Commit Graph

742 Commits

Author SHA1 Message Date
Linus Torvalds
7c0f6ba682 Replace <asm/uaccess.h> with <linux/uaccess.h> globally
This was entirely automated, using the script by Al:

  PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
  sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
        $(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)

to do the replacement at the end of the merge window.

Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-24 11:46:01 -08:00
Linus Torvalds
412ac77a9d Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull namespace updates from Eric Biederman:
 "After a lot of discussion and work we have finally reachanged a basic
  understanding of what is necessary to make unprivileged mounts safe in
  the presence of EVM and IMA xattrs which the last commit in this
  series reflects. While technically it is a revert the comments it adds
  are important for people not getting confused in the future. Clearing
  up that confusion allows us to seriously work on unprivileged mounts
  of fuse in the next development cycle.

  The rest of the fixes in this set are in the intersection of user
  namespaces, ptrace, and exec. I started with the first fix which
  started a feedback cycle of finding additional issues during review
  and fixing them. Culiminating in a fix for a bug that has been present
  since at least Linux v1.0.

  Potentially these fixes were candidates for being merged during the rc
  cycle, and are certainly backport candidates but enough little things
  turned up during review and testing that I decided they should be
  handled as part of the normal development process just to be certain
  there were not any great surprises when it came time to backport some
  of these fixes"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace:
  Revert "evm: Translate user/group ids relative to s_user_ns when computing HMAC"
  exec: Ensure mm->user_ns contains the execed files
  ptrace: Don't allow accessing an undumpable mm
  ptrace: Capture the ptracer's creds not PT_PTRACE_CAP
  mm: Add a user_ns owner to mm_struct and fix ptrace permission checks
2016-12-14 14:09:48 -08:00
Linus Torvalds
7b9dc3f75f Power management material for v4.10-rc1
- New cpufreq driver for Broadcom STB SoCs and a Device Tree binding
    for it (Markus Mayer).
 
  - Support for ARM Integrator/AP and Integrator/CP in the generic
    DT cpufreq driver and elimination of the old Integrator cpufreq
    driver (Linus Walleij).
 
  - Support for the zx296718, r8a7743 and r8a7745, Socionext UniPhier,
    and PXA SoCs in the the generic DT cpufreq driver (Baoyou Xie,
    Geert Uytterhoeven, Masahiro Yamada, Robert Jarzmik).
 
  - cpufreq core fix to eliminate races that may lead to using
    inactive policy objects and related cleanups (Rafael Wysocki).
 
  - cpufreq schedutil governor update to make it use SCHED_FIFO
    kernel threads (instead of regular workqueues) for doing delayed
    work (to reduce the response latency in some cases) and related
    cleanups (Viresh Kumar).
 
  - New cpufreq sysfs attribute for resetting statistics (Markus
    Mayer).
 
  - cpufreq governors fixes and cleanups (Chen Yu, Stratos Karafotis,
    Viresh Kumar).
 
  - Support for using generic cpufreq governors in the intel_pstate
    driver (Rafael Wysocki).
 
  - Support for per-logical-CPU P-state limits and the EPP/EPB
    (Energy Performance Preference/Energy Performance Bias) knobs
    in the intel_pstate driver (Srinivas Pandruvada).
 
  - New CPU ID for Knights Mill in intel_pstate (Piotr Luc).
 
  - intel_pstate driver modification to use the P-state selection
    algorithm based on CPU load on platforms with the system profile
    in the ACPI tables set to "mobile" (Srinivas Pandruvada).
 
  - intel_pstate driver cleanups (Arnd Bergmann, Rafael Wysocki,
    Srinivas Pandruvada).
 
  - cpufreq powernv driver updates including fast switching support
    (for the schedutil governor), fixes and cleanus (Akshay Adiga,
    Andrew Donnellan, Denis Kirjanov).
 
  - acpi-cpufreq driver rework to switch it over to the new CPU
    offline/online state machine (Sebastian Andrzej Siewior).
 
  - Assorted cleanups in cpufreq drivers (Wei Yongjun, Prashanth
    Prakash).
 
  - Idle injection rework (to make it use the regular idle path
    instead of a home-grown custom one) and related powerclamp
    thermal driver updates (Peter Zijlstra, Jacob Pan, Petr Mladek,
    Sebastian Andrzej Siewior).
 
  - New CPU IDs for Atom Z34xx and Knights Mill in intel_idle (Andy
    Shevchenko, Piotr Luc).
 
  - intel_idle driver cleanups and switch over to using the new CPU
    offline/online state machine (Anna-Maria Gleixner, Sebastian
    Andrzej Siewior).
 
  - cpuidle DT driver update to support suspend-to-idle properly
    (Sudeep Holla).
 
  - cpuidle core cleanups and misc updates (Daniel Lezcano, Pan Bian,
    Rafael Wysocki).
 
  - Preliminary support for power domains including CPUs in the
    generic power domains (genpd) framework and related DT bindings
    (Lina Iyer).
 
  - Assorted fixes and cleanups in the generic power domains (genpd)
    framework (Colin Ian King, Dan Carpenter, Geert Uytterhoeven).
 
  - Preliminary support for devices with multiple voltage regulators
    and related fixes and cleanups in the Operating Performance Points
    (OPP) library (Viresh Kumar, Masahiro Yamada, Stephen Boyd).
 
  - System sleep state selection interface rework to make it easier
    to support suspend-to-idle as the default system suspend method
    (Rafael Wysocki).
 
  - PM core fixes and cleanups, mostly related to the interactions
    between the system suspend and runtime PM frameworks (Ulf Hansson,
    Sahitya Tummala, Tony Lindgren).
 
  - Latency tolerance PM QoS framework imorovements (Andrew
    Lutomirski).
 
  - New Knights Mill CPU ID for the Intel RAPL power capping driver
    (Piotr Luc).
 
  - Intel RAPL power capping driver fixes, cleanups and switch over
    to using the new CPU offline/online state machine (Jacob Pan,
    Thomas Gleixner, Sebastian Andrzej Siewior).
 
  - Fixes and cleanups in the exynos-ppmu, exynos-nocp, rk3399_dmc,
    rockchip-dfi devfreq drivers and the devfreq core (Axel Lin,
    Chanwoo Choi, Javier Martinez Canillas, MyungJoo Ham, Viresh
    Kumar).
 
  - Fix for false-positive KASAN warnings during resume from ACPI S3
    (suspend-to-RAM) on x86 (Josh Poimboeuf).
 
  - Memory map verification during resume from hibernation on x86 to
    ensure a consistent address space layout (Chen Yu).
 
  - Wakeup sources debugging enhancement (Xing Wei).
 
  - rockchip-io AVS driver cleanup (Shawn Lin).
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2
 
 iQIcBAABCAAGBQJYTx4+AAoJEILEb/54YlRx9f8P/2SlNHUENW5qh6FtCw00oC2u
 UqJerQJ2L38UgbgxbE/0VYblma9rFABDWC1eO2xN2XdcdW5UPBKPVvNcOgNe1Clh
 gjy3RxZXVpmjfzt2kGfsTLEuGnHqwvx51hTUkeA2LwvkOal45xb8ZESmy8opCtiv
 iG4LwmPHoxdX5Za5nA9ItFKzxyO1EoyNSnBYAVwALDHxmNOfxEcRevfurASt/0M9
 brCCZJA0/sZxeL0lBdy8fNQPIBTUfCoTJG/MtmzGrObJ9wMFvEDfXrVEyZiWs/zA
 AAZ4kQL77enrIKgrLN8e0G6LzTLHoVcvn38Xjf24dKUqhd7ACBhYcnW+jK3+7EAd
 gjZ8efObQsiuyK/EDLUNw35tt96CHOqfrQCj2tIwRVvk9EekLqAGXdIndTCr2kYW
 RpefmP5kMljnm/nQFOVLwMEUQMuVkvUE7EgxADy7DoDmepBFC4ICRDWPye70R2kC
 0O1Tn2PAQq4Fd1tyI9TYYz0YQQkRoaRb5rfYUSzbRbeCdsphUopp4Vhsiyn6IcnF
 XnLbg6pRAat82MoS9n4pfO/VCo8vkErKA8tut9G7TDakkrJoEE7l31PdKW0hP3f6
 sBo6xXy6WTeivU/o/i8TbM6K4mA37pBaj78ooIkWLgg5fzRaS2+0xSPVy2H9x1m5
 LymHcobCK9rSZ1l208Fe
 =vhxI
 -----END PGP SIGNATURE-----

Merge tag 'pm-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm

Pull power management updates from Rafael Wysocki:
 "Again, cpufreq gets more changes than the other parts this time (one
  new driver, one old driver less, a bunch of enhancements of the
  existing code, new CPU IDs, fixes, cleanups)

  There also are some changes in cpuidle (idle injection rework, a
  couple of new CPU IDs, online/offline rework in intel_idle, fixes and
  cleanups), in the generic power domains framework (mostly related to
  supporting power domains containing CPUs), and in the Operating
  Performance Points (OPP) library (mostly related to supporting devices
  with multiple voltage regulators)

  In addition to that, the system sleep state selection interface is
  modified to make it easier for distributions with unchanged user space
  to support suspend-to-idle as the default system suspend method, some
  issues are fixed in the PM core, the latency tolerance PM QoS
  framework is improved a bit, the Intel RAPL power capping driver is
  cleaned up and there are some fixes and cleanups in the devfreq
  subsystem

