Commit Graph

6941 Commits

Author SHA1 Message Date
Maciej S. Szmigiero
8f5c44f953 KVM: x86/mmu: Make HVA handler retpoline-friendly
When retpolines are enabled they have high overhead in the inner loop
inside kvm_handle_hva_range() that iterates over the provided memory area.

Let's mark this function and its TDP MMU equivalent __always_inline so
compiler will be able to change the call to the actual handler function
inside each of them into a direct one.

This significantly improves performance on the unmap test on the existing
kernel memslot code (tested on a Xeon 8167M machine):
30 slots in use:
Test       Before   After     Improvement
Unmap      0.0353s  0.0334s   5%
Unmap 2M   0.00104s 0.000407s 61%

509 slots in use:
Test       Before   After     Improvement
Unmap      0.0742s  0.0740s   None
Unmap 2M   0.00221s 0.00159s  28%

Looks like having an indirect call in these functions (and, so, a
retpoline) might have interfered with unrolling of the whole loop in the
CPU.

Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <732d3fe9eb68aa08402a638ab0309199fa89ae56.1612810129.git.maciej.szmigiero@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:42:09 -05:00
Vitaly Kuznetsov
b9ce0f86d9 KVM: x86: hyper-v: Drop hv_vcpu_to_vcpu() helper
hv_vcpu_to_vcpu() helper is only used by other helpers and
is not very complex, we can drop it without much regret.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-16-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:42:09 -05:00
Vitaly Kuznetsov
fc08b628d7 KVM: x86: hyper-v: Allocate Hyper-V context lazily
Hyper-V context is only needed for guests which use Hyper-V emulation in
KVM (e.g. Windows/Hyper-V guests) so we don't actually need to allocate
it in kvm_arch_vcpu_create(), we can postpone the action until Hyper-V
specific MSRs are accessed or SynIC is enabled.

Once allocated, let's keep the context alive for the lifetime of the vCPU
as an attempt to free it would require additional synchronization with
other vCPUs and normally it is not supposed to happen.

Note, Hyper-V style hypercall enablement is done by writing to
HV_X64_MSR_GUEST_OS_ID so we don't need to worry about allocating Hyper-V
context from kvm_hv_hypercall().

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-15-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:40:50 -05:00
Vitaly Kuznetsov
8f014550df KVM: x86: hyper-v: Make Hyper-V emulation enablement conditional
Hyper-V emulation is enabled in KVM unconditionally. This is bad at least
from security standpoint as it is an extra attack surface. Ideally, there
should be a per-VM capability explicitly enabled by VMM but currently it
is not the case and we can't mandate one without breaking backwards
compatibility. We can, however, check guest visible CPUIDs and only enable
Hyper-V emulation when "Hv#1" interface was exposed in
HYPERV_CPUID_INTERFACE.

Note, VMMs are free to act in any sequence they like, e.g. they can try
to set MSRs first and CPUIDs later so we still need to allow the host
to read/write Hyper-V specific MSRs unconditionally.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-14-vkuznets@redhat.com>
[Add selftest vcpu_set_hv_cpuid API to avoid breaking xen_vmcall_test. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:39:56 -05:00
Vitaly Kuznetsov
4592b7eaa8 KVM: x86: hyper-v: Allocate 'struct kvm_vcpu_hv' dynamically
Hyper-V context is only needed for guests which use Hyper-V emulation in
KVM (e.g. Windows/Hyper-V guests). 'struct kvm_vcpu_hv' is, however, quite
big, it accounts for more than 1/4 of the total 'struct kvm_vcpu_arch'
which is also quite big already. This all looks like a waste.

Allocate 'struct kvm_vcpu_hv' dynamically. This patch does not bring any
(intentional) functional change as we still allocate the context
unconditionally but it paves the way to doing that only when needed.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-13-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:17:15 -05:00
Vitaly Kuznetsov
f2bc14b69c KVM: x86: hyper-v: Prepare to meet unallocated Hyper-V context
Currently, Hyper-V context is part of 'struct kvm_vcpu_arch' and is always
available. As a preparation to allocating it dynamically, check that it is
not NULL at call sites which can normally proceed without it i.e. the
behavior is identical to the situation when Hyper-V emulation is not being
used by the guest.

When Hyper-V context for a particular vCPU is not allocated, we may still
need to get 'vp_index' from there. E.g. in a hypothetical situation when
Hyper-V emulation was enabled on one CPU and wasn't on another, Hyper-V
style send-IPI hypercall may still be used. Luckily, vp_index is always
initialized to kvm_vcpu_get_idx() and can only be changed when Hyper-V
context is present. Introduce kvm_hv_get_vpindex() helper for
simplification.

No functional change intended.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-12-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:17:14 -05:00
Vitaly Kuznetsov
9ff5e0304e KVM: x86: hyper-v: Always use to_hv_vcpu() accessor to get to 'struct kvm_vcpu_hv'
As a preparation to allocating Hyper-V context dynamically, make it clear
who's the user of the said context.

No functional change intended.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-11-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:17:13 -05:00
Vitaly Kuznetsov
72167a9d7d KVM: x86: hyper-v: Stop shadowing global 'current_vcpu' variable
'current_vcpu' variable in KVM is a per-cpu pointer to the currently
scheduled vcpu. kvm_hv_flush_tlb()/kvm_hv_send_ipi() functions used
to have local 'vcpu' variable to iterate over vCPUs but it's gone
now and there's no need to use anything but the standard 'vcpu' as
an argument.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-10-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:17:13 -05:00
Vitaly Kuznetsov
05f04ae4ff KVM: x86: hyper-v: Introduce to_kvm_hv() helper
Spelling '&kvm->arch.hyperv' correctly is hard. Also, this makes the code
more consistent with vmx/svm where to_kvm_vmx()/to_kvm_svm() are already
being used.

Opportunistically change kvm_hv_msr_{get,set}_crash_{data,ctl}() and
kvm_hv_msr_set_crash_data() to take 'kvm' instead of 'vcpu' as these
MSRs are partition wide.

No functional change intended.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-9-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:17:12 -05:00
Vitaly Kuznetsov
f69b55efef KVM: x86: hyper-v: Rename vcpu_to_hv_syndbg() to to_hv_syndbg()
vcpu_to_hv_syndbg()'s argument is  always 'vcpu' so there's no need to have
an additional prefix. Also, this makes the code more consistent with
vmx/svm where to_vmx()/to_svm() are being used.

No functional change intended.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-8-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:17:12 -05:00
Vitaly Kuznetsov
aafa97fd1c KVM: x86: hyper-v: Rename vcpu_to_stimer()/stimer_to_vcpu()
vcpu_to_stimers()'s argument is almost always 'vcpu' so there's no need to
have an additional prefix. Also, this makes the naming more consistent with
to_hv_vcpu()/to_hv_synic().

Rename stimer_to_vcpu() to hv_stimer_to_vcpu() for consitency.

No functional change intended.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-7-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:17:11 -05:00
Vitaly Kuznetsov
e0121fa29a KVM: x86: hyper-v: Rename vcpu_to_synic()/synic_to_vcpu()
vcpu_to_synic()'s argument is almost always 'vcpu' so there's no need to
have an additional prefix. Also, as this is used outside of hyper-v
emulation code, add '_hv_' part to make it clear what this s. This makes
the naming more consistent with to_hv_vcpu().

