When the last CPU in an rdt_domain goes offline, its rdt_domain struct gets
freed. Current pseudo-locking code is unaware of this scenario and tries to
dereference the freed structure in a few places.
Add checks to prevent pseudo-locking code from doing this.
While further work is needed to seamlessly restore resource groups (not
just pseudo-locking) to their configuration when the domain is brought back
online, the immediate issue of invalid pointers is addressed here.
Fixes: f4e80d67a5 ("x86/intel_rdt: Resctrl files reflect pseudo-locked information")
Fixes: 443810fe61 ("x86/intel_rdt: Create debugfs files for pseudo-locking testing")
Fixes: 746e08590b ("x86/intel_rdt: Create character device exposing pseudo-locked region")
Fixes: 33dc3e410a ("x86/intel_rdt: Make CPU information accessible for pseudo-locked regions")
Signed-off-by: Jithu Joseph <jithu.joseph@intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: gavin.hindman@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/231f742dbb7b00a31cc104416860e27dba6b072d.1539384145.git.reinette.chatre@intel.com
When a new resource group is created it is initialized with a default
allocation that considers which portions of cache are currently
available for sharing across all resource groups or which portions of
cache are currently unused.
If a CDP allocation forms part of a resource group that is in exclusive
mode then it should be ensured that no new allocation overlaps with any
resource that shares the underlying hardware. The current initial
allocation does not take this sharing of hardware into account and
a new allocation in a resource that shares the same
hardware would affect the exclusive resource group.
Fix this by considering the allocation of a peer RDT domain - a RDT
domain sharing the same hardware - as part of the test to determine
which portion of cache is in use and available for use.
Fixes: 95f0b77efa ("x86/intel_rdt: Initialize new resource group with sane defaults")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: tony.luck@intel.com
Cc: jithu.joseph@intel.com
Cc: gavin.hindman@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/b1f7ec08b1695be067de416a4128466d49684317.1538603665.git.reinette.chatre@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The CBM overlap test is used to manage the allocations of RDT resources
where overlap is possible between resource groups. When a resource group
is in exclusive mode then there should be no overlap between resource
groups.
The current overlap test only considers overlap between the same
resources, for example, that usage of a RDT_RESOURCE_L2DATA resource
in one resource group does not overlap with usage of a RDT_RESOURCE_L2DATA
resource in another resource group. The problem with this is that it
allows overlap between a RDT_RESOURCE_L2DATA resource in one resource
group with a RDT_RESOURCE_L2CODE resource in another resource group -
even if both resource groups are in exclusive mode. This is a problem
because even though these appear to be different resources they end up
sharing the same underlying hardware and thus does not fulfill the
user's request for exclusive use of hardware resources.
Fix this by including the CDP peer (if there is one) in every CBM
overlap test. This does not impact the overlap between resources
within the same exclusive resource group that is allowed.
Fixes: 49f7b4efa1 ("x86/intel_rdt: Enable setting of exclusive mode")
Reported-by: Jithu Joseph <jithu.joseph@intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jithu Joseph <jithu.joseph@intel.com>
Acked-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: tony.luck@intel.com
Cc: gavin.hindman@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/e538b7f56f7ca15963dce2e00ac3be8edb8a68e1.1538603665.git.reinette.chatre@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Introduce a utility that, when provided with a RDT resource and an
instance of this RDT resource (a RDT domain), would return pointers to
the RDT resource and RDT domain that share the same hardware. This is
specific to the CDP resources that share the same hardware.
For example, if a pointer to the RDT_RESOURCE_L2DATA resource (struct
rdt_resource) and a pointer to an instance of this resource (struct
rdt_domain) is provided, then it will return a pointer to the
RDT_RESOURCE_L2CODE resource as well as the specific instance that
shares the same hardware as the provided rdt_domain.
This utility is created in support of the "exclusive" resource group
mode where overlap of resource allocation between resource groups need
to be avoided. The overlap test need to consider not just the matching
resources, but also the resources that share the same hardware.
Temporarily mark it as unused in support of patch testing to avoid
compile warnings until it is used.
Fixes: 49f7b4efa1 ("x86/intel_rdt: Enable setting of exclusive mode")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jithu Joseph <jithu.joseph@intel.com>
Acked-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: tony.luck@intel.com
Cc: gavin.hindman@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/9b4bc4d59ba2e903b6a3eb17e16ef41a8e7b7c3e.1538603665.git.reinette.chatre@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
While the DOC at the beginning of lib/bitmap.c explicitly states that
"The number of valid bits in a given bitmap does _not_ need to be an
exact multiple of BITS_PER_LONG.", some of the bitmap operations do
indeed access BITS_PER_LONG portions of the provided bitmap no matter
the size of the provided bitmap. For example, if bitmap_intersects()
is provided with an 8 bit bitmap the operation will access
BITS_PER_LONG bits from the provided bitmap. While the operation
ensures that these extra bits do not affect the result, the memory
is still accessed.
The capacity bitmasks (CBMs) are typically stored in u32 since they
can never exceed 32 bits. A few instances exist where a bitmap_*
operation is performed on a CBM by simply pointing the bitmap operation
to the stored u32 value.