  Specifics:

   - New cpufreq driver for Broadcom STB SoCs and a Device Tree binding
     for it (Markus Mayer)

   - Support for ARM Integrator/AP and Integrator/CP in the generic DT
     cpufreq driver and elimination of the old Integrator cpufreq driver
     (Linus Walleij)

   - Support for the zx296718, r8a7743 and r8a7745, Socionext UniPhier,
     and PXA SoCs in the the generic DT cpufreq driver (Baoyou Xie,
     Geert Uytterhoeven, Masahiro Yamada, Robert Jarzmik)

   - cpufreq core fix to eliminate races that may lead to using inactive
     policy objects and related cleanups (Rafael Wysocki)

   - cpufreq schedutil governor update to make it use SCHED_FIFO kernel
     threads (instead of regular workqueues) for doing delayed work (to
     reduce the response latency in some cases) and related cleanups
     (Viresh Kumar)

   - New cpufreq sysfs attribute for resetting statistics (Markus Mayer)

   - cpufreq governors fixes and cleanups (Chen Yu, Stratos Karafotis,
     Viresh Kumar)

   - Support for using generic cpufreq governors in the intel_pstate
     driver (Rafael Wysocki)

   - Support for per-logical-CPU P-state limits and the EPP/EPB (Energy
     Performance Preference/Energy Performance Bias) knobs in the
     intel_pstate driver (Srinivas Pandruvada)

   - New CPU ID for Knights Mill in intel_pstate (Piotr Luc)

   - intel_pstate driver modification to use the P-state selection
     algorithm based on CPU load on platforms with the system profile in
     the ACPI tables set to "mobile" (Srinivas Pandruvada)

   - intel_pstate driver cleanups (Arnd Bergmann, Rafael Wysocki,
     Srinivas Pandruvada)

   - cpufreq powernv driver updates including fast switching support
     (for the schedutil governor), fixes and cleanus (Akshay Adiga,
     Andrew Donnellan, Denis Kirjanov)

   - acpi-cpufreq driver rework to switch it over to the new CPU
     offline/online state machine (Sebastian Andrzej Siewior)

   - Assorted cleanups in cpufreq drivers (Wei Yongjun, Prashanth
     Prakash)

   - Idle injection rework (to make it use the regular idle path instead
     of a home-grown custom one) and related powerclamp thermal driver
     updates (Peter Zijlstra, Jacob Pan, Petr Mladek, Sebastian Andrzej
     Siewior)

   - New CPU IDs for Atom Z34xx and Knights Mill in intel_idle (Andy
     Shevchenko, Piotr Luc)

   - intel_idle driver cleanups and switch over to using the new CPU
     offline/online state machine (Anna-Maria Gleixner, Sebastian
     Andrzej Siewior)

   - cpuidle DT driver update to support suspend-to-idle properly
     (Sudeep Holla)

   - cpuidle core cleanups and misc updates (Daniel Lezcano, Pan Bian,
     Rafael Wysocki)

   - Preliminary support for power domains including CPUs in the generic
     power domains (genpd) framework and related DT bindings (Lina Iyer)

   - Assorted fixes and cleanups in the generic power domains (genpd)
     framework (Colin Ian King, Dan Carpenter, Geert Uytterhoeven)

   - Preliminary support for devices with multiple voltage regulators
     and related fixes and cleanups in the Operating Performance Points
     (OPP) library (Viresh Kumar, Masahiro Yamada, Stephen Boyd)

   - System sleep state selection interface rework to make it easier to
     support suspend-to-idle as the default system suspend method
     (Rafael Wysocki)

   - PM core fixes and cleanups, mostly related to the interactions
     between the system suspend and runtime PM frameworks (Ulf Hansson,
     Sahitya Tummala, Tony Lindgren)

   - Latency tolerance PM QoS framework imorovements (Andrew Lutomirski)

   - New Knights Mill CPU ID for the Intel RAPL power capping driver
     (Piotr Luc)

   - Intel RAPL power capping driver fixes, cleanups and switch over to
     using the new CPU offline/online state machine (Jacob Pan, Thomas
     Gleixner, Sebastian Andrzej Siewior)

   - Fixes and cleanups in the exynos-ppmu, exynos-nocp, rk3399_dmc,
     rockchip-dfi devfreq drivers and the devfreq core (Axel Lin,
     Chanwoo Choi, Javier Martinez Canillas, MyungJoo Ham, Viresh Kumar)

   - Fix for false-positive KASAN warnings during resume from ACPI S3
     (suspend-to-RAM) on x86 (Josh Poimboeuf)

   - Memory map verification during resume from hibernation on x86 to
     ensure a consistent address space layout (Chen Yu)

   - Wakeup sources debugging enhancement (Xing Wei)

   - rockchip-io AVS driver cleanup (Shawn Lin)"

* tag 'pm-4.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (127 commits)
  devfreq: rk3399_dmc: Don't use OPP structures outside of RCU locks
  devfreq: rk3399_dmc: Remove dangling rcu_read_unlock()
  devfreq: exynos: Don't use OPP structures outside of RCU locks
  Documentation: intel_pstate: Document HWP energy/performance hints
  cpufreq: intel_pstate: Support for energy performance hints with HWP
  cpufreq: intel_pstate: Add locking around HWP requests
  PM / sleep: Print active wakeup sources when blocking on wakeup_count reads
  PM / core: Fix bug in the error handling of async suspend
  PM / wakeirq: Fix dedicated wakeirq for drivers not using autosuspend
  PM / Domains: Fix compatible for domain idle state
  PM / OPP: Don't WARN on multiple calls to dev_pm_opp_set_regulators()
  PM / OPP: Allow platform specific custom set_opp() callbacks
  PM / OPP: Separate out _generic_set_opp()
  PM / OPP: Add infrastructure to manage multiple regulators
  PM / OPP: Pass struct dev_pm_opp_supply to _set_opp_voltage()
  PM / OPP: Manage supply's voltage/current in a separate structure
  PM / OPP: Don't use OPP structure outside of rcu protected section
  PM / OPP: Reword binding supporting multiple regulators per device
  PM / OPP: Fix incorrect cpu-supply property in binding
  cpuidle: Add a kerneldoc comment to cpuidle_use_deepest_state()
  ..
2016-12-13 10:41:53 -08:00
Linus Torvalds
e34bac726d Merge branch 'akpm' (patches from Andrew)
Merge updates from Andrew Morton:

 - various misc bits

 - most of MM (quite a lot of MM material is awaiting the merge of
   linux-next dependencies)

 - kasan

 - printk updates

 - procfs updates

 - MAINTAINERS

 - /lib updates

 - checkpatch updates

* emailed patches from Andrew Morton <akpm@linux-foundation.org>: (123 commits)
  init: reduce rootwait polling interval time to 5ms
  binfmt_elf: use vmalloc() for allocation of vma_filesz
  checkpatch: don't emit unified-diff error for rename-only patches
  checkpatch: don't check c99 types like uint8_t under tools
  checkpatch: avoid multiple line dereferences
  checkpatch: don't check .pl files, improve absolute path commit log test
  scripts/checkpatch.pl: fix spelling
  checkpatch: don't try to get maintained status when --no-tree is given
  lib/ida: document locking requirements a bit better
  lib/rbtree.c: fix typo in comment of ____rb_erase_color
  lib/Kconfig.debug: make CONFIG_STRICT_DEVMEM depend on CONFIG_DEVMEM
  MAINTAINERS: add drm and drm/i915 irc channels
  MAINTAINERS: add "C:" for URI for chat where developers hang out
  MAINTAINERS: add drm and drm/i915 bug filing info
  MAINTAINERS: add "B:" for URI where to file bugs
  get_maintainer: look for arbitrary letter prefixes in sections
  printk: add Kconfig option to set default console loglevel
  printk/sound: handle more message headers
  printk/btrfs: handle more message headers
  printk/kdb: handle more message headers
  ...
2016-12-12 20:50:02 -08:00
Linus Torvalds
9465d9cc31 Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
 "The time/timekeeping/timer folks deliver with this update:

   - Fix a reintroduced signed/unsigned issue and cleanup the whole
     signed/unsigned mess in the timekeeping core so this wont happen
     accidentaly again.

