_create/destroy
  sched/fair: Introduce the burstable CFS controller
  sched/uclamp: Fix uclamp_tg_restrict()
  sched/rt: Fix Deadline utilization tracking during policy change
  sched/rt: Fix RT utilization tracking during policy change
  sched: Change task_struct::state
  sched,arch: Remove unused TASK_STATE offsets
  sched,timer: Use __set_current_state()
  sched: Add get_current_state()
  sched,perf,kvm: Fix preemption condition
  sched: Introduce task_is_running()
  sched: Unbreak wakeups
  sched/fair: Age the average idle time
  sched/cpufreq: Consider reduced CPU capacity in energy calculation
  sched/fair: Take thermal pressure into account while estimating energy
  thermal/cpufreq_cooling: Update offline CPUs per-cpu thermal_pressure
  sched/fair: Return early from update_tg_cfs_load() if delta == 0
  ...
2021-06-28 12:14:19 -07:00
Linus Torvalds
b4b27b9eed Revert "signal: Allow tasks to cache one sigqueue struct"
This reverts commits 4bad58ebc8 (and
399f8dd9a8, which tried to fix it).

I do not believe these are correct, and I'm about to release 5.13, so am
reverting them out of an abundance of caution.

The locking is odd, and appears broken.

On the allocation side (in __sigqueue_alloc()), the locking is somewhat
straightforward: it depends on sighand->siglock.  Since one caller
doesn't hold that lock, it further then tests 'sigqueue_flags' to avoid
the case with no locks held.

On the freeing side (in sigqueue_cache_or_free()), there is no locking
at all, and the logic instead depends on 'current' being a single
thread, and not able to race with itself.

To make things more exciting, there's also the data race between freeing
a signal and allocating one, which is handled by using WRITE_ONCE() and
READ_ONCE(), and being mutually exclusive wrt the initial state (ie
freeing will only free if the old state was NULL, while allocating will
obviously only use the value if it was non-NULL, so only one or the
other will actually act on the value).

However, while the free->alloc paths do seem mutually exclusive thanks
to just the data value dependency, it's not clear what the memory
ordering constraints are on it.  Could writes from the previous
allocation possibly be delayed and seen by the new allocation later,
causing logical inconsistencies?

So it's all very exciting and unusual.

And in particular, it seems that the freeing side is incorrect in
depending on "current" being single-threaded.  Yes, 'current' is a
single thread, but in the presense of asynchronous events even a single
thread can have data races.

And such asynchronous events can and do happen, with interrupts causing
signals to be flushed and thus free'd (for example - sending a
SIGCONT/SIGSTOP can happen from interrupt context, and can flush
previously queued process control signals).

So regardless of all the other questions about the memory ordering and
locking for this new cached allocation, the sigqueue_cache_or_free()
assumptions seem to be fundamentally incorrect.

It may be that people will show me the errors of my ways, and tell me
why this is all safe after all.  We can reinstate it if so.  But my
current belief is that the WRITE_ONCE() that sets the cached entry needs
to be a smp_store_release(), and the READ_ONCE() that finds a cached
entry needs to be a smp_load_acquire() to handle memory ordering
correctly.

And the sequence in sigqueue_cache_or_free() would need to either use a
lock or at least be interrupt-safe some way (perhaps by using something
like the percpu 'cmpxchg': it doesn't need to be SMP-safe, but like the
percpu operations it needs to be interrupt-safe).

Fixes: 399f8dd9a8 ("signal: Prevent sigqueue caching after task got released")
Fixes: 4bad58ebc8 ("signal: Allow tasks to cache one sigqueue struct")
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-27 13:32:54 -07:00
Thomas Gleixner
399f8dd9a8 signal: Prevent sigqueue caching after task got released
syzbot reported a memory leak related to sigqueue caching.

The assumption that a task cannot cache a sigqueue after the signal handler
has been dropped and exit_task_sigqueue_cache() has been invoked turns out
to be wrong.

Such a task can still invoke release_task(other_task), which cleans up the
signals of 'other_task' and ends up in sigqueue_cache_or_free(), which in
turn will cache the signal because task->sigqueue_cache is NULL. That's
obviously bogus because nothing will free the cached signal of that task
anymore, so the cached item is leaked.

This happens when e.g. the last non-leader thread exits and reaps the
zombie leader.

Prevent this by setting tsk::sigqueue_cache to an error pointer value in
exit_task_sigqueue_cache() which forces any subsequent invocation of
sigqueue_cache_or_free() from that task to hand the sigqueue back to the
kmemcache.

Add comments to all relevant places.

Fixes: 4bad58ebc8 ("signal: Allow tasks to cache one sigqueue struct")
Reported-by: syzbot+0bac5fec63d4f399ba98@syzkaller.appspotmail.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Christian Brauner <christian.brauner@ubuntu.com>
Link: https://lore.kernel.org/r/878s32g6j5.ffs@nanos.tec.linutronix.de
2021-06-22 15:55:41 +02:00
Peter Zijlstra
b03fbd4ff2 sched: Introduce task_is_running()
Replace a bunch of 'p->state == TASK_RUNNING' with a new helper:
task_is_running(p).

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Davidlohr Bueso <dave@stgolabs.net>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210611082838.222401495@infradead.org
2021-06-18 11:43:07 +02:00
Linus Torvalds
a0e31f3a38 Merge branch 'for-v5.13-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull siginfo fix from Eric Biederman:
 "During the merge window an issue with si_perf and the siginfo ABI came
  up. The alpha and sparc siginfo structure layout had changed with the
  addition of SIGTRAP TRAP_PERF and the new field si_perf.

  The reason only alpha and sparc were affected is that they are the
  only architectures that use si_trapno.

  Looking deeper it was discovered that si_trapno is used for only a few
  select signals on alpha and sparc, and that none of the other
  _sigfault fields past si_addr are used at all. Which means technically
  no regression on alpha and sparc.

  While the alignment concerns might be dismissed the abuse of si_errno
  by SIGTRAP TRAP_PERF does have the potential to cause regressions in
  existing userspace.

  While we still have time before userspace starts using and depending
  on the new definition siginfo for SIGTRAP TRAP_PERF this set of
  changes cleans up siginfo_t.

