When CONFIG_FUNCTION_GRAPH_TRACER is selected and the function graph
tracer is in use, unwind_frame() may erroneously associate a traced
function with an incorrect return address. This can happen when starting
an unwind from a pt_regs, or when unwinding across an exception
boundary.
This can be seen when recording with perf while the function graph
tracer is in use. For example:
| # echo function_graph > /sys/kernel/debug/tracing/current_tracer
| # perf record -g -e raw_syscalls:sys_enter:k /bin/true
| # perf report
... reports the callchain erroneously as:
| el0t_64_sync
| el0t_64_sync_handler
| el0_svc_common.constprop.0
| perf_callchain
| get_perf_callchain
| syscall_trace_enter
| syscall_trace_enter
... whereas when the function graph tracer is not in use, it reports:
| el0t_64_sync
| el0t_64_sync_handler
| el0_svc
| do_el0_svc
| el0_svc_common.constprop.0
| syscall_trace_enter
| syscall_trace_enter
The underlying problem is that ftrace_graph_get_ret_stack() takes an
index offset from the most recent entry added to the fgraph return
stack. We start an unwind at offset 0, and increment the offset each
time we encounter a rewritten return address (i.e. when we see
`return_to_handler`). This is broken in two cases:
1) Between creating a pt_regs and starting the unwind, function calls
may place entries on the stack, leaving an arbitrary offset which we
can only determine by performing a full unwind from the caller of the
unwind code (and relying on none of the unwind code being
instrumented).
This can result in erroneous entries being reported in a backtrace
recorded by perf or kfence when the function graph tracer is in use.
Currently show_regs() is unaffected as dump_backtrace() performs an
initial unwind.
2) When unwinding across an exception boundary (whether continuing an
unwind or starting a new unwind from regs), we currently always skip
the LR of the interrupted context. Where this was live and contained
a rewritten address, we won't consume the corresponding fgraph ret
stack entry, leaving subsequent entries off-by-one.
This can result in erroneous entries being reported in a backtrace
performed by any in-kernel unwinder when that backtrace crosses an
exception boundary, with entries after the boundary being reported
incorrectly. This includes perf, kfence, show_regs(), panic(), etc.
To fix this, we need to be able to uniquely identify each rewritten
return address such that we can map this back to the original return
address. We can use HAVE_FUNCTION_GRAPH_RET_ADDR_PTR to associate
each rewritten return address with a unique location on the stack. As
the return address is passed in the LR (and so is not guaranteed a
unique location in memory), we use the FP upon entry to the function
(i.e. the address of the caller's frame record) as the return address
pointer. Any nested call will have a different FP value as the caller
must create its own frame record and update FP to point to this.
Since ftrace_graph_ret_addr() requires the return address with the PAC
stripped, the stripping of the PAC is moved before the fixup of the
rewritten address. As we would unconditionally strip the PAC, moving
this earlier is not harmful, and we can avoid a redundant strip in the
return address fixup code.
I've tested this with the perf case above, the ftrace selftests, and
a number of ad-hoc unwinder tests. The tests all pass, and I have seen
no unexpected behaviour as a result of this change. I've tested with
pointer authentication under QEMU TCG where magic-sysrq+l correctly
recovers the original return addresses.
Note that this doesn't fix the issue of skipping a live LR at an
exception boundary, which is a more general problem and requires more
substantial rework. Were we to consume the LR in all cases this would
result in warnings where the interrupted context's LR contains
`return_to_handler`, but the FP has been altered, e.g.
| func:
| <--- ftrace entry ---> // logs FP & LR, rewrites LR
| STP FP, LR, [SP, #-16]!
| MOV FP, SP
| <--- INTERRUPT --->
... as ftrace_graph_get_ret_stack() fill not find a matching entry,
triggering the WARN_ON_ONCE() in unwind_frame().
Link: https://lore.kernel.org/r/20211025164925.GB2001@C02TD0UTHF1T.local
Link: https://lore.kernel.org/r/20211027132529.30027-1-mark.rutland@arm.com
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20211029162245.39761-1-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
Since the kretprobe replaces the function return address with
the kretprobe_trampoline on the stack, stack unwinder shows it
instead of the correct return address.
