commit b6bcdc9f6b upstream.
enter_exception64() performs an MTE check, which involves dereferencing
vcpu->kvm. While vcpu has already been fixed up to be a HYP VA pointer,
kvm is still a pointer in the kernel VA space.
This only affects nVHE configurations with MTE enabled, as in other
cases, the pointer is either valid (VHE) or not dereferenced (!MTE).
Fix this by first converting kvm to a HYP VA pointer.
Fixes: ea7fc1bb1c ("KVM: arm64: Introduce MTE VM feature")
Signed-off-by: Ryan Roberts <ryan.roberts@arm.com>
Reviewed-by: Steven Price <steven.price@arm.com>
[maz: commit message tidy-up]
Signed-off-by: Marc Zyngier <maz@kernel.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20221027120945.29679-1-ryan.roberts@arm.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 1c3ace2b8b ]
Although harmless, the return statement in kvm_unexpected_el2_exception
is rather confusing as the function itself has a void return type. The
C standard is also pretty clear that "A return statement with an
expression shall not appear in a function whose return type is void".
Given that this return statement does not seem to add any actual value,
let's not pointlessly violate the standard.
Build-tested with GCC 10 and CLANG 13 for good measure, the disassembled
code is identical with or without the return statement.
Fixes: e9ee186bb7 ("KVM: arm64: Add kvm_extable for vaxorcism code")
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220705142310.3847918-1-qperret@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 228a26b912 upstream.
Future CPUs may implement a clearbhb instruction that is sufficient
to mitigate SpectreBHB. CPUs that implement this instruction, but
not CSV2.3 must be affected by Spectre-BHB.
Add support to use this instruction as the BHB mitigation on CPUs
that support it. The instruction is in the hint space, so it will
be treated by a NOP as older CPUs.
Reviewed-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 558c303c97 upstream.
Speculation attacks against some high-performance processors can
make use of branch history to influence future speculation.
When taking an exception from user-space, a sequence of branches
or a firmware call overwrites or invalidates the branch history.
The sequence of branches is added to the vectors, and should appear
before the first indirect branch. For systems using KPTI the sequence
is added to the kpti trampoline where it has a free register as the exit
from the trampoline is via a 'ret'. For systems not using KPTI, the same
register tricks are used to free up a register in the vectors.
For the firmware call, arch-workaround-3 clobbers 4 registers, so
there is no choice but to save them to the EL1 stack. This only happens
for entry from EL0, so if we take an exception due to the stack access,
it will not become re-entrant.
For KVM, the existing branch-predictor-hardening vectors are used.
When a spectre version of these vectors is in use, the firmware call
is sufficient to mitigate against Spectre-BHB. For the non-spectre
versions, the sequence of branches is added to the indirect vector.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit bd09128d16 upstream.
The Spectre-BHB workaround adds a firmware call to the vectors. This
is needed on some CPUs, but not others. To avoid the unaffected CPU in
a big/little pair from making the firmware call, create per cpu vectors.
The per-cpu vectors only apply when returning from EL0.
Systems using KPTI can use the canonical 'full-fat' vectors directly at
EL1, the trampoline exit code will switch to this_cpu_vector on exit to
EL0. Systems not using KPTI should always use this_cpu_vector.
this_cpu_vector will point at a vector in tramp_vecs or
__bp_harden_el1_vectors, depending on whether KPTI is in use.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 5bdf343760 upstream.
CPUs vulnerable to Spectre-BHB either need to make an SMC-CC firmware
call from the vectors, or run a sequence of branches. This gets added
to the hyp vectors. If there is no support for arch-workaround-1 in
firmware, the indirect vector will be used.
kvm_init_vector_slots() only initialises the two indirect slots if
the platform is vulnerable to Spectre-v3a. pKVM's hyp_map_vectors()
only initialises __hyp_bp_vect_base if the platform is vulnerable to
Spectre-v3a.
As there are about to more users of the indirect vectors, ensure
their entries in hyp_spectre_vector_selector[] are always initialised,
and __hyp_bp_vect_base defaults to the regular VA mapping.
The Spectre-v3a check is moved to a helper
kvm_system_needs_idmapped_vectors(), and merged with the code
that creates the hyp mappings.
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
commit 1c71dbc8a1 upstream.