The consequence of this pattern is that some bitmap_* operations will
access out-of-bounds memory when interacting with the provided CBM. This
is confirmed with a KASAN test that reports:
BUG: KASAN: stack-out-of-bounds in __bitmap_intersects+0xa2/0x100
and
BUG: KASAN: stack-out-of-bounds in __bitmap_weight+0x58/0x90
Fix this by moving any CBM provided to a bitmap operation needing
BITS_PER_LONG to an 'unsigned long' variable.
[ tglx: Changed related function arguments to unsigned long and got rid
of the _cbm extra step ]
Fixes: 72d5050566 ("x86/intel_rdt: Add utilities to test pseudo-locked region possibility")
Fixes: 49f7b4efa1 ("x86/intel_rdt: Enable setting of exclusive mode")
Fixes: d9b48c86eb ("x86/intel_rdt: Display resource groups' allocations' size in bytes")
Fixes: 95f0b77efa ("x86/intel_rdt: Initialize new resource group with sane defaults")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/69a428613a53f10e80594679ac726246020ff94f.1538686926.git.reinette.chatre@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Ingo writes:
"perf fixes:
- fix a CPU#0 hot unplug bug and a PCI enumeration bug in the x86 Intel uncore PMU driver
- fix a CPU event enumeration bug in the x86 AMD PMU driver
- fix a perf ring-buffer corruption bug when using tracepoints
- fix a PMU unregister locking bug"
* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
perf/x86/amd/uncore: Set ThreadMask and SliceMask for L3 Cache perf events
perf/x86/intel/uncore: Fix PCI BDF address of M3UPI on SKX
perf/ring_buffer: Prevent concurent ring buffer access
perf/x86/intel/uncore: Use boot_cpu_data.phys_proc_id instead of hardcorded physical package ID 0
perf/core: Fix perf_pmu_unregister() locking
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJbtxXyAAoJEL/70l94x66D52kH/jEbBo/jz9Jx2bnbxYkG1YzO
cIpIRjbRcOKVFNGxjStlJ0PedQBWAfPQl+SywRfqwiSlOOt/yo0lZ5ZewENR2TxO
CLQC/OnV/5SU7BJvbsKgH9tc+Wp9X55wBUEalfcvG/knFlmR+eK/7TwTS+hv/U21
uYKRnGfz5AGfdmB9FyCn0blkPNnFaQ8KB+y+INZTkB+YZzNsybow230FRPs22fjX
HGeJ7gngah50M5gxDW+YPPNXFhs36x2hsyQXBN9TPxLPHoxTsRRoeqx2nl/UvA+e
LXZWg8/UAzXFO/fKVHkJX4jSnCDr2W7HYGNyLPtXFPWhcOelP1h9uHrfuX+fxA4=
=UNUo
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Paolo writes:
"KVM changes for 4.19-rc7
x86 and PPC bugfixes, mostly introduced in 4.19-rc1."
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
kvm: nVMX: fix entry with pending interrupt if APICv is enabled
KVM: VMX: hide flexpriority from guest when disabled at the module level
KVM: VMX: check for existence of secondary exec controls before accessing
KVM: PPC: Book3S HV: Avoid crash from THP collapse during radix page fault
KVM: x86: fix L1TF's MMIO GFN calculation
tools/kvm_stat: cut down decimal places in update interval dialog
KVM: nVMX: Fix emulation of VM_ENTRY_LOAD_BNDCFGS
KVM: x86: Do not use kvm_x86_ops->mpx_supported() directly
KVM: nVMX: Do not expose MPX VMX controls when guest MPX disabled
KVM: x86: never trap MSR_KERNEL_GS_BASE
Commit b5861e5cf2 introduced a check on
the interrupt-window and NMI-window CPU execution controls in order to
inject an external interrupt vmexit before the first guest instruction
executes. However, when APIC virtualization is enabled the host does not
need a vmexit in order to inject an interrupt at the next interrupt window;
instead, it just places the interrupt vector in RVI and the processor will
inject it as soon as possible. Therefore, on machines with APICv it is
not enough to check the CPU execution controls: the same scenario can also
happen if RVI>vPPR.
Fixes: b5861e5cf2
Reviewed-by: Nikita Leshchenko <nikita.leshchenko@oracle.com>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As of commit 8d860bbeed ("kvm: vmx: Basic APIC virtualization controls
have three settings"), KVM will disable VIRTUALIZE_APIC_ACCESSES when
a nested guest writes APIC_BASE MSR and kvm-intel.flexpriority=0,
whereas previously KVM would allow a nested guest to enable
VIRTUALIZE_APIC_ACCESSES so long as it's supported in hardware. That is,
KVM now advertises VIRTUALIZE_APIC_ACCESSES to a guest but doesn't
(always) allow setting it when kvm-intel.flexpriority=0, and may even
initially allow the control and then clear it when the nested guest
writes APIC_BASE MSR, which is decidedly odd even if it doesn't cause
functional issues.
Hide the control completely when the module parameter is cleared.
reported-by: Sean Christopherson <sean.j.christopherson@intel.com>
Fixes: 8d860bbeed ("kvm: vmx: Basic APIC virtualization controls have three settings")
Cc: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Return early from vmx_set_virtual_apic_mode() if the processor doesn't
support VIRTUALIZE_APIC_ACCESSES or VIRTUALIZE_X2APIC_MODE, both of
which reside in SECONDARY_VM_EXEC_CONTROL. This eliminates warnings
due to VMWRITEs to SECONDARY_VM_EXEC_CONTROL (VMCS field 401e) failing
on processors without secondary exec controls.
