Commit Graph

70 Commits

Author SHA1 Message Date
Tetsuo Handa
075b593f54 cgroup: Use cgroup_attach_{lock,unlock}() from cgroup_attach_task_all()
No behavior changes; preparing for potential locking changes in future.

Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Reviewed-by:Mukesh Ojha <quic_mojha@quicinc.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2022-08-26 11:14:34 -10:00
Tetsuo Handa
43626dade3 cgroup: Add missing cpus_read_lock() to cgroup_attach_task_all()
syzbot is hitting percpu_rwsem_assert_held(&cpu_hotplug_lock) warning at
cpuset_attach() [1], for commit 4f7e723643 ("cgroup: Fix
threadgroup_rwsem <-> cpus_read_lock() deadlock") missed that
cpuset_attach() is also called from cgroup_attach_task_all().
Add cpus_read_lock() like what cgroup_procs_write_start() does.

Link: https://syzkaller.appspot.com/bug?extid=29d3a3b4d86c8136ad9e [1]
Reported-by: syzbot <syzbot+29d3a3b4d86c8136ad9e@syzkaller.appspotmail.com>
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Fixes: 4f7e723643 ("cgroup: Fix threadgroup_rwsem <-> cpus_read_lock() deadlock")
Signed-off-by: Tejun Heo <tj@kernel.org>
2022-08-25 07:36:30 -10:00
Tejun Heo
6a010a49b6 cgroup: Make !percpu threadgroup_rwsem operations optional
3942a9bd7b ("locking, rcu, cgroup: Avoid synchronize_sched() in
__cgroup_procs_write()") disabled percpu operations on threadgroup_rwsem
because the impiled synchronize_rcu() on write locking was pushing up the
latencies too much for android which constantly moves processes between
cgroups.

This makes the hotter paths - fork and exit - slower as they're always
forced into the slow path. There is no reason to force this on everyone
especially given that more common static usage pattern can now completely
avoid write-locking the rwsem. Write-locking is elided when turning on and
off controllers on empty sub-trees and CLONE_INTO_CGROUP enables seeding a
cgroup without grabbing the rwsem.

Restore the default percpu operations and introduce the mount option
"favordynmods" and config option CGROUP_FAVOR_DYNMODS for users who need
lower latencies for the dynamic operations.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Michal Koutn� <mkoutny@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Dmitry Shmidt <dimitrysh@google.com>
Cc: Oleg Nesterov <oleg@redhat.com>
2022-07-23 04:29:02 -10:00
Michal Koutný
467a726b75 cgroup-v1: Correct privileges check in release_agent writes
The idea is to check: a) the owning user_ns of cgroup_ns, b)
capabilities in init_user_ns.

The commit 24f6008564 ("cgroup-v1: Require capabilities to set
release_agent") got this wrong in the write handler of release_agent
since it checked user_ns of the opener (may be different from the owning
user_ns of cgroup_ns).
Secondly, to avoid possibly confused deputy, the capability of the
opener must be checked.

Fixes: 24f6008564 ("cgroup-v1: Require capabilities to set release_agent")
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/stable/20220216121142.GB30035@blackbody.suse.cz/
Signed-off-by: Michal Koutný <mkoutny@suse.com>
Reviewed-by: Masami Ichikawa(CIP) <masami.ichikawa@cybertrust.co.jp>
Signed-off-by: Tejun Heo <tj@kernel.org>
2022-02-22 08:12:22 -10:00
Eric W. Biederman
24f6008564 cgroup-v1: Require capabilities to set release_agent
The cgroup release_agent is called with call_usermodehelper.  The function
call_usermodehelper starts the release_agent with a full set fo capabilities.
Therefore require capabilities when setting the release_agaent.

Reported-by: Tabitha Sable <tabitha.c.sable@gmail.com>
Tested-by: Tabitha Sable <tabitha.c.sable@gmail.com>
Fixes: 81a6a5cdd2 ("Task Control Groups: automatic userspace notification of idle cgroups")
Cc: stable@vger.kernel.org # v2.6.24+
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2022-02-01 07:28:00 -10:00
Tejun Heo
0d2b5955b3 cgroup: Allocate cgroup_file_ctx for kernfs_open_file->priv
of->priv is currently used by each interface file implementation to store
private information. This patch collects the current two private data usages
into struct cgroup_file_ctx which is allocated and freed by the common path.
This allows generic private data which applies to multiple files, which will
be used to in the following patch.

Note that cgroup_procs iterator is now embedded as procs.iter in the new
cgroup_file_ctx so that it doesn't need to be allocated and freed
separately.

v2: union dropped from cgroup_file_ctx and the procs iterator is embedded in
    cgroup_file_ctx as suggested by Linus.

v3: Michal pointed out that cgroup1's procs pidlist uses of->priv too.
    Converted. Didn't change to embedded allocation as cgroup1 pidlists get
    stored for caching.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
2022-01-06 11:02:29 -10:00
Tejun Heo
1756d7994a cgroup: Use open-time credentials for process migraton perm checks
cgroup process migration permission checks are performed at write time as
whether a given operation is allowed or not is dependent on the content of
the write - the PID. This currently uses current's credentials which is a
potential security weakness as it may allow scenarios where a less
privileged process tricks a more privileged one into writing into a fd that
it created.

