Using only 32-bit writes for the pte will result in an intermediate
L1TF vulnerable PTE. When running as a Xen PV guest this will at once
switch the guest to shadow mode resulting in a loss of performance.
Use arch_atomic64_xchg() instead which will perform the requested
operation atomically with all 64 bits.
Some performance considerations according to:
https://software.intel.com/sites/default/files/managed/ad/dc/Intel-Xeon-Scalable-Processor-throughput-latency.pdf
The main number should be the latency, as there is no tight loop around
native_ptep_get_and_clear().
"lock cmpxchg8b" has a latency of 20 cycles, while "lock xchg" (with a
memory operand) isn't mentioned in that document. "lock xadd" (with xadd
having 3 cycles less latency than xchg) has a latency of 11, so we can
assume a latency of 14 for "lock xchg".
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Tested-by: Jason Andryuk <jandryuk@gmail.com>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Remove Xen hypercall functions which are used nowhere in the kernel.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
For x86 this brings in PCID emulation and CR3 caching for shadow page
tables, nested VMX live migration, nested VMCS shadowing, an optimized
IPI hypercall, and some optimizations.
ARM will come next week.
There is a semantic conflict because tip also added an .init_platform
callback to kvm.c. Please keep the initializer from this branch,
and add a call to kvmclock_init (added by tip) inside kvm_init_platform
(added here).
Also, there is a backmerge from 4.18-rc6. This is because of a
refactoring that conflicted with a relatively late bugfix and
resulted in a particularly hellish conflict. Because the conflict
was only due to unfortunate timing of the bugfix, I backmerged and
rebased the refactoring rather than force the resolution on you.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJbdwNFAAoJEL/70l94x66DiPEH/1cAGZWGd85Y3yRu1dmTmqiz
kZy0V+WTQ5kyJF4ZsZKKOp+xK7Qxh5e9kLdTo70uPZCHwLu9IaGKN9+dL9Jar3DR
yLPX5bMsL8UUed9g9mlhdaNOquWi7d7BseCOnIyRTolb+cqnM5h3sle0gqXloVrS
UQb4QogDz8+86czqR8tNfazjQRKW/D2HEGD5NDNVY1qtpY+leCDAn9/u6hUT5c6z
EtufgyDh35UN+UQH0e2605gt3nN3nw3FiQJFwFF1bKeQ7k5ByWkuGQI68XtFVhs+
2WfqL3ftERkKzUOy/WoSJX/C9owvhMcpAuHDGOIlFwguNGroZivOMVnACG1AI3I=
=9Mgw
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull first set of KVM updates from Paolo Bonzini:
"PPC:
- minor code cleanups
x86:
- PCID emulation and CR3 caching for shadow page tables
- nested VMX live migration
- nested VMCS shadowing
- optimized IPI hypercall
- some optimizations
ARM will come next week"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (85 commits)
kvm: x86: Set highest physical address bits in non-present/reserved SPTEs
KVM/x86: Use CC_SET()/CC_OUT in arch/x86/kvm/vmx.c
KVM: X86: Implement PV IPIs in linux guest
KVM: X86: Add kvm hypervisor init time platform setup callback
KVM: X86: Implement "send IPI" hypercall
KVM/x86: Move X86_CR4_OSXSAVE check into kvm_valid_sregs()
KVM: x86: Skip pae_root shadow allocation if tdp enabled
KVM/MMU: Combine flushing remote tlb in mmu_set_spte()
KVM: vmx: skip VMWRITE of HOST_{FS,GS}_BASE when possible
KVM: vmx: skip VMWRITE of HOST_{FS,GS}_SEL when possible
KVM: vmx: always initialize HOST_{FS,GS}_BASE to zero during setup
KVM: vmx: move struct host_state usage to struct loaded_vmcs
KVM: vmx: compute need to reload FS/GS/LDT on demand
KVM: nVMX: remove a misleading comment regarding vmcs02 fields
KVM: vmx: rename __vmx_load_host_state() and vmx_save_host_state()
KVM: vmx: add dedicated utility to access guest's kernel_gs_base
KVM: vmx: track host_state.loaded using a loaded_vmcs pointer
KVM: vmx: refactor segmentation code in vmx_save_host_state()
kvm: nVMX: Fix fault priority for VMX operations
kvm: nVMX: Fix fault vector for VMX operation at CPL > 0
...
Here is the bit set of char/misc drivers for 4.19-rc1
There is a lot here, much more than normal, seems like everyone is
writing new driver subsystems these days... Anyway, major things here
are:
- new FSI driver subsystem, yet-another-powerpc low-level
hardware bus
- gnss, finally an in-kernel GPS subsystem to try to tame all of
the crazy out-of-tree drivers that have been floating around
for years, combined with some really hacky userspace
implementations. This is only for GNSS receivers, but you
have to start somewhere, and this is great to see.
Other than that, there are new slimbus drivers, new coresight drivers,
new fpga drivers, and loads of DT bindings for all of these and existing
drivers.
Full details of everything is in the shortlog.
All of these have been in linux-next for a while with no reported
issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCW3g7ew8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykfBgCeOG0RkSI92XVZe0hs/QYFW9kk8JYAnRBf3Qpm
cvW7a+McOoKz/MGmEKsi
=TNfn
-----END PGP SIGNATURE-----
Merge tag 'char-misc-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc
Pull char/misc driver updates from Greg KH:
"Here is the bit set of char/misc drivers for 4.19-rc1
There is a lot here, much more than normal, seems like everyone is
writing new driver subsystems these days... Anyway, major things here
are:
- new FSI driver subsystem, yet-another-powerpc low-level hardware
bus
- gnss, finally an in-kernel GPS subsystem to try to tame all of the
crazy out-of-tree drivers that have been floating around for years,
combined with some really hacky userspace implementations. This is
only for GNSS receivers, but you have to start somewhere, and this
is great to see.
Other than that, there are new slimbus drivers, new coresight drivers,
new fpga drivers, and loads of DT bindings for all of these and
existing drivers.
All of these have been in linux-next for a while with no reported
issues"
* tag 'char-misc-4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/char-misc: (255 commits)
android: binder: Rate-limit debug and userspace triggered err msgs
fsi: sbefifo: Bump max command length
fsi: scom: Fix NULL dereference
misc: mic: SCIF Fix scif_get_new_port() error handling
misc: cxl: changed asterisk position
genwqe: card_base: Use true and false for boolean values
misc: eeprom: assignment outside the if statement
uio: potential double frees if __uio_register_device() fails
eeprom: idt_89hpesx: clean up an error pointer vs NULL inconsistency
misc: ti-st: Fix memory leak in the error path of probe()
android: binder: Show extra_buffers_size in trace
firmware: vpd: Fix section enabled flag on vpd_section_destroy
platform: goldfish: Retire pdev_bus
goldfish: Use dedicated macros instead of manual bit shifting
goldfish: Add missing includes to goldfish.h
mux: adgs1408: new driver for Analog Devices ADGS1408/1409 mux
dt-bindings: mux: add adi,adgs1408
Drivers: hv: vmbus: Cleanup synic memory free path
Drivers: hv: vmbus: Remove use of slow_virt_to_phys()
Drivers: hv: vmbus: Reset the channel callback in vmbus_onoffer_rescind()
...