When any exception other than an IRQ occurs, the CPU updates the ESR_EL2
register with the exception syndrome. An SError may also become pending,
and will be synchronised by KVM. KVM notes the exception type, and whether
an SError was synchronised in exit_code.
When an exception other than an IRQ occurs, fixup_guest_exit() updates
vcpu->arch.fault.esr_el2 from the hardware register. When an SError was
synchronised, the vcpu esr value is used to determine if the exception
was due to an HVC. If so, ELR_EL2 is moved back one instruction. This
is so that KVM can process the SError first, and re-execute the HVC if
the guest survives the SError.
But if an IRQ synchronises an SError, the vcpu's esr value is stale.
If the previous non-IRQ exception was an HVC, KVM will corrupt ELR_EL2,
causing an unrelated guest instruction to be executed twice.
Check ARM_EXCEPTION_CODE() before messing with ELR_EL2, IRQs don't
update this register so don't need to check.
Fixes: defe21f49b ("KVM: arm64: Move PC rollback on SError to HYP")
Cc: stable@vger.kernel.org
Reported-by: Steven Price <steven.price@arm.com>
Signed-off-by: James Morse <james.morse@arm.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220127122052.1584324-3-james.morse@arm.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 094d00f8ca ]
CMOs issued from EL2 cannot directly use the kernel helpers,
as EL2 doesn't have a mapping of the guest pages. Oops.
Instead, use the mm_ops indirection to use helpers that will
perform a mapping at EL2 and allow the CMO to be effective.
Fixes: 25aa28691b ("KVM: arm64: Move guest CMOs to the fault handlers")
Reviewed-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20220114125038.1336965-1-maz@kernel.org
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 278583055a upstream.
Injecting an exception into a guest with non-VHE is risky business.
Instead of writing in the shadow register for the switch code to
restore it, we override the CPU register instead. Which gets
overriden a few instructions later by said restore code.
The result is that although the guest correctly gets the exception,
it will return to the original context in some random state,
depending on what was there the first place... Boo.
Fix the issue by writing to the shadow register. The original code
is absolutely fine on VHE, as the state is already loaded, and writing
to the shadow register in that case would actually be a bug.
Fixes: bb666c472c ("KVM: arm64: Inject AArch64 exceptions from HYP")
Cc: stable@vger.kernel.org
Signed-off-by: Marc Zyngier <maz@kernel.org>
Reviewed-by: Fuad Tabba <tabba@google.com>
Link: https://lore.kernel.org/r/20220121184207.423426-1-maz@kernel.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
[ Upstream commit 83bb2c1a01 ]
In order to be able to use primitives such as vcpu_mode_is_32bit(),
we need to synchronize the guest PSTATE. However, this is currently
done deep into the bowels of the world-switch code, and we do have
helpers evaluating this much earlier (__vgic_v3_perform_cpuif_access
and handle_aarch32_guest, for example).
Move the saving of the guest pstate into the early fixups, which
cures the first issue. The second one will be addressed separately.
Tested-by: Fuad Tabba <tabba@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Sasha Levin <sashal@kernel.org>
[ Upstream commit 50a8d33159 ]
We currently walk the hypervisor stage-1 page-table towards the end of
hyp init in nVHE protected mode and adjust the host page ownership
attributes in its stage-2 in order to get a consistent state from both
point of views. The walk is done on the entire hyp VA space, and expects
to only ever find page-level mappings. While this expectation is
reasonable in the half of hyp VA space that maps memory with a fixed
offset (see the loop in pkvm_create_mappings_locked()), it can be
incorrect in the other half where nothing prevents the usage of block
mappings. For instance, on systems where memory is physically aligned at
an address that happens to maps to a PMD aligned VA in the hyp_vmemmap,
kvm_pgtable_hyp_map() will install block mappings when backing the
hyp_vmemmap, which will later cause finalize_host_mappings() to fail.
Furthermore, it should be noted that all pages backing the hyp_vmemmap
are also mapped in the 'fixed offset range' of the hypervisor, which
implies that finalize_host_mappings() will walk both aliases and update
the host stage-2 attributes twice. The order in which this happens is
unpredictable, though, since the hyp VA layout is highly dependent on
the position of the idmap page, hence resulting in a fragile mess at
best.