   - The si_trapno field is demoted from magic alpha and sparc status
     and made an ordinary union member of the _sigfault member of
     siginfo_t. Without moving it of course.

   - si_perf is replaced with si_perf_data and si_perf_type ending the
     abuse of si_errno.

   - Unnecessary additions to signalfd_siginfo are removed"

* 'for-v5.13-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
  signalfd: Remove SIL_PERF_EVENT fields from signalfd_siginfo
  signal: Deliver all of the siginfo perf data in _perf
  signal: Factor force_sig_perf out of perf_sigtrap
  signal: Implement SIL_FAULT_TRAPNO
  siginfo: Move si_trapno inside the union inside _si_fault
2021-05-21 06:12:52 -10:00
Eric W. Biederman
0683b53197 signal: Deliver all of the siginfo perf data in _perf
Don't abuse si_errno and deliver all of the perf data in _perf member
of siginfo_t.

Note: The data field in the perf data structures in a u64 to allow a
pointer to be encoded without needed to implement a 32bit and 64bit
version of the same structure.  There already exists a 32bit and 64bit
versions siginfo_t, and the 32bit version can not include a 64bit
member as it only has 32bit alignment.  So unsigned long is used in
siginfo_t instead of a u64 as unsigned long can encode a pointer on
all architectures linux supports.

v1: https://lkml.kernel.org/r/m11rarqqx2.fsf_-_@fess.ebiederm.org
v2: https://lkml.kernel.org/r/20210503203814.25487-10-ebiederm@xmission.com
v3: https://lkml.kernel.org/r/20210505141101.11519-11-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20210517195748.8880-4-ebiederm@xmission.com
Reviewed-by: Marco Elver <elver@google.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-05-18 16:20:54 -05:00
Eric W. Biederman
af5eeab7e8 signal: Factor force_sig_perf out of perf_sigtrap
Separate filling in siginfo for TRAP_PERF from deciding that
siginal needs to be sent.

There are enough little details that need to be correct when
properly filling in siginfo_t that it is easy to make mistakes
if filling in the siginfo_t is in the same function with other
logic.  So factor out force_sig_perf to reduce the cognative
load of on reviewers, maintainers and implementors.

v1: https://lkml.kernel.org/r/m17dkjqqxz.fsf_-_@fess.ebiederm.org
v2: https://lkml.kernel.org/r/20210505141101.11519-10-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20210517195748.8880-3-ebiederm@xmission.com
Reviewed-by: Marco Elver <elver@google.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-05-18 16:20:54 -05:00
Eric W. Biederman
9abcabe311 signal: Implement SIL_FAULT_TRAPNO
Now that si_trapno is part of the union in _si_fault and available on
all architectures, add SIL_FAULT_TRAPNO and update siginfo_layout to
return SIL_FAULT_TRAPNO when the code assumes si_trapno is valid.

There is room for future changes to reduce when si_trapno is valid but
this is all that is needed to make si_trapno and the other members of
the the union in _sigfault mutually exclusive.

Update the code that uses siginfo_layout to deal with SIL_FAULT_TRAPNO
and have the same code ignore si_trapno in in all other cases.

v1: https://lkml.kernel.org/r/m1o8dvs7s7.fsf_-_@fess.ebiederm.org
v2: https://lkml.kernel.org/r/20210505141101.11519-6-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20210517195748.8880-2-ebiederm@xmission.com
Reviewed-by: Marco Elver <elver@google.com>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-05-18 16:20:34 -05:00
Eric W. Biederman
add0b32ef9 siginfo: Move si_trapno inside the union inside _si_fault
It turns out that linux uses si_trapno very sparingly, and as such it
can be considered extra information for a very narrow selection of
signals, rather than information that is present with every fault
reported in siginfo.

As such move si_trapno inside the union inside of _si_fault.  This
results in no change in placement, and makes it eaiser
to extend _si_fault in the future as this reduces the number of
special cases.  In particular with si_trapno included in the union it
is no longer a concern that the union must be pointer aligned on most
architectures because the union follows immediately after si_addr
which is a pointer.

This change results in a difference in siginfo field placement on
sparc and alpha for the fields si_addr_lsb, si_lower, si_upper,
si_pkey, and si_perf.  These architectures do not implement the
signals that would use si_addr_lsb, si_lower, si_upper, si_pkey, and
si_perf.  Further these architecture have not yet implemented the
userspace that would use si_perf.

The point of this change is in fact to correct these placement issues
before sparc or alpha grow userspace that cares.  This change was
discussed[1] and the agreement is that this change is currently safe.

[1]: https://lkml.kernel.org/r/CAK8P3a0+uKYwL1NhY6Hvtieghba2hKYGD6hcKx5n8=4Gtt+pHA@mail.gmail.com
Acked-by: Marco Elver <elver@google.com>
v1: https://lkml.kernel.org/r/m1tunns7yf.fsf_-_@fess.ebiederm.org
v2: https://lkml.kernel.org/r/20210505141101.11519-5-ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20210517195748.8880-1-ebiederm@xmission.com
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-05-18 16:17:03 -05:00
Alexey Gladkov
d646969055 Reimplement RLIMIT_SIGPENDING on top of ucounts
The rlimit counter is tied to uid in the user_namespace. This allows
rlimit values to be specified in userns even if they are already
globally exceeded by the user. However, the value of the previous
user_namespaces cannot be exceeded.

Changelog

v11:
* Revert most of changes to fix performance issues.

v10:
* Fix memory leak on get_ucounts failure.

Signed-off-by: Alexey Gladkov <legion@kernel.org>
Link: https://lkml.kernel.org/r/df9d7764dddd50f28616b7840de74ec0f81711a8.1619094428.git.legion@kernel.org
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
2021-04-30 14:14:02 -05:00
Linus Torvalds
16b3d0cf5b Scheduler updates for this cycle are:
- Clean up SCHED_DEBUG: move the decades old mess of sysctl, procfs and debugfs interfaces
    to a unified debugfs interface.
 
  - Signals: Allow caching one sigqueue object per task, to improve performance & latencies.
 
  - Improve newidle_balance() irq-off latencies on systems with a large number of CPU cgroups.
 