   - Add a new trace clock based on boot time

   - Prevent injection of random sleep times when PM tracing abuses the
     RTC for storage

   - Make posix timers configurable for real tiny systems

   - Add tracepoints for the alarm timer subsystem so timer based
     suspend wakeups can be instrumented

   - The usual pile of fixes and updates to core and drivers"

* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
  timekeeping: Use mul_u64_u32_shr() instead of open coding it
  timekeeping: Get rid of pointless typecasts
  timekeeping: Make the conversion call chain consistently unsigned
  timekeeping_Force_unsigned_clocksource_to_nanoseconds_conversion
  alarmtimer: Add tracepoints for alarm timers
  trace: Update documentation for mono, mono_raw and boot clock
  trace: Add an option for boot clock as trace clock
  timekeeping: Add a fast and NMI safe boot clock
  timekeeping/clocksource_cyc2ns: Document intended range limitation
  timekeeping: Ignore the bogus sleep time if pm_trace is enabled
  selftests/timers: Fix spelling mistake "Asyncrhonous" -> "Asynchronous"
  clocksource/drivers/bcm2835_timer: Unmap region obtained by of_iomap
  clocksource/drivers/arm_arch_timer: Map frame with of_io_request_and_map()
  arm64: dts: rockchip: Arch counter doesn't tick in system suspend
  clocksource/drivers/arm_arch_timer: Don't assume clock runs in suspend
  posix-timers: Make them configurable
  posix_cpu_timers: Move the add_device_randomness() call to a proper place
  timer: Move sys_alarm from timer.c to itimer.c
  ptp_clock: Allow for it to be optional
  Kconfig: Regenerate *.c_shipped files after previous changes
  ...
2016-12-12 19:56:15 -08:00
Andrey Ryabinin
0f110a9b95 kernel/fork: use vfree_atomic() to free thread stack
vfree() is going to use sleeping lock.  Thread stack freed in atomic
context, therefore we must use vfree_atomic() here.

Link: http://lkml.kernel.org/r/1479474236-4139-6-git-send-email-hch@lst.de
Signed-off-by: Andrey Ryabinin <aryabinin@virtuozzo.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Joel Fernandes <joelaf@google.com>
Cc: Jisheng Zhang <jszhang@marvell.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: John Dias <joaodias@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@elte.hu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-12-12 18:55:08 -08:00
Oleg Nesterov
1da5c46fa9 kthread: Make struct kthread kmalloc'ed
commit 23196f2e5f "kthread: Pin the stack via try_get_task_stack() /
put_task_stack() in to_live_kthread() function" is a workaround for the
fragile design of struct kthread being allocated on the task stack.

struct kthread in its current form should be removed, but this needs
cleanups outside of kthread.c.

As a first step move struct kthread away from the task stack by making it
kmalloc'ed. This allows to access kthread.exited without the magic of
trying to pin task stack and the try logic in to_live_kthread().

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Chunming Zhou <David1.Zhou@amd.com>
Cc: Roman Pen <roman.penyaev@profitbricks.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Tejun Heo <tj@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Alex Deucher <alexander.deucher@amd.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Link: http://lkml.kernel.org/r/20161129175057.GA5330@redhat.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-12-08 14:36:18 +01:00
Rafael J. Wysocki
4e28ec3d5f Merge back earlier cpuidle material for v4.10. 2016-12-01 14:39:51 +01:00
Peter Zijlstra
c1de45ca83 sched/idle: Add support for tasks that inject idle
Idle injection drivers such as Intel powerclamp and ACPI PAD drivers use
realtime tasks to take control of CPU then inject idle. There are two
issues with this approach:

 1. Low efficiency: injected idle task is treated as busy so sched ticks
    do not stop during injected idle period, the result of these
    unwanted wakeups can be ~20% loss in power savings.

 2. Idle accounting: injected idle time is presented to user as busy.

This patch addresses the issues by introducing a new PF_IDLE flag which
allows any given task to be treated as idle task while the flag is set.
Therefore, idle injection tasks can run through the normal flow of NOHZ
idle enter/exit to get the correct accounting as well as tick stop when
possible.

The implication is that idle task is then no longer limited to PID == 0.

Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2016-11-29 14:02:21 +01:00
Eric W. Biederman
bfedb58925 mm: Add a user_ns owner to mm_struct and fix ptrace permission checks
During exec dumpable is cleared if the file that is being executed is
not readable by the user executing the file.  A bug in
ptrace_may_access allows reading the file if the executable happens to
enter into a subordinate user namespace (aka clone(CLONE_NEWUSER),
unshare(CLONE_NEWUSER), or setns(fd, CLONE_NEWUSER).

This problem is fixed with only necessary userspace breakage by adding
a user namespace owner to mm_struct, captured at the time of exec, so
it is clear in which user namespace CAP_SYS_PTRACE must be present in
to be able to safely give read permission to the executable.

The function ptrace_may_access is modified to verify that the ptracer
has CAP_SYS_ADMIN in task->mm->user_ns instead of task->cred->user_ns.
This ensures that if the task changes it's cred into a subordinate
user namespace it does not become ptraceable.

The function ptrace_attach is modified to only set PT_PTRACE_CAP when
CAP_SYS_PTRACE is held over task->mm->user_ns.  The intent of
PT_PTRACE_CAP is to be a flag to note that whatever permission changes
the task might go through the tracer has sufficient permissions for
it not to be an issue.  task->cred->user_ns is always the same
as or descendent of mm->user_ns.  Which guarantees that having
CAP_SYS_PTRACE over mm->user_ns is the worst case for the tasks
credentials.

To prevent regressions mm->dumpable and mm->user_ns are not considered
when a task has no mm.  As simply failing ptrace_may_attach causes
regressions in privileged applications attempting to read things
such as /proc/<pid>/stat

Cc: stable@vger.kernel.org
Acked-by: Kees Cook <keescook@chromium.org>
Tested-by: Cyrill Gorcunov <gorcunov@openvz.org>
Fixes: 8409cca705 ("userns: allow ptrace from non-init user namespaces")
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2016-11-22 11:49:48 -06:00
Nicolas Pitre
baa73d9e47 posix-timers: Make them configurable
Some embedded systems have no use for them.  This removes about
25KB from the kernel binary size when configured out.

Corresponding syscalls are routed to a stub logging the attempt to
use those syscalls which should be enough of a clue if they were
disabled without proper consideration. They are: timer_create,
timer_gettime: timer_getoverrun, timer_settime, timer_delete,
clock_adjtime, setitimer, getitimer, alarm.

The clock_settime, clock_gettime, clock_getres and clock_nanosleep
syscalls are replaced by simple wrappers compatible with CLOCK_REALTIME,
CLOCK_MONOTONIC and CLOCK_BOOTTIME only which should cover the vast
majority of use cases with very little code.

Signed-off-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: John Stultz <john.stultz@linaro.org>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
Cc: Paul Bolle <pebolle@tiscali.nl>
Cc: linux-kbuild@vger.kernel.org
Cc: netdev@vger.kernel.org
Cc: Michal Marek <mmarek@suse.com>
Cc: Edward Cree <ecree@solarflare.com>
Link: http://lkml.kernel.org/r/1478841010-28605-7-git-send-email-nicolas.pitre@linaro.org
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2016-11-16 09:26:35 +01:00
Stanislaw Gruszka
40565b5aed sched/cputime, powerpc, s390: Make scaled cputime arch specific
Only s390 and powerpc have hardware facilities allowing to measure
cputimes scaled by frequency. On all other architectures
utimescaled/stimescaled are equal to utime/stime (however they are
accounted separately).

Remove {u,s}timescaled accounting on all architectures except
powerpc and s390, where those values are explicitly accounted
in the proper places.

Signed-off-by: Stanislaw Gruszka <sgruszka@redhat.com>
Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Michael Neuling <mikey@neuling.org>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20161031162143.GB12646@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-15 09:51:05 +01:00
Andy Lutomirski
405c075971 fork: Add task stack refcounting sanity check and prevent premature task stack freeing
If something goes wrong with task stack refcounting and a stack
refcount hits zero too early, warn and leak it rather than
potentially freeing it early (and silently).

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/f29119c783a9680a4b4656e751b6123917ace94b.1477926663.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-11-01 07:39:17 +01:00
Linus Torvalds
9ffc66941d This adds a new gcc plugin named "latent_entropy". It is designed to
extract as much possible uncertainty from a running system at boot time as
 possible, hoping to capitalize on any possible variation in CPU operation
 (due to runtime data differences, hardware differences, SMP ordering,
 thermal timing variation, cache behavior, etc).
 
 At the very least, this plugin is a much more comprehensive example for
 how to manipulate kernel code using the gcc plugin internals.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 Comment: Kees Cook <kees@outflux.net>
 
 iQIcBAABCgAGBQJX/BAFAAoJEIly9N/cbcAmzW8QALFbCs7EFFkML+M/M/9d8zEk
 1QbUs/z8covJTTT1PjSdw7JUrAMulI3S00owpcQVd/PcWjRPU80QwfsXBgIB0tvC
 Kub2qxn6Oaf+kTB646zwjFgjdCecw/USJP+90nfcu2+LCnE8ReclKd1aUee+Bnhm
 iDEUyH2ONIoWq6ta2Z9sA7+E4y2ZgOlmW0iga3Mnf+OcPtLE70fWPoe5E4g9DpYk
 B+kiPDrD9ql5zsHaEnKG1ldjiAZ1L6Grk8rGgLEXmbOWtTOFmnUhR+raK5NA/RCw
 MXNuyPay5aYPpqDHFm+OuaWQAiPWfPNWM3Ett4k0d9ZWLixTcD1z68AciExwk7aW
 SEA8b1Jwbg05ZNYM7NJB6t6suKC4dGPxWzKFOhmBicsh2Ni5f+Az0BQL6q8/V8/4
 8UEqDLuFlPJBB50A3z5ngCVeYJKZe8Bg/Swb4zXl6mIzZ9darLzXDEV6ystfPXxJ
 e1AdBb41WC+O2SAI4l64yyeswkGo3Iw2oMbXG5jmFl6wY/xGp7dWxw7gfnhC6oOh
 afOT54p2OUDfSAbJaO0IHliWoIdmE5ZYdVYVU9Ek+uWyaIwcXhNmqRg+Uqmo32jf
 cP5J9x2kF3RdOcbSHXmFp++fU+wkhBtEcjkNpvkjpi4xyA47IWS7lrVBBebrCq9R
 pa/A7CNQwibIV6YD8+/p
 =1dUK
 -----END PGP SIGNATURE-----

Merge tag 'gcc-plugins-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux

Pull gcc plugins update from Kees Cook:
 "This adds a new gcc plugin named "latent_entropy". It is designed to
  extract as much possible uncertainty from a running system at boot
  time as possible, hoping to capitalize on any possible variation in
  CPU operation (due to runtime data differences, hardware differences,
  SMP ordering, thermal timing variation, cache behavior, etc).