It turns out that we should *not* invert all not-present mappings,
because the all zeroes case is obviously special.
clear_page() does not undergo the XOR logic to invert the address bits,
i.e. PTE, PMD and PUD entries that have not been individually written
will have val=0 and so will trigger __pte_needs_invert(). As a result,
{pte,pmd,pud}_pfn() will return the wrong PFN value, i.e. all ones
(adjusted by the max PFN mask) instead of zero. A zeroed entry is ok
because the page at physical address 0 is reserved early in boot
specifically to mitigate L1TF, so explicitly exempt them from the
inversion when reading the PFN.
Manifested as an unexpected mprotect(..., PROT_NONE) failure when called
on a VMA that has VM_PFNMAP and was mmap'd to as something other than
PROT_NONE but never used. mprotect() sends the PROT_NONE request down
prot_none_walk(), which walks the PTEs to check the PFNs.
prot_none_pte_entry() gets the bogus PFN from pte_pfn() and returns
-EACCES because it thinks mprotect() is trying to adjust a high MMIO
address.
[ This is a very modified version of Sean's original patch, but all
credit goes to Sean for doing this and also pointing out that
sometimes the __pte_needs_invert() function only gets the protection
bits, not the full eventual pte. But zero remains special even in
just protection bits, so that's ok. - Linus ]
Fixes: f22cc87f6c ("x86/speculation/l1tf: Invert all not present mappings")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Acked-by: Andi Kleen <ak@linux.intel.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iQJIBAABCgAyFiEEgMe7l+5h9hnxdsnuWYigwDrT+vwFAlt1f9AUHGJoZWxnYWFz
QGdvb2dsZS5jb20ACgkQWYigwDrT+vxbdhAArnhRvkwOk4m4/LCuKF6HpmlxbBNC
TjnBCenNf+lFXzWskfDFGFl/Wif4UzGbRTSCNQrwMzj3Ww3f/6R2QIq9rEJvyNC4
VdxQnaBEZSUgN87q5UGqgdjMTo3zFvlFH6fpb5XDiQ5IX/QZeXeYqoB64w+HvKPU
M+IsoOvnA5gb7pMcpchrGUnSfS1e6AqQbbTt6tZflore6YCEA4cH5OnpGx8qiZIp
ut+CMBvQjQB01fHeBc/wGrVte4NwXdONrXqpUb4sHF7HqRNfEh0QVyPhvebBi+k1
kquqoBQfPFTqgcab31VOcQhg70dEx+1qGm5/YBAwmhCpHR/g2gioFXoROsr+iUOe
BtF6LZr+Y8cySuhJnkCrJBqWvvBaKbJLg0KMbI+7p4o9MZpod2u7LS5LFrlRDyKW
3nz3o+b1+v3tCCKVKIhKo0ljolgkweQtR1f6KIHvq93wBODHVQnAOt9NlPfHVyks
ryGBnOhMjoU5hvfexgIWFk9Ph9MEVQSffkI+TeFPO/tyGBfGfQyGtESiXuEaMQaH
FGdZHX2RLkY3pWHOtWeMzRHzOnr2XjpDFcAqL3HBGPdJ30K3Umv3WOgoFe2SaocG
0gaddPjKSwwM4Sa/VP+O5cjGuzi7QnczSDdpYjxIGZzBav32hqx4/rsnLw7bHH8y
XkEme7cYJc8MGsA=
=2Dmn
-----END PGP SIGNATURE-----
Merge tag 'pci-v4.19-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci
Pull pci updates from Bjorn Helgaas:
- Decode AER errors with names similar to "lspci" (Tyler Baicar)
- Expose AER statistics in sysfs (Rajat Jain)
- Clear AER status bits selectively based on the type of recovery (Oza
Pawandeep)
- Honor "pcie_ports=native" even if HEST sets FIRMWARE_FIRST (Alexandru
Gagniuc)
- Don't clear AER status bits if we're using the "Firmware-First"
strategy where firmware owns the registers (Alexandru Gagniuc)
- Use sysfs_match_string() to simplify ASPM sysfs parsing (Andy
Shevchenko)
- Remove unnecessary includes of <linux/pci-aspm.h> (Bjorn Helgaas)
- Defer DPC event handling to work queue (Keith Busch)
- Use threaded IRQ for DPC bottom half (Keith Busch)
- Print AER status while handling DPC events (Keith Busch)
- Work around IDT switch ACS Source Validation erratum (James
Puthukattukaran)
- Emit diagnostics for all cases of PCIe Link downtraining (Links
operating slower than they're capable of) (Alexandru Gagniuc)
- Skip VFs when configuring Max Payload Size (Myron Stowe)
- Reduce Root Port Max Payload Size if necessary when hot-adding a
device below it (Myron Stowe)
- Simplify SHPC existence/permission checks (Bjorn Helgaas)
- Remove hotplug sample skeleton driver (Lukas Wunner)
- Convert pciehp to threaded IRQ handling (Lukas Wunner)
- Improve pciehp tolerance of missed events and initially unstable
links (Lukas Wunner)
- Clear spurious pciehp events on resume (Lukas Wunner)
- Add pciehp runtime PM support, including for Thunderbolt controllers
(Lukas Wunner)
- Support interrupts from pciehp bridges in D3hot (Lukas Wunner)
- Mark fall-through switch cases before enabling -Wimplicit-fallthrough
(Gustavo A. R. Silva)
- Move DMA-debug PCI init from arch code to PCI core (Christoph
Hellwig)
- Fix pci_request_irq() usage of IRQF_ONESHOT when no handler is
supplied (Heiner Kallweit)
- Unify PCI and DMA direction #defines (Shunyong Yang)
- Add PCI_DEVICE_DATA() macro (Andy Shevchenko)
- Check for VPD completion before checking for timeout (Bert Kenward)
- Limit Netronome NFP5000 config space size to work around erratum
(Jakub Kicinski)
- Set IRQCHIP_ONESHOT_SAFE for PCI MSI irqchips (Heiner Kallweit)
- Document ACPI description of PCI host bridges (Bjorn Helgaas)
- Add "pci=disable_acs_redir=" parameter to disable ACS redirection for
peer-to-peer DMA support (we don't have the peer-to-peer support yet;
this is just one piece) (Logan Gunthorpe)
- Clean up devm_of_pci_get_host_bridge_resources() resource allocation
(Jan Kiszka)
- Fixup resizable BARs after suspend/resume (Christian König)
- Make "pci=earlydump" generic (Sinan Kaya)
- Fix ROM BAR access routines to stay in bounds and check for signature
correctly (Rex Zhu)
- Add DMA alias quirk for Microsemi Switchtec NTB (Doug Meyer)
- Expand documentation for pci_add_dma_alias() (Logan Gunthorpe)
- To avoid bus errors, enable PASID only if entire path supports
End-End TLP prefixes (Sinan Kaya)
- Unify slot and bus reset functions and remove hotplug knowledge from
callers (Sinan Kaya)
- Add Function-Level Reset quirks for Intel and Samsung NVMe devices to
fix guest reboot issues (Alex Williamson)
- Add function 1 DMA alias quirk for Marvell 88SS9183 PCIe SSD
Controller (Bjorn Helgaas)