Remove the similar check for TPR shadowing as it is incorporated in the
flexpriority_enabled check and the APIC-related code in
vmx_update_msr_bitmap() is further gated by VIRTUALIZE_X2APIC_MODE.
Reported-by: Gerhard Wiesinger <redhat@wiesinger.com>
Fixes: 8d860bbeed ("kvm: vmx: Basic APIC virtualization controls have three settings")
Cc: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When I added the missing memory outputs, I failed to update the
index of the first argument (ebx) on 32-bit builds, which broke the
fallbacks. Somehow I must have screwed up my testing or gotten
lucky.
Add another test to cover gettimeofday() as well.
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Fixes: 715bd9d12f ("x86/vdso: Fix asm constraints on vDSO syscall fallbacks")
Link: http://lkml.kernel.org/r/21bd45ab04b6d838278fa5bebfa9163eceffa13c.1538608971.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In resctrl filesystem, mount options exist to enable L3/L2 CDP and MBA
Software Controller features if the platform supports them:
mount -t resctrl resctrl [-o cdp[,cdpl2][,mba_MBps]] /sys/fs/resctrl
But currently only "cdp" option is displayed in /proc/mounts. "cdpl2" and
"mba_MBps" options are not shown even when they are active.
Before:
# mount -t resctrl resctrl -o cdp,mba_MBps /sys/fs/resctrl
# grep resctrl /proc/mounts
/sys/fs/resctrl /sys/fs/resctrl resctrl rw,relatime,cdp 0 0
After:
# mount -t resctrl resctrl -o cdp,mba_MBps /sys/fs/resctrl
# grep resctrl /proc/mounts
/sys/fs/resctrl /sys/fs/resctrl resctrl rw,relatime,cdp,mba_MBps 0 0
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H Peter Anvin" <hpa@zytor.com>
Cc: "Tony Luck" <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/1536796118-60135-1-git-send-email-fenghua.yu@intel.com
Switch to bitmap_zalloc() to show clearly what is allocated. Besides that
it returns a pointer of bitmap type instead of opaque void *.
Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Fenghua Yu <fenghua.yu@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Link: https://lkml.kernel.org/r/20180830115039.63430-1-andriy.shevchenko@linux.intel.com
Clang warns when multiple pairs of parentheses are used for a single
conditional statement.
arch/x86/kernel/cpu/amd.c:925:14: warning: equality comparison with
extraneous parentheses [-Wparentheses-equality]
if ((c->x86 == 6)) {
~~~~~~~^~~~
arch/x86/kernel/cpu/amd.c:925:14: note: remove extraneous parentheses
around the comparison to silence this warning
if ((c->x86 == 6)) {
~ ^ ~
arch/x86/kernel/cpu/amd.c:925:14: note: use '=' to turn this equality
comparison into an assignment
if ((c->x86 == 6)) {
^~
=
1 warning generated.
Signed-off-by: Nathan Chancellor <natechancellor@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20181002224511.14929-1-natechancellor@gmail.com
Link: https://github.com/ClangBuiltLinux/linux/issues/187
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When I fixed the vDSO build to use inline retpolines, I messed up
the Makefile logic and made it unconditional. It should have
depended on CONFIG_RETPOLINE and on the availability of compiler
support. This broke the build on some older compilers.
Reported-by: nikola.ciprich@linuxbox.cz
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Matt Rickard <matt@softrans.com.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: jason.vas.dias@gmail.com
Cc: stable@vger.kernel.org
Fixes: 2e549b2ee0 ("x86/vdso: Fix vDSO build if a retpoline is emitted")
Link: http://lkml.kernel.org/r/08a1f29f2c238dd1f493945e702a521f8a5aa3ae.1538540801.git.luto@kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The recent rework of the TSC calibration code introduced a regression on UV
systems as it added a call to tsc_early_init() which initializes the TSC
ADJUST values before acpi_boot_table_init(). In the case of UV systems,
that is a necessary step that calls uv_system_init(). This informs
tsc_sanitize_first_cpu() that the kernel runs on a platform with async TSC
resets as documented in commit 341102c3ef ("x86/tsc: Add option that TSC
on Socket 0 being non-zero is valid")
Fix it by skipping the early tsc initialization on UV systems and let TSC
init tests take place later in tsc_init().
Fixes: cf7a63ef4e ("x86/tsc: Calibrate tsc only once")
Suggested-by: Hedi Berriche <hedi.berriche@hpe.com>
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Russ Anderson <rja@hpe.com>
Reviewed-by: Dimitri Sivanich <sivanich@hpe.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Russ Anderson <russ.anderson@hpe.com>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Xiaoming Gao <gxm.linux.kernel@gmail.com>
Cc: Rajvi Jingar <rajvi.jingar@intel.com>
Link: https://lkml.kernel.org/r/20181002180144.923579706@stormcage.americas.sgi.com
Introduce is_early_uv_system() which uses efi.uv_systab to decide early
in the boot process whether the kernel runs on a UV system.
This is needed to skip other early setup/init code that might break
the UV platform if done too early such as before necessary ACPI tables
parsing takes place.