  At the very least, this plugin is a much more comprehensive example
  for how to manipulate kernel code using the gcc plugin internals"

* tag 'gcc-plugins-v4.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
  latent_entropy: Mark functions with __latent_entropy
  gcc-plugins: Add latent_entropy plugin
2016-10-15 10:03:15 -07:00
Emese Revfy
0766f788eb latent_entropy: Mark functions with __latent_entropy
The __latent_entropy gcc attribute can be used only on functions and
variables.  If it is on a function then the plugin will instrument it for
gathering control-flow entropy. If the attribute is on a variable then
the plugin will initialize it with random contents.  The variable must
be an integer, an integer array type or a structure with integer fields.

These specific functions have been selected because they are init
functions (to help gather boot-time entropy), are called at unpredictable
times, or they have variable loops, each of which provide some level of
latent entropy.

Signed-off-by: Emese Revfy <re.emese@gmail.com>
[kees: expanded commit message]
Signed-off-by: Kees Cook <keescook@chromium.org>
2016-10-10 14:51:45 -07:00
Emese Revfy
38addce8b6 gcc-plugins: Add latent_entropy plugin
This adds a new gcc plugin named "latent_entropy". It is designed to
extract as much possible uncertainty from a running system at boot time as
possible, hoping to capitalize on any possible variation in CPU operation
(due to runtime data differences, hardware differences, SMP ordering,
thermal timing variation, cache behavior, etc).

At the very least, this plugin is a much more comprehensive example for
how to manipulate kernel code using the gcc plugin internals.

The need for very-early boot entropy tends to be very architecture or
system design specific, so this plugin is more suited for those sorts
of special cases. The existing kernel RNG already attempts to extract
entropy from reliable runtime variation, but this plugin takes the idea to
a logical extreme by permuting a global variable based on any variation
in code execution (e.g. a different value (and permutation function)
is used to permute the global based on loop count, case statement,
if/then/else branching, etc).

To do this, the plugin starts by inserting a local variable in every
marked function. The plugin then adds logic so that the value of this
variable is modified by randomly chosen operations (add, xor and rol) and
random values (gcc generates separate static values for each location at
compile time and also injects the stack pointer at runtime). The resulting
value depends on the control flow path (e.g., loops and branches taken).

Before the function returns, the plugin mixes this local variable into
the latent_entropy global variable. The value of this global variable
is added to the kernel entropy pool in do_one_initcall() and _do_fork(),
though it does not credit any bytes of entropy to the pool; the contents
of the global are just used to mix the pool.

Additionally, the plugin can pre-initialize arrays with build-time
random contents, so that two different kernel builds running on identical
hardware will not have the same starting values.

Signed-off-by: Emese Revfy <re.emese@gmail.com>
[kees: expanded commit message and code comments]
Signed-off-by: Kees Cook <keescook@chromium.org>
2016-10-10 14:51:44 -07:00
Aaron Lu
6fcb52a56f thp: reduce usage of huge zero page's atomic counter
The global zero page is used to satisfy an anonymous read fault.  If
THP(Transparent HugePage) is enabled then the global huge zero page is
used.  The global huge zero page uses an atomic counter for reference
counting and is allocated/freed dynamically according to its counter
value.

CPU time spent on that counter will greatly increase if there are a lot
of processes doing anonymous read faults.  This patch proposes a way to
reduce the access to the global counter so that the CPU load can be
reduced accordingly.

To do this, a new flag of the mm_struct is introduced:
MMF_USED_HUGE_ZERO_PAGE.  With this flag, the process only need to touch
the global counter in two cases:

 1 The first time it uses the global huge zero page;
 2 The time when mm_user of its mm_struct reaches zero.

Note that right now, the huge zero page is eligible to be freed as soon
as its last use goes away.  With this patch, the page will not be
eligible to be freed until the exit of the last process from which it
was ever used.

And with the use of mm_user, the kthread is not eligible to use huge
zero page either.  Since no kthread is using huge zero page today, there
is no difference after applying this patch.  But if that is not desired,
I can change it to when mm_count reaches zero.

Case used for test on Haswell EP:

  usemem -n 72 --readonly -j 0x200000 100G

Which spawns 72 processes and each will mmap 100G anonymous space and
then do read only access to that space sequentially with a step of 2MB.

  CPU cycles from perf report for base commit:
      54.03%  usemem   [kernel.kallsyms]   [k] get_huge_zero_page
  CPU cycles from perf report for this commit:
       0.11%  usemem   [kernel.kallsyms]   [k] mm_get_huge_zero_page

Performance(throughput) of the workload for base commit: 1784430792
Performance(throughput) of the workload for this commit: 4726928591
164% increase.

Runtime of the workload for base commit: 707592 us
Runtime of the workload for this commit: 303970 us
50% drop.

Link: http://lkml.kernel.org/r/fe51a88f-446a-4622-1363-ad1282d71385@intel.com
Signed-off-by: Aaron Lu <aaron.lu@intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Tim Chen <tim.c.chen@linux.intel.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Jerome Marchand <jmarchan@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Ebru Akagunduz <ebru.akagunduz@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:28 -07:00
Michal Hocko
862e3073b3 mm, oom: get rid of signal_struct::oom_victims
After "oom: keep mm of the killed task available" we can safely detect
an oom victim by checking task->signal->oom_mm so we do not need the
signal_struct counter anymore so let's get rid of it.

This alone wouldn't be sufficient for nommu archs because
exit_oom_victim doesn't hide the process from the oom killer anymore.
We can, however, mark the mm with a MMF flag in __mmput.  We can reuse
MMF_OOM_REAPED and rename it to a more generic MMF_OOM_SKIP.

Link: http://lkml.kernel.org/r/1472119394-11342-6-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Michal Hocko
7283094ec3 kernel, oom: fix potential pgd_lock deadlock from __mmdrop
Lockdep complains that __mmdrop is not safe from the softirq context:

  =================================
  [ INFO: inconsistent lock state ]
  4.6.0-oomfortification2-00011-geeb3eadeab96-dirty #949 Tainted: G        W
  ---------------------------------
  inconsistent {SOFTIRQ-ON-W} -> {IN-SOFTIRQ-W} usage.
  swapper/1/0 [HC0[0]:SC1[1]:HE1:SE0] takes:
   (pgd_lock){+.?...}, at: pgd_free+0x19/0x6b
  {SOFTIRQ-ON-W} state was registered at:
     __lock_acquire+0xa06/0x196e
     lock_acquire+0x139/0x1e1
     _raw_spin_lock+0x32/0x41
     __change_page_attr_set_clr+0x2a5/0xacd
     change_page_attr_set_clr+0x16f/0x32c
     set_memory_nx+0x37/0x3a
     free_init_pages+0x9e/0xc7
     alternative_instructions+0xa2/0xb3
     check_bugs+0xe/0x2d
     start_kernel+0x3ce/0x3ea
     x86_64_start_reservations+0x2a/0x2c
     x86_64_start_kernel+0x17a/0x18d
  irq event stamp: 105916
  hardirqs last  enabled at (105916): free_hot_cold_page+0x37e/0x390
  hardirqs last disabled at (105915): free_hot_cold_page+0x2c1/0x390
  softirqs last  enabled at (105878): _local_bh_enable+0x42/0x44
  softirqs last disabled at (105879): irq_exit+0x6f/0xd1

  other info that might help us debug this:
   Possible unsafe locking scenario:

         CPU0
         ----
    lock(pgd_lock);
    <Interrupt>
      lock(pgd_lock);

   *** DEADLOCK ***

  1 lock held by swapper/1/0:
   #0:  (rcu_callback){......}, at: rcu_process_callbacks+0x390/0x800

  stack backtrace:
  CPU: 1 PID: 0 Comm: swapper/1 Tainted: G        W       4.6.0-oomfortification2-00011-geeb3eadeab96-dirty #949
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Debian-1.8.2-1 04/01/2014
  Call Trace:
   <IRQ>
    print_usage_bug.part.25+0x259/0x268
    mark_lock+0x381/0x567
    __lock_acquire+0x993/0x196e
    lock_acquire+0x139/0x1e1
    _raw_spin_lock+0x32/0x41
    pgd_free+0x19/0x6b
    __mmdrop+0x25/0xb9
    __put_task_struct+0x103/0x11e
    delayed_put_task_struct+0x157/0x15e
    rcu_process_callbacks+0x660/0x800
    __do_softirq+0x1ec/0x4d5
    irq_exit+0x6f/0xd1
    smp_apic_timer_interrupt+0x42/0x4d
    apic_timer_interrupt+0x8e/0xa0
   <EOI>
    arch_cpu_idle+0xf/0x11
    default_idle_call+0x32/0x34
    cpu_startup_entry+0x20c/0x399
    start_secondary+0xfe/0x101

More over commit a79e53d856 ("x86/mm: Fix pgd_lock deadlock") was
explicit about pgd_lock not to be called from the irq context.  This
means that __mmdrop called from free_signal_struct has to be postponed
to a user context.  We already have a similar mechanism for mmput_async
so we can use it here as well.  This is safe because mm_count is pinned
by mm_users.