- Remove Xilinx AXI-PCIe host bridge arch dependency (Palmer Dabbelt)
- Remove Aardvark outbound window configuration (Evan Wang)
- Fix Aardvark bridge window sizing issue (Zachary Zhang)
- Convert Aardvark to use pci_host_probe() to reduce code duplication
(Thomas Petazzoni)
- Correct the Cadence cdns_pcie_writel() signature (Alan Douglas)
- Add Cadence support for optional generic PHYs (Alan Douglas)
- Add Cadence power management ops (Alan Douglas)
- Remove redundant variable from Cadence driver (Colin Ian King)
- Add Kirin MSI support (Xiaowei Song)
- Drop unnecessary root_bus_nr setting from exynos, imx6, keystone,
armada8k, artpec6, designware-plat, histb, qcom, spear13xx (Shawn
Guo)
- Move link notification settings from DesignWare core to individual
drivers (Gustavo Pimentel)
- Add endpoint library MSI-X interfaces (Gustavo Pimentel)
- Correct signature of endpoint library IRQ interfaces (Gustavo
Pimentel)
- Add DesignWare endpoint library MSI-X callbacks (Gustavo Pimentel)
- Add endpoint library MSI-X test support (Gustavo Pimentel)
- Remove unnecessary GFP_ATOMIC from Hyper-V "new child" allocation
(Jia-Ju Bai)
- Add more devices to Broadcom PAXC quirk (Ray Jui)
- Work around corrupted Broadcom PAXC config space to enable SMMU and
GICv3 ITS (Ray Jui)
- Disable MSI parsing to work around broken Broadcom PAXC logic in some
devices (Ray Jui)
- Hide unconfigured functions to work around a Broadcom PAXC defect
(Ray Jui)
- Lower iproc log level to reduce console output during boot (Ray Jui)
- Fix mobiveil iomem/phys_addr_t type usage (Lorenzo Pieralisi)
- Fix mobiveil missing include file (Lorenzo Pieralisi)
- Add mobiveil Kconfig/Makefile support (Lorenzo Pieralisi)
- Fix mvebu I/O space remapping issues (Thomas Petazzoni)
- Use generic pci_host_bridge in mvebu instead of ARM-specific API
(Thomas Petazzoni)
- Whitelist VMD devices with fast interrupt handlers to avoid sharing
vectors with slow handlers (Keith Busch)
* tag 'pci-v4.19-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaas/pci: (153 commits)
PCI/AER: Don't clear AER bits if error handling is Firmware-First
PCI: Limit config space size for Netronome NFP5000
PCI/MSI: Set IRQCHIP_ONESHOT_SAFE for PCI-MSI irqchips
PCI/VPD: Check for VPD access completion before checking for timeout
PCI: Add PCI_DEVICE_DATA() macro to fully describe device ID entry
PCI: Match Root Port's MPS to endpoint's MPSS as necessary
PCI: Skip MPS logic for Virtual Functions (VFs)
PCI: Add function 1 DMA alias quirk for Marvell 88SS9183
PCI: Check for PCIe Link downtraining
PCI: Add ACS Redirect disable quirk for Intel Sunrise Point
PCI: Add device-specific ACS Redirect disable infrastructure
PCI: Convert device-specific ACS quirks from NULL termination to ARRAY_SIZE
PCI: Add "pci=disable_acs_redir=" parameter for peer-to-peer support
PCI: Allow specifying devices using a base bus and path of devfns
PCI: Make specifying PCI devices in kernel parameters reusable
PCI: Hide ACS quirk declarations inside PCI core
PCI: Delay after FLR of Intel DC P3700 NVMe
PCI: Disable Samsung SM961/PM961 NVMe before FLR
PCI: Export pcie_has_flr()
PCI: mvebu: Drop bogus comment above mvebu_pcie_map_registers()
...
i8259.h uses inb/outb and thus needs to include asm/io.h to avoid the
following build error, as seen with x86_64:defconfig and CONFIG_SMP=n.
In file included from drivers/rtc/rtc-cmos.c:45:0:
arch/x86/include/asm/i8259.h: In function 'inb_pic':
arch/x86/include/asm/i8259.h:32:24: error:
implicit declaration of function 'inb'
arch/x86/include/asm/i8259.h: In function 'outb_pic':
arch/x86/include/asm/i8259.h:45:2: error:
implicit declaration of function 'outb'
Reported-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Suggested-by: Sebastian Gottschall <s.gottschall@dd-wrt.com>
Fixes: 447ae31667 ("x86: Don't include linux/irq.h from asm/hardirq.h")
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRTLbB6QfY48x44uB6AXGG7T9hjvgUCW3LkCgAKCRCAXGG7T9hj
vtyfAQDTMUqfBlpz9XqFyTBTFRkP3aVtnEeE7BijYec+RXPOxwEAsiXwZPsmW/AN
up+NEHqPvMOcZC8zJZ9THCiBgOxligY=
=F51X
-----END PGP SIGNATURE-----
Merge tag 'for-linus-4.19-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip
Pull xen updates from Juergen Gross:
- add dma-buf functionality to Xen grant table handling
- fix for booting the kernel as Xen PVH dom0
- fix for booting the kernel as a Xen PV guest with
CONFIG_DEBUG_VIRTUAL enabled
- other minor performance and style fixes
* tag 'for-linus-4.19-rc1-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/xen/tip:
xen/balloon: fix balloon initialization for PVH Dom0
xen: don't use privcmd_call() from xen_mc_flush()
xen/pv: Call get_cpu_address_sizes to set x86_virt/phys_bits
xen/biomerge: Use true and false for boolean values
xen/gntdev: don't dereference a null gntdev_dmabuf on allocation failure
xen/spinlock: Don't use pvqspinlock if only 1 vCPU
xen/gntdev: Implement dma-buf import functionality
xen/gntdev: Implement dma-buf export functionality
xen/gntdev: Add initial support for dma-buf UAPI
xen/gntdev: Make private routines/structures accessible
xen/gntdev: Allow mappings for DMA buffers
xen/grant-table: Allow allocating buffers suitable for DMA
xen/balloon: Share common memory reservation routines
xen/grant-table: Make set/clear page private code shared
Merge L1 Terminal Fault fixes from Thomas Gleixner:
"L1TF, aka L1 Terminal Fault, is yet another speculative hardware
engineering trainwreck. It's a hardware vulnerability which allows
unprivileged speculative access to data which is available in the
Level 1 Data Cache when the page table entry controlling the virtual
address, which is used for the access, has the Present bit cleared or
other reserved bits set.