Suggested-by: Hedi Berriche <hedi.berriche@hpe.com>
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Russ Anderson <rja@hpe.com>
Reviewed-by: Dimitri Sivanich <sivanich@hpe.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Russ Anderson <russ.anderson@hpe.com>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Philippe Ombredanne <pombredanne@nexb.com>
Cc: Pavel Tatashin <pasha.tatashin@oracle.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Len Brown <len.brown@intel.com>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Xiaoming Gao <gxm.linux.kernel@gmail.com>
Cc: Rajvi Jingar <rajvi.jingar@intel.com>
Link: https://lkml.kernel.org/r/20181002180144.801700401@stormcage.americas.sgi.com
In Family 17h, some L3 Cache Performance events require the ThreadMask
and SliceMask to be set. For other events, these fields do not affect
the count either way.
Set ThreadMask and SliceMask to 0xFF and 0xF respectively.
Signed-off-by: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@kernel.org>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: H . Peter Anvin <hpa@zytor.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Namhyung Kim <namhyung@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Suravee <Suravee.Suthikulpanit@amd.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Link: http://lkml.kernel.org/r/Message-ID:
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The counters on M3UPI Link 0 and Link 3 don't count properly, and writing
0 to these counters may causes system crash on some machines.
The PCI BDF addresses of the M3UPI in the current code are incorrect.
The correct addresses should be:
D18:F1 0x204D
D18:F2 0x204E
D18:F5 0x204D
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com>
Cc: Arnaldo Carvalho de Melo <acme@redhat.com>
Cc: Jiri Olsa <jolsa@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephane Eranian <eranian@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Vince Weaver <vincent.weaver@maine.edu>
Fixes: cd34cd97b7 ("perf/x86/intel/uncore: Add Skylake server uncore support")
Link: http://lkml.kernel.org/r/1537538826-55489-1-git-send-email-kan.liang@linux.intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The syscall fallbacks in the vDSO have incorrect asm constraints.
They are not marked as writing to their outputs -- instead, they are
marked as clobbering "memory", which is useless. In particular, gcc
is smart enough to know that the timespec parameter hasn't escaped,
so a memory clobber doesn't clobber it. And passing a pointer as an
asm *input* does not tell gcc that the pointed-to value is changed.
Add in the fact that the asm instructions weren't volatile, and gcc
was free to omit them entirely unless their sole output (the return
value) is used. Which it is (phew!), but that stops happening with
some upcoming patches.
As a trivial example, the following code:
void test_fallback(struct timespec *ts)
{
vdso_fallback_gettime(CLOCK_MONOTONIC, ts);
}
compiles to:
00000000000000c0 <test_fallback>:
c0: c3 retq
To add insult to injury, the RCX and R11 clobbers on 64-bit
builds were missing.
The "memory" clobber is also unnecessary -- no ordering with respect to
other memory operations is needed, but that's going to be fixed in a
separate not-for-stable patch.
Fixes: 2aae950b21 ("x86_64: Add vDSO for x86-64 with gettimeofday/clock_gettime/getcpu")
Signed-off-by: Andy Lutomirski <luto@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/2c0231690551989d2fafa60ed0e7b5cc8b403908.1538422295.git.luto@kernel.org
One defense against L1TF in KVM is to always set the upper five bits
of the *legal* physical address in the SPTEs for non-present and
reserved SPTEs, e.g. MMIO SPTEs. In the MMIO case, the GFN of the
MMIO SPTE may overlap with the upper five bits that are being usurped
to defend against L1TF. To preserve the GFN, the bits of the GFN that
overlap with the repurposed bits are shifted left into the reserved
bits, i.e. the GFN in the SPTE will be split into high and low parts.
When retrieving the GFN from the MMIO SPTE, e.g. to check for an MMIO
access, get_mmio_spte_gfn() unshifts the affected bits and restores
the original GFN for comparison. Unfortunately, get_mmio_spte_gfn()
neglects to mask off the reserved bits in the SPTE that were used to
store the upper chunk of the GFN. As a result, KVM fails to detect
MMIO accesses whose GPA overlaps the repurprosed bits, which in turn
causes guest panics and hangs.
Fix the bug by generating a mask that covers the lower chunk of the
GFN, i.e. the bits that aren't shifted by the L1TF mitigation. The
alternative approach would be to explicitly zero the five reserved
bits that are used to store the upper chunk of the GFN, but that
requires additional run-time computation and makes an already-ugly
bit of code even more inscrutable.
I considered adding a WARN_ON_ONCE(low_phys_bits-1 <= PAGE_SHIFT) to
warn if GENMASK_ULL() generated a nonsensical value, but that seemed
silly since that would mean a system that supports VMX has less than
18 bits of physical address space...
Reported-by: Sakari Ailus <sakari.ailus@iki.fi>
Fixes: d9b47449c1 ("kvm: x86: Set highest physical address bits in non-present/reserved SPTEs")
Cc: Junaid Shahid <junaids@google.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: stable@vger.kernel.org
Reviewed-by: Junaid Shahid <junaids@google.com>
Tested-by: Sakari Ailus <sakari.ailus@linux.intel.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
L2 IA32_BNDCFGS should be updated with vmcs12->guest_bndcfgs only
when VM_ENTRY_LOAD_BNDCFGS is specified in vmcs12->vm_entry_controls.
Otherwise, L2 IA32_BNDCFGS should be set to vmcs01->guest_bndcfgs which
is L1 IA32_BNDCFGS.