This fixes bug introduced by "oom: keep mm of the killed task available"

Link: http://lkml.kernel.org/r/1472119394-11342-5-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Michal Hocko
26db62f179 oom: keep mm of the killed task available
oom_reap_task has to call exit_oom_victim in order to make sure that the
oom vicim will not block the oom killer for ever.  This is, however,
opening new problems (e.g oom_killer_disable exclusion - see commit
7407054209 ("oom, suspend: fix oom_reaper vs.  oom_killer_disable
race")).  exit_oom_victim should be only called from the victim's
context ideally.

One way to achieve this would be to rely on per mm_struct flags.  We
already have MMF_OOM_REAPED to hide a task from the oom killer since
"mm, oom: hide mm which is shared with kthread or global init". The
problem is that the exit path:

  do_exit
    exit_mm
      tsk->mm = NULL;
      mmput
        __mmput
      exit_oom_victim

doesn't guarantee that exit_oom_victim will get called in a bounded
amount of time.  At least exit_aio depends on IO which might get blocked
due to lack of memory and who knows what else is lurking there.

This patch takes a different approach.  We remember tsk->mm into the
signal_struct and bind it to the signal struct life time for all oom
victims.  __oom_reap_task_mm as well as oom_scan_process_thread do not
have to rely on find_lock_task_mm anymore and they will have a reliable
reference to the mm struct.  As a result all the oom specific
communication inside the OOM killer can be done via tsk->signal->oom_mm.

Increasing the signal_struct for something as unlikely as the oom killer
is far from ideal but this approach will make the code much more
reasonable and long term we even might want to move task->mm into the
signal_struct anyway.  In the next step we might want to make the oom
killer exclusion and access to memory reserves completely independent
which would be also nice.

Link: http://lkml.kernel.org/r/1472119394-11342-4-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-10-07 18:46:27 -07:00
Linus Torvalds
14986a34e1 Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace
Pull namespace updates from Eric Biederman:
 "This set of changes is a number of smaller things that have been
  overlooked in other development cycles focused on more fundamental
  change. The devpts changes are small things that were a distraction
  until we managed to kill off DEVPTS_MULTPLE_INSTANCES. There is an
  trivial regression fix to autofs for the unprivileged mount changes
  that went in last cycle. A pair of ioctls has been added by Andrey
  Vagin making it is possible to discover the relationships between
  namespaces when referring to them through file descriptors.

  The big user visible change is starting to add simple resource limits
  to catch programs that misbehave. With namespaces in general and user
  namespaces in particular allowing users to use more kinds of
  resources, it has become important to have something to limit errant
  programs. Because the purpose of these limits is to catch errant
  programs the code needs to be inexpensive to use as it always on, and
  the default limits need to be high enough that well behaved programs
  on well behaved systems don't encounter them.

  To this end, after some review I have implemented per user per user
  namespace limits, and use them to limit the number of namespaces. The
  limits being per user mean that one user can not exhause the limits of
  another user. The limits being per user namespace allow contexts where
  the limit is 0 and security conscious folks can remove from their
  threat anlysis the code used to manage namespaces (as they have
  historically done as it root only). At the same time the limits being
  per user namespace allow other parts of the system to use namespaces.

  Namespaces are increasingly being used in application sand boxing
  scenarios so an all or nothing disable for the entire system for the
  security conscious folks makes increasing use of these sandboxes
  impossible.

  There is also added a limit on the maximum number of mounts present in
  a single mount namespace. It is nontrivial to guess what a reasonable
  system wide limit on the number of mount structure in the kernel would
  be, especially as it various based on how a system is using
  containers. A limit on the number of mounts in a mount namespace
  however is much easier to understand and set. In most cases in
  practice only about 1000 mounts are used. Given that some autofs
  scenarious have the potential to be 30,000 to 50,000 mounts I have set
  the default limit for the number of mounts at 100,000 which is well
  above every known set of users but low enough that the mount hash
  tables don't degrade unreaonsably.

  These limits are a start. I expect this estabilishes a pattern that
  other limits for resources that namespaces use will follow. There has
  been interest in making inotify event limits per user per user
  namespace as well as interest expressed in making details about what
  is going on in the kernel more visible"

* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (28 commits)
  autofs:  Fix automounts by using current_real_cred()->uid
  mnt: Add a per mount namespace limit on the number of mounts
  netns: move {inc,dec}_net_namespaces into #ifdef
  nsfs: Simplify __ns_get_path
  tools/testing: add a test to check nsfs ioctl-s
  nsfs: add ioctl to get a parent namespace
  nsfs: add ioctl to get an owning user namespace for ns file descriptor
  kernel: add a helper to get an owning user namespace for a namespace
  devpts: Change the owner of /dev/pts/ptmx to the mounter of /dev/pts
  devpts: Remove sync_filesystems
  devpts: Make devpts_kill_sb safe if fsi is NULL
  devpts: Simplify devpts_mount by using mount_nodev
  devpts: Move the creation of /dev/pts/ptmx into fill_super
  devpts: Move parse_mount_options into fill_super
  userns: When the per user per user namespace limit is reached return ENOSPC
  userns; Document per user per user namespace limits.
  mntns: Add a limit on the number of mount namespaces.
  netns: Add a limit on the number of net namespaces
  cgroupns: Add a limit on the number of cgroup namespaces
  ipcns: Add a  limit on the number of ipc namespaces
  ...
2016-10-06 09:52:23 -07:00
Andy Lutomirski
ac496bf48d fork: Optimize task creation by caching two thread stacks per CPU if CONFIG_VMAP_STACK=y
vmalloc() is a bit slow, and pounding vmalloc()/vfree() will eventually
force a global TLB flush.

To reduce pressure on them, if CONFIG_VMAP_STACK=y, cache two thread
stacks per CPU.  This will let us quickly allocate a hopefully
cache-hot, TLB-hot stack under heavy forking workloads (shell script style).

On my silly pthread_create() benchmark, it saves about 2 µs per
pthread_create()+join() with CONFIG_VMAP_STACK=y.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jann Horn <jann@thejh.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/94811d8e3994b2e962f88866290017d498eb069c.1474003868.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-16 09:18:54 +02:00
Andy Lutomirski
68f24b08ee sched/core: Free the stack early if CONFIG_THREAD_INFO_IN_TASK
We currently keep every task's stack around until the task_struct
itself is freed.  This means that we keep the stack allocation alive
for longer than necessary and that, under load, we free stacks in
big batches whenever RCU drops the last task reference.  Neither of
these is good for reuse of cache-hot memory, and freeing in batches
prevents us from usefully caching small numbers of vmalloced stacks.

On architectures that have thread_info on the stack, we can't easily
change this, but on architectures that set THREAD_INFO_IN_TASK, we
can free it as soon as the task is dead.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Jann Horn <jann@thejh.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/08ca06cde00ebed0046c5d26cbbf3fbb7ef5b812.1474003868.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-16 09:18:54 +02:00
Ingo Molnar
d4b80afbba Merge branch 'linus' into x86/asm, to pick up recent fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-09-15 08:24:53 +02:00
Linus Torvalds
b9677faf45 Merge branch 'akpm' (patches from Andrew)
Merge fixes from Andrew Morton:
 "14 fixes"

* emailed patches from Andrew Morton <akpm@linux-foundation.org>:
  rapidio/tsi721: fix incorrect detection of address translation condition
  rapidio/documentation/mport_cdev: add missing parameter description
  kernel/fork: fix CLONE_CHILD_CLEARTID regression in nscd
  MAINTAINERS: Vladimir has moved
  mm, mempolicy: task->mempolicy must be NULL before dropping final reference
  printk/nmi: avoid direct printk()-s from __printk_nmi_flush()
  treewide: remove references to the now unnecessary DEFINE_PCI_DEVICE_TABLE
  drivers/scsi/wd719x.c: remove last declaration using DEFINE_PCI_DEVICE_TABLE
  mm, vmscan: only allocate and reclaim from zones with pages managed by the buddy allocator
  lib/test_hash.c: fix warning in preprocessor symbol evaluation
  lib/test_hash.c: fix warning in two-dimensional array init
  kconfig: tinyconfig: provide whole choice blocks to avoid warnings
  kexec: fix double-free when failing to relocate the purgatory
  mm, oom: prevent premature OOM killer invocation for high order request
2016-09-01 18:23:22 -07:00
Michal Hocko
735f2770a7 kernel/fork: fix CLONE_CHILD_CLEARTID regression in nscd
Commit fec1d01152 ("[PATCH] Disable CLONE_CHILD_CLEARTID for abnormal
exit") has caused a subtle regression in nscd which uses
CLONE_CHILD_CLEARTID to clear the nscd_certainly_running flag in the
shared databases, so that the clients are notified when nscd is
restarted.  Now, when nscd uses a non-persistent database, clients that
have it mapped keep thinking the database is being updated by nscd, when
in fact nscd has created a new (anonymous) one (for non-persistent
databases it uses an unlinked file as backend).