In order to fix all of this, let's restrict the finalization walk to
only cover memory regions in the 'fixed-offset range' of the hyp VA
space and nothing else. This not only fixes a correctness issue, but
will also result in a slighlty faster hyp initialization overall.
Fixes: 2c50166c62 ("KVM: arm64: Mark host bss and rodata section as shared")
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211108154636.393384-1-qperret@google.com
Signed-off-by: Sasha Levin <sashal@kernel.org>
commit 8bb084119f upstream.
Since ARMv8.0 the upper 32 bits of ESR_ELx have been RES0, and recently
some of the upper bits gained a meaning and can be non-zero. For
example, when FEAT_LS64 is implemented, ESR_ELx[36:32] contain ISS2,
which for an ST64BV or ST64BV0 can be non-zero. This can be seen in ARM
DDI 0487G.b, page D13-3145, section D13.2.37.
Generally, we must not rely on RES0 bit remaining zero in future, and
when extracting ESR_ELx.EC we must mask out all other bits.
All C code uses the ESR_ELx_EC() macro, which masks out the irrelevant
bits, and therefore no alterations are required to C code to avoid
consuming irrelevant bits.
In a couple of places the KVM assembly extracts ESR_ELx.EC using LSR on
an X register, and so could in theory consume previously RES0 bits. In
both cases this is for comparison with EC values ESR_ELx_EC_HVC32 and
ESR_ELx_EC_HVC64, for which the upper bits of ESR_ELx must currently be
zero, but this could change in future.
This patch adjusts the KVM vectors to use UBFX rather than LSR to
extract ESR_ELx.EC, ensuring these are robust to future additions to
ESR_ELx.
Cc: stable@vger.kernel.org
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Alexandru Elisei <alexandru.elisei@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211103110545.4613-1-mark.rutland@arm.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Some of the refcount manipulation helpers used at EL2 are instrumented
to catch a corrupted state, but not all of them are treated equally. Let's
make things more consistent by instrumenting hyp_page_ref_dec_and_test()
as well.
Acked-by: Will Deacon <will@kernel.org>
Suggested-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211005090155.734578-6-qperret@google.com
The KVM page-table library refcounts the pages of concatenated stage-2
PGDs individually. However, when running KVM in protected mode, the
host's stage-2 PGD is currently managed by EL2 as a single high-order
compound page, which can cause the refcount of the tail pages to reach 0
when they shouldn't, hence corrupting the page-table.
Fix this by introducing a new hyp_split_page() helper in the EL2 page
allocator (matching the kernel's split_page() function), and make use of
it from host_s2_zalloc_pages_exact().
Fixes: 1025c8c0c6 ("KVM: arm64: Wrap the host with a stage 2")
Acked-by: Will Deacon <will@kernel.org>
Suggested-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20211005090155.734578-5-qperret@google.com
Add FORCE so that if_changed can detect the command line change.
We'll otherwise see a compilation warning since commit e1f86d7b4b
("kbuild: warn if FORCE is missing for if_changed(_dep,_rule) and
filechk").
arch/arm64/kvm/hyp/nvhe/Makefile:58: FORCE prerequisite is missing
Cc: David Brazdil <dbrazdil@google.com>
Cc: Masahiro Yamada <masahiroy@kernel.org>
Signed-off-by: Zenghui Yu <yuzenghui@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210907052137.1059-1-yuzenghui@huawei.com
- Page ownership tracking between host EL1 and EL2
- Rely on userspace page tables to create large stage-2 mappings
- Fix incompatibility between pKVM and kmemleak
- Fix the PMU reset state, and improve the performance of the virtual PMU
- Move over to the generic KVM entry code
- Address PSCI reset issues w.r.t. save/restore
- Preliminary rework for the upcoming pKVM fixed feature
- A bunch of MM cleanups
- a vGIC fix for timer spurious interrupts
- Various cleanups
s390:
- enable interpretation of specification exceptions
- fix a vcpu_idx vs vcpu_id mixup