This checks whether the next return address is the
__kretprobe_trampoline(), and if so, try to find the correct
return address from the kretprobe instance list. For this purpose
this adds 'kr_cur' loop cursor to memorize the current kretprobe
instance.
With this fix, now arm64 can enable
CONFIG_ARCH_CORRECT_STACKTRACE_ON_KRETPROBE, and pass the
kprobe self tests.
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Due to a copy-paste error, we describe struct stackframe::pc as a
snapshot of the `fp` field rather than the `lr` field.
Fix the comment.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Madhavan T. Venkataraman <madvenka@linux.microsoft.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Mark Brown <broonie@kernel.org>
Link: https://lore.kernel.org/r/20210802164845.45506-2-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
unwind_frame() was previously implicitly checking that the frame
record is in bounds of the stack by enforcing that FP is both aligned
to 16 and in bounds of the stack. Once the FP alignment requirement
is relaxed to 8 this will not be sufficient because it does not
account for the case where FP points to 8 bytes before the end of the
stack.
Make the check explicit by changing the on_*stack functions to take a
size argument and adjusting the callers to pass the appropriate sizes.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Link: https://linux-review.googlesource.com/id/Ib7a3eb3eea41b0687ffaba045ceb2012d077d8b4
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20210526174927.2477847-1-pcc@google.com
Signed-off-by: Will Deacon <will@kernel.org>
Currently start_backtrace() is a static inline function in the header.
Since it really shouldn't be sufficiently performance critical that we
actually need to have it inlined move it into a C file, this will save
anyone else scratching their head about why it is defined in the header.
As far as I can see it's only there because it was factored out of the
various callers.
Signed-off-by: Mark Brown <broonie@kernel.org>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20210319174022.33051-1-broonie@kernel.org
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
As with the generic arch_stack_walk() code the arm64 stack walk code takes
a callback that is called per stack frame. Currently the arm64 code always
passes a struct stackframe to the callback and the generic code just passes
the pc, however none of the users ever reference anything in the struct
other than the pc value. The arm64 code also uses a return type of int
while the generic code uses a return type of bool though in both cases the
return value is a boolean value and the sense is inverted between the two.
In order to reduce code duplication when arm64 is converted to use
arch_stack_walk() change the signature and return sense of the arm64
specific callback to match that of the generic code.
Signed-off-by: Mark Brown <broonie@kernel.org>
Reviewed-by: Miroslav Benes <mbenes@suse.cz>
Link: https://lore.kernel.org/r/20200914153409.25097-3-broonie@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
Currently, the log-level of show_stack() depends on a platform
realization. It creates situations where the headers are printed with
lower log level or higher than the stacktrace (depending on a platform or
user).
Furthermore, it forces the logic decision from user to an architecture
side. In result, some users as sysrq/kdb/etc are doing tricks with
temporary rising console_loglevel while printing their messages. And in
result it not only may print unwanted messages from other CPUs, but also
omit printing at all in the unlucky case where the printk() was deferred.
Introducing log-level parameter and KERN_UNSUPPRESSED [1] seems an easier
approach than introducing more printk buffers. Also, it will consolidate
printings with headers.
Add log level argument to dump_backtrace() as a preparation for
introducing show_stack_loglvl().
[1]: https://lore.kernel.org/lkml/20190528002412.1625-1-dima@arista.com/T/#u
Signed-off-by: Dmitry Safonov <dima@arista.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Will Deacon <will@kernel.org>
Link: http://lkml.kernel.org/r/20200418201944.482088-10-dima@arista.com
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The arm64 stacktrace code is careful to only dereference frame records
in valid stack ranges, ensuring that a corrupted frame record won't
result in a faulting access.
However, it's still possible for corrupt frame records to result in
infinite loops in the stacktrace code, which is also undesirable.
This patch ensures that we complete a stacktrace in finite time, by
keeping track of which stacks we have already completed unwinding, and
verifying that if the next frame record is on the same stack, it is at a
higher address.