The original proposal for the CLONE_CHILD_CLEARTID change claimed
(https://lkml.org/lkml/2006/10/25/233):

: The NPTL library uses the CLONE_CHILD_CLEARTID flag on clone() syscalls
: on behalf of pthread_create() library calls.  This feature is used to
: request that the kernel clear the thread-id in user space (at an address
: provided in the syscall) when the thread disassociates itself from the
: address space, which is done in mm_release().
:
: Unfortunately, when a multi-threaded process incurs a core dump (such as
: from a SIGSEGV), the core-dumping thread sends SIGKILL signals to all of
: the other threads, which then proceed to clear their user-space tids
: before synchronizing in exit_mm() with the start of core dumping.  This
: misrepresents the state of process's address space at the time of the
: SIGSEGV and makes it more difficult for someone to debug NPTL and glibc
: problems (misleading him/her to conclude that the threads had gone away
: before the fault).
:
: The fix below is to simply avoid the CLONE_CHILD_CLEARTID action if a
: core dump has been initiated.

The resulting patch from Roland (https://lkml.org/lkml/2006/10/26/269)
seems to have a larger scope than the original patch asked for.  It
seems that limitting the scope of the check to core dumping should work
for SIGSEGV issue describe above.

[Changelog partly based on Andreas' description]
Fixes: fec1d01152 ("[PATCH] Disable CLONE_CHILD_CLEARTID for abnormal exit")
Link: http://lkml.kernel.org/r/1471968749-26173-1-git-send-email-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Tested-by: William Preston <wpreston@suse.com>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Roland McGrath <roland@hack.frob.com>
Cc: Andreas Schwab <schwab@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-09-01 17:52:02 -07:00
Linus Torvalds
511a8cdb65 Merge branch 'stable-4.8' of git://git.infradead.org/users/pcmoore/audit
Pull audit fixes from Paul Moore:
 "Two small patches to fix some bugs with the audit-by-executable
  functionality we introduced back in v4.3 (both patches are marked
  for the stable folks)"

* 'stable-4.8' of git://git.infradead.org/users/pcmoore/audit:
  audit: fix exe_file access in audit_exe_compare
  mm: introduce get_task_exe_file
2016-09-01 15:55:56 -07:00
Mateusz Guzik
cd81a9170e mm: introduce get_task_exe_file
For more convenient access if one has a pointer to the task.

As a minor nit take advantage of the fact that only task lock + rcu are
needed to safely grab ->exe_file. This saves mm refcount dance.

Use the helper in proc_exe_link.

Signed-off-by: Mateusz Guzik <mguzik@redhat.com>
Acked-by: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Acked-by: Richard Guy Briggs <rgb@redhat.com>
Cc: <stable@vger.kernel.org> # 4.3.x
Signed-off-by: Paul Moore <paul@paul-moore.com>
2016-08-31 16:11:20 -04:00
Andy Lutomirski
ba14a194a4 fork: Add generic vmalloced stack support
If CONFIG_VMAP_STACK=y is selected, kernel stacks are allocated with
__vmalloc_node_range().

Grsecurity has had a similar feature (called GRKERNSEC_KSTACKOVERFLOW=y)
for a long time.

Signed-off-by: Andy Lutomirski <luto@kernel.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/14c07d4fd173a5b117f51e8b939f9f4323e39899.1470907718.git.luto@kernel.org
[ Minor edits. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-08-24 12:11:41 +02:00
Balbir Singh
568ac88821 cgroup: reduce read locked section of cgroup_threadgroup_rwsem during fork
cgroup_threadgroup_rwsem is acquired in read mode during process exit
and fork.  It is also grabbed in write mode during
__cgroups_proc_write().  I've recently run into a scenario with lots
of memory pressure and OOM and I am beginning to see

systemd

 __switch_to+0x1f8/0x350
 __schedule+0x30c/0x990
 schedule+0x48/0xc0
 percpu_down_write+0x114/0x170
 __cgroup_procs_write.isra.12+0xb8/0x3c0
 cgroup_file_write+0x74/0x1a0
 kernfs_fop_write+0x188/0x200
 __vfs_write+0x6c/0xe0
 vfs_write+0xc0/0x230
 SyS_write+0x6c/0x110
 system_call+0x38/0xb4

This thread is waiting on the reader of cgroup_threadgroup_rwsem to
exit.  The reader itself is under memory pressure and has gone into
reclaim after fork. There are times the reader also ends up waiting on
oom_lock as well.

 __switch_to+0x1f8/0x350
 __schedule+0x30c/0x990
 schedule+0x48/0xc0
 jbd2_log_wait_commit+0xd4/0x180
 ext4_evict_inode+0x88/0x5c0
 evict+0xf8/0x2a0
 dispose_list+0x50/0x80
 prune_icache_sb+0x6c/0x90
 super_cache_scan+0x190/0x210
 shrink_slab.part.15+0x22c/0x4c0
 shrink_zone+0x288/0x3c0
 do_try_to_free_pages+0x1dc/0x590
 try_to_free_pages+0xdc/0x260
 __alloc_pages_nodemask+0x72c/0xc90
 alloc_pages_current+0xb4/0x1a0
 page_table_alloc+0xc0/0x170
 __pte_alloc+0x58/0x1f0
 copy_page_range+0x4ec/0x950
 copy_process.isra.5+0x15a0/0x1870
 _do_fork+0xa8/0x4b0
 ppc_clone+0x8/0xc

In the meanwhile, all processes exiting/forking are blocked almost
stalling the system.

This patch moves the threadgroup_change_begin from before
cgroup_fork() to just before cgroup_canfork().  There is no nee to
worry about threadgroup changes till the task is actually added to the
threadgroup.  This avoids having to call reclaim with
cgroup_threadgroup_rwsem held.

tj: Subject and description edits.

Signed-off-by: Balbir Singh <bsingharora@gmail.com>
Acked-by: Zefan Li <lizefan@huawei.com>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org # v4.2+
Signed-off-by: Tejun Heo <tj@kernel.org>
2016-08-17 09:54:52 -04:00
Eric W. Biederman
25f9c0817c userns: Generalize the user namespace count into ucount
The same kind of recursive sane default limit and policy
countrol that has been implemented for the user namespace
is desirable for the other namespaces, so generalize
the user namespace refernce count into a ucount.

Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2016-08-08 14:41:52 -05:00
Eric W. Biederman
f6b2db1a3e userns: Make the count of user namespaces per user
Add a structure that is per user and per user ns and use it to hold
the count of user namespaces.  This makes prevents one user from
creating denying service to another user by creating the maximum
number of user namespaces.

Rename the sysctl export of the maximum count from
/proc/sys/userns/max_user_namespaces to /proc/sys/user/max_user_namespaces
to reflect that the count is now per user.

Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2016-08-08 14:40:30 -05:00
Eric W. Biederman
b376c3e1b6 userns: Add a limit on the number of user namespaces
Export the export the maximum number of user namespaces as
/proc/sys/userns/max_user_namespaces.

Acked-by: Kees Cook <keescook@chromium.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2016-08-08 13:41:24 -05:00
Andy Lutomirski
efdc949079 mm: fix memcg stack accounting for sub-page stacks
We should account for stacks regardless of stack size, and we need to
account in sub-page units if THREAD_SIZE < PAGE_SIZE.  Change the units
to kilobytes and Move it into account_kernel_stack().

Fixes: 12580e4b54 ("mm: memcontrol: report kernel stack usage in cgroup2 memory.stat")
Link: http://lkml.kernel.org/r/9b5314e3ee5eda61b0317ec1563768602c1ef438.1468523549.git.luto@kernel.org
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Andy Lutomirski
d30dd8be06 mm: track NR_KERNEL_STACK in KiB instead of number of stacks
Currently, NR_KERNEL_STACK tracks the number of kernel stacks in a zone.
This only makes sense if each kernel stack exists entirely in one zone,
and allowing vmapped stacks could break this assumption.

Since frv has THREAD_SIZE < PAGE_SIZE, we need to track kernel stack
allocations in a unit that divides both THREAD_SIZE and PAGE_SIZE on all
architectures.  Keep it simple and use KiB.

Link: http://lkml.kernel.org/r/083c71e642c5fa5f1b6898902e1b2db7b48940d4.1468523549.git.luto@kernel.org
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Reviewed-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28 16:07:41 -07:00
Vladimir Davydov
4949148ad4 mm: charge/uncharge kmemcg from generic page allocator paths
Currently, to charge a non-slab allocation to kmemcg one has to use
alloc_kmem_pages helper with __GFP_ACCOUNT flag.  A page allocated with
this helper should finally be freed using free_kmem_pages, otherwise it
won't be uncharged.

This API suits its current users fine, but it turns out to be impossible
to use along with page reference counting, i.e.  when an allocation is
supposed to be freed with put_page, as it is the case with pipe or unix
socket buffers.