Rename synic_to_vcpu() to hv_synic_to_vcpu() for consistency.

No functional change intended.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-6-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:17:11 -05:00
Vitaly Kuznetsov
ef3f3980de KVM: x86: hyper-v: Rename vcpu_to_hv_vcpu() to to_hv_vcpu()
vcpu_to_hv_vcpu()'s argument is almost always 'vcpu' so there's
no need to have an additional prefix. Also, this makes the code
more consistent with vmx/svm where to_vmx()/to_svm() are being
used.

No functional change intended.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-5-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:17:10 -05:00
Vitaly Kuznetsov
cb5b916172 KVM: x86: hyper-v: Drop unused kvm_hv_vapic_assist_page_enabled()
kvm_hv_vapic_assist_page_enabled() seems to be unused since its
introduction in commit 10388a0716 ("KVM: Add HYPER-V apic access MSRs"),
drop it.

Reported-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210126134816.1880136-4-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:17:10 -05:00
Paolo Bonzini
996ff5429e KVM: x86: move kvm_inject_gp up from kvm_set_dr to callers
Push the injection of #GP up to the callers, so that they can just use
kvm_complete_insn_gp. __kvm_set_dr is pretty much what the callers can use
together with kvm_complete_insn_gp, so rename it to kvm_set_dr and drop
the old kvm_set_dr wrapper.

This also allows nested VMX code, which really wanted to use __kvm_set_dr,
to use the right function.

While at it, remove the kvm_require_dr() check from the SVM interception.
The APM states:

  All normal exception checks take precedence over the SVM intercepts.

which includes the CR4.DE=1 #UD.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:17:07 -05:00
Paolo Bonzini
29d6ca4199 KVM: x86: reading DR cannot fail
kvm_get_dr and emulator_get_dr except an in-range value for the register
number so they cannot fail.  Change the return type to void.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:17:07 -05:00
Sean Christopherson
6f7a343987 KVM: SVM: Remove an unnecessary forward declaration
Drop a defunct forward declaration of svm_complete_interrupts().

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210205005750.3841462-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:17:06 -05:00
Sean Christopherson
e6c804a848 KVM: SVM: Move AVIC vCPU kicking snippet to helper function
Add a helper function to handle kicking non-running vCPUs when sending
virtual IPIs.  A future patch will change SVM's interception functions
to take @vcpu instead of @svm, at which piont declaring and modifying
'vcpu' in a case statement is confusing, and potentially dangerous.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210205005750.3841462-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:17:06 -05:00
Sean Christopherson
2644312052 KVM: x86: Restore all 64 bits of DR6 and DR7 during RSM on x86-64
Restore the full 64-bit values of DR6 and DR7 when emulating RSM on
x86-64, as defined by both Intel's SDM and AMD's APM.

Note, bits 63:32 of DR6 and DR7 are reserved, so this is a glorified nop
unless the SMM handler is poking into SMRAM, which it most definitely
shouldn't be doing since both Intel and AMD list the DR6 and DR7 fields
as read-only.

Fixes: 660a5d517a ("KVM: x86: save/load state on SMM switch")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210205012458.3872687-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:17:05 -05:00
Sean Christopherson
16d5163f33 KVM: x86: Remove misleading DR6/DR7 adjustments from RSM emulation
Drop the DR6/7 volatile+fixed bits adjustments in RSM emulation, which
are redundant and misleading.  The necessary adjustments are made by
kvm_set_dr(), which properly sets the fixed bits that are conditional
on the vCPU model.

Note, KVM incorrectly reads only bits 31:0 of the DR6/7 fields when
emulating RSM on x86-64.  On the plus side for this change, that bug
makes removing "& DRx_VOLATILE" a nop.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210205012458.3872687-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:17:05 -05:00
Sean Christopherson
448841f0b7 KVM: x86/xen: Use hva_t for holding hypercall page address
Use hva_t, a.k.a. unsigned long, for the local variable that holds the
hypercall page address.  On 32-bit KVM, gcc complains about using a u64
due to the implicit cast from a 64-bit value to a 32-bit pointer.

  arch/x86/kvm/xen.c: In function ‘kvm_xen_write_hypercall_page’:
  arch/x86/kvm/xen.c:300:22: error: cast to pointer from integer of
                             different size [-Werror=int-to-pointer-cast]
  300 |   page = memdup_user((u8 __user *)blob_addr, PAGE_SIZE);

Cc: Joao Martins <joao.m.martins@oracle.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Fixes: 23200b7a30 ("KVM: x86/xen: intercept xen hypercalls if enabled")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210208201502.1239867-1-seanjc@google.com>
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 08:16:31 -05:00
David Woodhouse
99df541dcc KVM: x86/xen: Remove extra unlock in kvm_xen_hvm_set_attr()
This accidentally ended up locking and then immediately unlocking kvm->lock
at the beginning of the function. Fix it.

Fixes: a76b9641ad ("KVM: x86/xen: add KVM_XEN_HVM_SET_ATTR/KVM_XEN_HVM_GET_ATTR")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20210208232326.1830370-2-dwmw2@infradead.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-09 07:42:03 -05:00
Paolo Bonzini
897218ff7c KVM: x86: compile out TDP MMU on 32-bit systems
The TDP MMU assumes that it can do atomic accesses to 64-bit PTEs.
Rather than just disabling it, compile it out completely so that it
is possible to use for example 64-bit xchg.

To limit the number of stubs, wrap all accesses to tdp_mmu_enabled
or tdp_mmu_page with a function.  Calls to all other functions in
tdp_mmu.c are eliminated and do not even reach the linker.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Tested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-08 14:49:01 -05:00
Sean Christopherson
031b91a5fe KVM: x86: Set so called 'reserved CR3 bits in LM mask' at vCPU reset
Set cr3_lm_rsvd_bits, which is effectively an invalid GPA mask, at vCPU
reset.  The reserved bits check needs to be done even if userspace never
configures the guest's CPUID model.

Cc: stable@vger.kernel.org
Fixes: 0107973a80 ("KVM: x86: Introduce cr3_lm_rsvd_bits in kvm_vcpu_arch")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 12:59:28 -05:00
Sean Christopherson
a8ac864a7d KVM: x86: Add helper to consolidate "raw" reserved GPA mask calculations
Add a helper to generate the mask of reserved GPA bits _without_ any
adjustments for repurposed bits, and use it to replace a variety of
open coded variants in the MTRR and APIC_BASE flows.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 09:27:30 -05:00
Sean Christopherson
6f8e65a601 KVM: x86/mmu: Add helper to generate mask of reserved HPA bits
Add a helper to generate the mask of reserved PA bits in the host.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 09:27:29 -05:00
Sean Christopherson
5b7f575ccd KVM: x86: Use reserved_gpa_bits to calculate reserved PxE bits
Use reserved_gpa_bits, which accounts for exceptions to the maxphyaddr
rule, e.g. SEV's C-bit, for the page {table,directory,etc...} entry (PxE)
reserved bits checks.  For SEV, the C-bit is ignored by hardware when
walking pages tables, e.g. the APM states:

  Note that while the guest may choose to set the C-bit explicitly on
  instruction pages and page table addresses, the value of this bit is a
  don't-care in such situations as hardware always performs these as
  private accesses.