Reviewed-by: Nikita Leshchenko <nikita.leshchenko@oracle.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit a87036add0 ("KVM: x86: disable MPX if host did not enable
MPX XSAVE features") introduced kvm_mpx_supported() to return true
iff MPX is enabled in the host.
However, that commit seems to have missed replacing some calls to
kvm_x86_ops->mpx_supported() to kvm_mpx_supported().
Complete original commit by replacing remaining calls to
kvm_mpx_supported().
Fixes: a87036add0 ("KVM: x86: disable MPX if host did not enable
MPX XSAVE features")
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Before this commit, KVM exposes MPX VMX controls to L1 guest only based
on if KVM and host processor supports MPX virtualization.
However, these controls should be exposed to guest only in case guest
vCPU supports MPX.
Without this change, a L1 guest running with kernel which don't have
commit 691bd4340b ("kvm: vmx: allow host to access guest
MSR_IA32_BNDCFGS") asserts in QEMU on the following:
qemu-kvm: error: failed to set MSR 0xd90 to 0x0
qemu-kvm: .../qemu-2.10.0/target/i386/kvm.c:1801 kvm_put_msrs:
Assertion 'ret == cpu->kvm_msr_buf->nmsrs failed'
This is because L1 KVM kvm_init_msr_list() will see that
vmx_mpx_supported() (As it only checks MPX VMX controls support) and
therefore KVM_GET_MSR_INDEX_LIST IOCTL will include MSR_IA32_BNDCFGS.
However, later when L1 will attempt to set this MSR via KVM_SET_MSRS
IOCTL, it will fail because !guest_cpuid_has_mpx(vcpu).
Therefore, fix the issue by exposing MPX VMX controls to L1 guest only
when vCPU supports MPX.
Fixes: 36be0b9deb ("KVM: x86: Add nested virtualization support for MPX")
Reported-by: Eyal Moscovici <eyal.moscovici@oracle.com>
Reviewed-by: Nikita Leshchenko <nikita.leshchenko@oracle.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Thomas writes:
"A single fix for the AMD memory encryption boot code so it does not
read random garbage instead of the cached encryption bit when a kexec
kernel is allocated above the 32bit address limit."
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot: Fix kexec booting failure in the SEV bit detection code
The success of a cache pseudo-locked region is measured using
performance monitoring events that are programmed directly at the time
the user requests a measurement.
Modifying the performance event registers directly is not appropriate
since it circumvents the in-kernel perf infrastructure that exists to
manage these resources and provide resource arbitration to the
performance monitoring hardware.
The cache pseudo-locking measurements are modified to use the in-kernel
perf infrastructure. Performance events are created and validated with
the appropriate perf API. The performance counters are still read as
directly as possible to avoid the additional cache hits. This is
done safely by first ensuring with the perf API that the counters have
been programmed correctly and only accessing the counters in an
interrupt disabled section where they are not able to be moved.
As part of the transition to the in-kernel perf infrastructure the L2
and L3 measurements are split into two separate measurements that can
be triggered independently. This separation prevents additional cache
misses incurred during the extra testing code used to decide if a
L2 and/or L3 measurement should be made.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: peterz@infradead.org
Cc: acme@kernel.org
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/fc24e728b446404f42c78573c506e98cd0599873.1537468643.git.reinette.chatre@intel.com
A perf event has many attributes that are maintained in a separate
structure that should be provided when a new perf_event is created.
In preparation for the transition to perf_events the required attribute
structures are created for all the events that may be used in the
measurements. Most attributes for all the events are identical. The
actual configuration, what specifies what needs to be measured, is what
will be different between the events used. This configuration needs to
be done with X86_CONFIG that cannot be used as part of the designated
initializers used here, this will be introduced later.
Although they do look identical at this time the attribute structures
needs to be maintained separately since a perf_event will maintain a
pointer to its unique attributes.
In support of patch testing the new structs are given the unused attribute
until their use in later patches.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: acme@kernel.org
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/1822f6164e221a497648d108913d056ab675d5d0.1537377064.git.reinette.chatre@intel.com
Local register variables were used in an effort to improve the
accuracy of the measurement of cache residency of a pseudo-locked
region. This was done to ensure that only the cache residency of
the memory is measured and not the cache residency of the variables
used to perform the measurement.
While local register variables do accomplish the goal they do require
significant care since different architectures have different registers
available. Local register variables also cannot be used with valuable
developer tools like KASAN.
Significant testing has shown that similar accuracy in measurement
results can be obtained by replacing local register variables with
regular local variables.
Make use of local variables in the critical code but do so with
READ_ONCE() to prevent the compiler from merging or refetching reads.
Ensure these variables are initialized before the measurement starts,
and ensure it is only the local variables that are accessed during
the measurement.
With the removal of the local register variables and using READ_ONCE()
there is no longer a motivation for using a direct wrmsr call (that
avoids the additional tracing code that may clobber the local register
variables).
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: acme@kernel.org
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/f430f57347414e0691765d92b144758ab93d8407.1537377064.git.reinette.chatre@intel.com
perf_event_read_local() is the safest way to obtain measurements
associated with performance events. In some cases the overhead
introduced by perf_event_read_local() affects the measurements and the
use of rdpmcl() is needed. rdpmcl() requires the index
of the performance counter used so a helper is introduced to determine
the index used by a provided performance event.
The index used by a performance event may change when interrupts are
enabled. A check is added to ensure that the index is only accessed
with interrupts disabled. Even with this check the use of this counter
needs to be done with care to ensure it is queried and used within the
same disabled interrupts section.