To overcome this limitation, this patch moves charging/uncharging to
generic page allocator paths, i.e.  to __alloc_pages_nodemask and
free_pages_prepare, and zaps alloc/free_kmem_pages helpers.  This way,
one can use any of the available page allocation functions to get the
allocated page charged to kmemcg - it's enough to pass __GFP_ACCOUNT,
just like in case of kmalloc and friends.  A charged page will be
automatically uncharged on free.

To make it possible, we need to mark pages charged to kmemcg somehow.
To avoid introducing a new page flag, we make use of page->_mapcount for
marking such pages.  Since pages charged to kmemcg are not supposed to
be mapped to userspace, it should work just fine.  There are other
(ab)users of page->_mapcount - buddy and balloon pages - but we don't
conflict with them.

In case kmemcg is compiled out or not used at runtime, this patch
introduces no overhead to generic page allocator paths.  If kmemcg is
used, it will be plus one gfp flags check on alloc and plus one
page->_mapcount check on free, which shouldn't hurt performance, because
the data accessed are hot.

Link: http://lkml.kernel.org/r/a9736d856f895bcb465d9f257b54efe32eda6f99.1464079538.git.vdavydov@virtuozzo.com
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-26 16:19:19 -07:00
Michael Ellerman
9521d39976 Fix build break in fork.c when THREAD_SIZE < PAGE_SIZE
Commit b235beea9e ("Clarify naming of thread info/stack allocators")
breaks the build on some powerpc configs, where THREAD_SIZE < PAGE_SIZE:

  kernel/fork.c:235:2: error: implicit declaration of function 'free_thread_stack'
  kernel/fork.c:355:8: error: assignment from incompatible pointer type
    stack = alloc_thread_stack_node(tsk, node);
    ^

Fix it by renaming free_stack() to free_thread_stack(), and updating the
return type of alloc_thread_stack_node().

Fixes: b235beea9e ("Clarify naming of thread info/stack allocators")
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-25 06:01:28 -07:00
Linus Torvalds
b235beea9e Clarify naming of thread info/stack allocators
We've had the thread info allocated together with the thread stack for
most architectures for a long time (since the thread_info was split off
from the task struct), but that is about to change.

But the patches that move the thread info to be off-stack (and a part of
the task struct instead) made it clear how confused the allocator and
freeing functions are.

Because the common case was that we share an allocation with the thread
stack and the thread_info, the two pointers were identical.  That
identity then meant that we would have things like

	ti = alloc_thread_info_node(tsk, node);
	...
	tsk->stack = ti;

which certainly _worked_ (since stack and thread_info have the same
value), but is rather confusing: why are we assigning a thread_info to
the stack? And if we move the thread_info away, the "confusing" code
just gets to be entirely bogus.

So remove all this confusion, and make it clear that we are doing the
stack allocation by renaming and clarifying the function names to be
about the stack.  The fact that the thread_info then shares the
allocation is an implementation detail, and not really about the
allocation itself.

This is a pure renaming and type fix: we pass in the same pointer, it's
just that we clarify what the pointer means.

The ia64 code that actually only has one single allocation (for all of
task_struct, thread_info and kernel thread stack) now looks a bit odd,
but since "tsk->stack" is actually not even used there, that oddity
doesn't matter.  It would be a separate thing to clean that up, I
intentionally left the ia64 changes as a pure brute-force renaming and
type change.

Acked-by: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-06-24 15:09:37 -07:00
Michal Hocko
7ef949d77f mm: oom_reaper: remove some bloat
mmput_async is currently used only from the oom_reaper which is defined
only for CONFIG_MMU.  We can save work_struct in mm_struct for
!CONFIG_MMU.

[akpm@linux-foundation.org: fix typo, per Minchan]
Link: http://lkml.kernel.org/r/20160520061658.GB19172@dhcp22.suse.cz
Reported-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-26 15:35:44 -07:00
Michal Hocko
7c05126793 mm, fork: make dup_mmap wait for mmap_sem for write killable
dup_mmap needs to lock current's mm mmap_sem for write.  If the waiting
task gets killed by the oom killer it would block oom_reaper from
asynchronous address space reclaim and reduce the chances of timely OOM
resolving.  Wait for the lock in the killable mode and return with EINTR
if the task got killed while waiting.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-23 17:04:14 -07:00
Andi Kleen
725fc629ff kernek/fork.c: allocate idle task for a CPU always on its local node
Linux preallocates the task structs of the idle tasks for all possible
CPUs.  This currently means they all end up on node 0.  This also
implies that the cache line of MWAIT, which is around the flags field in
the task struct, are all located in node 0.

We see a noticeable performance improvement on Knights Landing CPUs when
the cache lines used for MWAIT are located in the local nodes of the
CPUs using them.  I would expect this to give a (likely slight)
improvement on other systems too.

The patch implements placing the idle task in the node of its CPUs, by
passing the right target node to copy_process()

[akpm@linux-foundation.org: use NUMA_NO_NODE, not a bare -1]
Link: http://lkml.kernel.org/r/1463492694-15833-1-git-send-email-andi@firstfloor.org
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-23 17:04:14 -07:00
Jiri Slaby
0740aa5f63 fork: free thread in copy_process on failure
When using this program (as root):

	#include <err.h>
	#include <stdio.h>
	#include <stdlib.h>
	#include <unistd.h>

	#include <sys/io.h>
	#include <sys/types.h>
	#include <sys/wait.h>

	#define ITER 1000
	#define FORKERS 15
	#define THREADS (6000/FORKERS) // 1850 is proc max

	static void fork_100_wait()
	{
		unsigned a, to_wait = 0;

		printf("\t%d forking %d\n", THREADS, getpid());

		for (a = 0; a < THREADS; a++) {
			switch (fork()) {
			case 0:
				usleep(1000);
				exit(0);
				break;
			case -1:
				break;
			default:
				to_wait++;
				break;
			}
		}

		printf("\t%d forked from %d, waiting for %d\n", THREADS, getpid(),
				to_wait);

		for (a = 0; a < to_wait; a++)
			wait(NULL);

		printf("\t%d waited from %d\n", THREADS, getpid());
	}

	static void run_forkers()
	{
		pid_t forkers[FORKERS];
		unsigned a;

		for (a = 0; a < FORKERS; a++) {
			switch ((forkers[a] = fork())) {
			case 0:
				fork_100_wait();
				exit(0);
				break;
			case -1:
				err(1, "DIE fork of %d'th forker", a);
				break;
			default:
				break;
			}
		}

		for (a = 0; a < FORKERS; a++)
			waitpid(forkers[a], NULL, 0);
	}

	int main()
	{
		unsigned a;
		int ret;

		ret = ioperm(10, 20, 0);
		if (ret < 0)
			err(1, "ioperm");

		for (a = 0; a < ITER; a++)
			run_forkers();

		return 0;
	}

kmemleak reports many occurences of this leak:
unreferenced object 0xffff8805917c8000 (size 8192):
  comm "fork-leak", pid 2932, jiffies 4295354292 (age 1871.028s)
  hex dump (first 32 bytes):
    ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff  ................
    ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff  ................
  backtrace:
    [<ffffffff814cfbf5>] kmemdup+0x25/0x50
    [<ffffffff8103ab43>] copy_thread_tls+0x6c3/0x9a0
    [<ffffffff81150174>] copy_process+0x1a84/0x5790
    [<ffffffff811dc375>] wake_up_new_task+0x2d5/0x6f0
    [<ffffffff8115411d>] _do_fork+0x12d/0x820
...

Due to the leakage of the memory items which should have been freed in
arch/x86/kernel/process.c:exit_thread().

Make sure the memory is freed when fork fails later in copy_process.
This is done by calling exit_thread with the thread to kill.

Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Aurelien Jacquiot <a-jacquiot@ti.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chen Liqin <liqin.linux@gmail.com>
Cc: Chris Metcalf <cmetcalf@mellanox.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: David Howells <dhowells@redhat.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Guan Xuetao <gxt@mprc.pku.edu.cn>
Cc: Haavard Skinnemoen <hskinnemoen@gmail.com>
Cc: Hans-Christian Egtvedt <egtvedt@samfundet.no>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru>
Cc: James Hogan <james.hogan@imgtec.com>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Jesper Nilsson <jesper.nilsson@axis.com>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Koichi Yasutake <yasutake.koichi@jp.panasonic.com>
Cc: Lennox Wu <lennox.wu@gmail.com>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Mikael Starvik <starvik@axis.com>
Cc: Paul Mackerras <paulus@samba.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Rich Felker <dalias@libc.org>
Cc: Richard Henderson <rth@twiddle.net>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Russell King <linux@arm.linux.org.uk>
Cc: Steven Miao <realmz6@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Michal Hocko
ec8d7c14ea mm, oom_reaper: do not mmput synchronously from the oom reaper context
Tetsuo has properly noted that mmput slow path might get blocked waiting
for another party (e.g.  exit_aio waits for an IO).  If that happens the
oom_reaper would be put out of the way and will not be able to process
next oom victim.  We should strive for making this context as reliable
and independent on other subsystems as much as possible.

Introduce mmput_async which will perform the slow path from an async
(WQ) context.  This will delay the operation but that shouldn't be a
problem because the oom_reaper has reclaimed the victim's address space
for most cases as much as possible and the remaining context shouldn't
bind too much memory anymore.  The only exception is when mmap_sem
trylock has failed which shouldn't happen too often.