  - Improve energy-aware scheduling
 
  - Improve the PELT metrics for certain workloads
 
  - Reintroduce select_idle_smt() to improve load-balancing locality - but without the previous
    regressions
 
  - Add 'scheduler latency debugging': warn after long periods of pending need_resched. This
    is an opt-in feature that requires the enabling of the LATENCY_WARN scheduler feature,
    or the use of the resched_latency_warn_ms=xx boot parameter.
 
  - CPU hotplug fixes for HP-rollback, and for the 'fail' interface. Fix remaining
    balance_push() vs. hotplug holes/races
 
  - PSI fixes, plus allow /proc/pressure/ files to be written by CAP_SYS_RESOURCE tasks as well
 
  - Fix/improve various load-balancing corner cases vs. capacity margins
 
  - Fix sched topology on systems with NUMA diameter of 3 or above
 
  - Fix PF_KTHREAD vs to_kthread() race
 
  - Minor rseq optimizations
 
  - Misc cleanups, optimizations, fixes and smaller updates
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmCJInsRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1i5XxAArh0b+fwXlkVGzTUly7HQjhU7lFbChnmF
 h6ToyNLi6pXoZ14VC/WoRIME+RzK3gmw9cEFaSLVPxbkbekTcyWS78kqmcg1/j2v
 kO/20QhXobiIxVskYfoMmqSavZ5mKhMWBqtFXkCuYfxwGylas0VVdh3AZLJ7N21G
 WEoFh99pVULwWnPHxM2ZQ87Ex9BkGKbsBTswxWpprCfXLqD0N2hHlABpwJP78zRf
 VniWFOcC7lslILCFawb7CqGgAwbgV85nDRS4QCuCKisrkFywvjJrEeu/W+h1NfhF
 d6ves/osNdEAM1DSALoxwEA42An8l8xh8NyJnl8JZV00LW0DM108O5/7pf5Zcryc
 RHV3RxA7skgezBh5uThvo60QzNK+kVMatI4qpQEHxLE52CaDl/fBu1Cgb/VUxnIl
 AEBfyiFbk+skHpuMFKtl30Tx3M+yJKMTzFPd4kYjHYGEDwtAcXcB3dJQW48A79i3
 H3IWcDcXpk5Rjo2UZmaXdt/qlj7mP6U0xdOUq8ZK6JOC4uY9skszVGsfuNN9QQ5u
 2E2YKKVrGFoQydl4C8R6A7axL2VzIJszHFZNipd8E3YOyW7PWRAkr02tOOkBTj8N
 dLMcNM7aPJWqEYiEIjEzGQN20pweJ1dRA29LDuOswKh+7W2bWTQFh6F2Q8Haansc
 RVg5PDzl+Mc=
 =E7mz
 -----END PGP SIGNATURE-----

Merge tag 'sched-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler updates from Ingo Molnar:

 - Clean up SCHED_DEBUG: move the decades old mess of sysctl, procfs and
   debugfs interfaces to a unified debugfs interface.

 - Signals: Allow caching one sigqueue object per task, to improve
   performance & latencies.

 - Improve newidle_balance() irq-off latencies on systems with a large
   number of CPU cgroups.

 - Improve energy-aware scheduling

 - Improve the PELT metrics for certain workloads

 - Reintroduce select_idle_smt() to improve load-balancing locality -
   but without the previous regressions

 - Add 'scheduler latency debugging': warn after long periods of pending
   need_resched. This is an opt-in feature that requires the enabling of
   the LATENCY_WARN scheduler feature, or the use of the
   resched_latency_warn_ms=xx boot parameter.

 - CPU hotplug fixes for HP-rollback, and for the 'fail' interface. Fix
   remaining balance_push() vs. hotplug holes/races

 - PSI fixes, plus allow /proc/pressure/ files to be written by
   CAP_SYS_RESOURCE tasks as well

 - Fix/improve various load-balancing corner cases vs. capacity margins

 - Fix sched topology on systems with NUMA diameter of 3 or above

 - Fix PF_KTHREAD vs to_kthread() race

 - Minor rseq optimizations

 - Misc cleanups, optimizations, fixes and smaller updates

* tag 'sched-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (61 commits)
  cpumask/hotplug: Fix cpu_dying() state tracking
  kthread: Fix PF_KTHREAD vs to_kthread() race
  sched/debug: Fix cgroup_path[] serialization
  sched,psi: Handle potential task count underflow bugs more gracefully
  sched: Warn on long periods of pending need_resched
  sched/fair: Move update_nohz_stats() to the CONFIG_NO_HZ_COMMON block to simplify the code & fix an unused function warning
  sched/debug: Rename the sched_debug parameter to sched_verbose
  sched,fair: Alternative sched_slice()
  sched: Move /proc/sched_debug to debugfs
  sched,debug: Convert sysctl sched_domains to debugfs
  debugfs: Implement debugfs_create_str()
  sched,preempt: Move preempt_dynamic to debug.c
  sched: Move SCHED_DEBUG sysctl to debugfs
  sched: Don't make LATENCYTOP select SCHED_DEBUG
  sched: Remove sched_schedstats sysctl out from under SCHED_DEBUG
  sched/numa: Allow runtime enabling/disabling of NUMA balance without SCHED_DEBUG
  sched: Use cpu_dying() to fix balance_push vs hotplug-rollback
  cpumask: Introduce DYING mask
  cpumask: Make cpu_{online,possible,present,active}() inline
  rseq: Optimise rseq_get_rseq_cs() and clear_rseq_cs()
  ...
2021-04-28 13:33:57 -07:00
Linus Torvalds
42dec9a936 Perf events changes in this cycle were:
- Improve Intel uncore PMU support:
 
      - Parse uncore 'discovery tables' - a new hardware capability enumeration method
        introduced on the latest Intel platforms. This table is in a well-defined PCI
        namespace location and is read via MMIO. It is organized in an rbtree.
 
        These uncore tables will allow the discovery of standard counter blocks, but
        fancier counters still need to be enumerated explicitly.
 
      - Add Alder Lake support
 
      - Improve IIO stacks to PMON mapping support on Skylake servers
 
  - Add Intel Alder Lake PMU support - which requires the introduction of 'hybrid' CPUs
    and PMUs. Alder Lake is a mix of Golden Cove ('big') and Gracemont ('small' - Atom derived)
    cores.
 
    The CPU-side feature set is entirely symmetrical - but on the PMU side there's
    core type dependent PMU functionality.
 