This patch makes both cgroup2 and cgroup1 process migration interfaces to
use the credentials saved at the time of open (file->f_cred) instead of
current's.

Reported-by: "Eric W. Biederman" <ebiederm@xmission.com>
Suggested-by: Linus Torvalds <torvalds@linuxfoundation.org>
Fixes: 187fe84067 ("cgroup: require write perm on common ancestor when moving processes on the default hierarchy")
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2022-01-06 11:02:28 -10:00
Shakeel Butt
822bc9bac9 cgroup: no need for cgroup_mutex for /proc/cgroups
On the real systems, the cgroups hierarchies are setup early and just
once by the node controller, so, other than number of cgroups, all
information in /proc/cgroups remain same for the system uptime. Let's
remove the cgroup_mutex usage on reading /proc/cgroups. There is a
chance of inconsistent number of cgroups for co-mounted cgroups while
printing the information from /proc/cgroups but that is not a big
issue. In addition /proc/cgroups is a v1 specific interface, so the
dependency on it should reduce over time.

The main motivation for removing the cgroup_mutex from /proc/cgroups is
to reduce the avenues of its contention. On our fleet, we have observed
buggy application hammering on /proc/cgroups and drastically slowing
down the node controller on the system which have many negative
consequences on other workloads running on the system.

Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-10-25 07:26:00 -10:00
Shakeel Butt
bb75842141 cgroup: remove cgroup_mutex from cgroupstats_build
The function cgroupstats_build extracts cgroup from the kernfs_node's
priv pointer which is a RCU pointer. So, there is no need to grab
cgroup_mutex. Just get the reference on the cgroup before using and
remove the cgroup_mutex altogether.

Signed-off-by: Shakeel Butt <shakeelb@google.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-10-25 07:24:03 -10:00
Vishal Verma
0061270307 cgroup: cgroup-v1: do not exclude cgrp_dfl_root
Found an issue within cgroup_attach_task_all() fn which seem
to exclude cgrp_dfl_root (cgroupv2) while attaching tasks to
the given cgroup. This was noticed when the system was running
qemu/kvm with kernel vhost helper threads. It appears that the
vhost layer which uses cgroup_attach_task_all() fn to assign the
vhost kthread to the right qemu cgroup works fine with cgroupv1
based configuration but not in cgroupv2. With cgroupv2, the vhost
helper thread ends up just belonging to the root cgroup as is
shown below:

$ stat -fc %T /sys/fs/cgroup/
cgroup2fs
$ sudo pgrep qemu
1916421
$ ps -eL | grep 1916421
1916421 1916421 ?        00:00:01 qemu-system-x86
1916421 1916431 ?        00:00:00 call_rcu
1916421 1916435 ?        00:00:00 IO mon_iothread
1916421 1916436 ?        00:00:34 CPU 0/KVM
1916421 1916439 ?        00:00:00 SPICE Worker
1916421 1916440 ?        00:00:00 vnc_worker
1916433 1916433 ?        00:00:00 vhost-1916421
1916437 1916437 ?        00:00:00 kvm-pit/1916421
$ cat /proc/1916421/cgroup
0::/machine.slice/machine-qemu\x2d18\x2dDroplet\x2d7572850.scope/emulator
$ cat /proc/1916439/cgroup
0::/machine.slice/machine-qemu\x2d18\x2dDroplet\x2d7572850.scope/emulator
$ cat /proc/1916433/cgroup
0::/

From above, it can be seen that the vhost kthread (PID: 1916433)
doesn't seem to belong the qemu cgroup like other qemu PIDs.

After applying this patch:

$ pgrep qemu
1643
$ ps -eL | grep 1643
   1643    1643 ?        00:00:00 qemu-system-x86
   1643    1645 ?        00:00:00 call_rcu
   1643    1648 ?        00:00:00 IO mon_iothread
   1643    1649 ?        00:00:00 CPU 0/KVM
   1643    1652 ?        00:00:00 SPICE Worker
   1643    1653 ?        00:00:00 vnc_worker
   1647    1647 ?        00:00:00 vhost-1643
   1651    1651 ?        00:00:00 kvm-pit/1643
$ cat /proc/1647/cgroup
0::/machine.slice/machine-qemu\x2d18\x2dDroplet\x2d7572850.scope/emulator

Suggested-by: Tejun Heo <tj@kernel.org>
Signed-off-by: Vishal Verma <vverma@digitalocean.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-10-05 06:13:21 -10:00
Linus Torvalds
69dc8010b8 Merge branch 'for-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
 "Two cpuset behavior changes:

   - cpuset on cgroup2 is changed to enable memory migration based on
     nodemask by default.

   - A notification is generated when cpuset partition state changes.