The issue is only theoretical but not impossible.

Signed-off-by: Michal Hocko <mhocko@suse.com>
Reported-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-20 17:58:30 -07:00
Stas Sergeev
2a74213838 signals/sigaltstack: Implement SS_AUTODISARM flag
This patch implements the SS_AUTODISARM flag that can be OR-ed with
SS_ONSTACK when forming ss_flags.

When this flag is set, sigaltstack will be disabled when entering
the signal handler; more precisely, after saving sas to uc_stack.
When leaving the signal handler, the sigaltstack is restored by
uc_stack.

When this flag is used, it is safe to switch from sighandler with
swapcontext(). Without this flag, the subsequent signal will corrupt
the state of the switched-away sighandler.

To detect the support of this functionality, one can do:

  err = sigaltstack(SS_DISABLE | SS_AUTODISARM);
  if (err && errno == EINVAL)
	unsupported();

Signed-off-by: Stas Sergeev <stsp@list.ru>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Aleksa Sarai <cyphar@cyphar.com>
Cc: Amanieu d'Antras <amanieu@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Heinrich Schuchardt <xypron.glpk@gmx.de>
Cc: Jason Low <jason.low2@hp.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Konstantin Khlebnikov <khlebnikov@yandex-team.ru>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Palmer Dabbelt <palmer@dabbelt.com>
Cc: Paul Moore <pmoore@redhat.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vladimir Davydov <vdavydov@parallels.com>
Cc: linux-api@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Link: http://lkml.kernel.org/r/1460665206-13646-4-git-send-email-stsp@list.ru
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2016-05-03 08:37:59 +02:00
Dmitry Vyukov
5c9a8750a6 kernel: add kcov code coverage
kcov provides code coverage collection for coverage-guided fuzzing
(randomized testing).  Coverage-guided fuzzing is a testing technique
that uses coverage feedback to determine new interesting inputs to a
system.  A notable user-space example is AFL
(http://lcamtuf.coredump.cx/afl/).  However, this technique is not
widely used for kernel testing due to missing compiler and kernel
support.

kcov does not aim to collect as much coverage as possible.  It aims to
collect more or less stable coverage that is function of syscall inputs.
To achieve this goal it does not collect coverage in soft/hard
interrupts and instrumentation of some inherently non-deterministic or
non-interesting parts of kernel is disbled (e.g.  scheduler, locking).

Currently there is a single coverage collection mode (tracing), but the
API anticipates additional collection modes.  Initially I also
implemented a second mode which exposes coverage in a fixed-size hash
table of counters (what Quentin used in his original patch).  I've
dropped the second mode for simplicity.

This patch adds the necessary support on kernel side.  The complimentary
compiler support was added in gcc revision 231296.

We've used this support to build syzkaller system call fuzzer, which has
found 90 kernel bugs in just 2 months:

  https://github.com/google/syzkaller/wiki/Found-Bugs

We've also found 30+ bugs in our internal systems with syzkaller.
Another (yet unexplored) direction where kcov coverage would greatly
help is more traditional "blob mutation".  For example, mounting a
random blob as a filesystem, or receiving a random blob over wire.

Why not gcov.  Typical fuzzing loop looks as follows: (1) reset
coverage, (2) execute a bit of code, (3) collect coverage, repeat.  A
typical coverage can be just a dozen of basic blocks (e.g.  an invalid
input).  In such context gcov becomes prohibitively expensive as
reset/collect coverage steps depend on total number of basic
blocks/edges in program (in case of kernel it is about 2M).  Cost of
kcov depends only on number of executed basic blocks/edges.  On top of
that, kernel requires per-thread coverage because there are always
background threads and unrelated processes that also produce coverage.
With inlined gcov instrumentation per-thread coverage is not possible.

kcov exposes kernel PCs and control flow to user-space which is
insecure.  But debugfs should not be mapped as user accessible.

Based on a patch by Quentin Casasnovas.

[akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode']
[akpm@linux-foundation.org: unbreak allmodconfig]
[akpm@linux-foundation.org: follow x86 Makefile layout standards]
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tavis Ormandy <taviso@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Kees Cook <keescook@google.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Drysdale <drysdale@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-22 15:36:02 -07:00
Linus Torvalds
5518f66b5a Merge branch 'for-4.6-ns' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup namespace support from Tejun Heo:
 "These are changes to implement namespace support for cgroup which has
  been pending for quite some time now.  It is very straight-forward and
  only affects what part of cgroup hierarchies are visible.

  After unsharing, mounting a cgroup fs will be scoped to the cgroups
  the task belonged to at the time of unsharing and the cgroup paths
  exposed to userland would be adjusted accordingly"

* 'for-4.6-ns' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
  cgroup: fix and restructure error handling in copy_cgroup_ns()
  cgroup: fix alloc_cgroup_ns() error handling in copy_cgroup_ns()
  Add FS_USERNS_FLAG to cgroup fs
  cgroup: Add documentation for cgroup namespaces
  cgroup: mount cgroupns-root when inside non-init cgroupns
  kernfs: define kernfs_node_dentry
  cgroup: cgroup namespace setns support
  cgroup: introduce cgroup namespaces
  sched: new clone flag CLONE_NEWCGROUP for cgroup namespace
  kernfs: Add API to generate relative kernfs path
2016-03-21 10:05:13 -07:00
Vladimir Davydov
12580e4b54 mm: memcontrol: report kernel stack usage in cgroup2 memory.stat
Show how much memory is allocated to kernel stacks.

Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-03-17 15:09:34 -07:00
Aditya Kali
a79a908fd2 cgroup: introduce cgroup namespaces
Introduce the ability to create new cgroup namespace. The newly created
cgroup namespace remembers the cgroup of the process at the point
of creation of the cgroup namespace (referred as cgroupns-root).
The main purpose of cgroup namespace is to virtualize the contents
of /proc/self/cgroup file. Processes inside a cgroup namespace
are only able to see paths relative to their namespace root
(unless they are moved outside of their cgroupns-root, at which point
 they will see a relative path from their cgroupns-root).
For a correctly setup container this enables container-tools
(like libcontainer, lxc, lmctfy, etc.) to create completely virtualized
containers without leaking system level cgroup hierarchy to the task.
This patch only implements the 'unshare' part of the cgroupns.

Signed-off-by: Aditya Kali <adityakali@google.com>
Signed-off-by: Serge Hallyn <serge.hallyn@canonical.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2016-02-16 13:04:58 -05:00
Konstantin Khlebnikov
8463833590 mm: rework virtual memory accounting
When inspecting a vague code inside prctl(PR_SET_MM_MEM) call (which
testing the RLIMIT_DATA value to figure out if we're allowed to assign
new @start_brk, @brk, @start_data, @end_data from mm_struct) it's been
commited that RLIMIT_DATA in a form it's implemented now doesn't do
anything useful because most of user-space libraries use mmap() syscall
for dynamic memory allocations.

Linus suggested to convert RLIMIT_DATA rlimit into something suitable
for anonymous memory accounting.  But in this patch we go further, and
the changes are bundled together as:

 * keep vma counting if CONFIG_PROC_FS=n, will be used for limits
 * replace mm->shared_vm with better defined mm->data_vm
 * account anonymous executable areas as executable
 * account file-backed growsdown/up areas as stack
 * drop struct file* argument from vm_stat_account
 * enforce RLIMIT_DATA for size of data areas

This way code looks cleaner: now code/stack/data classification depends
only on vm_flags state:

 VM_EXEC & ~VM_WRITE            -> code  (VmExe + VmLib in proc)
 VM_GROWSUP | VM_GROWSDOWN      -> stack (VmStk)
 VM_WRITE & ~VM_SHARED & !stack -> data  (VmData)

The rest (VmSize - VmData - VmStk - VmExe - VmLib) could be called
"shared", but that might be strange beast like readonly-private or VM_IO
area.

 - RLIMIT_AS            limits whole address space "VmSize"
 - RLIMIT_STACK         limits stack "VmStk" (but each vma individually)
 - RLIMIT_DATA          now limits "VmData"

Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Willy Tarreau <w@1wt.eu>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Kees Cook <keescook@google.com>
Cc: Vladimir Davydov <vdavydov@virtuozzo.com>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00
Vladimir Davydov
5d097056c9 kmemcg: account certain kmem allocations to memcg
Mark those kmem allocations that are known to be easily triggered from
userspace as __GFP_ACCOUNT/SLAB_ACCOUNT, which makes them accounted to
memcg.  For the list, see below:

 - threadinfo
 - task_struct
 - task_delay_info
 - pid
 - cred
 - mm_struct
 - vm_area_struct and vm_region (nommu)
 - anon_vma and anon_vma_chain
 - signal_struct
 - sighand_struct
 - fs_struct
 - files_struct
 - fdtable and fdtable->full_fds_bits
 - dentry and external_name
 - inode for all filesystems. This is the most tedious part, because
   most filesystems overwrite the alloc_inode method.

The list is far from complete, so feel free to add more objects.
Nevertheless, it should be close to "account everything" approach and
keep most workloads within bounds.  Malevolent users will be able to
breach the limit, but this was possible even with the former "account
everything" approach (simply because it did not account everything in
fact).

[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Vladimir Davydov <vdavydov@virtuozzo.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14 16:00:49 -08:00