If an instruction accesses a virtual address for which the relevant
page table entry (PTE) has the Present bit cleared or other reserved
bits set, then speculative execution ignores the invalid PTE and loads
the referenced data if it is present in the Level 1 Data Cache, as if
the page referenced by the address bits in the PTE was still present
and accessible.
While this is a purely speculative mechanism and the instruction will
raise a page fault when it is retired eventually, the pure act of
loading the data and making it available to other speculative
instructions opens up the opportunity for side channel attacks to
unprivileged malicious code, similar to the Meltdown attack.
While Meltdown breaks the user space to kernel space protection, L1TF
allows to attack any physical memory address in the system and the
attack works across all protection domains. It allows an attack of SGX
and also works from inside virtual machines because the speculation
bypasses the extended page table (EPT) protection mechanism.
The assoicated CVEs are: CVE-2018-3615, CVE-2018-3620, CVE-2018-3646
The mitigations provided by this pull request include:
- Host side protection by inverting the upper address bits of a non
present page table entry so the entry points to uncacheable memory.
- Hypervisor protection by flushing L1 Data Cache on VMENTER.
- SMT (HyperThreading) control knobs, which allow to 'turn off' SMT
by offlining the sibling CPU threads. The knobs are available on
the kernel command line and at runtime via sysfs
- Control knobs for the hypervisor mitigation, related to L1D flush
and SMT control. The knobs are available on the kernel command line
and at runtime via sysfs
- Extensive documentation about L1TF including various degrees of
mitigations.
Thanks to all people who have contributed to this in various ways -
patches, review, testing, backporting - and the fruitful, sometimes
heated, but at the end constructive discussions.
There is work in progress to provide other forms of mitigations, which
might be less horrible performance wise for a particular kind of
workloads, but this is not yet ready for consumption due to their
complexity and limitations"
* 'l1tf-final' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (75 commits)
x86/microcode: Allow late microcode loading with SMT disabled
tools headers: Synchronise x86 cpufeatures.h for L1TF additions
x86/mm/kmmio: Make the tracer robust against L1TF
x86/mm/pat: Make set_memory_np() L1TF safe
x86/speculation/l1tf: Make pmd/pud_mknotpresent() invert
x86/speculation/l1tf: Invert all not present mappings
cpu/hotplug: Fix SMT supported evaluation
KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry
x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentry
x86/speculation: Simplify sysfs report of VMX L1TF vulnerability
Documentation/l1tf: Remove Yonah processors from not vulnerable list
x86/KVM/VMX: Don't set l1tf_flush_l1d from vmx_handle_external_intr()
x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1d
x86: Don't include linux/irq.h from asm/hardirq.h
x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1d
x86/irq: Demote irq_cpustat_t::__softirq_pending to u16
x86/KVM/VMX: Move the l1tf_flush_l1d test to vmx_l1d_flush()
x86/KVM/VMX: Replace 'vmx_l1d_flush_always' with 'vmx_l1d_flush_cond'
x86/KVM/VMX: Don't set l1tf_flush_l1d to true from vmx_l1d_flush()
cpu/hotplug: detect SMT disabled by BIOS
...
Pull x86 timer updates from Thomas Gleixner:
"Early TSC based time stamping to allow better boot time analysis.
This comes with a general cleanup of the TSC calibration code which
grew warts and duct taping over the years and removes 250 lines of
code. Initiated and mostly implemented by Pavel with help from various
folks"
* 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
x86/kvmclock: Mark kvm_get_preset_lpj() as __init
x86/tsc: Consolidate init code
sched/clock: Disable interrupts when calling generic_sched_clock_init()
timekeeping: Prevent false warning when persistent clock is not available
sched/clock: Close a hole in sched_clock_init()
x86/tsc: Make use of tsc_calibrate_cpu_early()
x86/tsc: Split native_calibrate_cpu() into early and late parts
sched/clock: Use static key for sched_clock_running
sched/clock: Enable sched clock early
sched/clock: Move sched clock initialization and merge with generic clock
x86/tsc: Use TSC as sched clock early
x86/tsc: Initialize cyc2ns when tsc frequency is determined
x86/tsc: Calibrate tsc only once
ARM/time: Remove read_boot_clock64()
s390/time: Remove read_boot_clock64()
timekeeping: Default boot time offset to local_clock()
timekeeping: Replace read_boot_clock64() with read_persistent_wall_and_boot_offset()
s390/time: Add read_persistent_wall_and_boot_offset()
x86/xen/time: Output xen sched_clock time from 0
x86/xen/time: Initialize pv xen time in init_hypervisor_platform()
...
Pull x86 PTI updates from Thomas Gleixner:
"The Speck brigade sadly provides yet another large set of patches
destroying the perfomance which we carefully built and preserved
- PTI support for 32bit PAE. The missing counter part to the 64bit
PTI code implemented by Joerg.
- A set of fixes for the Global Bit mechanics for non PCID CPUs which
were setting the Global Bit too widely and therefore possibly
exposing interesting memory needlessly.
- Protection against userspace-userspace SpectreRSB
- Support for the upcoming Enhanced IBRS mode, which is preferred
over IBRS. Unfortunately we dont know the performance impact of
this, but it's expected to be less horrible than the IBRS
hammering.