  All other patches are minor fixes and cleanups"

* 'for-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup:
  cgroup: Avoid compiler warnings with no subsystems
  cgroup/cpuset: Avoid memory migration when nodemasks match
  cgroup/cpuset: Enable memory migration for cpuset v2
  cgroup/cpuset: Enable event notification when partition state changes
  cgroup: cgroup-v1: clean up kernel-doc notation
  cgroup: Replace deprecated CPU-hotplug functions.
  cgroup/cpuset: Fix violation of cpuset locking rule
  cgroup/cpuset: Fix a partition bug with hotplug
  cgroup/cpuset: Miscellaneous code cleanup
  cgroup: remove cgroup_mount from comments
2021-08-31 15:49:04 -07:00
Randy Dunlap
b4cc619608 cgroup: cgroup-v1: clean up kernel-doc notation
Fix kernel-doc warnings found in cgroup-v1.c:

kernel/cgroup/cgroup-v1.c:55: warning: No description found for return value of 'cgroup_attach_task_all'
kernel/cgroup/cgroup-v1.c:94: warning: expecting prototype for cgroup_trasnsfer_tasks(). Prototype was for cgroup_transfer_tasks() instead
cgroup-v1.c:96: warning: No description found for return value of 'cgroup_transfer_tasks'
kernel/cgroup/cgroup-v1.c:687: warning: No description found for return value of 'cgroupstats_build'

Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zefan Li <lizefan.x@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: cgroups@vger.kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-08-11 07:57:43 -10:00
Paul Gortmaker
1e7107c5ef cgroup1: fix leaked context root causing sporadic NULL deref in LTP
Richard reported sporadic (roughly one in 10 or so) null dereferences and
other strange behaviour for a set of automated LTP tests.  Things like:

   BUG: kernel NULL pointer dereference, address: 0000000000000008
   #PF: supervisor read access in kernel mode
   #PF: error_code(0x0000) - not-present page
   PGD 0 P4D 0
   Oops: 0000 [#1] PREEMPT SMP PTI
   CPU: 0 PID: 1516 Comm: umount Not tainted 5.10.0-yocto-standard #1
   Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-48-gd9c812dda519-prebuilt.qemu.org 04/01/2014
   RIP: 0010:kernfs_sop_show_path+0x1b/0x60

...or these others:

   RIP: 0010:do_mkdirat+0x6a/0xf0
   RIP: 0010:d_alloc_parallel+0x98/0x510
   RIP: 0010:do_readlinkat+0x86/0x120

There were other less common instances of some kind of a general scribble
but the common theme was mount and cgroup and a dubious dentry triggering
the NULL dereference.  I was only able to reproduce it under qemu by
replicating Richard's setup as closely as possible - I never did get it
to happen on bare metal, even while keeping everything else the same.

In commit 71d883c37e ("cgroup_do_mount(): massage calling conventions")
we see this as a part of the overall change:

   --------------
           struct cgroup_subsys *ss;
   -       struct dentry *dentry;

   [...]

   -       dentry = cgroup_do_mount(&cgroup_fs_type, fc->sb_flags, root,
   -                                CGROUP_SUPER_MAGIC, ns);

   [...]

   -       if (percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
   -               struct super_block *sb = dentry->d_sb;
   -               dput(dentry);
   +       ret = cgroup_do_mount(fc, CGROUP_SUPER_MAGIC, ns);
   +       if (!ret && percpu_ref_is_dying(&root->cgrp.self.refcnt)) {
   +               struct super_block *sb = fc->root->d_sb;
   +               dput(fc->root);
                   deactivate_locked_super(sb);
                   msleep(10);
                   return restart_syscall();
           }
   --------------

In changing from the local "*dentry" variable to using fc->root, we now
export/leave that dentry pointer in the file context after doing the dput()
in the unlikely "is_dying" case.   With LTP doing a crazy amount of back to
back mount/unmount [testcases/bin/cgroup_regression_5_1.sh] the unlikely
becomes slightly likely and then bad things happen.

A fix would be to not leave the stale reference in fc->root as follows:

   --------------
                  dput(fc->root);
  +               fc->root = NULL;
                  deactivate_locked_super(sb);
   --------------

...but then we are just open-coding a duplicate of fc_drop_locked() so we
simply use that instead.

Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Tejun Heo <tj@kernel.org>
Cc: Zefan Li <lizefan.x@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: stable@vger.kernel.org      # v5.1+
Reported-by: Richard Purdie <richard.purdie@linuxfoundation.org>
Fixes: 71d883c37e ("cgroup_do_mount(): massage calling conventions")
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-07-21 06:39:20 -10:00
Christian Brauner
d1d488d813 fs: add vfs_parse_fs_param_source() helper
Add a simple helper that filesystems can use in their parameter parser
to parse the "source" parameter. A few places open-coded this function
and that already caused a bug in the cgroup v1 parser that we fixed.
Let's make it harder to get this wrong by introducing a helper which
performs all necessary checks.

Link: https://syzkaller.appspot.com/bug?id=6312526aba5beae046fdae8f00399f87aab48b12
Cc: Christoph Hellwig <hch@lst.de>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-14 09:19:06 -07:00
Christian Brauner
3b0462726e cgroup: verify that source is a string
The following sequence can be used to trigger a UAF:

    int fscontext_fd = fsopen("cgroup");
    int fd_null = open("/dev/null, O_RDONLY);
    int fsconfig(fscontext_fd, FSCONFIG_SET_FD, "source", fd_null);
    close_range(3, ~0U, 0);

The cgroup v1 specific fs parser expects a string for the "source"
parameter.  However, it is perfectly legitimate to e.g.  specify a file
descriptor for the "source" parameter.  The fs parser doesn't know what
a filesystem allows there.  So it's a bug to assume that "source" is
always of type fs_value_is_string when it can reasonably also be
fs_value_is_file.