Such behavior is expected to hold true for other features that repurpose
GPA bits, e.g. KVM could theoretically emulate SME or MKTME, which both
allow non-zero repurposed bits in the page tables.  Conceptually, KVM
should apply reserved GPA checks universally, and any features that do
not adhere to the basic rule should be explicitly handled, i.e. if a GPA
bit is repurposed but not allowed in page tables for whatever reason.

Refactor __reset_rsvds_bits_mask() to take the pre-generated reserved
bits mask, and opportunistically clean up its code, e.g. to align lines
and comments.

Practically speaking, this is change is a likely a glorified nop given
the current KVM code base.  SEV's C-bit is the only repurposed GPA bit,
and KVM doesn't support shadowing encrypted page tables (which is
theoretically possible via SEV debug APIs).

Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 09:27:29 -05:00
Sean Christopherson
ca29e14506 KVM: x86: SEV: Treat C-bit as legal GPA bit regardless of vCPU mode
Rename cr3_lm_rsvd_bits to reserved_gpa_bits, and use it for all GPA
legality checks.  AMD's APM states:

  If the C-bit is an address bit, this bit is masked from the guest
  physical address when it is translated through the nested page tables.

Thus, any access that can conceivably be run through NPT should ignore
the C-bit when checking for validity.

For features that KVM emulates in software, e.g. MTRRs, there is no
clear direction in the APM for how the C-bit should be handled.  For
such cases, follow the SME behavior inasmuch as possible, since SEV is
is essentially a VM-specific variant of SME.  For SME, the APM states:

  In this case the upper physical address bits are treated as reserved
  when the feature is enabled except where otherwise indicated.

Collecting the various relavant SME snippets in the APM and cross-
referencing the omissions with Linux kernel code, this leaves MTTRs and
APIC_BASE as the only flows that KVM emulates that should _not_ ignore
the C-bit.

Note, this means the reserved bit checks in the page tables are
technically broken.  This will be remedied in a future patch.

Although the page table checks are technically broken, in practice, it's
all but guaranteed to be irrelevant.  NPT is required for SEV, i.e.
shadowing page tables isn't needed in the common case.  Theoretically,
the checks could be in play for nested NPT, but it's extremely unlikely
that anyone is running nested VMs on SEV, as doing so would require L1
to expose sensitive data to L0, e.g. the entire VMCB.  And if anyone is
running nested VMs, L0 can't read the guest's encrypted memory, i.e. L1
would need to put its NPT in shared memory, in which case the C-bit will
never be set.  Or, L1 could use shadow paging, but again, if L0 needs to
read page tables, e.g. to load PDPTRs, the memory can't be encrypted if
L1 has any expectation of L0 doing the right thing.

Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 09:27:29 -05:00
Sean Christopherson
bbc2c63ddd KVM: nSVM: Use common GPA helper to check for illegal CR3
Replace an open coded check for an invalid CR3 with its equivalent
helper.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 09:27:28 -05:00
Sean Christopherson
636e8b7334 KVM: VMX: Use GPA legality helpers to replace open coded equivalents
Replace a variety of open coded GPA checks with the recently introduced
common helpers.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 09:27:28 -05:00
Sean Christopherson
da6c6a7c06 KVM: x86: Add a helper to handle legal GPA with an alignment requirement
Add a helper to genericize checking for a legal GPA that also must
conform to an arbitrary alignment, and use it in the existing
page_address_valid().  Future patches will replace open coded variants
in VMX and SVM.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 09:27:27 -05:00
Sean Christopherson
4bda0e9786 KVM: x86: Add a helper to check for a legal GPA
Add a helper to check for a legal GPA, and use it to consolidate code
in existing, related helpers.  Future patches will extend usage to
VMX and SVM code, properly handle exceptions to the maxphyaddr rule, and
add more helpers.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 09:27:27 -05:00
Sean Christopherson
2732be9023 KVM: nSVM: Don't strip host's C-bit from guest's CR3 when reading PDPTRs
Don't clear the SME C-bit when reading a guest PDPTR, as the GPA (CR3) is
in the guest domain.

Barring a bizarre paravirtual use case, this is likely a benign bug.  SME
is not emulated by KVM, loading SEV guest PDPTRs is doomed as KVM can't
use the correct key to read guest memory, and setting guest MAXPHYADDR
higher than the host, i.e. overlapping the C-bit, would cause faults in
the guest.

Note, for SEV guests, stripping the C-bit is technically aligned with CPU
behavior, but for KVM it's the greater of two evils.  Because KVM doesn't
have access to the guest's encryption key, ignoring the C-bit would at
best result in KVM reading garbage.  By keeping the C-bit, KVM will
fail its read (unless userspace creates a memslot with the C-bit set).
The guest will still undoubtedly die, as KVM will use '0' for the PDPTR
value, but that's preferable to interpreting encrypted data as a PDPTR.

Fixes: d0ec49d4de ("kvm/x86/svm: Support Secure Memory Encryption within KVM")
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 09:27:27 -05:00
Sean Christopherson
f156abec72 KVM: x86: Set so called 'reserved CR3 bits in LM mask' at vCPU reset
Set cr3_lm_rsvd_bits, which is effectively an invalid GPA mask, at vCPU
reset.  The reserved bits check needs to be done even if userspace never
configures the guest's CPUID model.

Cc: stable@vger.kernel.org
Fixes: 0107973a80 ("KVM: x86: Introduce cr3_lm_rsvd_bits in kvm_vcpu_arch")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210204000117.3303214-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 09:27:26 -05:00
David Woodhouse
8d4e7e8083 KVM: x86: declare Xen HVM shared info capability and add test case
Instead of adding a plethora of new KVM_CAP_XEN_FOO capabilities, just
add bits to the return value of KVM_CAP_XEN_HVM.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 14:19:39 +00:00
David Woodhouse
40da8ccd72 KVM: x86/xen: Add event channel interrupt vector upcall
It turns out that we can't handle event channels *entirely* in userspace
by delivering them as ExtINT, because KVM is a bit picky about when it
accepts ExtINT interrupts from a legacy PIC. The in-kernel local APIC
has to have LVT0 configured in APIC_MODE_EXTINT and unmasked, which
isn't necessarily the case for Xen guests especially on secondary CPUs.

To cope with this, add kvm_xen_get_interrupt() which checks the
evtchn_pending_upcall field in the Xen vcpu_info, and delivers the Xen
upcall vector (configured by KVM_XEN_ATTR_TYPE_UPCALL_VECTOR) if it's
set regardless of LAPIC LVT0 configuration. This gives us the minimum
support we need for completely userspace-based implementation of event
channels.

This does mean that vcpu_enter_guest() needs to check for the
evtchn_pending_upcall flag being set, because it can't rely on someone
having set KVM_REQ_EVENT unless we were to add some way for userspace to
do so manually.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 14:19:39 +00:00
Joao Martins
f2340cd9e4 KVM: x86/xen: register vcpu time info region
Allow the Xen emulated guest the ability to register secondary
vcpu time information. On Xen guests this is used in order to be
mapped to userspace and hence allow vdso gettimeofday to work.

Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 14:19:39 +00:00
Joao Martins
aa096aa0a0 KVM: x86/xen: setup pvclock updates
Parameterise kvm_setup_pvclock_page() a little bit so that it can be
invoked for different gfn_to_hva_cache structures, and with different
offsets. Then we can invoke it for the normal KVM pvclock and also for
the Xen one in the vcpu_info.

Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 14:19:39 +00:00
Joao Martins
73e69a8634 KVM: x86/xen: register vcpu info
The vcpu info supersedes the per vcpu area of the shared info page and
the guest vcpus will use this instead.

Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: Ankur Arora <ankur.a.arora@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 14:19:39 +00:00
David Woodhouse
3e32461588 KVM: x86/xen: Add KVM_XEN_VCPU_SET_ATTR/KVM_XEN_VCPU_GET_ATTR
This will be used for per-vCPU setup such as runstate and vcpu_info.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 14:19:39 +00:00
Joao Martins
629b534884 KVM: x86/xen: update wallclock region
Wallclock on Xen is written in the shared_info page.

To that purpose, export kvm_write_wall_clock() and pass on the GPA of
its location to populate the shared_info wall clock data.

Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 14:19:39 +00:00
Joao Martins
13ffb97a3b KVM: x86/xen: register shared_info page
Add KVM_XEN_ATTR_TYPE_SHARED_INFO to allow hypervisor to know where the
guest's shared info page is.

Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 14:19:38 +00:00
David Woodhouse
1ea9f2ed81 KVM: x86/xen: add definitions of compat_shared_info, compat_vcpu_info
There aren't a lot of differences for the things that the kernel needs
to care about, but there are a few.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 14:19:38 +00:00
David Woodhouse
a3833b81b0 KVM: x86/xen: latch long_mode when hypercall page is set up
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 14:19:38 +00:00
Joao Martins
a76b9641ad KVM: x86/xen: add KVM_XEN_HVM_SET_ATTR/KVM_XEN_HVM_GET_ATTR
This will be used to set up shared info pages etc.

Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 14:19:38 +00:00
David Woodhouse
7d6bbebb7b KVM: x86/xen: Add kvm_xen_enabled static key
The code paths for Xen support are all fairly lightweight but if we hide
them behind this, they're even *more* lightweight for any system which
isn't actually hosting Xen guests.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 14:19:38 +00:00
David Woodhouse
78e9878cb3 KVM: x86/xen: Move KVM_XEN_HVM_CONFIG handling to xen.c
This is already more complex than the simple memcpy it originally had.
Move it to xen.c with the rest of the Xen support.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 14:19:38 +00:00
Joao Martins
79033bebf6 KVM: x86/xen: Fix coexistence of Xen and Hyper-V hypercalls
Disambiguate Xen vs. Hyper-V calls by adding 'orl $0x80000000, %eax'
at the start of the Hyper-V hypercall page when Xen hypercalls are
also enabled.

That bit is reserved in the Hyper-V ABI, and those hypercall numbers
will never be used by Xen (because it does precisely the same trick).

Switch to using kvm_vcpu_write_guest() while we're at it, instead of
open-coding it.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 14:19:24 +00:00
Joao Martins
23200b7a30 KVM: x86/xen: intercept xen hypercalls if enabled
Add a new exit reason for emulator to handle Xen hypercalls.

Since this means KVM owns the ABI, dispense with the facility for the
VMM to provide its own copy of the hypercall pages; just fill them in
directly using VMCALL/VMMCALL as we do for the Hyper-V hypercall page.

This behaviour is enabled by a new INTERCEPT_HCALL flag in the
KVM_XEN_HVM_CONFIG ioctl structure, and advertised by the same flag
being returned from the KVM_CAP_XEN_HVM check.

Rename xen_hvm_config() to kvm_xen_write_hypercall_page() and move it
to the nascent xen.c while we're at it, and add a test case.

Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 14:18:45 +00:00
David Woodhouse
92f4d400a4 KVM: x86/xen: Fix __user pointer handling for hypercall page installation
The address we give to memdup_user() isn't correctly tagged as __user.
This is harmless enough as it's a one-off use and we're doing exactly
the right thing, but fix it anyway to shut the checker up. Otherwise
it'll whine when the (now legacy) code gets moved around in a later
patch.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 13:58:34 +00:00
Joao Martins
1232f8e6c9 KVM: x86/xen: fix Xen hypercall page msr handling
Xen usually places its MSR at 0x40000000 or 0x40000200 depending on
whether it is running in viridian mode or not. Note that this is not
ABI guaranteed, so it is possible for Xen to advertise the MSR some
place else.

Given the way xen_hvm_config() is handled, if the former address is
selected, this will conflict with Hyper-V's MSR
(HV_X64_MSR_GUEST_OS_ID) which unconditionally uses the same address.

Given that the MSR location is arbitrary, move the xen_hvm_config()
handling to the top of kvm_set_msr_common() before falling through.

Signed-off-by: Joao Martins <joao.m.martins@oracle.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
2021-02-04 13:58:34 +00:00
Ben Gardon
a2855afc7e KVM: x86/mmu: Allow parallel page faults for the TDP MMU
Make the last few changes necessary to enable the TDP MMU to handle page
faults in parallel while holding the mmu_lock in read mode.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-24-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:45 -05:00
Ben Gardon
e25f0e0cd5 KVM: x86/mmu: Mark SPTEs in disconnected pages as removed
When clearing TDP MMU pages what have been disconnected from the paging
structure root, set the SPTEs to a special non-present value which will
not be overwritten by other threads. This is needed to prevent races in
which a thread is clearing a disconnected page table, but another thread
has already acquired a pointer to that memory and installs a mapping in
an already cleared entry. This can lead to memory leaks and accounting
errors.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-23-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:45 -05:00
Ben Gardon
08f07c800e KVM: x86/mmu: Flush TLBs after zap in TDP MMU PF handler
When the TDP MMU is allowed to handle page faults in parallel there is
the possiblity of a race where an SPTE is cleared and then imediately
replaced with a present SPTE pointing to a different PFN, before the
TLBs can be flushed. This race would violate architectural specs. Ensure
that the TLBs are flushed properly before other threads are allowed to
install any present value for the SPTE.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>

Message-Id: <20210202185734.1680553-22-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:44 -05:00
Ben Gardon
9a77daacc8 KVM: x86/mmu: Use atomic ops to set SPTEs in TDP MMU map
To prepare for handling page faults in parallel, change the TDP MMU
page fault handler to use atomic operations to set SPTEs so that changes
are not lost if multiple threads attempt to modify the same SPTE.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>

Message-Id: <20210202185734.1680553-21-bgardon@google.com>
[Document new locking rules. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:44 -05:00
Ben Gardon
a9442f5941 KVM: x86/mmu: Factor out functions to add/remove TDP MMU pages
Move the work of adding and removing TDP MMU pages to/from  "secondary"
data structures to helper functions. These functions will be built on in
future commits to enable MMU operations to proceed (mostly) in parallel.