x86:
- fast (lockless) page fault support for the new MMU
- new MMU now the default
- increased maximum allowed VCPU count
- allow inhibit IRQs on KVM_RUN while debugging guests
- let Hyper-V-enabled guests run with virtualized LAPIC as long as they
do not enable the Hyper-V "AutoEOI" feature
- fixes and optimizations for the toggling of AMD AVIC (virtualized LAPIC)
- tuning for the case when two-dimensional paging (EPT/NPT) is disabled
- bugfixes and cleanups, especially with respect to 1) vCPU reset and
2) choosing a paging mode based on CR0/CR4/EFER
- support for 5-level page table on AMD processors
Generic:
- MMU notifier invalidation callbacks do not take mmu_lock unless necessary
- improved caching of LRU kvm_memory_slot
- support for histogram statistics
- add statistics for halt polling and remote TLB flush requests
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmE2CIAUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroMyqwf+Ky2WoThuQ9Ra0r/m8pUTAx5+gsAf
MmG24rNLE+26X0xuBT9Q5+etYYRLrRTWJvo5cgHooz7muAYW6scR+ho5xzvLTAxi
DAuoijkXsSdGoFCp0OMUHiwG3cgY5N7feTEwLPAb2i6xr/l6SZyCP4zcwiiQbJ2s
UUD0i3rEoNQ02/hOEveud/ENxzUli9cmmgHKXR3kNgsJClSf1fcuLnhg+7EGMhK9
+c2V+hde5y0gmEairQWm22MLMRolNZ5NL4kjykiNh2M5q9YvbHe5+f/JmENlNZMT
bsUQT6Ry1ukuJ0V59rZvUw71KknPFzZ3d6HgW4pwytMq6EJKiISHzRbVnQ==
=FCAB
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- Page ownership tracking between host EL1 and EL2
- Rely on userspace page tables to create large stage-2 mappings
- Fix incompatibility between pKVM and kmemleak
- Fix the PMU reset state, and improve the performance of the virtual
PMU
- Move over to the generic KVM entry code
- Address PSCI reset issues w.r.t. save/restore
- Preliminary rework for the upcoming pKVM fixed feature
- A bunch of MM cleanups
- a vGIC fix for timer spurious interrupts
- Various cleanups
s390:
- enable interpretation of specification exceptions
- fix a vcpu_idx vs vcpu_id mixup
x86:
- fast (lockless) page fault support for the new MMU
- new MMU now the default
- increased maximum allowed VCPU count
- allow inhibit IRQs on KVM_RUN while debugging guests
- let Hyper-V-enabled guests run with virtualized LAPIC as long as
they do not enable the Hyper-V "AutoEOI" feature
- fixes and optimizations for the toggling of AMD AVIC (virtualized
LAPIC)
- tuning for the case when two-dimensional paging (EPT/NPT) is
disabled
- bugfixes and cleanups, especially with respect to vCPU reset and
choosing a paging mode based on CR0/CR4/EFER
- support for 5-level page table on AMD processors
Generic:
- MMU notifier invalidation callbacks do not take mmu_lock unless
necessary
- improved caching of LRU kvm_memory_slot
- support for histogram statistics
- add statistics for halt polling and remote TLB flush requests"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (210 commits)
KVM: Drop unused kvm_dirty_gfn_invalid()
KVM: x86: Update vCPU's hv_clock before back to guest when tsc_offset is adjusted
KVM: MMU: mark role_regs and role accessors as maybe unused
KVM: MIPS: Remove a "set but not used" variable
x86/kvm: Don't enable IRQ when IRQ enabled in kvm_wait
KVM: stats: Add VM stat for remote tlb flush requests
KVM: Remove unnecessary export of kvm_{inc,dec}_notifier_count()
KVM: x86/mmu: Move lpage_disallowed_link further "down" in kvm_mmu_page
KVM: x86/mmu: Relocate kvm_mmu_page.tdp_mmu_page for better cache locality
Revert "KVM: x86: mmu: Add guest physical address check in translate_gpa()"
KVM: x86/mmu: Remove unused field mmio_cached in struct kvm_mmu_page
kvm: x86: Increase KVM_SOFT_MAX_VCPUS to 710
kvm: x86: Increase MAX_VCPUS to 1024
kvm: x86: Set KVM_MAX_VCPU_ID to 4*KVM_MAX_VCPUS
KVM: VMX: avoid running vmx_handle_exit_irqoff in case of emulation
KVM: x86/mmu: Don't freak out if pml5_root is NULL on 4-level host
KVM: s390: index kvm->arch.idle_mask by vcpu_idx
KVM: s390: Enable specification exception interpretation
KVM: arm64: Trim guest debug exception handling
KVM: SVM: Add 5-level page table support for SVM
...