  - Reduce data loss with CPU level hardware tracing on Intel PT / AUX profiling, by
    fixing the AUX allocation watermark logic.
 
  - Improve ring buffer allocation on NUMA systems
 
  - Put 'struct perf_event' into their separate kmem_cache pool
 
  - Add support for synchronous signals for select perf events. The immediate motivation
    is to support low-overhead sampling-based race detection for user-space code. The
    feature consists of the following main changes:
 
     - Add thread-only event inheritance via perf_event_attr::inherit_thread, which limits
       inheritance of events to CLONE_THREAD.
 
     - Add the ability for events to not leak through exec(), via perf_event_attr::remove_on_exec.
 
     - Allow the generation of SIGTRAP via perf_event_attr::sigtrap, extend siginfo with an u64
       ::si_perf, and add the breakpoint information to ::si_addr and ::si_perf if the event is
       PERF_TYPE_BREAKPOINT.
 
    The siginfo support is adequate for breakpoints right now - but the new field can be used
    to introduce support for other types of metadata passed over siginfo as well.
 
  - Misc fixes, cleanups and smaller updates.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmCJGpERHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1j9zBAAuVbG2snV6SBSdXLhQcM66N3NckOXvSY5
 QjjhQcuwJQEK/NJB3266K5d8qSmdyRBsWf3GCsrmyBT67P1V28K44Pu7oCV0UDtf
 mpVRjEP0oR7hNsANSSgo8Fa4ZD7H5waX7dK7925Tvw8By3mMoZoddiD/84WJHhxO
 NDF+GRFaRj+/dpbhV8cdCoXTjYdkC36vYuZs3b9lu0tS9D/AJgsNy7TinLvO02Cs
 5peP+2y29dgvCXiGBiuJtEA6JyGnX3nUJCvfOZZ/DWDc3fdduARlRrc5Aiq4n/wY
 UdSkw1VTZBlZ1wMSdmHQVeC5RIH3uWUtRoNqy0Yc90lBm55AQ0EENwIfWDUDC5zy
 USdBqWTNWKMBxlEilUIyqKPQK8LW/31TRzqy8BWKPNcZt5yP5YS1SjAJRDDjSwL/
 I+OBw1vjLJamYh8oNiD5b+VLqNQba81jFASfv+HVWcULumnY6ImECCpkg289Fkpi
 BVR065boifJDlyENXFbvTxyMBXQsZfA+EhtxG7ju2Ni+TokBbogyCb3L2injPt9g
 7jjtTOqmfad4gX1WSc+215iYZMkgECcUd9E+BfOseEjBohqlo7yNKIfYnT8mE/Xq
 nb7eHjyvLiE8tRtZ+7SjsujOMHv9LhWFAbSaxU/kEVzpkp0zyd6mnnslDKaaHLhz
 goUMOL/D0lg=
 =NhQ7
 -----END PGP SIGNATURE-----

Merge tag 'perf-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull perf event updates from Ingo Molnar:

 - Improve Intel uncore PMU support:

     - Parse uncore 'discovery tables' - a new hardware capability
       enumeration method introduced on the latest Intel platforms. This
       table is in a well-defined PCI namespace location and is read via
       MMIO. It is organized in an rbtree.

       These uncore tables will allow the discovery of standard counter
       blocks, but fancier counters still need to be enumerated
       explicitly.

     - Add Alder Lake support

     - Improve IIO stacks to PMON mapping support on Skylake servers

 - Add Intel Alder Lake PMU support - which requires the introduction of
   'hybrid' CPUs and PMUs. Alder Lake is a mix of Golden Cove ('big')
   and Gracemont ('small' - Atom derived) cores.

   The CPU-side feature set is entirely symmetrical - but on the PMU
   side there's core type dependent PMU functionality.

 - Reduce data loss with CPU level hardware tracing on Intel PT / AUX
   profiling, by fixing the AUX allocation watermark logic.

 - Improve ring buffer allocation on NUMA systems

 - Put 'struct perf_event' into their separate kmem_cache pool

 - Add support for synchronous signals for select perf events. The
   immediate motivation is to support low-overhead sampling-based race
   detection for user-space code. The feature consists of the following
   main changes:

     - Add thread-only event inheritance via
       perf_event_attr::inherit_thread, which limits inheritance of
       events to CLONE_THREAD.

     - Add the ability for events to not leak through exec(), via
       perf_event_attr::remove_on_exec.

     - Allow the generation of SIGTRAP via perf_event_attr::sigtrap,
       extend siginfo with an u64 ::si_perf, and add the breakpoint
       information to ::si_addr and ::si_perf if the event is
       PERF_TYPE_BREAKPOINT.

   The siginfo support is adequate for breakpoints right now - but the
   new field can be used to introduce support for other types of
   metadata passed over siginfo as well.

 - Misc fixes, cleanups and smaller updates.