This assumption in the cgroup code causes a UAF because struct
fs_parameter uses a union for the actual value.  Access to that union is
guarded by the param->type member.  Since the cgroup paramter parser
didn't check param->type but unconditionally moved param->string into
fc->source a close on the fscontext_fd would trigger a UAF during
put_fs_context() which frees fc->source thereby freeing the file stashed
in param->file causing a UAF during a close of the fd_null.

Fix this by verifying that param->type is actually a string and report
an error if not.

In follow up patches I'll add a new generic helper that can be used here
and by other filesystems instead of this error-prone copy-pasta fix.
But fixing it in here first makes backporting a it to stable a lot
easier.

Fixes: 8d2451f499 ("cgroup1: switch to option-by-option parsing")
Reported-by: syzbot+283ce5a46486d6acdbaf@syzkaller.appspotmail.com
Cc: Christoph Hellwig <hch@lst.de>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: <stable@kernel.org>
Cc: syzkaller-bugs <syzkaller-bugs@googlegroups.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-14 09:19:06 -07:00
Peter Zijlstra
2f064a59a1 sched: Change task_struct::state
Change the type and name of task_struct::state. Drop the volatile and
shrink it to an 'unsigned int'. Rename it in order to find all uses
such that we can use READ_ONCE/WRITE_ONCE as appropriate.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Daniel Bristot de Oliveira <bristot@redhat.com>
Acked-by: Will Deacon <will@kernel.org>
Acked-by: Daniel Thompson <daniel.thompson@linaro.org>
Link: https://lore.kernel.org/r/20210611082838.550736351@infradead.org
2021-06-18 11:43:09 +02:00
Alexander Kuznetsov
b7e24eb1ca cgroup1: don't allow '\n' in renaming
cgroup_mkdir() have restriction on newline usage in names:
$ mkdir $'/sys/fs/cgroup/cpu/test\ntest2'
mkdir: cannot create directory
'/sys/fs/cgroup/cpu/test\ntest2': Invalid argument

But in cgroup1_rename() such check is missed.
This allows us to make /proc/<pid>/cgroup unparsable:
$ mkdir /sys/fs/cgroup/cpu/test
$ mv /sys/fs/cgroup/cpu/test $'/sys/fs/cgroup/cpu/test\ntest2'
$ echo $$ > $'/sys/fs/cgroup/cpu/test\ntest2'
$ cat /proc/self/cgroup
11:pids:/
10:freezer:/
9:hugetlb:/
8:cpuset:/
7:blkio:/user.slice
6:memory:/user.slice
5:net_cls,net_prio:/
4:perf_event:/
3:devices:/user.slice
2:cpu,cpuacct:/test
test2
1:name=systemd:/
0::/

Signed-off-by: Alexander Kuznetsov <wwfq@yandex-team.ru>
Reported-by: Andrey Krasichkov <buglloc@yandex-team.ru>
Acked-by: Dmitry Yakunin <zeil@yandex-team.ru>
Cc: stable@vger.kernel.org
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-06-10 09:58:50 -04:00
Zhen Lei
08b2b6fdf6 cgroup: fix spelling mistakes
Fix some spelling mistakes in comments:
hierarhcy ==> hierarchy
automtically ==> automatically
overriden ==> overridden
In absense of .. or ==> In absence of .. and
assocaited ==> associated
taget ==> target
initate ==> initiate
succeded ==> succeeded
curremt ==> current
udpated ==> updated

Signed-off-by: Zhen Lei <thunder.leizhen@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-05-24 12:45:26 -04:00
Chunguang Xu
ffeee417d9 cgroup: use tsk->in_iowait instead of delayacct_is_task_waiting_on_io()
If delayacct is disabled, then delayacct_is_task_waiting_on_io()
always returns false, which causes the statistical value to be
wrong. Perhaps tsk->in_iowait is better.

Signed-off-by: Chunguang Xu <brookxu@tencent.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-04-16 16:49:37 -04:00
Chen Zhou
61e960b07b cgroup-v1: add disabled controller check in cgroup1_parse_param()
When mounting a cgroup hierarchy with disabled controller in cgroup v1,
all available controllers will be attached.
For example, boot with cgroup_no_v1=cpu or cgroup_disable=cpu, and then
mount with "mount -t cgroup -ocpu cpu /sys/fs/cgroup/cpu", then all
enabled controllers will be attached except cpu.

Fix this by adding disabled controller check in cgroup1_parse_param().
If the specified controller is disabled, just return error with information
"Disabled controller xx" rather than attaching all the other enabled
controllers.