There are a lot of uses of memblock_find_in_range() along with
memblock_reserve() from the times memblock allocation APIs did not exist.
memblock_find_in_range() is the very core of memblock allocations, so any
future changes to its internal behaviour would mandate updates of all the
users outside memblock.
Replace the calls to memblock_find_in_range() with an equivalent calls to
memblock_phys_alloc() and memblock_phys_alloc_range() and make
memblock_find_in_range() private method of memblock.
This simplifies the callers, ensures that (unlikely) errors in
memblock_reserve() are handled and improves maintainability of
memblock_find_in_range().
Link: https://lkml.kernel.org/r/20210816122622.30279-1-rppt@kernel.org
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Acked-by: Kirill A. Shutemov <kirill.shtuemov@linux.intel.com>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> [ACPI]
Acked-by: Russell King (Oracle) <rmk+kernel@armlinux.org.uk>
Acked-by: Nick Kossifidis <mick@ics.forth.gr> [riscv]
Tested-by: Guenter Roeck <linux@roeck-us.net>
Acked-by: Rob Herring <robh@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* kvm-arm64/pkvm-fixed-features-prologue:
: Rework a bunch of common infrastructure as a prologue
: to Fuad Tabba's protected VM fixed feature series.
KVM: arm64: Upgrade trace_kvm_arm_set_dreg32() to 64bit
KVM: arm64: Add config register bit definitions
KVM: arm64: Add feature register flag definitions
KVM: arm64: Track value of cptr_el2 in struct kvm_vcpu_arch
KVM: arm64: Keep mdcr_el2's value as set by __init_el2_debug
KVM: arm64: Restore mdcr_el2 from vcpu
KVM: arm64: Refactor sys_regs.h,c for nVHE reuse
KVM: arm64: Fix names of config register fields
KVM: arm64: MDCR_EL2 is a 64-bit register
KVM: arm64: Remove trailing whitespace in comment
KVM: arm64: placeholder to check if VM is protected
Signed-off-by: Marc Zyngier <maz@kernel.org>
* kvm-arm64/mmu/vmid-cleanups:
: Cleanup the stage-2 configuration by providing a single helper,
: and tidy up some of the ordering requirements for the VMID
: allocator.
KVM: arm64: Upgrade VMID accesses to {READ,WRITE}_ONCE
KVM: arm64: Unify stage-2 programming behind __load_stage2()
KVM: arm64: Move kern_hyp_va() usage in __load_guest_stage2() into the callers
Signed-off-by: Marc Zyngier <maz@kernel.org>
Currently range_is_memory finds the corresponding struct memblock_region
for both the lower and upper bounds of the given address range with two
rounds of binary search, and then checks that the two memblocks are the
same. Simplify this by only doing binary search on the lower bound and
then checking that the upper bound is in the same memblock.
Signed-off-by: David Brazdil <dbrazdil@google.com>
Reviewed-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210728153232.1018911-3-dbrazdil@google.com
- Plug race between enabling MTE and creating vcpus
- Fix off-by-one bug when checking whether an address range is RAM
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmEWEsoPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpD1IIQAIbZdNAIy68j2/H8sgaYT4GuYICLOvz3WhTI
Li/yRP2b0th4wT4LaKlATKJKQgliPxXZ0KCJMZxFr7aiKEyY1LZe+ddJBzetzgy2
S12v5V3cp/0DHQ6CEflUy0x8gM/BeudeYyZcHxSbLZcVB4bzFx9pBJeJ1WkLG+GC
Bx4zxdARNas+9zOUuHLCQbWfihMSrbj3CI6WIafpNeFOs3lLldT8WcRofgQfAsAx
V3FKETIOb5NUU6LKUHkYgyM3n1MZwAukaCsepDhayeeT5iEyIGXb1HkjcYOx6bfn
BhDvA7PH9oXBOFFL2sxlJKamXWZP3Bz7xyZ40MXDqC1lSMAUEh8TXJFptncEDxPb
OgXewTgCulKVSjT8YXnoTe1UNQ2dLqjw1TsqV5jXhVXIjeBcR8S4gM0hcqwvgWlO
BHaDt8BPd39rBzfC0gUkE5BHE04QuboK/Vz/+Qc6Slc3EUIdnuCtjefdRLvSxxgB
bEBW+s3zcZ7RhoSLvXgvTe3an11Os8BH921VCxgMyEnIvSDEbw3KypmPYuNCkSLc
t9GLAbPU139w7Gk7vp0oqhI8xIV7QoFk+b94JIHMvtS13yVaqBrZF33RrFzmAwVN
lXDiOdoR8mqbX2EPQVIn+BhSlebfvnJANm46tzgY1/u2mUgH//fu/cH3kpjgohco
kY+Ztnb9
=hL2s
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-fixes-5.14-2' into kvm-arm64/mmu/el2-tracking
KVM/arm64 fixes for 5.14, take #2
- Plug race between enabling MTE and creating vcpus
- Fix off-by-one bug when checking whether an address range is RAM
Signed-off-by: Marc Zyngier <maz@kernel.org>
Track the baseline guest value for cptr_el2 in struct
kvm_vcpu_arch, similar to the other registers that control traps.