As this has turned out to be particularly subtle, comments are added to
explain the procedure.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Tested-by: James Morse <james.morse@arm.com>
Acked-by: Dave Martin <Dave.Martin@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tengfei Fan <tengfeif@codeaurora.org>
Signed-off-by: Will Deacon <will@kernel.org>
Some common code is required by each stacktrace user to initialise
struct stackframe before the first call to unwind_frame().
In preparation for adding to the common code, this patch factors it
out into a separate function start_backtrace(), and modifies the
stacktrace callers appropriately.
No functional change.
Signed-off-by: Dave Martin <dave.martin@arm.com>
[Mark: drop tsk argument, update more callsites]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
on_accessible_stack() and on_task_stack() shouldn't (and don't)
modify their task argument, so it can be const.
This patch adds the appropriate modifiers. Whitespace violations in the
parameter lists are fixed at the same time.
No functional change.
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Dave Martin <dave.martin@arm.com>
[Mark: fixup const location, whitespace]
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license version 2 as
published by the free software foundation this program is
distributed in the hope that it will be useful but without any
warranty without even the implied warranty of merchantability or
fitness for a particular purpose see the gnu general public license
for more details you should have received a copy of the gnu general
public license along with this program if not see http www gnu org
licenses
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-only
has been chosen to replace the boilerplate/reference in 503 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Enrico Weigelt <info@metux.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190602204653.811534538@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
In preparation for enabling the stackleak plugin on arm64,
we need a way to get the bounds of the current stack. Extend
on_accessible_stack to get this information.
Acked-by: Alexander Popov <alex.popov@linux.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Laura Abbott <labbott@redhat.com>
[will: folded in fix for allmodconfig build breakage w/ sdei]
Signed-off-by: Will Deacon <will.deacon@arm.com>
do_task_stat() calls get_wchan(), which further does unwind_frame().
unwind_frame() restores frame->pc to original value in case function
graph tracer has modified a return address (LR) in a stack frame to hook
a function return. However, if function graph tracer has hit a filtered
function, then we can't unwind it as ftrace_push_return_trace() has
biased the index(frame->graph) with a 'huge negative'
offset(-FTRACE_NOTRACE_DEPTH).
Moreover, arm64 stack walker defines index(frame->graph) as unsigned
int, which can not compare a -ve number.
Similar problem we can have with calling of walk_stackframe() from
save_stack_trace_tsk() or dump_backtrace().
This patch fixes unwind_frame() to test the index for -ve value and
restore index accordingly before we can restore frame->pc.
Reproducer:
cd /sys/kernel/debug/tracing/
echo schedule > set_graph_notrace
echo 1 > options/display-graph
echo wakeup > current_tracer
ps -ef | grep -i agent
Above commands result in:
Unable to handle kernel paging request at virtual address ffff801bd3d1e000
pgd = ffff8003cbe97c00
[ffff801bd3d1e000] *pgd=0000000000000000, *pud=0000000000000000
Internal error: Oops: 96000006 [#1] SMP
[...]
CPU: 5 PID: 11696 Comm: ps Not tainted 4.11.0+ #33
[...]
task: ffff8003c21ba000 task.stack: ffff8003cc6c0000
PC is at unwind_frame+0x12c/0x180
LR is at get_wchan+0xd4/0x134
pc : [<ffff00000808892c>] lr : [<ffff0000080860b8>] pstate: 60000145
sp : ffff8003cc6c3ab0
x29: ffff8003cc6c3ab0 x28: 0000000000000001
x27: 0000000000000026 x26: 0000000000000026
x25: 00000000000012d8 x24: 0000000000000000
x23: ffff8003c1c04000 x22: ffff000008c83000
x21: ffff8003c1c00000 x20: 000000000000000f
x19: ffff8003c1bc0000 x18: 0000fffffc593690
x17: 0000000000000000 x16: 0000000000000001
x15: 0000b855670e2b60 x14: 0003e97f22cf1d0f
x13: 0000000000000001 x12: 0000000000000000
x11: 00000000e8f4883e x10: 0000000154f47ec8
x9 : 0000000070f367c0 x8 : 0000000000000000
x7 : 00008003f7290000 x6 : 0000000000000018
x5 : 0000000000000000 x4 : ffff8003c1c03cb0
x3 : ffff8003c1c03ca0 x2 : 00000017ffe80000
x1 : ffff8003cc6c3af8 x0 : ffff8003d3e9e000
Process ps (pid: 11696, stack limit = 0xffff8003cc6c0000)
Stack: (0xffff8003cc6c3ab0 to 0xffff8003cc6c4000)
[...]