Fixes: f5dfb5315d ("cgroup: take options parsing into ->parse_monolithic()")
Signed-off-by: Chen Zhou <chenzhou10@huawei.com>
Reviewed-by: Zefan Li <lizefan.x@bytedance.com>
Reviewed-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2021-01-15 15:10:37 -05:00
Qinglang Miao
2d18e54dd8 cgroup: Fix memory leak when parsing multiple source parameters
A memory leak is found in cgroup1_parse_param() when multiple source
parameters overwrite fc->source in the fs_context struct without free.

unreferenced object 0xffff888100d930e0 (size 16):
  comm "mount", pid 520, jiffies 4303326831 (age 152.783s)
  hex dump (first 16 bytes):
    74 65 73 74 6c 65 61 6b 00 00 00 00 00 00 00 00  testleak........
  backtrace:
    [<000000003e5023ec>] kmemdup_nul+0x2d/0xa0
    [<00000000377dbdaa>] vfs_parse_fs_string+0xc0/0x150
    [<00000000cb2b4882>] generic_parse_monolithic+0x15a/0x1d0
    [<000000000f750198>] path_mount+0xee1/0x1820
    [<0000000004756de2>] do_mount+0xea/0x100
    [<0000000094cafb0a>] __x64_sys_mount+0x14b/0x1f0

Fix this bug by permitting a single source parameter and rejecting with
an error all subsequent ones.

Fixes: 8d2451f499 ("cgroup1: switch to option-by-option parsing")
Reported-by: Hulk Robot <hulkci@huawei.com>
Signed-off-by: Qinglang Miao <miaoqinglang@huawei.com>
Reviewed-by: Zefan Li <lizefan@huawei.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2020-12-16 10:10:32 -05:00
Tejun Heo
e7b20d9796 cgroup: Restructure release_agent_path handling
cgrp->root->release_agent_path is protected by both cgroup_mutex and
release_agent_path_lock and readers can hold either one. The
dual-locking scheme was introduced while breaking a locking dependency
issue around cgroup_mutex but doesn't make sense anymore given that
the only remaining reader which uses cgroup_mutex is
cgroup1_releaes_agent().

This patch updates cgroup1_release_agent() to use
release_agent_path_lock so that release_agent_path is always protected
only by release_agent_path_lock.

While at it, convert strlen() based empty string checks to direct
tests on the first character as suggested by Linus.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
2020-03-12 16:44:35 -04:00
Tycho Andersen
2e5383d790 cgroup1: don't call release_agent when it is ""
Older (and maybe current) versions of systemd set release_agent to "" when
shutting down, but do not set notify_on_release to 0.

Since 64e90a8acb ("Introduce STATIC_USERMODEHELPER to mediate
call_usermodehelper()"), we filter out such calls when the user mode helper
path is "". However, when used in conjunction with an actual (i.e. non "")
STATIC_USERMODEHELPER, the path is never "", so the real usermode helper
will be called with argv[0] == "".

Let's avoid this by not invoking the release_agent when it is "".

Signed-off-by: Tycho Andersen <tycho@tycho.ws>
Signed-off-by: Tejun Heo <tj@kernel.org>
2020-03-04 11:53:33 -05:00
Vasily Averin
db8dd96972 cgroup-v1: cgroup_pidlist_next should update position index
if seq_file .next fuction does not change position index,
read after some lseek can generate unexpected output.

 # mount | grep cgroup
 # dd if=/mnt/cgroup.procs bs=1  # normal output
...
1294
1295
1296
1304
1382
584+0 records in
584+0 records out
584 bytes copied

dd: /mnt/cgroup.procs: cannot skip to specified offset
83  <<< generates end of last line
1383  <<< ... and whole last line once again
0+1 records in
0+1 records out
8 bytes copied

dd: /mnt/cgroup.procs: cannot skip to specified offset
1386  <<< generates last line anyway
0+1 records in
0+1 records out
5 bytes copied

https://bugzilla.kernel.org/show_bug.cgi?id=206283
Signed-off-by: Vasily Averin <vvs@virtuozzo.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2020-02-12 16:53:35 -05:00
Al Viro
58c025f0e8 cgroup1: switch to use of errorfc() et.al.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-02-07 14:48:43 -05:00
Al Viro
d7167b1499 fs_parse: fold fs_parameter_desc/fs_parameter_spec
The former contains nothing but a pointer to an array of the latter...

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-02-07 14:48:37 -05:00
Eric Sandeen
96cafb9ccb fs_parser: remove fs_parameter_description name field
Unused now.

Signed-off-by: Eric Sandeen <sandeen@redhat.com>
Acked-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-02-07 14:48:36 -05:00
Al Viro
fbc2d1686d get rid of cg_invalf()
pointless alias for invalf()...

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-02-07 14:48:31 -05:00
Michal Koutný
9a3284fad4 cgroup: Optimize single thread migration
There are reports of users who use thread migrations between cgroups and
they report performance drop after d59cfc09c3 ("sched, cgroup: replace
signal_struct->group_rwsem with a global percpu_rwsem"). The effect is
pronounced on machines with more CPUs.

The migration is affected by forking noise happening in the background,
after the mentioned commit a migrating thread must wait for all
(forking) processes on the system, not only of its threadgroup.

There are several places that need to synchronize with migration:
	a) do_exit,
	b) de_thread,
	c) copy_process,
	d) cgroup_update_dfl_csses,
	e) parallel migration (cgroup_{proc,thread}s_write).