This change introduces a new checkpatch warning:
CHECK: extern prototypes should be avoided in .h files
+extern int x86_perf_rdpmc_index(struct perf_event *event);
This warning was discussed and designated as a false positive in
http://lkml.kernel.org/r/20180919091759.GZ24124@hirez.programming.kicks-ass.net
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: acme@kernel.org
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/b277ffa78a51254f5414f7b1bc1923826874566e.1537377064.git.reinette.chatre@intel.com
Commit
1958b5fc40 ("x86/boot: Add early boot support when running with SEV active")
can occasionally cause system resets when kexec-ing a second kernel even
if SEV is not active.
That's because get_sev_encryption_bit() uses 32-bit rIP-relative
addressing to read the value of enc_bit - a variable which caches a
previously detected encryption bit position - but kexec may allocate
the early boot code to a higher location, beyond the 32-bit addressing
limit.
In this case, garbage will be read and get_sev_encryption_bit() will
return the wrong value, leading to accessing memory with the wrong
encryption setting.
Therefore, remove enc_bit, and thus get rid of the need to do 32-bit
rIP-relative addressing in the first place.
[ bp: massage commit message heavily. ]
Fixes: 1958b5fc40 ("x86/boot: Add early boot support when running with SEV active")
Suggested-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Kairui Song <kasong@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: linux-kernel@vger.kernel.org
Cc: tglx@linutronix.de
Cc: mingo@redhat.com
Cc: hpa@zytor.com
Cc: brijesh.singh@amd.com
Cc: kexec@lists.infradead.org
Cc: dyoung@redhat.com
Cc: bhe@redhat.com
Cc: ghook@redhat.com
Link: https://lkml.kernel.org/r/20180927123845.32052-1-kasong@redhat.com
KVM has an old optimization whereby accesses to the kernel GS base MSR
are trapped when the guest is in 32-bit and not when it is in 64-bit mode.
The idea is that swapgs is not available in 32-bit mode, thus the
guest has no reason to access the MSR unless in 64-bit mode and
32-bit applications need not pay the price of switching the kernel GS
base between the host and the guest values.
However, this optimization adds complexity to the code for little
benefit (these days most guests are going to be 64-bit anyway) and in fact
broke after commit 678e315e78 ("KVM: vmx: add dedicated utility to
access guest's kernel_gs_base", 2018-08-06); the guest kernel GS base
can be corrupted across SMIs and UEFI Secure Boot is therefore broken
(a secure boot Linux guest, for example, fails to reach the login prompt
about half the time). This patch just removes the optimization; the
kernel GS base MSR is now never trapped by KVM, similarly to the FS and
GS base MSRs.
Fixes: 678e315e78
Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCW6dGhgAKCRCAXGG7T9hj
vs1UAPwPSDmelfUus+P5ndRQZdK/iQWuRgQUe9Gd3RUVTfcQ7AEAljcN4/dSj7SB
hOgRlCp5WB1s5/vFF7z4jc2wtqvOPAk=
=8P9c
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.19d-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Juergen writes:
"xen:
Two small fixes for xen drivers."
* tag 'for-linus-4.19d-rc5-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen: issue warning message when out of grant maptrack entries
xen/x86/vpmu: Zero struct pt_regs before calling into sample handling code
Thomas writes:
"A set of fixes for x86:
- Resolve the kvmclock regression on AMD systems with memory
encryption enabled. The rework of the kvmclock memory allocation
during early boot results in encrypted storage, which is not
shareable with the hypervisor. Create a new section for this data
which is mapped unencrypted and take care that the later
allocations for shared kvmclock memory is unencrypted as well.
- Fix the build regression in the paravirt code introduced by the
recent spectre v2 updates.
- Ensure that the initial static page tables cover the fixmap space
correctly so early console always works. This worked so far by
chance, but recent modifications to the fixmap layout can -
depending on kernel configuration - move the relevant entries to a
different place which is not covered by the initial static page
tables.
- Address the regressions and issues which got introduced with the
recent extensions to the Intel Recource Director Technology code.
- Update maintainer entries to document reality"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Expand static page table for fixmap space
MAINTAINERS: Add X86 MM entry
x86/intel_rdt: Add Reinette as co-maintainer for RDT
MAINTAINERS: Add Borislav to the x86 maintainers
x86/paravirt: Fix some warning messages
x86/intel_rdt: Fix incorrect loop end condition
x86/intel_rdt: Fix exclusive mode handling of MBA resource
x86/intel_rdt: Fix incorrect loop end condition
x86/intel_rdt: Do not allow pseudo-locking of MBA resource
x86/intel_rdt: Fix unchecked MSR access
x86/intel_rdt: Fix invalid mode warning when multiple resources are managed
x86/intel_rdt: Global closid helper to support future fixes
x86/intel_rdt: Fix size reporting of MBA resource
x86/intel_rdt: Fix data type in parsing callbacks
x86/kvm: Use __bss_decrypted attribute in shared variables
x86/mm: Add .bss..decrypted section to hold shared variables
I swear I would have sent it the same to Linus! The main cause for
this is that I was on vacation until two weeks ago and it took a while
to sort all the pending patches between 4.19 and 4.20, test them and
so on.