[<ffff00000808892c>] unwind_frame+0x12c/0x180
[<ffff000008305008>] do_task_stat+0x864/0x870
[<ffff000008305c44>] proc_tgid_stat+0x3c/0x48
[<ffff0000082fde0c>] proc_single_show+0x5c/0xb8
[<ffff0000082b27e0>] seq_read+0x160/0x414
[<ffff000008289e6c>] __vfs_read+0x58/0x164
[<ffff00000828b164>] vfs_read+0x88/0x144
[<ffff00000828c2e8>] SyS_read+0x60/0xc0
[<ffff0000080834a0>] __sys_trace_return+0x0/0x4
Fixes: 20380bb390 (arm64: ftrace: fix a stack tracer's output under function graph tracer)
Signed-off-by: Pratyush Anand <panand@redhat.com>
Signed-off-by: Jerome Marchand <jmarchan@redhat.com>
[catalin.marinas@arm.com: replace WARN_ON with WARN_ON_ONCE]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
The Software Delegated Exception Interface (SDEI) is an ARM standard
for registering callbacks from the platform firmware into the OS.
This is typically used to implement RAS notifications.
Such notifications enter the kernel at the registered entry-point
with the register values of the interrupted CPU context. Because this
is not a CPU exception, it cannot reuse the existing entry code.
(crucially we don't implicitly know which exception level we interrupted),
Add the entry point to entry.S to set us up for calling into C code. If
the event interrupted code that had interrupts masked, we always return
to that location. Otherwise we pretend this was an IRQ, and use SDEI's
complete_and_resume call to return to vbar_el1 + offset.
This allows the kernel to deliver signals to user space processes. For
KVM this triggers the world switch, a quick spin round vcpu_run, then
back into the guest, unless there are pending signals.
Add sdei_mask_local_cpu() calls to the smp_send_stop() code, this covers
the panic() code-path, which doesn't invoke cpuhotplug notifiers.
Because we can interrupt entry-from/exit-to another EL, we can't trust the
value in sp_el0 or x29, even if we interrupted the kernel, in this case
the code in entry.S will save/restore sp_el0 and use the value in
__entry_task.
When we have VMAP stacks we can interrupt the stack-overflow test, which
stirs x0 into sp, meaning we have to have our own VMAP stacks. For now
these are allocated when we probe the interface. Future patches will add
refcounting hooks to allow the arch code to allocate them lazily.
Signed-off-by: James Morse <james.morse@arm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Both unwind_frame() and dump_backtrace() try to check whether a stack
address is sane to access, with very similar logic. Both will need
updating in order to handle overflow stacks.
Factor out this logic into a helper, so that we can avoid further
duplication when we add overflow stacks.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
We allocate our IRQ stacks using a percpu array. This allows us to generate our
IRQ stack pointers with adr_this_cpu, but bloats the kernel Image with the boot
CPU's IRQ stack. Additionally, these are packed with other percpu variables,
and aren't guaranteed to have guard pages.
When we enable VMAP_STACK we'll want to vmap our IRQ stacks also, in order to
provide guard pages and to permit more stringent alignment requirements. Doing
so will require that we use a percpu pointer to each IRQ stack, rather than
allocating a percpu IRQ stack in the kernel image.
This patch updates our IRQ stack code to use a percpu pointer to the base of
each IRQ stack. This will allow us to change the way the stack is allocated
with minimal changes elsewhere. In some cases we may try to backtrace before
the IRQ stack pointers are initialised, so on_irq_stack() is updated to account
for this.