In the case of self-migrating thread, we relax the synchronization on
cgroup_threadgroup_rwsem to avoid the cost of waiting. d) and e) are
excluded with cgroup_mutex, c) does not matter in case of single thread
migration and the executing thread cannot exec(2) or exit(2) while it is
writing into cgroup.threads. In case of do_exit because of signal
delivery, we either exit before the migration or finish the migration
(of not yet PF_EXITING thread) and die afterwards.

This patch handles only the case of self-migration by writing "0" into
cgroup.threads. For simplicity, we always take cgroup_threadgroup_rwsem
with numeric PIDs.

This change improves migration dependent workload performance similar
to per-signal_struct state.

Signed-off-by: Michal Koutný <mkoutny@suse.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2019-10-07 07:11:53 -07:00
Marc Koderer
653a23ca7e Use kvmalloc in cgroups-v1
Instead of using its own logic for k-/vmalloc rely on
kvmalloc which is actually doing quite the same.

Signed-off-by: Marc Koderer <marc@koderer.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2019-08-07 11:37:58 -07:00
Thomas Gleixner
457c899653 treewide: Add SPDX license identifier for missed files
Add SPDX license identifiers to all files which:

 - Have no license information of any form

 - Have EXPORT_.*_SYMBOL_GPL inside which was used in the
   initial scan/conversion to ignore the file

These files fall under the project license, GPL v2 only. The resulting SPDX
license identifier is:

  GPL-2.0-only

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-21 10:50:45 +02:00
Roman Gushchin
aade7f9efb cgroup: implement __cgroup_task_count() helper
The helper is identical to the existing cgroup_task_count()
except it doesn't take the css_set_lock by itself, assuming
that the caller does.

Also, move cgroup_task_count() implementation into
kernel/cgroup/cgroup.c, as there is nothing specific to cgroup v1.

Signed-off-by: Roman Gushchin <guro@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: kernel-team@fb.com
2019-04-19 11:26:48 -07:00
David Howells
06a2ae56b5 vfs: Add some logging to the core users of the fs_context log
Add some logging to the core users of the fs_context log so that
information can be extracted from them as to the reason for failure.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-02-28 03:29:38 -05:00
Al Viro
cca8f32714 cgroup: store a reference to cgroup_ns into cgroup_fs_context
... and trim cgroup_do_mount() arguments (renaming it to cgroup_do_get_tree())

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-02-28 03:29:34 -05:00
Al Viro
6678889f07 cgroup1_get_tree(): separate "get cgroup_root to use" into a separate helper
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-02-28 03:29:33 -05:00
Al Viro
71d883c37e cgroup_do_mount(): massage calling conventions
pass it fs_context instead of fs_type/flags/root triple, have
it return int instead of dentry and make it deal with setting
fc->root.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-02-28 03:29:33 -05:00
Al Viro
cf6299b1d0 cgroup: stash cgroup_root reference into cgroup_fs_context
Note that this reference is *NOT* contributing to refcount of
cgroup_root in question and is valid only until cgroup_do_mount()
returns.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-02-28 03:29:32 -05:00
Al Viro
8d2451f499 cgroup1: switch to option-by-option parsing
[dhowells should be the author - it's carved out of his patch]

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-02-28 03:29:31 -05:00
Al Viro
f5dfb5315d cgroup: take options parsing into ->parse_monolithic()
Store the results in cgroup_fs_context.  There's a nasty twist caused
by the enabling/disabling subsystems - we can't do the checks sensitive
to that until cgroup_mutex gets grabbed.  Frankly, these checks are
complete bullshit (e.g. all,none combination is accepted if all subsystems
are disabled; so's cpusets,none and all,cpusets when cpusets is disabled,
etc.), but touching that would be a userland-visible behaviour change ;-/

So we do parsing in ->parse_monolithic() and have the consistency checks
done in check_cgroupfs_options(), with the latter called (on already parsed
options) from cgroup1_get_tree() and cgroup1_reconfigure().

Freeing the strdup'ed strings is done from fs_context destructor, which
somewhat simplifies the life for cgroup1_{get_tree,reconfigure}().

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-02-28 03:29:30 -05:00
Al Viro
7feeef5869 cgroup: fold cgroup1_mount() into cgroup1_get_tree()
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-02-28 03:29:30 -05:00
Al Viro
90129625d9 cgroup: start switching to fs_context
Unfortunately, cgroup is tangled into kernfs infrastructure.
To avoid converting all kernfs-based filesystems at once,
we need to untangle the remount part of things, instead of
having it go through kernfs_sop_remount_fs().  Fortunately,
it's not hard to do.

This commit just gets cgroup/cgroup1 to use fs_context to
deliver options on mount and remount paths.  Parsing those
is going to be done in the next commits; for now we do
pretty much what legacy case does.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-02-28 03:29:29 -05:00
Al Viro
35ac118424 cgroup: saner refcounting for cgroup_root
* make the reference from superblock to cgroup_root counting -
do cgroup_put() in cgroup_kill_sb() whether we'd done
percpu_ref_kill() or not; matching grab is done when we allocate
a new root.  That gives the same refcounting rules for all callers
of cgroup_do_mount() - a reference to cgroup_root has been grabbed
by caller and it either is transferred to new superblock or dropped.