It's mostly small bugfixes and cleanups, mostly around x86 nested
virtualization. One important change, not related to nested
virtualization, is that the ability for the guest kernel to trap CPUID
instructions (in Linux that's the ARCH_SET_CPUID arch_prctl) is now
masked by default. This is because the feature is detected through an
MSR; a very bad idea that Intel seems to like more and more. Some
applications choke if the other fields of that MSR are not initialized
as on real hardware, hence we have to disable the whole MSR by default,
as was the case before Linux 4.12.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJbpPo1AAoJEL/70l94x66DdxgH/is0qe6ZBtzb6Qc0W+8mHHD7
nxIkWAs2V5NsouJ750YwRQ+0Ym407+wlNt30acdBUEoXhrnA5/TvyGq999XvCL96
upWEIxpIgbvTMX/e2nLhe4wQdhsboUK4r0/B9IFgVFYrdCt5uRXjB2G4ewxcqxL/
GxxqrAKhaRsbQG9Xv0Fw5Vohh/Ls6fQDJcyuY1EBnbMpVenq2QDLI6cOAPXncyFb
uLN6ov4GNCWIPckwxejri5XhZesUOsafrmn48sApShh4T6TrisrdtSYdzl+DGza+
j5vhIEwdFO5kulZ3viuhqKJOnS2+F6wvfZ75IKT0tEKeU2bi+ifGDyGRefSF6Q0=
=YXLw
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Paolo writes:
"It's mostly small bugfixes and cleanups, mostly around x86 nested
virtualization. One important change, not related to nested
virtualization, is that the ability for the guest kernel to trap
CPUID instructions (in Linux that's the ARCH_SET_CPUID arch_prctl) is
now masked by default. This is because the feature is detected
through an MSR; a very bad idea that Intel seems to like more and
more. Some applications choke if the other fields of that MSR are
not initialized as on real hardware, hence we have to disable the
whole MSR by default, as was the case before Linux 4.12."
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (23 commits)
KVM: nVMX: Fix bad cleanup on error of get/set nested state IOCTLs
kvm: selftests: Add platform_info_test
KVM: x86: Control guest reads of MSR_PLATFORM_INFO
KVM: x86: Turbo bits in MSR_PLATFORM_INFO
nVMX x86: Check VPID value on vmentry of L2 guests
nVMX x86: check posted-interrupt descriptor addresss on vmentry of L2
KVM: nVMX: Wake blocked vCPU in guest-mode if pending interrupt in virtual APICv
KVM: VMX: check nested state and CR4.VMXE against SMM
kvm: x86: make kvm_{load|put}_guest_fpu() static
x86/hyper-v: rename ipi_arg_{ex,non_ex} structures
KVM: VMX: use preemption timer to force immediate VMExit
KVM: VMX: modify preemption timer bit only when arming timer
KVM: VMX: immediately mark preemption timer expired only for zero value
KVM: SVM: Switch to bitmap_zalloc()
KVM/MMU: Fix comment in walk_shadow_page_lockless_end()
kvm: selftests: use -pthread instead of -lpthread
KVM: x86: don't reset root in kvm_mmu_setup()
kvm: mmu: Don't read PDPTEs when paging is not enabled
x86/kvm/lapic: always disable MMIO interface in x2APIC mode
KVM: s390: Make huge pages unavailable in ucontrol VMs
...
We met a kernel panic when enabling earlycon, which is due to the fixmap
address of earlycon is not statically setup.
Currently the static fixmap setup in head_64.S only covers 2M virtual
address space, while it actually could be in 4M space with different
kernel configurations, e.g. when VSYSCALL emulation is disabled.
So increase the static space to 4M for now by defining FIXMAP_PMD_NUM to 2,
and add a build time check to ensure that the fixmap is covered by the
initial static page tables.
Fixes: 1ad83c858c ("x86_64,vsyscall: Make vsyscall emulation configurable")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: kernel test robot <rong.a.chen@intel.com>
Reviewed-by: Juergen Gross <jgross@suse.com> (Xen parts)
Cc: H Peter Anvin <hpa@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Yinghai Lu <yinghai@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andy Lutomirsky <luto@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20180920025828.23699-1-feng.tang@intel.com
The handlers of IOCTLs in kvm_arch_vcpu_ioctl() are expected to set
their return value in "r" local var and break out of switch block
when they encounter some error.
This is because vcpu_load() is called before the switch block which
have a proper cleanup of vcpu_put() afterwards.
However, KVM_{GET,SET}_NESTED_STATE IOCTLs handlers just return
immediately on error without performing above mentioned cleanup.
Thus, change these handlers to behave as expected.
Fixes: 8fcc4b5923 ("kvm: nVMX: Introduce KVM_CAP_NESTED_STATE")
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Reviewed-by: Patrick Colp <patrick.colp@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add KVM_CAP_MSR_PLATFORM_INFO so that userspace can disable guest access
to reads of MSR_PLATFORM_INFO.
Disabling access to reads of this MSR gives userspace the control to "expose"
this platform-dependent information to guests in a clear way. As it exists
today, guests that read this MSR would get unpopulated information if userspace
hadn't already set it (and prior to this patch series, only the CPUID faulting
information could have been populated). This existing interface could be
confusing if guests don't handle the potential for incorrect/incomplete
information gracefully (e.g. zero reported for base frequency).