- Cleanups and simplifications"
* 'x86/pti' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
x86/mm/pti: Move user W+X check into pti_finalize()
x86/relocs: Add __end_rodata_aligned to S_REL
x86/mm/pti: Clone kernel-image on PTE level for 32 bit
x86/mm/pti: Don't clear permissions in pti_clone_pmd()
x86/mm/pti: Fix 32 bit PCID check
x86/mm/init: Remove freed kernel image areas from alias mapping
x86/mm/init: Add helper for freeing kernel image pages
x86/mm/init: Pass unconverted symbol addresses to free_init_pages()
mm: Allow non-direct-map arguments to free_reserved_area()
x86/mm/pti: Clear Global bit more aggressively
x86/speculation: Support Enhanced IBRS on future CPUs
x86/speculation: Protect against userspace-userspace spectreRSB
x86/kexec: Allocate 8k PGDs for PTI
Revert "perf/core: Make sure the ring-buffer is mapped in all page-tables"
x86/mm: Remove in_nmi() warning from vmalloc_fault()
x86/entry/32: Check for VM86 mode in slow-path check
perf/core: Make sure the ring-buffer is mapped in all page-tables
x86/pti: Check the return value of pti_user_pagetable_walk_pmd()
x86/pti: Check the return value of pti_user_pagetable_walk_p4d()
x86/entry/32: Add debug code to check entry/exit CR3
...
Pull misc x86 fixes from Thomas Gleixner:
"Two fixes for x86:
- Provide a declaration for native_save_fl() which unbreaks the
wreckage caused by making it 'extern inline'.
- Fix the failing paravirt patching which is supposed to replace
indirect with direct calls. The wreckage is caused by an incorrect
clobber test"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/paravirt: Fix spectre-v2 mitigations for paravirt guests
x86/irqflags: Provide a declaration for native_save_fl
Pull x86 mm updates from Thomas Gleixner:
- Make lazy TLB mode even lazier to avoid pointless switch_mm()
operations, which reduces CPU load by 1-2% for memcache workloads
- Small cleanups and improvements all over the place
* 'x86-mm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Remove redundant check for kmem_cache_create()
arm/asm/tlb.h: Fix build error implicit func declaration
x86/mm/tlb: Make clear_asid_other() static
x86/mm/tlb: Skip atomic operations for 'init_mm' in switch_mm_irqs_off()
x86/mm/tlb: Always use lazy TLB mode
x86/mm/tlb: Only send page table free TLB flush to lazy TLB CPUs
x86/mm/tlb: Make lazy TLB mode lazier
x86/mm/tlb: Restructure switch_mm_irqs_off()
x86/mm/tlb: Leave lazy TLB mode at page table free time
mm: Allocate the mm_cpumask (mm->cpu_bitmap[]) dynamically based on nr_cpu_ids
x86/mm: Add TLB purge to free pmd/pte page interfaces
ioremap: Update pgtable free interfaces with addr
x86/mm: Disable ioremap free page handling on x86-PAE
Pull x86/hyper-v update from Thomas Gleixner:
"Add fast hypercall support for guest running on the Microsoft HyperV(isor)"
* 'x86-hyperv-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/hyper-v: Fix wrong merge conflict resolution
x86/hyper-v: Check for VP_INVAL in hyperv_flush_tlb_others()
x86/hyper-v: Check cpumask_to_vpset() return value in hyperv_flush_tlb_others_ex()
x86/hyper-v: Trace PV IPI send
x86/hyper-v: Use cheaper HVCALL_SEND_IPI hypercall when possible
x86/hyper-v: Use 'fast' hypercall for HVCALL_SEND_IPI
x86/hyper-v: Implement hv_do_fast_hypercall16
x86/hyper-v: Use cheaper HVCALL_FLUSH_VIRTUAL_ADDRESS_{LIST,SPACE} hypercalls when possible
Pull x86 cpu updates from Thomas Gleixner:
"Two small updates for the CPU code:
- Improve NUMA emulation
- Add the EPT_AD CPU feature bit"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpufeatures: Add EPT_AD feature bit
x86/numa_emulation: Introduce uniform split capability
x86/numa_emulation: Fix emulated-to-physical node mapping
Pull x86 asm updates from Thomas Gleixner:
"The lowlevel and ASM code updates for x86:
- Make stack trace unwinding more reliable
- ASM instruction updates for better code generation
- Various cleanups"
* 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/entry/64: Add two more instruction suffixes
x86/asm/64: Use 32-bit XOR to zero registers
x86/build/vdso: Simplify 'cmd_vdso2c'
x86/build/vdso: Remove unused vdso-syms.lds
x86/stacktrace: Enable HAVE_RELIABLE_STACKTRACE for the ORC unwinder
x86/unwind/orc: Detect the end of the stack
x86/stacktrace: Do not fail for ORC with regs on stack
x86/stacktrace: Clarify the reliable success paths
x86/stacktrace: Remove STACKTRACE_DUMP_ONCE
x86/stacktrace: Do not unwind after user regs
x86/asm: Use CC_SET/CC_OUT in percpu_cmpxchg8b_double() to micro-optimize code generation
Pull perf update from Thomas Gleixner:
"The perf crowd presents:
Kernel updates:
- Removal of jprobes
- Cleanup and consolidatation the handling of kprobes
- Cleanup and consolidation of hardware breakpoints
- The usual pile of fixes and updates to PMUs and event descriptors
Tooling updates:
- Updates and improvements all over the place. Nothing outstanding,
just the (good) boring incremental grump work"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (103 commits)
perf trace: Do not require --no-syscalls to suppress strace like output
perf bpf: Include uapi/linux/bpf.h from the 'perf trace' script's bpf.h
perf tools: Allow overriding MAX_NR_CPUS at compile time
perf bpf: Show better message when failing to load an object
perf list: Unify metric group description format with PMU event description
perf vendor events arm64: Update ThunderX2 implementation defined pmu core events
perf cs-etm: Generate branch sample for CS_ETM_TRACE_ON packet
perf cs-etm: Generate branch sample when receiving a CS_ETM_TRACE_ON packet
perf cs-etm: Support dummy address value for CS_ETM_TRACE_ON packet
perf cs-etm: Fix start tracing packet handling
perf build: Fix installation directory for eBPF
perf c2c report: Fix crash for empty browser
perf tests: Fix indexing when invoking subtests
perf trace: Beautify the AF_INET & AF_INET6 'socket' syscall 'protocol' args
perf trace beauty: Add beautifiers for 'socket''s 'protocol' arg
perf trace beauty: Do not print NULL strarray entries
perf beauty: Add a generator for IPPROTO_ socket's protocol constants
tools include uapi: Grab a copy of linux/in.h
perf tests: Fix complex event name parsing
perf evlist: Fix error out while applying initial delay and LBR
...
Pull locking/atomics update from Thomas Gleixner:
"The locking, atomics and memory model brains delivered:
- A larger update to the atomics code which reworks the ordering
barriers, consolidates the atomic primitives, provides the new
atomic64_fetch_add_unless() primitive and cleans up the include
hell.
- Simplify cmpxchg() instrumentation and add instrumentation for
xchg() and cmpxchg_double().