* have cgroup_kill_sb() treat an already killed refcount as "just
don't bother killing it, then".

* after successful cgroup_do_mount() have cgroup1_mount() recheck
if we'd raced with mount/umount from somebody else and cgroup_root
got killed.  In that case we drop the superblock and bugger off
with -ERESTARTSYS, same as if we'd found it in the list already
dying.

* don't bother with delayed initialization of refcount - it's
unreliable and not needed.  No need to prevent attempts to bump
the refcount if we find cgroup_root of another mount in progress -
sget will reuse an existing superblock just fine and if the
other sb manages to die before we get there, we'll catch
that immediately after cgroup_do_mount().

* don't bother with kernfs_pin_sb() - no need for doing that
either.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-01-17 11:53:02 -05:00
Tejun Heo
3fc9c12d27 cgroup: Add named hierarchy disabling to cgroup_no_v1 boot param
It can be useful to inhibit all cgroup1 hierarchies especially during
transition and for debugging.  cgroup_no_v1 can block hierarchies with
controllers which leaves out the named hierarchies.  Expand it to
cover the named hierarchies so that "cgroup_no_v1=all,named" disables
all cgroup1 hierarchies.

Signed-off-by: Tejun Heo <tj@kernel.org>
Suggested-by: Marcin Pawlowski <mpawlowski@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2018-12-28 10:34:12 -08:00
Steven Rostedt (VMware)
e4f8d81c73 cgroup/tracing: Move taking of spin lock out of trace event handlers
It is unwise to take spin locks from the handlers of trace events.
Mainly, because they can introduce lockups, because it introduces locks
in places that are normally not tested. Worse yet, because trace events
are tucked away in the include/trace/events/ directory, locks that are
taken there are forgotten about.

As a general rule, I tell people never to take any locks in a trace
event handler.

Several cgroup trace event handlers call cgroup_path() which eventually
takes the kernfs_rename_lock spinlock. This injects the spinlock in the
code without people realizing it. It also can cause issues for the
PREEMPT_RT patch, as the spinlock becomes a mutex, and the trace event
handlers are called with preemption disabled.

By moving the calculation of the cgroup_path() out of the trace event
handlers and into a macro (surrounded by a
trace_cgroup_##type##_enabled()), then we could place the cgroup_path
into a string, and pass that to the trace event. Not only does this
remove the taking of the spinlock out of the trace event handler, but
it also means that the cgroup_path() only needs to be called once (it
is currently called twice, once to get the length to reserver the
buffer for, and once again to get the path itself. Now it only needs to
be done once.

Reported-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
2018-07-11 10:48:47 -07:00
Kees Cook
42bc47b353 treewide: Use array_size() in vmalloc()
The vmalloc() function has no 2-factor argument form, so multiplication
factors need to be wrapped in array_size(). This patch replaces cases of:

        vmalloc(a * b)

with:
        vmalloc(array_size(a, b))

as well as handling cases of:

        vmalloc(a * b * c)

with:

        vmalloc(array3_size(a, b, c))

This does, however, attempt to ignore constant size factors like:

        vmalloc(4 * 1024)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  vmalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  vmalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  vmalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  vmalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
  vmalloc(
-	sizeof(TYPE) * (COUNT_ID)
+	array_size(COUNT_ID, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT_ID
+	array_size(COUNT_ID, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * (COUNT_CONST)
+	array_size(COUNT_CONST, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT_CONST
+	array_size(COUNT_CONST, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT_ID)
+	array_size(COUNT_ID, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT_ID
+	array_size(COUNT_ID, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT_CONST)
+	array_size(COUNT_CONST, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT_CONST
+	array_size(COUNT_CONST, sizeof(THING))
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

  vmalloc(
-	SIZE * COUNT
+	array_size(COUNT, SIZE)
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  vmalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  vmalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  vmalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  vmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  vmalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  vmalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  vmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  vmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  vmalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  vmalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  vmalloc(C1 * C2 * C3, ...)
|
  vmalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants.
@@
expression E1, E2;
constant C1, C2;
@@

(
  vmalloc(C1 * C2, ...)
|
  vmalloc(
-	E1 * E2
+	array_size(E1, E2)
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00
Kees Cook
6da2ec5605 treewide: kmalloc() -> kmalloc_array()
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This
patch replaces cases of:

        kmalloc(a * b, gfp)

with:
        kmalloc_array(a * b, gfp)

as well as handling cases of:

        kmalloc(a * b * c, gfp)

with:

        kmalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

        kmalloc_array(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

        kmalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The tools/ directory was manually excluded, since it has its own
implementation of kmalloc().

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  kmalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kmalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  kmalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kmalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kmalloc
+ kmalloc_array
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  kmalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kmalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  kmalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kmalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  kmalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kmalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kmalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
  kmalloc(sizeof(THING) * C2, ...)
|
  kmalloc(sizeof(TYPE) * C2, ...)
|
  kmalloc(C1 * C2 * C3, ...)
|
  kmalloc(C1 * C2, ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kmalloc
+ kmalloc_array
  (
-	E1 * E2
+	E1, E2
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00
Christoph Hellwig
3f3942aca6 proc: introduce proc_create_single{,_data}
Variants of proc_create{,_data} that directly take a seq_file show
callback and drastically reduces the boilerplate code in the callers.