Signed-off-by: Drew Schmitt <dasch@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allow userspace to set turbo bits in MSR_PLATFORM_INFO. Previously, only
the CPUID faulting bit was settable. But now any bit in
MSR_PLATFORM_INFO would be settable. This can be used, for example, to
convey frequency information about the platform on which the guest is
running.
Signed-off-by: Drew Schmitt <dasch@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to section "Checks on VMX Controls" in Intel SDM vol 3C, the
following check needs to be enforced on vmentry of L2 guests:
If the 'enable VPID' VM-execution control is 1, the value of the
of the VPID VM-execution control field must not be 0000H.
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
According to section "Checks on VMX Controls" in Intel SDM vol 3C,
the following check needs to be enforced on vmentry of L2 guests:
- Bits 5:0 of the posted-interrupt descriptor address are all 0.
- The posted-interrupt descriptor address does not set any bits
beyond the processor's physical-address width.
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Reviewed-by: Mark Kanda <mark.kanda@oracle.com>
Reviewed-by: Liran Alon <liran.alon@oracle.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Reviewed-by: Karl Heubaum <karl.heubaum@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In case L1 do not intercept L2 HLT or enter L2 in HLT activity-state,
it is possible for a vCPU to be blocked while it is in guest-mode.
According to Intel SDM 26.6.5 Interrupt-Window Exiting and
Virtual-Interrupt Delivery: "These events wake the logical processor
if it just entered the HLT state because of a VM entry".
Therefore, if L1 enters L2 in HLT activity-state and L2 has a pending
deliverable interrupt in vmcs12->guest_intr_status.RVI, then the vCPU
should be waken from the HLT state and injected with the interrupt.
In addition, if while the vCPU is blocked (while it is in guest-mode),
it receives a nested posted-interrupt, then the vCPU should also be
waken and injected with the posted interrupt.
To handle these cases, this patch enhances kvm_vcpu_has_events() to also
check if there is a pending interrupt in L2 virtual APICv provided by
L1. That is, it evaluates if there is a pending virtual interrupt for L2
by checking RVI[7:4] > VPPR[7:4] as specified in Intel SDM 29.2.1
Evaluation of Pending Interrupts.
Note that this also handles the case of nested posted-interrupt by the
fact RVI is updated in vmx_complete_nested_posted_interrupt() which is
called from kvm_vcpu_check_block() -> kvm_arch_vcpu_runnable() ->
kvm_vcpu_running() -> vmx_check_nested_events() ->
vmx_complete_nested_posted_interrupt().
Reviewed-by: Nikita Leshenko <nikita.leshchenko@oracle.com>
Reviewed-by: Darren Kenny <darren.kenny@oracle.com>
Signed-off-by: Liran Alon <liran.alon@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
VMX cannot be enabled under SMM, check it when CR4 is set and when nested
virtualization state is restored.
This should fix some WARNs reported by syzkaller, mostly around
alloc_shadow_vmcs.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The functions
kvm_load_guest_fpu()
kvm_put_guest_fpu()
are only used locally, make them static. This requires also that both
functions are moved because they are used before their implementation.
Those functions were exported (via EXPORT_SYMBOL) before commit
e5bb40251a ("KVM: Drop kvm_{load,put}_guest_fpu() exports").
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These structures are going to be used from KVM code so let's make
their names reflect their Hyper-V origin.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Roman Kagan <rkagan@virtuozzo.com>
Acked-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
A VMX preemption timer value of '0' is guaranteed to cause a VMExit
prior to the CPU executing any instructions in the guest. Use the
preemption timer (if it's supported) to trigger immediate VMExit
in place of the current method of sending a self-IPI. This ensures
that pending VMExit injection to L1 occurs prior to executing any
instructions in the guest (regardless of nesting level).
When deferring VMExit injection, KVM generates an immediate VMExit
from the (possibly nested) guest by sending itself an IPI. Because
hardware interrupts are blocked prior to VMEnter and are unblocked
(in hardware) after VMEnter, this results in taking a VMExit(INTR)
before any guest instruction is executed. But, as this approach
relies on the IPI being received before VMEnter executes, it only
works as intended when KVM is running as L0. Because there are no
architectural guarantees regarding when IPIs are delivered, when
running nested the INTR may "arrive" long after L2 is running e.g.
L0 KVM doesn't force an immediate switch to L1 to deliver an INTR.
For the most part, this unintended delay is not an issue since the
events being injected to L1 also do not have architectural guarantees
regarding their timing. The notable exception is the VMX preemption
timer[1], which is architecturally guaranteed to cause a VMExit prior
to executing any instructions in the guest if the timer value is '0'
at VMEnter. Specifically, the delay in injecting the VMExit causes
the preemption timer KVM unit test to fail when run in a nested guest.
Note: this approach is viable even on CPUs with a broken preemption
timer, as broken in this context only means the timer counts at the
wrong rate. There are no known errata affecting timer value of '0'.
[1] I/O SMIs also have guarantees on when they arrive, but I have
no idea if/how those are emulated in KVM.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
[Use a hook for SVM instead of leaving the default in x86.c - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Provide a singular location where the VMX preemption timer bit is
set/cleared so that future usages of the preemption timer can ensure
the VMCS bit is up-to-date without having to modify unrelated code
paths. For example, the preemption timer can be used to force an
immediate VMExit. Cache the status of the timer to avoid redundant
VMREAD and VMWRITE, e.g. if the timer stays armed across multiple
VMEnters/VMExits.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>