Use this value when setting cptr_el2 for the guest.
Currently this value is unchanged (CPTR_EL2_DEFAULT), but future
patches will set trapping bits based on features supported for
the guest.
No functional change intended.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210817081134.2918285-9-tabba@google.com
__init_el2_debug configures mdcr_el2 at initialization based on,
among other things, available hardware support. Trap deactivation
doesn't check that, so keep the initial value.
No functional change intended.
Signed-off-by: Fuad Tabba <tabba@google.com>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210817081134.2918285-8-tabba@google.com
On deactivating traps, restore the value of mdcr_el2 from the
newly created and preserved host value vcpu context, rather than
directly reading the hardware register.
Up until and including this patch the two values are the same,
i.e., the hardware register and the vcpu one. A future patch will
be changing the value of mdcr_el2 on activating traps, and this
ensures that its value will be restored.
No functional change intended.
Signed-off-by: Fuad Tabba <tabba@google.com>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210817081134.2918285-7-tabba@google.com
Fix the places in KVM that treat MDCR_EL2 as a 32-bit register.
More recent features (e.g., FEAT_SPEv1p2) use bits above 31.
No functional change intended.
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210817081134.2918285-4-tabba@google.com
Since TLB invalidation can run in parallel with VMID allocation,
we need to be careful and avoid any sort of load/store tearing.
Use {READ,WRITE}_ONCE consistently to avoid any surprise.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Jade Alglave <jade.alglave@arm.com>
Cc: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
Reviewed-by: Quentin Perret <qperret@google.com>
Link: https://lore.kernel.org/r/20210806113109.2475-6-will@kernel.org
The protected mode relies on a separate helper to load the
S2 context. Move over to the __load_guest_stage2() helper
instead, and rename it to __load_stage2() to present a unified
interface.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Jade Alglave <jade.alglave@arm.com>
Cc: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210806113109.2475-5-will@kernel.org
It is a bit awkward to use kern_hyp_va() in __load_guest_stage2(),
specially as the helper is shared between VHE and nVHE.
Instead, move the use of kern_hyp_va() in the nVHE code, and
pass a pointer to the kvm->arch structure instead. Although
this may look a bit awkward, it allows for some further simplification.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Jade Alglave <jade.alglave@arm.com>
Cc: Shameer Kolothum <shameerali.kolothum.thodi@huawei.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210806113109.2475-4-will@kernel.org
When protected mode is enabled, the host is unable to access most parts
of the EL2 hypervisor image, including 'hyp_physvirt_offset' and the
contents of the hypervisor's '.rodata.str' section. Unfortunately,
nvhe_hyp_panic_handler() tries to read from both of these locations when
handling a BUG() triggered at EL2; the former for converting the ELR to
a physical address and the latter for displaying the name of the source
file where the BUG() occurred.
Hack the EL2 panic asm to pass both physical and virtual ELR values to
the host and utilise the newly introduced CONFIG_NVHE_EL2_DEBUG so that
we disable stage-2 protection for the host before returning to the EL1
panic handler. If the debug option is not enabled, display the address
instead of the source file:line information.
Cc: Andrew Scull <ascull@google.com>
Cc: Quentin Perret <qperret@google.com>
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210813130336.8139-1-will@kernel.org
Fix the error code returned by __pkvm_host_share_hyp() when the
host attempts to share with EL2 a page that has already been shared with
another entity.