All trivial callers converted over.

Signed-off-by: Christoph Hellwig <hch@lst.de>
2018-05-16 07:23:35 +02:00
Prateek Sood
116d2f7496 cgroup: Fix deadlock in cpu hotplug path
Deadlock during cgroup migration from cpu hotplug path when a task T is
being moved from source to destination cgroup.

kworker/0:0
cpuset_hotplug_workfn()
   cpuset_hotplug_update_tasks()
      hotplug_update_tasks_legacy()
        remove_tasks_in_empty_cpuset()
          cgroup_transfer_tasks() // stuck in iterator loop
            cgroup_migrate()
              cgroup_migrate_add_task()

In cgroup_migrate_add_task() it checks for PF_EXITING flag of task T.
Task T will not migrate to destination cgroup. css_task_iter_start()
will keep pointing to task T in loop waiting for task T cg_list node
to be removed.

Task T
do_exit()
  exit_signals() // sets PF_EXITING
  exit_task_namespaces()
    switch_task_namespaces()
      free_nsproxy()
        put_mnt_ns()
          drop_collected_mounts()
            namespace_unlock()
              synchronize_rcu()
                _synchronize_rcu_expedited()
                  schedule_work() // on cpu0 low priority worker pool
                  wait_event() // waiting for work item to execute

Task T inserted a work item in the worklist of cpu0 low priority
worker pool. It is waiting for expedited grace period work item
to execute. This work item will only be executed once kworker/0:0
complete execution of cpuset_hotplug_workfn().

kworker/0:0 ==> Task T ==>kworker/0:0

In case of PF_EXITING task being migrated from source to destination
cgroup, migrate next available task in source cgroup.

Signed-off-by: Prateek Sood <prsood@codeaurora.org>
Signed-off-by: Tejun Heo <tj@kernel.org>
2017-12-19 05:38:47 -08:00
Waiman Long
e1cba4b85d cgroup: Add mount flag to enable cpuset to use v2 behavior in v1 cgroup
A new mount option "cpuset_v2_mode" is added to the v1 cgroupfs
filesystem to enable cpuset controller to use v2 behavior in a v1
cgroup. This mount option applies only to cpuset controller and have
no effect on other controllers.

Signed-off-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2017-08-18 08:24:21 -07:00
Tejun Heo
8cfd8147df cgroup: implement cgroup v2 thread support
This patch implements cgroup v2 thread support.  The goal of the
thread mode is supporting hierarchical accounting and control at
thread granularity while staying inside the resource domain model
which allows coordination across different resource controllers and
handling of anonymous resource consumptions.

A cgroup is always created as a domain and can be made threaded by
writing to the "cgroup.type" file.  When a cgroup becomes threaded, it
becomes a member of a threaded subtree which is anchored at the
closest ancestor which isn't threaded.

The threads of the processes which are in a threaded subtree can be
placed anywhere without being restricted by process granularity or
no-internal-process constraint.  Note that the threads aren't allowed
to escape to a different threaded subtree.  To be used inside a
threaded subtree, a controller should explicitly support threaded mode
and be able to handle internal competition in the way which is
appropriate for the resource.

The root of a threaded subtree, the nearest ancestor which isn't
threaded, is called the threaded domain and serves as the resource
domain for the whole subtree.  This is the last cgroup where domain
controllers are operational and where all the domain-level resource
consumptions in the subtree are accounted.  This allows threaded
controllers to operate at thread granularity when requested while
staying inside the scope of system-level resource distribution.

As the root cgroup is exempt from the no-internal-process constraint,
it can serve as both a threaded domain and a parent to normal cgroups,
so, unlike non-root cgroups, the root cgroup can have both domain and
threaded children.

Internally, in a threaded subtree, each css_set has its ->dom_cset
pointing to a matching css_set which belongs to the threaded domain.
This ensures that thread root level cgroup_subsys_state for all
threaded controllers are readily accessible for domain-level
operations.

This patch enables threaded mode for the pids and perf_events
controllers.  Neither has to worry about domain-level resource
consumptions and it's enough to simply set the flag.

For more details on the interface and behavior of the thread mode,
please refer to the section 2-2-2 in Documentation/cgroup-v2.txt added
by this patch.

v5: - Dropped silly no-op ->dom_cgrp init from cgroup_create().
      Spotted by Waiman.
    - Documentation updated as suggested by Waiman.
    - cgroup.type content slightly reformatted.
    - Mark the debug controller threaded.

v4: - Updated to the general idea of marking specific cgroups
      domain/threaded as suggested by PeterZ.

v3: - Dropped "join" and always make mixed children join the parent's
      threaded subtree.

v2: - After discussions with Waiman, support for mixed thread mode is
      added.  This should address the issue that Peter pointed out
      where any nesting should be avoided for thread subtrees while
      coexisting with other domain cgroups.
    - Enabling / disabling thread mode now piggy backs on the existing
      control mask update mechanism.
    - Bug fixes and cleanup.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Waiman Long <longman@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
2017-07-21 11:14:51 -04:00