No functional change expected.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-20-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:44 -05:00
Ben Gardon
531810caa9 KVM: x86/mmu: Use an rwlock for the x86 MMU
Add a read / write lock to be used in place of the MMU spinlock on x86.
The rwlock will enable the TDP MMU to handle page faults, and other
operations in parallel in future commits.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>

Message-Id: <20210202185734.1680553-19-bgardon@google.com>
[Introduce virt/kvm/mmu_lock.h - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:43 -05:00
Ben Gardon
7cca2d0b7e KVM: x86/mmu: Protect TDP MMU page table memory with RCU
In order to enable concurrent modifications to the paging structures in
the TDP MMU, threads must be able to safely remove pages of page table
memory while other threads are traversing the same memory. To ensure
threads do not access PT memory after it is freed, protect PT memory
with RCU.

Protecting concurrent accesses to page table memory from use-after-free
bugs could also have been acomplished using
walk_shadow_page_lockless_begin/end() and READING_SHADOW_PAGE_TABLES,
coupling with the barriers in a TLB flush. The use of RCU for this case
has several distinct advantages over that approach.
1. Disabling interrupts for long running operations is not desirable.
   Future commits will allow operations besides page faults to operate
   without the exclusive protection of the MMU lock and those operations
   are too long to disable iterrupts for their duration.
2. The use of RCU here avoids long blocking / spinning operations in
   perfromance critical paths. By freeing memory with an asynchronous
   RCU API we avoid the longer wait times TLB flushes experience when
   overlapping with a thread in walk_shadow_page_lockless_begin/end().
3. RCU provides a separation of concerns when removing memory from the
   paging structure. Because the RCU callback to free memory can be
   scheduled immediately after a TLB flush, there's no need for the
   thread to manually free a queue of pages later, as commit_zap_pages
   does.

Fixes: 95fb5b0258 ("kvm: x86/mmu: Support MMIO in the TDP MMU")
Reviewed-by: Peter Feiner <pfeiner@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>

Message-Id: <20210202185734.1680553-18-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:42 -05:00
Ben Gardon
f1b3b06a05 KVM: x86/mmu: Clear dirtied pages mask bit before early break
In clear_dirty_pt_masked, the loop is intended to exit early after
processing each of the GFNs with corresponding bits set in mask. This
does not work as intended if another thread has already cleared the
dirty bit or writable bit on the SPTE. In that case, the loop would
proceed to the next iteration early and the bit in mask would not be
cleared. As a result the loop could not exit early and would proceed
uselessly. Move the unsetting of the mask bit before the check for a
no-op SPTE change.

Fixes: a6a0b05da9 ("kvm: x86/mmu: Support dirty logging for the TDP
MMU")

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-17-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:41 -05:00
Ben Gardon
0f99ee2c7a KVM: x86/mmu: Skip no-op changes in TDP MMU functions
Skip setting SPTEs if no change is expected.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>

Message-Id: <20210202185734.1680553-16-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:41 -05:00
Ben Gardon
1af4a96025 KVM: x86/mmu: Yield in TDU MMU iter even if no SPTES changed
Given certain conditions, some TDP MMU functions may not yield
reliably / frequently enough. For example, if a paging structure was
very large but had few, if any writable entries, wrprot_gfn_range
could traverse many entries before finding a writable entry and yielding
because the check for yielding only happens after an SPTE is modified.

Fix this issue by moving the yield to the beginning of the loop.

Fixes: a6a0b05da9 ("kvm: x86/mmu: Support dirty logging for the TDP MMU")
Reviewed-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>

Message-Id: <20210202185734.1680553-15-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:41 -05:00
Ben Gardon
ed5e484b79 KVM: x86/mmu: Ensure forward progress when yielding in TDP MMU iter
In some functions the TDP iter risks not making forward progress if two
threads livelock yielding to one another. This is possible if two threads
are trying to execute wrprot_gfn_range. Each could write protect an entry
and then yield. This would reset the tdp_iter's walk over the paging
structure and the loop would end up repeating the same entry over and
over, preventing either thread from making forward progress.

Fix this issue by only yielding if the loop has made forward progress
since the last yield.

Fixes: a6a0b05da9 ("kvm: x86/mmu: Support dirty logging for the TDP MMU")
Reviewed-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: Ben Gardon <bgardon@google.com>

Message-Id: <20210202185734.1680553-14-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:40 -05:00
Ben Gardon
74953d3530 KVM: x86/mmu: Rename goal_gfn to next_last_level_gfn
The goal_gfn field in tdp_iter can be misleading as it implies that it
is the iterator's final goal. It is really a target for the lowest gfn
mapped by the leaf level SPTE the iterator will traverse towards. Change
the field's name to be more precise.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-13-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:40 -05:00
Ben Gardon
e139a34ef9 KVM: x86/mmu: Merge flush and non-flush tdp_mmu_iter_cond_resched
The flushing and non-flushing variants of tdp_mmu_iter_cond_resched have
almost identical implementations. Merge the two functions and add a
flush parameter.

Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-12-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:40 -05:00
Ben Gardon
8d1a182ea7 KVM: x86/mmu: Fix braces in kvm_recover_nx_lpages
No functional change intended.

Fixes: 29cf0f5007 ("kvm: x86/mmu: NX largepage recovery for TDP MMU")
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-10-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:39 -05:00
Ben Gardon
a066e61f13 KVM: x86/mmu: Factor out handling of removed page tables
Factor out the code to handle a disconnected subtree of the TDP paging
structure from the code to handle the change to an individual SPTE.
Future commits will build on this to allow asynchronous page freeing.

No functional change intended.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>

Message-Id: <20210202185734.1680553-6-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:39 -05:00
Ben Gardon
734e45b329 KVM: x86/mmu: Don't redundantly clear TDP MMU pt memory
The KVM MMU caches already guarantee that shadow page table memory will
be zeroed, so there is no reason to re-zero the page in the TDP MMU page
fault handler.

No functional change intended.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-5-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:39 -05:00
Ben Gardon
3a9a4aa565 KVM: x86/mmu: Add lockdep when setting a TDP MMU SPTE
Add lockdep to __tdp_mmu_set_spte to ensure that SPTEs are only modified
under the MMU lock.

No functional change intended.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-4-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:38 -05:00
Ben Gardon
fe43fa2f40 KVM: x86/mmu: Add comment on __tdp_mmu_set_spte
__tdp_mmu_set_spte is a very important function in the TDP MMU which
already accepts several arguments and will take more in future commits.
To offset this complexity, add a comment to the function describing each
of the arguemnts.

No functional change intended.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-3-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:38 -05:00
Ben Gardon
e28a436ca4 KVM: x86/mmu: change TDP MMU yield function returns to match cond_resched
Currently the TDP MMU yield / cond_resched functions either return
nothing or return true if the TLBs were not flushed. These are confusing
semantics, especially when making control flow decisions in calling
functions.

To clean things up, change both functions to have the same
return value semantics as cond_resched: true if the thread yielded,
false if it did not. If the function yielded in the _flush_ version,
then the TLBs will have been flushed.