Reported-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210811173630.2536721-1-qperret@google.com
The __pkvm_create_mappings() function is no longer used outside of
nvhe/mm.c, make it static.
Signed-off-by: Quentin Perret <qperret@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210809152448.1810400-22-qperret@google.com
The host kernel is currently able to change EL2 stage-1 mappings without
restrictions thanks to the __pkvm_create_mappings() hypercall. But in a
world where the host is no longer part of the TCB, this clearly poses a
problem.
To fix this, introduce a new hypercall to allow the host to share a
physical memory page with the hypervisor, and remove the
__pkvm_create_mappings() variant. The new hypercall implements
ownership and permission checks before allowing the sharing operation,
and it annotates the shared page in the hypervisor stage-1 and host
stage-2 page-tables.
Signed-off-by: Quentin Perret <qperret@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210809152448.1810400-21-qperret@google.com
Refactor the hypervisor stage-1 locking in nVHE protected mode to expose
a new pkvm_create_mappings_locked() function. This will be used in later
patches to allow walking and changing the hypervisor stage-1 without
releasing the lock.
Signed-off-by: Quentin Perret <qperret@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210809152448.1810400-20-qperret@google.com
Now that we mark memory owned by the hypervisor in the host stage-2
during __pkvm_init(), we no longer need to rely on the host to
explicitly mark the hyp sections later on.
Remove the __pkvm_mark_hyp() hypercall altogether.
Signed-off-by: Quentin Perret <qperret@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210809152448.1810400-19-qperret@google.com
As the hypervisor maps the host's .bss and .rodata sections in its
stage-1, make sure to tag them as shared in hyp and host page-tables.
But since the hypervisor relies on the presence of these mappings, we
cannot let the host in complete control of the memory regions -- it
must not unshare or donate them to another entity for example. To
prevent this, let's transfer the ownership of those ranges to the
hypervisor itself, and share the pages back with the host.
Signed-off-by: Quentin Perret <qperret@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210809152448.1810400-18-qperret@google.com
Introduce helper functions in the KVM stage-2 and stage-1 page-table
manipulation library allowing to retrieve the enum kvm_pgtable_prot of a
PTE. This will be useful to implement custom walkers outside of
pgtable.c.
Signed-off-by: Quentin Perret <qperret@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210809152448.1810400-17-qperret@google.com
Introduce a helper usable in nVHE protected mode to check whether a
physical address is in a RAM region or not.
Signed-off-by: Quentin Perret <qperret@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210809152448.1810400-16-qperret@google.com
Allow references to the hypervisor's owner id from outside
mem_protect.c.
Signed-off-by: Quentin Perret <qperret@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210809152448.1810400-15-qperret@google.com
We will need to manipulate the host stage-2 page-table from outside
mem_protect.c soon. Introduce two functions allowing this, and make
them usable to users of mem_protect.h.
Signed-off-by: Quentin Perret <qperret@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210809152448.1810400-14-qperret@google.com
We will soon start annotating shared pages in page-tables in nVHE
protected mode. Define all the states in which a page can be (owned,
shared and owned, shared and borrowed), and provide helpers allowing to
convert this into SW bits annotations using the matching prot
attributes.
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210809152448.1810400-13-qperret@google.com
Introduce infrastructure allowing to manipulate software bits in stage-1
and stage-2 page-tables using additional entries in the kvm_pgtable_prot
enum.
This is heavily inspired by Marc's implementation of a similar feature
in the NV patch series, but adapted to allow stage-1 changes as well:
https://lore.kernel.org/kvmarm/20210510165920.1913477-56-maz@kernel.org/
Suggested-by: Marc Zyngier <maz@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210809152448.1810400-12-qperret@google.com
Much of the stage-2 manipulation logic relies on being able to destroy
block mappings if e.g. installing a smaller mapping in the range. The
rationale for this behaviour is that stage-2 mappings can always be
re-created lazily. However, this gets more complicated when the stage-2
page-table is used to store metadata about the underlying pages. In such
cases, destroying a block mapping may lead to losing part of the state,
and confuse the user of those metadata (such as the hypervisor in nVHE
protected mode).