* tag 'perf-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
  signal, perf: Add missing TRAP_PERF case in siginfo_layout()
  signal, perf: Fix siginfo_t by avoiding u64 on 32-bit architectures
  perf/x86: Allow for 8<num_fixed_counters<16
  perf/x86/rapl: Add support for Intel Alder Lake
  perf/x86/cstate: Add Alder Lake CPU support
  perf/x86/msr: Add Alder Lake CPU support
  perf/x86/intel/uncore: Add Alder Lake support
  perf: Extend PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
  perf/x86/intel: Add Alder Lake Hybrid support
  perf/x86: Support filter_match callback
  perf/x86/intel: Add attr_update for Hybrid PMUs
  perf/x86: Add structures for the attributes of Hybrid PMUs
  perf/x86: Register hybrid PMUs
  perf/x86: Factor out x86_pmu_show_pmu_cap
  perf/x86: Remove temporary pmu assignment in event_init
  perf/x86/intel: Factor out intel_pmu_check_extra_regs
  perf/x86/intel: Factor out intel_pmu_check_event_constraints
  perf/x86/intel: Factor out intel_pmu_check_num_counters
  perf/x86: Hybrid PMU support for extra_regs
  perf/x86: Hybrid PMU support for event constraints
  ...
2021-04-28 13:03:44 -07:00
Linus Torvalds
eb6bbacc46 Livepatching changes for 5.13
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEESH4wyp42V4tXvYsjUqAMR0iAlPIFAmCIF5EACgkQUqAMR0iA
 lPIABA/+MstVI15QFRD50xo/TyGUP3r7NZmU7BTbhzshSW2XkXFiWNn73VeULhZ8
 CDXf8bKuD2tIQTq30+RMRqmSUSN00mXepupA1eVeyKoUYqXzNsEU6oQBRQ3wKYQY
 HrvbcJtIMNC10G7TUIgltiqKsi5538YIfWn5EBN9wvxyHvnJQ/RzNS1OBIaDx+vV
 04E/65P+gcrNMBRXB03/Vl2KBfJQKb4Hj78Yo9puq6kJmV3uHmHgv2adYGT/veG/
 2o+cigfJS1uLg6vCiJC9bBkQgNJUj/3p+6EaVBFfgpZ1ddKW9AVEQMv2PDvaWCuR
 BKwuawobHl1eHgCPS+dofZMFZ0LT+z0pnf8jpduLmbcKFbHYaWLwmPjwFwSQNJ6e
 zqM91pnwRUkSVXmboxubcNHbioRFXhvIiswxHHbrzS4BBs3mXfSEnMRlbB75iKuJ
 cazVRP6u+ukg7XZhtsL2/8UYXOJ4bbIF7R9B/DM5o4zJD2gs9fRCkfDrp2n0Twtu
 x7NffZAAmlqBQ+7c9d/eEkZmzpkX76gRwUC/IvwJRIs+jOHfEehe+tPuqDlWN19b
 vM0a+kup0n8T/ZCfLeK8PLayjm8/hnNg2CK970zlovEKAdCIMovJHUJjnXboSx/n
 +4R/DH3LUG3TJo+rMKLCOZt9/ph2YC1ySTmOXv9GkE0VlsCn95c=
 =ZMd+
 -----END PGP SIGNATURE-----

Merge tag 'livepatching-for-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/livepatching/livepatching

Pull livepatching update from Petr Mladek:

 - Use TIF_NOTIFY_SIGNAL infrastructure instead of the fake signal

* tag 'livepatching-for-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/livepatching/livepatching:
  livepatch: Replace the fake signal sending with TIF_NOTIFY_SIGNAL infrastructure
2021-04-27 18:14:38 -07:00
Marco Elver
ed8e50800b signal, perf: Add missing TRAP_PERF case in siginfo_layout()
Add the missing TRAP_PERF case in siginfo_layout() for interpreting the
layout correctly as SIL_PERF_EVENT instead of just SIL_FAULT. This
ensures the si_perf field is copied and not just the si_addr field.

This was caught and tested by running the perf_events/sigtrap_threads
kselftest as a 32-bit binary with a 64-bit kernel.

Fixes: fb6cc127e0 ("signal: Introduce TRAP_PERF si_code and si_perf to siginfo")
Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210422191823.79012-2-elver@google.com
2021-04-23 09:03:16 +02:00
Ingo Molnar
d0d252b8ca Linux 5.12-rc8
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmB8qHweHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGEXIIAILUbsTJsNsvZIkZ
 uQ6SY6gnsPFkRiSRjY0YsZLUnqjTuiiHeTz4gzkonddwdnAp/9g6OIHIEBaeTqBh
 sTUMU/61Fgtrt/IvkA1yJ3rlawqgwdMe2VdimB+EFhufcSKq+5vpd3MVP4IuGx4E
 J3psoTU4gVltFs5t+1QjvI3XmByN0Qm8FMRXR7iL+zov1QTmGwR3G6Rn4AymG+QT
 pdruKboyZPfsrFGSVx7wd3HpFyQcrclEX9rKmBNZqets9d9JGWnqnEN4vQKmwO86
 4MV29ucdMXH0AMB3kzGdVp0Ji2Ykt5W0K+MUWbFLtcSxnpu1OyBKGsEAMlRbD7ik
 gm0bMSw=
 =qHI0
 -----END PGP SIGNATURE-----

Merge tag 'v5.12-rc8' into sched/core, to pick up fixes

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2021-04-20 10:13:58 +02:00
Marco Elver
fb6cc127e0 signal: Introduce TRAP_PERF si_code and si_perf to siginfo
Introduces the TRAP_PERF si_code, and associated siginfo_t field
si_perf. These will be used by the perf event subsystem to send signals
(if requested) to the task where an event occurred.

Signed-off-by: Marco Elver <elver@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> # m68k
Acked-by: Arnd Bergmann <arnd@arndb.de> # asm-generic
Link: https://lkml.kernel.org/r/20210408103605.1676875-6-elver@google.com
2021-04-16 16:32:41 +02:00
Thomas Gleixner
4bad58ebc8 signal: Allow tasks to cache one sigqueue struct
The idea for this originates from the real time tree to make signal
delivery for realtime applications more efficient. In quite some of these
application scenarios a control tasks signals workers to start their
computations. There is usually only one signal per worker on flight.  This
works nicely as long as the kmem cache allocations do not hit the slow path
and cause latencies.

To cure this an optimistic caching was introduced (limited to RT tasks)
which allows a task to cache a single sigqueue in a pointer in task_struct
instead of handing it back to the kmem cache after consuming a signal. When
the next signal is sent to the task then the cached sigqueue is used
instead of allocating a new one. This solved the problem for this set of
application scenarios nicely.

The task cache is not preallocated so the first signal sent to a task goes
always to the cache allocator. The cached sigqueue stays around until the
task exits and is freed when task::sighand is dropped.

After posting this solution for mainline the discussion came up whether
this would be useful in general and should not be limited to realtime
tasks: https://lore.kernel.org/r/m11rcu7nbr.fsf@fess.ebiederm.org

One concern leading to the original limitation was to avoid a large amount
of pointlessly cached sigqueues in alive tasks. The other concern was
vs. RLIMIT_SIGPENDING as these cached sigqueues are not accounted for.

The accounting problem is real, but on the other hand slightly academic.
After gathering some statistics it turned out that after boot of a regular
distro install there are less than 10 sigqueues cached in ~1500 tasks.

In case of a 'mass fork and fire signal to child' scenario the extra 80
bytes of memory per task are well in the noise of the overall memory
consumption of the fork bomb.

If this should be limited then this would need an extra counter in struct
user, more atomic instructions and a seperate rlimit. Yet another tunable
which is mostly unused.