Reviewed-by: Peter Feiner <pfeiner@google.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20210202185734.1680553-2-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:38 -05:00
Paolo Bonzini
bbefd4fc8f KVM: x86: move kvm_inject_gp up from kvm_set_xcr to callers
Push the injection of #GP up to the callers, so that they can just use
kvm_complete_insn_gp.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:37 -05:00
Paolo Bonzini
fd23800261 KVM: cleanup DR6/DR7 reserved bits checks
kvm_dr6_valid and kvm_dr7_valid check that bits 63:32 are zero.  Using
them makes it easier to review the code for inconsistencies.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:37 -05:00
Paolo Bonzini
d89d04ab60 KVM: move EXIT_FASTPATH_REENTER_GUEST to common code
Now that KVM is using static calls, calling vmx_vcpu_run and
vmx_sync_pir_to_irr does not incur anymore the cost of a
retpoline.

Therefore there is no need anymore to handle EXIT_FASTPATH_REENTER_GUEST
in vendor code.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:37 -05:00
Stephen Zhang
805a0f8390 KVM: x86/mmu: Add '__func__' in rmap_printk()
Given the common pattern:

rmap_printk("%s:"..., __func__,...)

we could improve this by adding '__func__' in rmap_printk().

Signed-off-by: Stephen Zhang <stephenzhangzsd@gmail.com>
Message-Id: <1611713325-3591-1-git-send-email-stephenzhangzsd@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:36 -05:00
Krish Sadhukhan
04548ed020 KVM: SVM: Replace hard-coded value with #define
Replace the hard-coded value for bit# 1 in EFLAGS, with the available
#define.

Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Message-Id: <20210203012842.101447-2-krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:35 -05:00
Michael Roth
a7fc06dd2f KVM: SVM: use .prepare_guest_switch() to handle CPU register save/setup
Currently we save host state like user-visible host MSRs, and do some
initial guest register setup for MSR_TSC_AUX and MSR_AMD64_TSC_RATIO
in svm_vcpu_load(). Defer this until just before we enter the guest by
moving the handling to kvm_x86_ops.prepare_guest_switch() similarly to
how it is done for the VMX implementation.

Additionally, since handling of saving/restoring host user MSRs is the
same both with/without SEV-ES enabled, move that handling to common
code.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-Id: <20210202190126.2185715-4-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:35 -05:00
Michael Roth
553cc15f6e KVM: SVM: remove uneeded fields from host_save_users_msrs
Now that the set of host user MSRs that need to be individually
saved/restored are the same with/without SEV-ES, we can drop the
.sev_es_restored flag and just iterate through the list unconditionally
for both cases. A subsequent patch can then move these loops to a
common path.

Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-Id: <20210202190126.2185715-3-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:34 -05:00
Michael Roth
e79b91bb3c KVM: SVM: use vmsave/vmload for saving/restoring additional host state
Using a guest workload which simply issues 'hlt' in a tight loop to
generate VMEXITs, it was observed (on a recent EPYC processor) that a
significant amount of the VMEXIT overhead measured on the host was the
result of MSR reads/writes in svm_vcpu_load/svm_vcpu_put according to
perf:

  67.49%--kvm_arch_vcpu_ioctl_run
          |
          |--23.13%--vcpu_put
          |          kvm_arch_vcpu_put
          |          |
          |          |--21.31%--native_write_msr
          |          |
          |           --1.27%--svm_set_cr4
          |
          |--16.11%--vcpu_load
          |          |
          |           --15.58%--kvm_arch_vcpu_load
          |                     |
          |                     |--13.97%--svm_set_cr4
          |                     |          |
          |                     |          |--12.64%--native_read_msr

Most of these MSRs relate to 'syscall'/'sysenter' and segment bases, and
can be saved/restored using 'vmsave'/'vmload' instructions rather than
explicit MSR reads/writes. In doing so there is a significant reduction
in the svm_vcpu_load/svm_vcpu_put overhead measured for the above
workload:

  50.92%--kvm_arch_vcpu_ioctl_run
          |
          |--19.28%--disable_nmi_singlestep
          |
          |--13.68%--vcpu_load
          |          kvm_arch_vcpu_load
          |          |
          |          |--9.19%--svm_set_cr4
          |          |          |
          |          |           --6.44%--native_read_msr
          |          |
          |           --3.55%--native_write_msr
          |
          |--6.05%--kvm_inject_nmi
          |--2.80%--kvm_sev_es_mmio_read
          |--2.19%--vcpu_put
          |          |
          |           --1.25%--kvm_arch_vcpu_put
          |                     native_write_msr

Quantifying this further, if we look at the raw cycle counts for a
normal iteration of the above workload (according to 'rdtscp'),
kvm_arch_vcpu_ioctl_run() takes ~4600 cycles from start to finish with
the current behavior. Using 'vmsave'/'vmload', this is reduced to
~2800 cycles, a savings of 39%.

While this approach doesn't seem to manifest in any noticeable
improvement for more realistic workloads like UnixBench, netperf, and
kernel builds, likely due to their exit paths generally involving IO
with comparatively high latencies, it does improve overall overhead
of KVM_RUN significantly, which may still be noticeable for certain
situations. It also simplifies some aspects of the code.

With this change, explicit save/restore is no longer needed for the
following host MSRs, since they are documented[1] as being part of the
VMCB State Save Area:

  MSR_STAR, MSR_LSTAR, MSR_CSTAR,
  MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
  MSR_IA32_SYSENTER_CS,
  MSR_IA32_SYSENTER_ESP,
  MSR_IA32_SYSENTER_EIP,
  MSR_FS_BASE, MSR_GS_BASE

and only the following MSR needs individual handling in
svm_vcpu_put/svm_vcpu_load:

  MSR_TSC_AUX

We could drop the host_save_user_msrs array/loop and instead handle
MSR read/write of MSR_TSC_AUX directly, but we leave that for now as
a potential follow-up.

Since 'vmsave'/'vmload' also handles the LDTR and FS/GS segment
registers (and associated hidden state)[2], some of the code
previously used to handle this is no longer needed, so we drop it
as well.

The first public release of the SVM spec[3] also documents the same
handling for the host state in question, so we make these changes
unconditionally.

Also worth noting is that we 'vmsave' to the same page that is
subsequently used by 'vmrun' to record some host additional state. This
is okay, since, in accordance with the spec[2], the additional state
written to the page by 'vmrun' does not overwrite any fields written by
'vmsave'. This has also been confirmed through testing (for the above
CPU, at least).

[1] AMD64 Architecture Programmer's Manual, Rev 3.33, Volume 2, Appendix B, Table B-2
[2] AMD64 Architecture Programmer's Manual, Rev 3.31, Volume 3, Chapter 4, VMSAVE/VMLOAD
[3] Secure Virtual Machine Architecture Reference Manual, Rev 3.01

Suggested-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-Id: <20210202190126.2185715-2-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:34 -05:00
Sean Christopherson
35a7831912 KVM: SVM: Use asm goto to handle unexpected #UD on SVM instructions
Add svm_asm*() macros, a la the existing vmx_asm*() macros, to handle
faults on SVM instructions instead of using the generic __ex(), a.k.a.
__kvm_handle_fault_on_reboot().  Using asm goto generates slightly
better code as it eliminates the in-line JMP+CALL sequences that are
needed by __kvm_handle_fault_on_reboot() to avoid triggering BUG()
from fixup (which generates bad stack traces).