To avoid this, introduce a callback function in the pgtable struct which
is called during all map operations to determine whether the mappings
can use blocks, or should be forced to page granularity. This is used by
the hypervisor when creating the host stage-2 to force page-level
mappings when using non-default protection attributes.
Signed-off-by: Quentin Perret <qperret@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210809152448.1810400-11-qperret@google.com
The current hypervisor stage-1 mapping code doesn't allow changing an
existing valid mapping. Relax this condition by allowing changes that
only target software bits, as that will soon be needed to annotate shared
pages.
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210809152448.1810400-10-qperret@google.com
We will soon start annotating page-tables with new flags to track shared
pages and such, and we will do so in valid mappings using software bits
in the PTEs, as provided by the architecture. However, it is possible
that we will need to use those flags to annotate invalid mappings as
well in the future, similar to what we do to track page ownership in the
host stage-2.
In order to facilitate the annotation of invalid mappings with such
flags, it would be preferable to re-use the same bits as for valid
mappings (bits [58-55]), but these are currently used for ownership
encoding. Since we have plenty of bits left to use in invalid
mappings, move the ownership bits further down the PTE to avoid the
conflict.
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210809152448.1810400-9-qperret@google.com
The ignored bits for both stage-1 and stage-2 page and block
descriptors are in [55:58], so rename KVM_PTE_LEAF_ATTR_S2_IGNORED to
make it applicable to both. And while at it, since these bits are more
commonly known as 'software' bits, rename accordingly.
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210809152448.1810400-8-qperret@google.com
The kvm_pgtable_stage2_find_range() function is used in the host memory
abort path to try and look for the largest block mapping that can be
used to map the faulting address. In order to do so, the function
currently walks the stage-2 page-table and looks for existing
incompatible mappings within the range of the largest possible block.
If incompatible mappings are found, it tries the same procedure again,
but using a smaller block range, and repeats until a matching range is
found (potentially up to page granularity). While this approach has
benefits (mostly in the fact that it proactively coalesces host stage-2
mappings), it can be slow if the ranges are fragmented, and it isn't
optimized to deal with CPUs faulting on the same IPA as all of them will
do all the work every time.
To avoid these issues, remove kvm_pgtable_stage2_find_range(), and walk
the page-table only once in the host_mem_abort() path to find the
closest leaf to the input address. With this, use the corresponding
range if it is invalid and not owned by another entity. If a valid leaf
is found, return -EAGAIN similar to what is done in the
kvm_pgtable_stage2_map() path to optimize concurrent faults.
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210809152448.1810400-7-qperret@google.com
The KVM pgtable API exposes the kvm_pgtable_walk() function to allow
the definition of walkers outside of pgtable.c. However, it is not easy
to implement any of those walkers without some of the low-level helpers.
Move some of them to the header file to allow re-use from other places.
Signed-off-by: Quentin Perret <qperret@google.com>
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210809152448.1810400-6-qperret@google.com
We currently unmap all MMIO mappings from the host stage-2 to recycle
the pages whenever we run out. In order to make this pattern easy to
re-use from other places, factor the logic out into a dedicated macro.
While at it, apply the macro for the kvm_pgtable_stage2_set_owner()
calls. They're currently only called early on and are guaranteed to
succeed, but making them robust to the -ENOMEM case doesn't hurt and
will avoid painful debugging sessions later on.
Reviewed-by: Fuad Tabba <tabba@google.com>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210809152448.1810400-4-qperret@google.com
Introduce a poor man's lockdep implementation at EL2 which allows to
BUG() whenever a hyp spinlock is not held when it should. Hide this
feature behind a new Kconfig option that targets the EL2 object
specifically, instead of piggy backing on the existing CONFIG_LOCKDEP.
EL2 cannot WARN() cleanly to report locking issues, hence BUG() is the
only option and it is not clear whether we want this widely enabled.
This is most likely going to be useful for local testing until the EL2
WARN() situation has improved.
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210809152448.1810400-3-qperret@google.com
Introduce hyp_spin_is_locked() so that functions can easily assert that
a given lock is held (albeit possibly by another CPU!) without having to
drag full lockdep support up to EL2.
Signed-off-by: Will Deacon <will@kernel.org>
Signed-off-by: Quentin Perret <qperret@google.com>
Signed-off-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20210809152448.1810400-2-qperret@google.com