The caching is actually used. After boot and a full kernel compile on a
64CPU machine with make -j128 the number of 'allocations' looks like this:

  From slab:	   23996
  From task cache: 52223

I.e. it reduces the number of slab cache operations by ~68%.

A typical pattern there is:

<...>-58490 __sigqueue_alloc:  for 58488 from slab ffff8881132df460
<...>-58488 __sigqueue_free:   cache ffff8881132df460
<...>-58488 __sigqueue_alloc:  for 1149 from cache ffff8881103dc550
  bash-1149 exit_task_sighand: free ffff8881132df460
  bash-1149 __sigqueue_free:   cache ffff8881103dc550

The interesting sequence is that the exiting task 58488 grabs the sigqueue
from bash's task cache to signal exit and bash sticks it back into it's own
cache. Lather, rinse and repeat.

The caching is probably not noticable for the general use case, but the
benefit for latency sensitive applications is clear. While kmem caches are
usually just serving from the fast path the slab merging (default) can
depending on the usage pattern of the merged slabs cause occasional slow
path allocations.

The time spared per cached entry is a few micro seconds per signal which is
not relevant for e.g. a kernel build, but for signal heavy workloads it's
measurable.

As there is no real downside of this caching mechanism making it
unconditionally available is preferred over more conditional code or new
magic tunables.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lkml.kernel.org/r/87sg4lbmxo.fsf@nanos.tec.linutronix.de
2021-04-14 18:04:08 +02:00
Thomas Gleixner
69995ebbb9 signal: Hand SIGQUEUE_PREALLOC flag to __sigqueue_alloc()
There is no point in having the conditional at the callsite.

Just hand in the allocation mode flag to __sigqueue_alloc() and use it to
initialize sigqueue::flags.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210322092258.898677147@linutronix.de
2021-04-14 18:04:08 +02:00
Miroslav Benes
8df1947c71 livepatch: Replace the fake signal sending with TIF_NOTIFY_SIGNAL infrastructure
Livepatch sends a fake signal to all remaining blocking tasks of a
running transition after a set period of time. It uses TIF_SIGPENDING
flag for the purpose. Commit 12db8b6900 ("entry: Add support for
TIF_NOTIFY_SIGNAL") added a generic infrastructure to achieve the same.
Replace our bespoke solution with the generic one.

Reviewed-by: Jens Axboe <axboe@kernel.dk>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Acked-by: Joe Lawrence <joe.lawrence@redhat.com>
Signed-off-by: Miroslav Benes <mbenes@suse.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
2021-03-30 09:40:21 +02:00
Jens Axboe
1e4cf0d3d0 Revert "signal: don't allow STOP on PF_IO_WORKER threads"
This reverts commit 4db4b1a0d1.

The IO threads allow and handle SIGSTOP now, so don't special case them
anymore in task_set_jobctl_pending().

Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-03-27 14:09:11 -06:00
Jens Axboe
e8b33b8cfa Revert "kernel: treat PF_IO_WORKER like PF_KTHREAD for ptrace/signals"
This reverts commit 6fb8f43ced.

The IO threads do allow signals now, including SIGSTOP, and we can allow
ptrace attach. Attaching won't reveal anything interesting for the IO
threads, but it will allow eg gdb to attach to a task with io_urings
and IO threads without complaining. And once attached, it will allow
the usual introspection into regular threads.

Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-03-27 14:09:10 -06:00
Jens Axboe
5a842a7448 Revert "signal: don't allow sending any signals to PF_IO_WORKER threads"
This reverts commit 5be28c8f85.

IO threads now take signals just fine, so there's no reason to limit them
specifically. Revert the change that prevented that from happening.

Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-03-27 14:09:10 -06:00
Jens Axboe
10442994ba kernel: don't call do_exit() for PF_IO_WORKER threads
Right now we're never calling get_signal() from PF_IO_WORKER threads, but
in preparation for doing so, don't handle a fatal signal for them. The
workers have state they need to cleanup when exiting, so just return
instead of calling do_exit() on their behalf. The threads themselves will
detect a fatal signal and do proper shutdown.

Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-03-26 16:10:14 -06:00
Eric W. Biederman
4db4b1a0d1 signal: don't allow STOP on PF_IO_WORKER threads
Just like we don't allow normal signals to IO threads, don't deliver a
STOP to a task that has PF_IO_WORKER set. The IO threads don't take
signals in general, and have no means of flushing out a stop either.

Longer term, we may want to look into allowing stop of these threads,
as it relates to eg process freezing. For now, this prevents a spin
issue if a SIGSTOP is delivered to the parent task.

Reported-by: Stefan Metzmacher <metze@samba.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-03-21 09:41:07 -06:00
Jens Axboe
5be28c8f85 signal: don't allow sending any signals to PF_IO_WORKER threads
They don't take signals individually, and even if they share signals with
the parent task, don't allow them to be delivered through the worker
thread. Linux does allow this kind of behavior for regular threads, but
it's really a compatability thing that we need not care about for the IO
threads.

Reported-by: Stefan Metzmacher <metze@samba.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-03-21 09:39:32 -06:00
Jens Axboe
6fb8f43ced kernel: treat PF_IO_WORKER like PF_KTHREAD for ptrace/signals
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-02-21 17:25:22 -07:00
Linus Torvalds
c509ce2378 for-linus-2021-01-24
-----BEGIN PGP SIGNATURE-----
 
 iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCYA1opwAKCRCRxhvAZXjc
 osnpAP4wjExvtwgh1eA7IgBPtAFzL1EPK2lrv7WM6yuMJNh23wEAxU+quoNrBT7U
 R5UQvmXi2SwxjeGXR/BTLq/HU9rSJA4=
 =6YJX
 -----END PGP SIGNATURE-----

Merge tag 'for-linus-2021-01-24' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux

Pull misc fixes from Christian Brauner:

 - Jann reported sparse complaints because of a missing __user
   annotation in a helper we added way back when we added
   pidfd_send_signal() to avoid compat syscall handling. Fix it.