- Updates to the memory model and documentation"
* 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (48 commits)
locking/atomics: Rework ordering barriers
locking/atomics: Instrument cmpxchg_double*()
locking/atomics: Instrument xchg()
locking/atomics: Simplify cmpxchg() instrumentation
locking/atomics/x86: Reduce arch_cmpxchg64*() instrumentation
tools/memory-model: Rename litmus tests to comply to norm7
tools/memory-model/Documentation: Fix typo, smb->smp
sched/Documentation: Update wake_up() & co. memory-barrier guarantees
locking/spinlock, sched/core: Clarify requirements for smp_mb__after_spinlock()
sched/core: Use smp_mb() in wake_woken_function()
tools/memory-model: Add informal LKMM documentation to MAINTAINERS
locking/atomics/Documentation: Describe atomic_set() as a write operation
tools/memory-model: Make scripts executable
tools/memory-model: Remove ACCESS_ONCE() from model
tools/memory-model: Remove ACCESS_ONCE() from recipes
locking/memory-barriers.txt/kokr: Update Korean translation to fix broken DMA vs. MMIO ordering example
MAINTAINERS: Add Daniel Lustig as an LKMM reviewer
tools/memory-model: Fix ISA2+pooncelock+pooncelock+pombonce name
tools/memory-model: Add litmus test for full multicopy atomicity
locking/refcount: Always allow checked forms
...
The user page-table gets the updated kernel mappings in pti_finalize(),
which runs after the RO+X permissions got applied to the kernel page-table
in mark_readonly().
But with CONFIG_DEBUG_WX enabled, the user page-table is already checked in
mark_readonly() for insecure mappings. This causes false-positive
warnings, because the user page-table did not get the updated mappings yet.
Move the W+X check for the user page-table into pti_finalize() after it
updated all required mappings.
[ tglx: Folded !NX supported fix ]
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: "H . Peter Anvin" <hpa@zytor.com>
Cc: linux-mm@kvack.org
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Jiri Kosina <jkosina@suse.cz>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Laight <David.Laight@aculab.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Eduardo Valentin <eduval@amazon.com>
Cc: Greg KH <gregkh@linuxfoundation.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: aliguori@amazon.com
Cc: daniel.gruss@iaik.tugraz.at
Cc: hughd@google.com
Cc: keescook@google.com
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Waiman Long <llong@redhat.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "David H . Gutteridge" <dhgutteridge@sympatico.ca>
Cc: joro@8bytes.org
Link: https://lkml.kernel.org/r/1533727000-9172-1-git-send-email-joro@8bytes.org
Some cases in THP like:
- MADV_FREE
- mprotect
- split
mark the PMD non present for temporarily to prevent races. The window for
an L1TF attack in these contexts is very small, but it wants to be fixed
for correctness sake.
Use the proper low level functions for pmd/pud_mknotpresent() to address
this.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
For kernel mappings PAGE_PROTNONE is not necessarily set for a non present
mapping, but the inversion logic explicitely checks for !PRESENT and
PROT_NONE.
Remove the PROT_NONE check and make the inversion unconditional for all not
present mappings.
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Using privcmd_call() for a singleton multicall seems to be wrong, as
privcmd_call() is using stac()/clac() to enable hypervisor access to
Linux user space.
Even if currently not a problem (pv domains can't use SMAP while HVM
and PVH domains can't use multicalls) things might change when
PVH dom0 support is added to the kernel.
Reported-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
The kernel image is mapped into two places in the virtual address space
(addresses without KASLR, of course):
1. The kernel direct map (0xffff880000000000)
2. The "high kernel map" (0xffffffff81000000)
We actually execute out of #2. If we get the address of a kernel symbol,
it points to #2, but almost all physical-to-virtual translations point to
Parts of the "high kernel map" alias are mapped in the userspace page
tables with the Global bit for performance reasons. The parts that we map
to userspace do not (er, should not) have secrets. When PTI is enabled then
the global bit is usually not set in the high mapping and just used to
compensate for poor performance on systems which lack PCID.
This is fine, except that some areas in the kernel image that are adjacent
to the non-secret-containing areas are unused holes. We free these holes
back into the normal page allocator and reuse them as normal kernel memory.
The memory will, of course, get *used* via the normal map, but the alias
mapping is kept.
This otherwise unused alias mapping of the holes will, by default keep the
Global bit, be mapped out to userspace, and be vulnerable to Meltdown.
Remove the alias mapping of these pages entirely. This is likely to
fracture the 2M page mapping the kernel image near these areas, but this
should affect a minority of the area.
The pageattr code changes *all* aliases mapping the physical pages that it
operates on (by default). We only want to modify a single alias, so we
need to tweak its behavior.
This unmapping behavior is currently dependent on PTI being in place.
Going forward, we should at least consider doing this for all
configurations. Having an extra read-write alias for memory is not exactly
ideal for debugging things like random memory corruption and this does
undercut features like DEBUG_PAGEALLOC or future work like eXclusive Page
Frame Ownership (XPFO).
