kdb is the only user of the __current_kernel_time() interface, which is
not y2038 safe and should be removed at some point.
The kdb code also goes to great lengths to print the time in a
human-readable format from 'struct timespec', again using a non-y2038-safe
re-implementation of the generic time_to_tm() code.
Using __current_kernel_time() here is necessary since the regular
accessors that require a sequence lock might hang when called during the
xtime update. However, this is safe in the particular case since kdb is
only interested in the tv_sec field that is updated atomically.
In order to make this y2038-safe, I'm converting the code to the generic
time64_to_tm helper, but that introduces the problem that we have no
interface like __current_kernel_time() that provides a 64-bit timestamp
in a lockless, safe and architecture-independent way. I have multiple
ideas for how to solve that:
- __ktime_get_real_seconds() is lockless, but can return
incorrect results on 32-bit architectures in the special case that
we are in the process of changing the time across the epoch, either
during the timer tick that overflows the seconds in 2038, or while
calling settimeofday.
- ktime_get_real_fast_ns() would work in this context, but does
require a call into the clocksource driver to return a high-resolution
timestamp. This may have undesired side-effects in the debugger,
since we want to limit the interactions with the rest of the kernel.
- Adding a ktime_get_real_fast_seconds() based on tk_fast_mono
plus tkr->base_real without the tk_clock_read() delta. Not sure about
the value of adding yet another interface here.
- Changing the existing ktime_get_real_seconds() to use
tk_fast_mono on 32-bit architectures rather than xtime_sec. I think
this could work, but am not entirely sure if this is an improvement.
I picked the first of those for simplicity here. It's technically
not correct but probably good enough as the time is only used for the
debugging output and the race will likely never be hit in practice.
Another downside is having to move the declaration into a public header
file.
Let me know if anyone has a different preference.
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Link: https://patchwork.kernel.org/patch/9775309/
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
There is no point in having an extra type for extra confusion. u64 is
unambiguous.
Conversion was done with the following coccinelle script:
@rem@
@@
-typedef u64 cycle_t;
@fix@
typedef cycle_t;
@@
-cycle_t
+u64
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: John Stultz <john.stultz@linaro.org>
The clocksource validation which makes sure that the newly read value
is not smaller than the last value only works if the clocksource mask
is 64bit, i.e. the counter is 64bit wide. But we want to use that
mechanism also for clocksources which are less than 64bit wide.
So instead of checking whether bit 63 is set, we check whether the
most significant bit of the clocksource mask is set in the delta
result. If it is set, we return 0.
[ tglx: Simplified the implementation, added a comment and massaged
the commit message ]
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Cc: <linux-arm-kernel@lists.infradead.org>
Link: http://lkml.kernel.org/r/56349607.6070708@huawei.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
In order to fix Y2038 issues in the ntp code we will need replace
get_seconds() with ktime_get_real_seconds() but as the ntp code uses
the timekeeping lock which is also used by ktime_get_real_seconds(),
we need a version without locking.
Add a new function __ktime_get_real_seconds() in timekeeping to
do this.
Reviewed-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: DengChao <chao.deng@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
The only user of the cycle_last validation is the x86 TSC. In order to
provide NMI safe accessor functions for clock monotonic and
monotonic_raw we need to do that in the core.
We can't do the TSC specific
if (now < cycle_last)
now = cycle_last;
for the other wrapping around clocksources, but TSC has
CLOCKSOURCE_MASK(64) which actually does not mask out anything so if
now is less than cycle_last the subtraction will give a negative
result. So we can check for that in clocksource_delta() and return 0
for that case.
Implement and enable it for x86
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
We want to move the TSC sanity check into core code to make NMI safe
accessors to clock monotonic[_raw] possible. For this we need to
sanity check the delta calculation. Create a helper function and
convert all sites to use it.
[ Build fix from jstultz ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Convert the core timekeeping logic to use timespec64s. This moves the
2038 issues out of the core logic and into all of the accessor
functions.
Future changes will need to push the timespec64s out to all
timekeeping users, but that can be done interface by interface.
Signed-off-by: John Stultz <john.stultz@linaro.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Below is a patch from android kernel that maintains a histogram of
suspend times. Please review and provide feedback.
Statistices on the time spent in suspend are kept in
/sys/kernel/debug/sleep_time.
Cc: Android Kernel Team <kernel-team@android.com>
Cc: Colin Cross <ccross@android.com>
Cc: Todd Poynor <toddpoynor@google.com>
Cc: San Mehat <san@google.com>
Cc: Benoit Goby <benoit@android.com>
Cc: John Stultz <john.stultz@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Colin Cross <ccross@android.com>
Signed-off-by: Todd Poynor <toddpoynor@google.com>
[zoran.markovic@linaro.org: Re-formatted suspend time table to better
fit expected values. Moved accounting of suspend time into timekeeping
core. Removed CONFIG_SUSPEND_TIME flag and made the feature conditional
on CONFIG_DEBUG_FS. Changed the file name to sleep_time to better fit
terminology in timekeeping core. Changed seq_printf to seq_puts. Tweaked
commit message]
Signed-off-by: Zoran Markovic <zoran.markovic@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>