Using SVM specific macros also drops the last user of __ex() and the
the last asm linkage to kvm_spurious_fault(), and adds a helper for
VMSAVE, which may gain an addition call site in the future (as part
of optimizing the SVM context switching).

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20201231002702.2223707-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:33 -05:00
Sean Christopherson
6a28913947 KVM: VMX: Use the kernel's version of VMXOFF
Drop kvm_cpu_vmxoff() in favor of the kernel's cpu_vmxoff().  Modify the
latter to return -EIO on fault so that KVM can invoke
kvm_spurious_fault() when appropriate.  In addition to the obvious code
reuse, dropping kvm_cpu_vmxoff() also eliminates VMX's last usage of the
__ex()/__kvm_handle_fault_on_reboot() macros, thus helping pave the way
toward dropping them entirely.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20201231002702.2223707-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:33 -05:00
Sean Christopherson
5ef940bd9a KVM: VMX: Move Intel PT shenanigans out of VMXON/VMXOFF flows
Move the Intel PT tracking outside of the VMXON/VMXOFF helpers so that
a future patch can drop KVM's kvm_cpu_vmxoff() in favor of the kernel's
cpu_vmxoff() without an associated PT functional change, and without
losing symmetry between the VMXON and VMXOFF flows.

Barring undocumented behavior, this should have no meaningful effects
as Intel PT behavior does not interact with CR4.VMXE.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20201231002702.2223707-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:32 -05:00
Uros Bizjak
150f17bfab KVM/nVMX: Use __vmx_vcpu_run in nested_vmx_check_vmentry_hw
Replace inline assembly in nested_vmx_check_vmentry_hw
with a call to __vmx_vcpu_run.  The function is not
performance critical, so (double) GPR save/restore
in __vmx_vcpu_run can be tolerated, as far as performance
effects are concerned.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Reviewed-and-tested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
[sean: dropped versioning info from changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20201231002702.2223707-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:32 -05:00
Jason Baron
b3646477d4 KVM: x86: use static calls to reduce kvm_x86_ops overhead
Convert kvm_x86_ops to use static calls. Note that all kvm_x86_ops are
covered here except for 'pmu_ops and 'nested ops'.

Here are some numbers running cpuid in a loop of 1 million calls averaged
over 5 runs, measured in the vm (lower is better).

Intel Xeon 3000MHz:

           |default    |mitigations=off
-------------------------------------
vanilla    |.671s      |.486s
static call|.573s(-15%)|.458s(-6%)

AMD EPYC 2500MHz:

           |default    |mitigations=off
-------------------------------------
vanilla    |.710s      |.609s
static call|.664s(-6%) |.609s(0%)

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jason Baron <jbaron@akamai.com>
Message-Id: <e057bf1b8a7ad15652df6eeba3f907ae758d3399.1610680941.git.jbaron@akamai.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:30 -05:00
Jason Baron
9af5471bdb KVM: x86: introduce definitions to support static calls for kvm_x86_ops
Use static calls to improve kvm_x86_ops performance. Introduce the
definitions that will be used by a subsequent patch to actualize the
savings. Add a new kvm-x86-ops.h header that can be used for the
definition of static calls. This header is also intended to be
used to simplify the defition of svm_kvm_ops and vmx_x86_ops.

Note that all functions in kvm_x86_ops are covered here except for
'pmu_ops' and 'nested ops'. I think they can be covered by static
calls in a simlilar manner, but were omitted from this series to
reduce scope and because I don't think they have as large of a
performance impact.

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Jason Baron <jbaron@akamai.com>
Message-Id: <e5cc82ead7ab37b2dceb0837a514f3f8bea4f8d1.1610680941.git.jbaron@akamai.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:29 -05:00
Jason Baron
b6a7cc3544 KVM: X86: prepend vmx/svm prefix to additional kvm_x86_ops functions
A subsequent patch introduces macros in preparation for simplifying the
definition for vmx_x86_ops and svm_x86_ops. Making the naming more uniform
expands the coverage of the macros. Add vmx/svm prefix to the following
functions: update_exception_bitmap(), enable_nmi_window(),
enable_irq_window(), update_cr8_intercept and enable_smi_window().

Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Signed-off-by: Jason Baron <jbaron@akamai.com>
Message-Id: <ed594696f8e2c2b2bfc747504cee9bbb2a269300.1610680941.git.jbaron@akamai.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:29 -05:00
Cun Li
6e4e3b4df4 KVM: Stop using deprecated jump label APIs
The use of 'struct static_key' and 'static_key_false' is
deprecated. Use the new API.

Signed-off-by: Cun Li <cun.jia.li@gmail.com>
Message-Id: <20210111152435.50275-1-cun.jia.li@gmail.com>
[Make it compile.  While at it, rename kvm_no_apic_vcpu to
 kvm_has_noapic_vcpu; the former reads too much like "true if
 no vCPU has an APIC". - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:29 -05:00
Wei Huang
14c2bf81fc KVM: SVM: Fix #GP handling for doubly-nested virtualization
Under the case of nested on nested (L0, L1, L2 are all hypervisors),
we do not support emulation of the vVMLOAD/VMSAVE feature, the
L0 hypervisor can inject the proper #VMEXIT to inform L1 of what is
happening and L1 can avoid invoking the #GP workaround.  For this
reason we turns on guest VM's X86_FEATURE_SVME_ADDR_CHK bit for KVM
running inside VM to receive the notification and change behavior.

Similarly we check if vcpu is under guest mode before emulating the
vmware-backdoor instructions. For the case of nested on nested, we
let the guest handle it.

Co-developed-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Wei Huang <wei.huang2@amd.com>
Tested-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210126081831.570253-5-wei.huang2@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:28 -05:00
Wei Huang
3b9c723ed7 KVM: SVM: Add support for SVM instruction address check change
New AMD CPUs have a change that checks #VMEXIT intercept on special SVM
instructions before checking their EAX against reserved memory region.
This change is indicated by CPUID_0x8000000A_EDX[28]. If it is 1, #VMEXIT
is triggered before #GP. KVM doesn't need to intercept and emulate #GP
faults as #GP is supposed to be triggered.

Co-developed-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Wei Huang <wei.huang2@amd.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210126081831.570253-4-wei.huang2@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:28 -05:00
Bandan Das
82a11e9c6f KVM: SVM: Add emulation support for #GP triggered by SVM instructions
While running SVM related instructions (VMRUN/VMSAVE/VMLOAD), some AMD
CPUs check EAX against reserved memory regions (e.g. SMM memory on host)
before checking VMCB's instruction intercept. If EAX falls into such
memory areas, #GP is triggered before VMEXIT. This causes problem under
nested virtualization. To solve this problem, KVM needs to trap #GP and
check the instructions triggering #GP. For VM execution instructions,
KVM emulates these instructions.

Co-developed-by: Wei Huang <wei.huang2@amd.com>
Signed-off-by: Wei Huang <wei.huang2@amd.com>
Signed-off-by: Bandan Das <bsd@redhat.com>
Message-Id: <20210126081831.570253-3-wei.huang2@amd.com>
[Conditionally enable #GP intercept. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:28 -05:00
Wei Huang
4aa2691dcb KVM: x86: Factor out x86 instruction emulation with decoding
Move the instruction decode part out of x86_emulate_instruction() for it
to be used in other places. Also kvm_clear_exception_queue() is moved
inside the if-statement as it doesn't apply when KVM are coming back from
userspace.