 - Yanfei replaces a reference in a comment to the _do_fork() helper I
   removed a while ago with a reference to the new kernel_clone()
   replacement

 - Alexander Guril added a simple coding style fix

* tag 'for-linus-2021-01-24' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux:
  kthread: remove comments about old _do_fork() helper
  Kernel: fork.c: Fix coding style: Do not use {} around single-line statements
  signal: Add missing __user annotation to copy_siginfo_from_user_any
2021-01-24 09:35:28 -08:00
Jann Horn
adc5d87572
signal: Add missing __user annotation to copy_siginfo_from_user_any
copy_siginfo_from_user_any() takes a userspace pointer as second
argument; annotate the parameter type accordingly.

Signed-off-by: Jann Horn <jannh@google.com>
Link: https://lore.kernel.org/r/20201207000252.138564-1-jannh@google.com
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
2021-01-11 12:55:00 +01:00
Jens Axboe
35d0b389f3 task_work: unconditionally run task_work from get_signal()
Song reported a boot regression in a kvm image with 5.11-rc, and bisected
it down to the below patch. Debugging this issue, turns out that the boot
stalled when a task is waiting on a pipe being released. As we no longer
run task_work from get_signal() unless it's queued with TWA_SIGNAL, the
task goes idle without running the task_work. This prevents ->release()
from being called on the pipe, which another boot task is waiting on.

For now, re-instate the unconditional task_work run from get_signal().
For 5.12, we'll collapse TWA_RESUME and TWA_SIGNAL, as it no longer
makes sense to have a distinction between the two. This will turn
task_work notification into a simple boolean, whether to notify or not.

Fixes: 98b89b649f ("signal: kill JOBCTL_TASK_WORK")
Reported-by: Song Liu <songliubraving@fb.com>
Tested-by: John Stultz <john.stultz@linaro.org>
Tested-by: Douglas Anderson <dianders@chromium.org>
Tested-by: Sedat Dilek <sedat.dilek@gmail.com> # LLVM/Clang version 11.0.1
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-01-08 09:14:21 -07:00
Linus Torvalds
005b2a9dc8 tif-task_work.arch-2020-12-14
-----BEGIN PGP SIGNATURE-----
 
 iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAl/YJxsQHGF4Ym9lQGtl
 cm5lbC5kawAKCRD301j7KXHgpjpyEACBdW+YjenjTbkUPeEXzQgkBkTZUYw3g007
 DPcUT1g8PQZXYXlQvBKCvGhhIr7/KVcjepKoowiNQfBNGcIPJTVopW58nzpqAfTQ
 goI2WYGn5EKFFKBPvtH04cJD/Wo8muXdxynKtqyZbnGGgZjQxPrE259b8dpHjBSR
 6L7HHkk0D1oU/5b6h6Ocpg9mc/0iIUCZylySAYY3eGO0JaVPJaXgZSJZYgHxCHll
 Lb+/y/fXdtm/0PmQ3ko0ev54g3yEWqZIX0NsZW1asrButIy+KLzQ2Mz1xFLFDMag
 prtIfwb8tzgc4dFPY090C/azjCh5CPpxqYS6FkRwS0p86n6OhkyXrqfily5Hs4/B
 NC7CBPBSH/j+NKUK7CYZcpTzTpxPjUr9p0anUdlvMJz8FhTb/3YEEZ1UTeWOeHmk
 Yo5SxnFghLeZZeZ1ok6rdymnVa7WEX12SCLGQX31BB2mld0tNbKb4b+FsBF6OUMk
 IUaX6OjwDFVRaysC88BQ4hjcIP1HxsViG4/VZDX15gjAAH2Pvb+7tev+lcDcOhjz
 TCD4GNFspTFzRhh9nT7oxQ679qCh9G9zHbzuIRewnrS6iqvo5SJQB3dR2yrWZRRH
 ySkQFiHpYOlnLJYv0jg9COlGwo2FUdcvKhCvkjQKKBz48rzW/IC0LwKdRQWZDFk3
 FKGzP/NBig==
 =cadT
 -----END PGP SIGNATURE-----

Merge tag 'tif-task_work.arch-2020-12-14' of git://git.kernel.dk/linux-block

Pull TIF_NOTIFY_SIGNAL updates from Jens Axboe:
 "This sits on top of of the core entry/exit and x86 entry branch from
  the tip tree, which contains the generic and x86 parts of this work.

  Here we convert the rest of the archs to support TIF_NOTIFY_SIGNAL.

  With that done, we can get rid of JOBCTL_TASK_WORK from task_work and
  signal.c, and also remove a deadlock work-around in io_uring around
  knowing that signal based task_work waking is invoked with the sighand
  wait queue head lock.

  The motivation for this work is to decouple signal notify based
  task_work, of which io_uring is a heavy user of, from sighand. The
  sighand lock becomes a huge contention point, particularly for
  threaded workloads where it's shared between threads. Even outside of
  threaded applications it's slower than it needs to be.

  Roman Gershman <romger@amazon.com> reported that his networked
  workload dropped from 1.6M QPS at 80% CPU to 1.0M QPS at 100% CPU
  after io_uring was changed to use TIF_NOTIFY_SIGNAL. The time was all
  spent hammering on the sighand lock, showing 57% of the CPU time there
  [1].

  There are further cleanups possible on top of this. One example is
  TIF_PATCH_PENDING, where a patch already exists to use
  TIF_NOTIFY_SIGNAL instead. Hopefully this will also lead to more
  consolidation, but the work stands on its own as well"

[1] https://github.com/axboe/liburing/issues/215

* tag 'tif-task_work.arch-2020-12-14' of git://git.kernel.dk/linux-block: (28 commits)
  io_uring: remove 'twa_signal_ok' deadlock work-around
  kernel: remove checking for TIF_NOTIFY_SIGNAL
  signal: kill JOBCTL_TASK_WORK
  io_uring: JOBCTL_TASK_WORK is no longer used by task_work
  task_work: remove legacy TWA_SIGNAL path
  sparc: add support for TIF_NOTIFY_SIGNAL
  riscv: add support for TIF_NOTIFY_SIGNAL
  nds32: add support for TIF_NOTIFY_SIGNAL
  ia64: add support for TIF_NOTIFY_SIGNAL
  h8300: add support for TIF_NOTIFY_SIGNAL
  c6x: add support for TIF_NOTIFY_SIGNAL
  alpha: add support for TIF_NOTIFY_SIGNAL
  xtensa: add support for TIF_NOTIFY_SIGNAL
  arm: add support for TIF_NOTIFY_SIGNAL
  microblaze: add support for TIF_NOTIFY_SIGNAL
  hexagon: add support for TIF_NOTIFY_SIGNAL
  csky: add support for TIF_NOTIFY_SIGNAL
  openrisc: add support for TIF_NOTIFY_SIGNAL
  sh: add support for TIF_NOTIFY_SIGNAL
  um: add support for TIF_NOTIFY_SIGNAL
  ...
2020-12-16 12:33:35 -08:00
Linus Torvalds
1ac0884d54 A set of updates for entry/exit handling:
- More generalization of entry/exit functionality
 
  - The consolidation work to reclaim TIF flags on x86 and also for non-x86
    specific TIF flags which are solely relevant for syscall related work
    and have been moved into their own storage space. The x86 specific part
    had to be merged in to avoid a major conflict.
 