In testing with cyclictest, there was no measureable difference between using
adr_this_cpu (for irq_stack) and ldr_this_cpu (for irq_stack_ptr) in the IRQ
entry path.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Before we add yet another stack to the kernel, it would be nice to
ensure that we consistently organise stack definitions and related
helper functions.
This patch moves the basic IRQ stack defintions to <asm/memory.h> to
live with their task stack counterparts. Helpers used for unwinding are
moved into <asm/stacktrace.h>, where subsequent patches will add helpers
for other stacks. Includes are fixed up accordingly.
This patch is a pure refactoring -- there should be no functional
changes as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Reviewed-by: Will Deacon <will.deacon@arm.com>
Tested-by: Laura Abbott <labbott@redhat.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
The unwind code sets the sp member of struct stackframe to
'frame pointer + 0x10' unconditionally, without regard for whether
doing so produces a legal value. So let's simply remove it now that
we have stopped using it anyway.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Generic code expects show_regs() to dump the stack, but arm64's
show_regs() does not. This makes it hard to debug softlockups and
other issues that result in show_regs() being called.
This patch updates arm64's show_regs() to dump the stack, as common
code expects.
Acked-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
[will: folded in bug_handler fix from mrutland]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Function graph tracer modifies a return address (LR) in a stack frame
to hook a function return. This will result in many useless entries
(return_to_handler) showing up in
a) a stack tracer's output
b) perf call graph (with perf record -g)
c) dump_backtrace (at panic et al.)
For example, in case of a),
$ echo function_graph > /sys/kernel/debug/tracing/current_tracer
$ echo 1 > /proc/sys/kernel/stack_trace_enabled
$ cat /sys/kernel/debug/tracing/stack_trace
Depth Size Location (54 entries)
----- ---- --------
0) 4504 16 gic_raise_softirq+0x28/0x150
1) 4488 80 smp_cross_call+0x38/0xb8
2) 4408 48 return_to_handler+0x0/0x40
3) 4360 32 return_to_handler+0x0/0x40
...
In case of b),
$ echo function_graph > /sys/kernel/debug/tracing/current_tracer
$ perf record -e mem:XXX:x -ag -- sleep 10
$ perf report
...
| | |--0.22%-- 0x550f8
| | | 0x10888
| | | el0_svc_naked
| | | sys_openat
| | | return_to_handler
| | | return_to_handler
...
In case of c),
$ echo function_graph > /sys/kernel/debug/tracing/current_tracer
$ echo c > /proc/sysrq-trigger
...
Call trace:
[<ffffffc00044d3ac>] sysrq_handle_crash+0x24/0x30
[<ffffffc000092250>] return_to_handler+0x0/0x40
[<ffffffc000092250>] return_to_handler+0x0/0x40
...
This patch replaces such entries with real addresses preserved in
current->ret_stack[] at unwind_frame(). This way, we can cover all
the cases.
Reviewed-by: Jungseok Lee <jungseoklee85@gmail.com>
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
[will: fixed minor context changes conflicting with irq stack bits]
Signed-off-by: Will Deacon <will.deacon@arm.com>
Function graph tracer modifies a return address (LR) in a stack frame
to hook a function's return. This will result in many useless entries
(return_to_handler) showing up in a call stack list.
We will fix this problem in a later patch ("arm64: ftrace: fix a stack
tracer's output under function graph tracer"). But since real return
addresses are saved in ret_stack[] array in struct task_struct,
unwind functions need to be notified of, in addition to a stack pointer
address, which task is being traced in order to find out real return
addresses.
This patch extends unwind functions' interfaces by adding an extra
argument of a pointer to task_struct.
Signed-off-by: AKASHI Takahiro <takahiro.akashi@linaro.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
The patch contains the exception entry code (kernel/entry.S), pt_regs
structure and related accessors, undefined instruction trapping and
stack tracing.
AArch64 Linux kernel (including kernel threads) runs in EL1 mode using
the SP1 stack. The vectors don't have a fixed address, only alignment
(2^11) requirements.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Tony Lindgren <tony@atomide.com>
Acked-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Olof Johansson <olof@lixom.net>
Acked-by: Santosh Shilimkar <santosh.shilimkar@ti.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>