Before this patch:
current_kernel:---[ High Kernel Mapping ]---
current_kernel-0xffffffff80000000-0xffffffff81000000 16M pmd
current_kernel-0xffffffff81000000-0xffffffff81e00000 14M ro PSE GLB x pmd
current_kernel-0xffffffff81e00000-0xffffffff81e11000 68K ro GLB x pte
current_kernel-0xffffffff81e11000-0xffffffff82000000 1980K RW NX pte
current_kernel-0xffffffff82000000-0xffffffff82600000 6M ro PSE GLB NX pmd
current_kernel-0xffffffff82600000-0xffffffff82c00000 6M RW PSE NX pmd
current_kernel-0xffffffff82c00000-0xffffffff82e00000 2M RW NX pte
current_kernel-0xffffffff82e00000-0xffffffff83200000 4M RW PSE NX pmd
current_kernel-0xffffffff83200000-0xffffffffa0000000 462M pmd
current_user:---[ High Kernel Mapping ]---
current_user-0xffffffff80000000-0xffffffff81000000 16M pmd
current_user-0xffffffff81000000-0xffffffff81e00000 14M ro PSE GLB x pmd
current_user-0xffffffff81e00000-0xffffffff81e11000 68K ro GLB x pte
current_user-0xffffffff81e11000-0xffffffff82000000 1980K RW NX pte
current_user-0xffffffff82000000-0xffffffff82600000 6M ro PSE GLB NX pmd
current_user-0xffffffff82600000-0xffffffffa0000000 474M pmd
After this patch:
current_kernel:---[ High Kernel Mapping ]---
current_kernel-0xffffffff80000000-0xffffffff81000000 16M pmd
current_kernel-0xffffffff81000000-0xffffffff81e00000 14M ro PSE GLB x pmd
current_kernel-0xffffffff81e00000-0xffffffff81e11000 68K ro GLB x pte
current_kernel-0xffffffff81e11000-0xffffffff82000000 1980K pte
current_kernel-0xffffffff82000000-0xffffffff82400000 4M ro PSE GLB NX pmd
current_kernel-0xffffffff82400000-0xffffffff82488000 544K ro NX pte
current_kernel-0xffffffff82488000-0xffffffff82600000 1504K pte
current_kernel-0xffffffff82600000-0xffffffff82c00000 6M RW PSE NX pmd
current_kernel-0xffffffff82c00000-0xffffffff82c0d000 52K RW NX pte
current_kernel-0xffffffff82c0d000-0xffffffff82dc0000 1740K pte
current_user:---[ High Kernel Mapping ]---
current_user-0xffffffff80000000-0xffffffff81000000 16M pmd
current_user-0xffffffff81000000-0xffffffff81e00000 14M ro PSE GLB x pmd
current_user-0xffffffff81e00000-0xffffffff81e11000 68K ro GLB x pte
current_user-0xffffffff81e11000-0xffffffff82000000 1980K pte
current_user-0xffffffff82000000-0xffffffff82400000 4M ro PSE GLB NX pmd
current_user-0xffffffff82400000-0xffffffff82488000 544K ro NX pte
current_user-0xffffffff82488000-0xffffffff82600000 1504K pte
current_user-0xffffffff82600000-0xffffffffa0000000 474M pmd
[ tglx: Do not unmap on 32bit as there is only one mapping ]
Fixes: 0f561fce4d ("x86/pti: Enable global pages for shared areas")
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Kees Cook <keescook@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Joerg Roedel <jroedel@suse.de>
Link: https://lkml.kernel.org/r/20180802225831.5F6A2BFC@viggo.jf.intel.com
Implement paravirtual apic hooks to enable PV IPIs for KVM if the "send IPI"
hypercall is available. The hypercall lets a guest send IPIs, with
at most 128 destinations per hypercall in 64-bit mode and 64 vCPUs per
hypercall in 32-bit mode.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Wanpeng Li <wanpengli@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch is to provide a way for platforms to register hv tlb remote
flush callback and this helps to optimize operation of tlb flush
among vcpus for nested virtualization case.
Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch is to add hyperv_nested_flush_guest_mapping support to trace
hvFlushGuestPhysicalAddressSpace hypercall.
Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Acked-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Hyper-V supports a pv hypercall HvFlushGuestPhysicalAddressSpace to
flush nested VM address space mapping in l1 hypervisor and it's to
reduce overhead of flushing ept tlb among vcpus. This patch is to
implement it.
Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com>
Acked-by: K. Y. Srinivasan <kys@microsoft.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It is a duplicate of X86_CR3_PCID_NOFLUSH. So just use that instead.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Adds support for storing multiple previous CR3/root_hpa pairs maintained
as an LRU cache, so that the lockless CR3 switch path can be used when
switching back to any of them.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This needs a minor bug fix. The updated patch is as follows.
Thanks,
Junaid
------------------------------------------------------------------------------
kvm_mmu_invlpg() and kvm_mmu_invpcid_gva() only need to flush the TLB
entries for the specific guest virtual address, instead of flushing all
TLB entries associated with the VM.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_mmu_free_roots() now takes a mask specifying which roots to free, so
that either one of the roots (active/previous) can be individually freed
when needed.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This allows invlpg() to be called using either the active root_hpa
or the prev_root_hpa.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When PCIDs are enabled, the MSb of the source operand for a MOV-to-CR3
instruction indicates that the TLB doesn't need to be flushed.
This change enables this optimization for MOV-to-CR3s in the guest
that have been intercepted by KVM for shadow paging and are handled
within the fast CR3 switch path.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Implement support for INVPCID in shadow paging mode as well.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The KVM_REQ_LOAD_CR3 request loads the hardware CR3 using the
current root_hpa.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When using shadow paging, a CR3 switch in the guest results in a VM Exit.
In the common case, that VM exit doesn't require much processing by KVM.
However, it does acquire the MMU lock, which can start showing signs of
contention under some workloads even on a 2 VCPU VM when the guest is
using KPTI. Therefore, we add a fast path that avoids acquiring the MMU
lock in the most common cases e.g. when switching back and forth between
the kernel and user mode CR3s used by KPTI with no guest page table
changes in between.
For now, this fast path is implemented only for 64-bit guests and hosts
to avoid the handling of PDPTEs, but it can be extended later to 32-bit
guests and/or hosts as well.
Signed-off-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For nested virtualization L0 KVM is managing a bit of state for L2 guests,
this state can not be captured through the currently available IOCTLs. In
fact the state captured through all of these IOCTLs is usually a mix of L1
and L2 state. It is also dependent on whether the L2 guest was running at
the moment when the process was interrupted to save its state.
With this capability, there are two new vcpu ioctls: KVM_GET_NESTED_STATE
and KVM_SET_NESTED_STATE. These can be used for saving and restoring a VM
that is in VMX operation.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Jim Mattson <jmattson@google.com>
[karahmed@ - rename structs and functions and make them ready for AMD and
address previous comments.
- handle nested.smm state.
- rebase & a bit of refactoring.
- Merge 7/8 and 8/8 into one patch. ]
Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the vCPU enters system management mode while running a nested guest,
RSM starts processing the vmentry while still in SMM. In that case,
however, the pages pointed to by the vmcs12 might be incorrectly
loaded from SMRAM. To avoid this, delay the handling of the pages
until just before the next vmentry. This is done with a new request
and a new entry in kvm_x86_ops, which we will be able to reuse for
nested VMX state migration.
Extracted from a patch by Jim Mattson and KarimAllah Ahmed.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When chunks of the kernel image are freed, free_init_pages() is used
directly. Consolidate the three sites that do this. Also update the
string to give an incrementally better description of that memory versus
what was there before.
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: keescook@google.com
Cc: aarcange@redhat.com
Cc: jgross@suse.com
Cc: jpoimboe@redhat.com
Cc: gregkh@linuxfoundation.org
Cc: peterz@infradead.org
Cc: hughd@google.com
Cc: torvalds@linux-foundation.org
Cc: bp@alien8.de
Cc: luto@kernel.org
Cc: ak@linux.intel.com
Cc: Kees Cook <keescook@google.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andi Kleen <ak@linux.intel.com>
Link: https://lkml.kernel.org/r/20180802225829.FE0E32EA@viggo.jf.intel.com
When nested virtualization is in use, VMENTER operations from the nested
hypervisor into the nested guest will always be processed by the bare metal
hypervisor, and KVM's "conditional cache flushes" mode in particular does a
flush on nested vmentry. Therefore, include the "skip L1D flush on
vmentry" bit in KVM's suggested ARCH_CAPABILITIES setting.