Co-developed-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Wei Huang <wei.huang2@amd.com>
Message-Id: <20210126081831.570253-2-wei.huang2@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:27 -05:00
Chenyi Qiang
9a3ecd5e2a KVM: X86: Rename DR6_INIT to DR6_ACTIVE_LOW
DR6_INIT contains the 1-reserved bits as well as the bit that is cleared
to 0 when the condition (e.g. RTM) happens. The value can be used to
initialize dr6 and also be the XOR mask between the #DB exit
qualification (or payload) and DR6.

Concerning that DR6_INIT is used as initial value only once, rename it
to DR6_ACTIVE_LOW and apply it in other places, which would make the
incoming changes for bus lock debug exception more simple.

Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20210202090433.13441-2-chenyi.qiang@intel.com>
[Define DR6_FIXED_1 from DR6_ACTIVE_LOW and DR6_VOLATILE. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:27 -05:00
Like Xu
be635e34c2 KVM: vmx/pmu: Expose LBR_FMT in the MSR_IA32_PERF_CAPABILITIES
Userspace could enable guest LBR feature when the exactly supported
LBR format value is initialized to the MSR_IA32_PERF_CAPABILITIES
and the LBR is also compatible with vPMU version and host cpu model.

The LBR could be enabled on the guest if host perf supports LBR
(checked via x86_perf_get_lbr()) and the vcpu model is compatible
with the host one.

Signed-off-by: Like Xu <like.xu@linux.intel.com>
Message-Id: <20210201051039.255478-11-like.xu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:26 -05:00
Like Xu
9aa4f62246 KVM: vmx/pmu: Release guest LBR event via lazy release mechanism
The vPMU uses GUEST_LBR_IN_USE_IDX (bit 58) in 'pmu->pmc_in_use' to
indicate whether a guest LBR event is still needed by the vcpu. If the
vcpu no longer accesses LBR related registers within a scheduling time
slice, and the enable bit of LBR has been unset, vPMU will treat the
guest LBR event as a bland event of a vPMC counter and release it
as usual. Also, the pass-through state of LBR records msrs is cancelled.

Signed-off-by: Like Xu <like.xu@linux.intel.com>
Message-Id: <20210201051039.255478-10-like.xu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:26 -05:00
Like Xu
e6209a3bef KVM: vmx/pmu: Emulate legacy freezing LBRs on virtual PMI
The current vPMU only supports Architecture Version 2. According to
Intel SDM "17.4.7 Freezing LBR and Performance Counters on PMI", if
IA32_DEBUGCTL.Freeze_LBR_On_PMI = 1, the LBR is frozen on the virtual
PMI and the KVM would emulate to clear the LBR bit (bit 0) in
IA32_DEBUGCTL. Also, guest needs to re-enable IA32_DEBUGCTL.LBR
to resume recording branches.

Signed-off-by: Like Xu <like.xu@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Message-Id: <20210201051039.255478-9-like.xu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:25 -05:00
Like Xu
9254beaafd KVM: vmx/pmu: Reduce the overhead of LBR pass-through or cancellation
When the LBR records msrs has already been pass-through, there is no
need to call vmx_update_intercept_for_lbr_msrs() again and again, and
vice versa.

Signed-off-by: Like Xu <like.xu@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Message-Id: <20210201051039.255478-8-like.xu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:25 -05:00
Like Xu
1b5ac3226a KVM: vmx/pmu: Pass-through LBR msrs when the guest LBR event is ACTIVE
In addition to DEBUGCTLMSR_LBR, any KVM trap caused by LBR msrs access
will result in a creation of guest LBR event per-vcpu.

If the guest LBR event is scheduled on with the corresponding vcpu context,
KVM will pass-through all LBR records msrs to the guest. The LBR callstack
mechanism implemented in the host could help save/restore the guest LBR
records during the event context switches, which reduces a lot of overhead
if we save/restore tens of LBR msrs (e.g. 32 LBR records entries) in the
much more frequent VMX transitions.

To avoid reclaiming LBR resources from any higher priority event on host,
KVM would always check the exist of guest LBR event and its state before
vm-entry as late as possible. A negative result would cancel the
pass-through state, and it also prevents real registers accesses and
potential data leakage. If host reclaims the LBR between two checks, the
interception state and LBR records can be safely preserved due to native
save/restore support from guest LBR event.

The KVM emits a pr_warn() when the LBR hardware is unavailable to the
guest LBR event. The administer is supposed to reminder users that the
guest result may be inaccurate if someone is using LBR to record
hypervisor on the host side.

Suggested-by: Andi Kleen <ak@linux.intel.com>
Co-developed-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Message-Id: <20210201051039.255478-7-like.xu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:25 -05:00
Like Xu
8e12911b24 KVM: vmx/pmu: Create a guest LBR event when vcpu sets DEBUGCTLMSR_LBR
When vcpu sets DEBUGCTLMSR_LBR in the MSR_IA32_DEBUGCTLMSR, the KVM handler
would create a guest LBR event which enables the callstack mode and none of
hardware counter is assigned. The host perf would schedule and enable this
event as usual but in an exclusive way.

The guest LBR event will be released when the vPMU is reset but soon,
the lazy release mechanism would be applied to this event like a vPMC.

Suggested-by: Andi Kleen <ak@linux.intel.com>
Co-developed-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Message-Id: <20210201051039.255478-6-like.xu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:24 -05:00
Like Xu
c646236344 KVM: vmx/pmu: Add PMU_CAP_LBR_FMT check when guest LBR is enabled
Usespace could set the bits [0, 5] of the IA32_PERF_CAPABILITIES
MSR which tells about the record format stored in the LBR records.

The LBR will be enabled on the guest if host perf supports LBR
(checked via x86_perf_get_lbr()) and the vcpu model is compatible
with the host one.

Signed-off-by: Like Xu <like.xu@linux.intel.com>
Message-Id: <20210201051039.255478-4-like.xu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:24 -05:00
Paolo Bonzini
9c9520ce88 KVM: vmx/pmu: Add PMU_CAP_LBR_FMT check when guest LBR is enabled
Usespace could set the bits [0, 5] of the IA32_PERF_CAPABILITIES
MSR which tells about the record format stored in the LBR records.

The LBR will be enabled on the guest if host perf supports LBR
(checked via x86_perf_get_lbr()) and the vcpu model is compatible
with the host one.

Signed-off-by: Like Xu <like.xu@linux.intel.com>
Message-Id: <20210201051039.255478-4-like.xu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:24 -05:00
Paolo Bonzini
a755753903 KVM: x86/pmu: preserve IA32_PERF_CAPABILITIES across CPUID refresh
Once MSR_IA32_PERF_CAPABILITIES is changed via vmx_set_msr(), the
value should not be changed by cpuid(). To ensure that the new value
is kept, the default initialization path is moved to intel_pmu_init().
The effective value of the MSR will be 0 if PDCM is clear, however.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-02-04 05:27:23 -05:00