  - The TIF_NOTIFY_SIGNAL work which replaces the inefficient signal
    delivery mode of task work and results in an impressive performance
    improvement for io_uring. The non-x86 consolidation of this is going to
    come seperate via Jens.
 
  - The selective syscall redirection facility which provides a clean and
    efficient way to support the non-Linux syscalls of WINE by catching them
    at syscall entry and redirecting them to the user space emulation. This
    can be utilized for other purposes as well and has been designed
    carefully to avoid overhead for the regular fastpath. This includes the
    core changes and the x86 support code.
 
  - Simplification of the context tracking entry/exit handling for the users
    of the generic entry code which guarantee the proper ordering and
    protection.
 
  - Preparatory changes to make the generic entry code accomodate S390
    specific requirements which are mostly related to their syscall restart
    mechanism.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl/XoPoTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoe0tD/4jSKHIogVM9kVpiYfwjDGS1NluaBXn
 71ZoASbX9GZebyGandMyF2QP1iJ24ZO0RztBwHEVH6fyomKB2iFNedssCpO9yfWV
 3eFRpOvMpbszY2W2bd0QG3GrqaTttjVfB4ahkGLzqeSbchdob6hZpNDYtBZnujA6
 GSnrrurfJkCGoQny+yJQYdQJXQU+BIX90B2a2Q+jW123Luy/iHXC1f/krZSA1m14
 fC9xYLSUjPphTzh2ZOW+C3DgdjOL5PfAm/6F+DArt4GtLgrEGD7R74aLSFhvetky
 dn5QtG+yAsz1i0cc5Wu/JBcT9tOkY92rPYSyLI9bYQUSQ/bMyuprz6oYKj3dubsu
 ZSsKPdkNFPIniL4fLdCMWZcIXX5xgnrxKjdgXZXW3gtrcxSns8w8uED3Sh7dgE08
 pgIeq67E5g/OB8kJXH1VxdewmeQb9cOmnzzHwNO7TrrGbBKjDTYHNdYOKf1dUTTK
 ZX1UjLfGwxTkMYAbQD1k0JGZ2OLRshzSaH5BW/ZKa3bvJW6yYOq+/YT8B8hbJ8U3
 vThlO75/55IJxS5r5Y3vZd/IHdsYbPuETD+TA8tNYtPqNZasW8nnk4TYctWqzDuO
 /Ka1wvWYid3c6ySznQn4zSyRjr968AfHeZ9YTUMhWufy5waXVmdBMG41u3IKfsVt
 osyzNc4EK19/Mg==
 =hsjV
 -----END PGP SIGNATURE-----

Merge tag 'core-entry-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull core entry/exit updates from Thomas Gleixner:
 "A set of updates for entry/exit handling:

   - More generalization of entry/exit functionality

   - The consolidation work to reclaim TIF flags on x86 and also for
     non-x86 specific TIF flags which are solely relevant for syscall
     related work and have been moved into their own storage space. The
     x86 specific part had to be merged in to avoid a major conflict.

   - The TIF_NOTIFY_SIGNAL work which replaces the inefficient signal
     delivery mode of task work and results in an impressive performance
     improvement for io_uring. The non-x86 consolidation of this is
     going to come seperate via Jens.

   - The selective syscall redirection facility which provides a clean
     and efficient way to support the non-Linux syscalls of WINE by
     catching them at syscall entry and redirecting them to the user
     space emulation. This can be utilized for other purposes as well
     and has been designed carefully to avoid overhead for the regular
     fastpath. This includes the core changes and the x86 support code.

   - Simplification of the context tracking entry/exit handling for the
     users of the generic entry code which guarantee the proper ordering
     and protection.

   - Preparatory changes to make the generic entry code accomodate S390
     specific requirements which are mostly related to their syscall
     restart mechanism"

* tag 'core-entry-2020-12-14' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
  entry: Add syscall_exit_to_user_mode_work()
  entry: Add exit_to_user_mode() wrapper
  entry_Add_enter_from_user_mode_wrapper
  entry: Rename exit_to_user_mode()
  entry: Rename enter_from_user_mode()
  docs: Document Syscall User Dispatch
  selftests: Add benchmark for syscall user dispatch
  selftests: Add kselftest for syscall user dispatch
  entry: Support Syscall User Dispatch on common syscall entry
  kernel: Implement selective syscall userspace redirection
  signal: Expose SYS_USER_DISPATCH si_code type
  x86: vdso: Expose sigreturn address on vdso to the kernel
  MAINTAINERS: Add entry for common entry code
  entry: Fix boot for !CONFIG_GENERIC_ENTRY
  x86: Support HAVE_CONTEXT_TRACKING_OFFSTACK
  context_tracking: Only define schedule_user() on !HAVE_CONTEXT_TRACKING_OFFSTACK archs
  sched: Detect call to schedule from critical entry code
  context_tracking: Don't implement exception_enter/exit() on CONFIG_HAVE_CONTEXT_TRACKING_OFFSTACK
  context_tracking: Introduce HAVE_CONTEXT_TRACKING_OFFSTACK
  x86: Reclaim unused x86 TI flags
  ...
2020-12-14 17:13:53 -08:00
Jens Axboe
e296dc4996 kernel: remove checking for TIF_NOTIFY_SIGNAL
It's available everywhere now, no need to check or add dummy defines.

Signed-off-by: Jens Axboe <axboe@kernel.dk>
2020-12-12 09:17:38 -07:00