Add the relevant Documentation.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Bit 3 of ARCH_CAPABILITIES tells a hypervisor that L1D flush on vmentry is
not needed. Add a new value to enum vmx_l1d_flush_state, which is used
either if there is no L1TF bug at all, or if bit 3 is set in ARCH_CAPABILITIES.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The last missing piece to having vmx_l1d_flush() take interrupts after
VMEXIT into account is to set the kvm_cpu_l1tf_flush_l1d per-cpu flag on
irq entry.
Issue calls to kvm_set_cpu_l1tf_flush_l1d() from entering_irq(),
ipi_entering_ack_irq(), smp_reschedule_interrupt() and
uv_bau_message_interrupt().
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Nicolai Stange <nstange@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The next patch in this series will have to make the definition of
irq_cpustat_t available to entering_irq().
Inclusion of asm/hardirq.h into asm/apic.h would cause circular header
dependencies like
asm/smp.h
asm/apic.h
asm/hardirq.h
linux/irq.h
linux/topology.h
linux/smp.h
asm/smp.h
or
linux/gfp.h
linux/mmzone.h
asm/mmzone.h
asm/mmzone_64.h
asm/smp.h
asm/apic.h
asm/hardirq.h
linux/irq.h
linux/irqdesc.h
linux/kobject.h
linux/sysfs.h
linux/kernfs.h
linux/idr.h
linux/gfp.h
and others.
This causes compilation errors because of the header guards becoming
effective in the second inclusion: symbols/macros that had been defined
before wouldn't be available to intermediate headers in the #include chain
anymore.
A possible workaround would be to move the definition of irq_cpustat_t
into its own header and include that from both, asm/hardirq.h and
asm/apic.h.
However, this wouldn't solve the real problem, namely asm/harirq.h
unnecessarily pulling in all the linux/irq.h cruft: nothing in
asm/hardirq.h itself requires it. Also, note that there are some other
archs, like e.g. arm64, which don't have that #include in their
asm/hardirq.h.
Remove the linux/irq.h #include from x86' asm/hardirq.h.
Fix resulting compilation errors by adding appropriate #includes to *.c
files as needed.
Note that some of these *.c files could be cleaned up a bit wrt. to their
set of #includes, but that should better be done from separate patches, if
at all.
Signed-off-by: Nicolai Stange <nstange@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Part of the L1TF mitigation for vmx includes flushing the L1D cache upon
VMENTRY.
L1D flushes are costly and two modes of operations are provided to users:
"always" and the more selective "conditional" mode.
If operating in the latter, the cache would get flushed only if a host side
code path considered unconfined had been traversed. "Unconfined" in this
context means that it might have pulled in sensitive data like user data
or kernel crypto keys.
The need for L1D flushes is tracked by means of the per-vcpu flag
l1tf_flush_l1d. KVM exit handlers considered unconfined set it. A
vmx_l1d_flush() subsequently invoked before the next VMENTER will conduct a
L1d flush based on its value and reset that flag again.
Currently, interrupts delivered "normally" while in root operation between
VMEXIT and VMENTER are not taken into account. Part of the reason is that
these don't leave any traces and thus, the vmx code is unable to tell if
any such has happened.
As proposed by Paolo Bonzini, prepare for tracking all interrupts by
introducing a new per-cpu flag, "kvm_cpu_l1tf_flush_l1d". It will be in
strong analogy to the per-vcpu ->l1tf_flush_l1d.
A later patch will make interrupt handlers set it.
For the sake of cache locality, group kvm_cpu_l1tf_flush_l1d into x86'
per-cpu irq_cpustat_t as suggested by Peter Zijlstra.
Provide the helpers kvm_set_cpu_l1tf_flush_l1d(),
kvm_clear_cpu_l1tf_flush_l1d() and kvm_get_cpu_l1tf_flush_l1d(). Make them
trivial resp. non-existent for !CONFIG_KVM_INTEL as appropriate.
Let vmx_l1d_flush() handle kvm_cpu_l1tf_flush_l1d in the same way as
l1tf_flush_l1d.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Nicolai Stange <nstange@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
An upcoming patch will extend KVM's L1TF mitigation in conditional mode
to also cover interrupts after VMEXITs. For tracking those, stores to a
new per-cpu flag from interrupt handlers will become necessary.
In order to improve cache locality, this new flag will be added to x86's
irq_cpustat_t.
Make some space available there by shrinking the ->softirq_pending bitfield
from 32 to 16 bits: the number of bits actually used is only NR_SOFTIRQS,
i.e. 10.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Nicolai Stange <nstange@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Future Intel processors will support "Enhanced IBRS" which is an "always
on" mode i.e. IBRS bit in SPEC_CTRL MSR is enabled once and never
disabled.
From the specification [1]:
"With enhanced IBRS, the predicted targets of indirect branches
executed cannot be controlled by software that was executed in a less
privileged predictor mode or on another logical processor. As a
result, software operating on a processor with enhanced IBRS need not
use WRMSR to set IA32_SPEC_CTRL.IBRS after every transition to a more
privileged predictor mode. Software can isolate predictor modes
effectively simply by setting the bit once. Software need not disable
enhanced IBRS prior to entering a sleep state such as MWAIT or HLT."
If Enhanced IBRS is supported by the processor then use it as the
preferred spectre v2 mitigation mechanism instead of Retpoline. Intel's
Retpoline white paper [2] states:
"Retpoline is known to be an effective branch target injection (Spectre
variant 2) mitigation on Intel processors belonging to family 6
(enumerated by the CPUID instruction) that do not have support for
enhanced IBRS. On processors that support enhanced IBRS, it should be
used for mitigation instead of retpoline."
The reason why Enhanced IBRS is the recommended mitigation on processors
which support it is that these processors also support CET which
provides a defense against ROP attacks. Retpoline is very similar to ROP
techniques and might trigger false positives in the CET defense.
If Enhanced IBRS is selected as the mitigation technique for spectre v2,
the IBRS bit in SPEC_CTRL MSR is set once at boot time and never
cleared. Kernel also has to make sure that IBRS bit remains set after
VMEXIT because the guest might have cleared the bit. This is already
covered by the existing x86_spec_ctrl_set_guest() and
x86_spec_ctrl_restore_host() speculation control functions.
Enhanced IBRS still requires IBPB for full mitigation.
[1] Speculative-Execution-Side-Channel-Mitigations.pdf
[2] Retpoline-A-Branch-Target-Injection-Mitigation.pdf
Both documents are available at:
https://bugzilla.kernel.org/show_bug.cgi?id=199511
Originally-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Sai Praneeth Prakhya <sai.praneeth.prakhya@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tim C Chen <tim.c.chen@intel.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Ravi Shankar <ravi.v.shankar@intel.com>
Link: https://lkml.kernel.org/r/1533148945-24095-1-git-send-email-sai.praneeth.prakhya@intel.com