If kvm->arch.tdp_mmu_zap_wq cannot be created, the failure has
to be propagated up to kvm_mmu_init_vm and kvm_arch_init_vm.
kvm_arch_init_vm also has to undo all the initialization, so
group all the MMU initialization code at the beginning and
handle cleaning up of kvm_page_track_init.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit cf3e26427c.
Multi-vCPU Hyper-V guests started crashing randomly on boot with the
latest kvm/queue and the problem can be bisected the problem to this
particular patch. Basically, I'm not able to boot e.g. 16-vCPU guest
successfully anymore. Both Intel and AMD seem to be affected. Reverting
the commit saves the day.
Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since "KVM: x86/mmu: Zap only TDP MMU leafs in kvm_zap_gfn_range()"
is going to be reverted, it's not going to be true anymore that
the zap-page flow does not free any 'struct kvm_mmu_page'. Introduce
an early flush before tdp_mmu_zap_leafs() returns, to preserve
bisectability.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disallow calling tdp_mmu_set_spte_atomic() with a REMOVED "old" SPTE.
This solves a conundrum introduced by commit 3255530ab1 ("KVM: x86/mmu:
Automatically update iter->old_spte if cmpxchg fails"); if the helper
doesn't update old_spte in the REMOVED case, then theoretically the
caller could get stuck in an infinite loop as it will fail indefinitely
on the REMOVED SPTE. E.g. until recently, clear_dirty_gfn_range() didn't
check for a present SPTE and would have spun until getting rescheduled.
In practice, only the page fault path should "create" a new SPTE, all
other paths should only operate on existing, a.k.a. shadow present,
SPTEs. Now that the page fault path pre-checks for a REMOVED SPTE in all
cases, require all other paths to indirectly pre-check by verifying the
target SPTE is a shadow-present SPTE.
Note, this does not guarantee the actual SPTE isn't REMOVED, nor is that
scenario disallowed. The invariant is only that the caller mustn't
invoke tdp_mmu_set_spte_atomic() if the SPTE was REMOVED when last
observed by the caller.
Cc: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220226001546.360188-25-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly check for a REMOVED leaf SPTE prior to attempting to map
the final SPTE when handling a TDP MMU fault. Functionally, this is a
nop as tdp_mmu_set_spte_atomic() will eventually detect the frozen SPTE.
Pre-checking for a REMOVED SPTE is a minor optmization, but the real goal
is to allow tdp_mmu_set_spte_atomic() to have an invariant that the "old"
SPTE is never a REMOVED SPTE.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-24-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Zap defunct roots, a.k.a. roots that have been invalidated after their
last reference was initially dropped, asynchronously via the existing work
queue instead of forcing the work upon the unfortunate task that happened
to drop the last reference.
If a vCPU task drops the last reference, the vCPU is effectively blocked
by the host for the entire duration of the zap. If the root being zapped
happens be fully populated with 4kb leaf SPTEs, e.g. due to dirty logging
being active, the zap can take several hundred seconds. Unsurprisingly,
most guests are unhappy if a vCPU disappears for hundreds of seconds.
E.g. running a synthetic selftest that triggers a vCPU root zap with
~64tb of guest memory and 4kb SPTEs blocks the vCPU for 900+ seconds.
Offloading the zap to a worker drops the block time to <100ms.
There is an important nuance to this change. If the same work item
was queued twice before the work function has run, it would only
execute once and one reference would be leaked. Therefore, now that
queueing and flushing items is not anymore protected by kvm->slots_lock,
kvm_tdp_mmu_invalidate_all_roots() has to check root->role.invalid and
skip already invalid roots. On the other hand, kvm_mmu_zap_all_fast()
must return only after those skipped roots have been zapped as well.
These two requirements can be satisfied only if _all_ places that
change invalid to true now schedule the worker before releasing the
mmu_lock. There are just two, kvm_tdp_mmu_put_root() and
kvm_tdp_mmu_invalidate_all_roots().
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-23-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When zapping a TDP MMU root, perform the zap in two passes to avoid
zapping an entire top-level SPTE while holding RCU, which can induce RCU
stalls. In the first pass, zap SPTEs at PG_LEVEL_1G, and then
zap top-level entries in the second pass.
With 4-level paging, zapping a PGD that is fully populated with 4kb leaf
SPTEs take up to ~7 or so seconds (time varies based on kernel config,
number of (v)CPUs, etc...). With 5-level paging, that time can balloon
well into hundreds of seconds.
Before remote TLB flushes were omitted, the problem was even worse as
waiting for all active vCPUs to respond to the IPI introduced significant
overhead for VMs with large numbers of vCPUs.
By zapping 1gb SPTEs (both shadow pages and hugepages) in the first pass,
the amount of work that is done without dropping RCU protection is
strictly bounded, with the worst case latency for a single operation
being less than 100ms.
Zapping at 1gb in the first pass is not arbitrary. First and foremost,
KVM relies on being able to zap 1gb shadow pages in a single shot when
when repacing a shadow page with a hugepage. Zapping a 1gb shadow page
that is fully populated with 4kb dirty SPTEs also triggers the worst case
latency due writing back the struct page accessed/dirty bits for each 4kb
page, i.e. the two-pass approach is guaranteed to work so long as KVM can
cleany zap a 1gb shadow page.
rcu: INFO: rcu_sched self-detected stall on CPU
rcu: 52-....: (20999 ticks this GP) idle=7be/1/0x4000000000000000
softirq=15759/15759 fqs=5058
(t=21016 jiffies g=66453 q=238577)
NMI backtrace for cpu 52
Call Trace:
...
mark_page_accessed+0x266/0x2f0
kvm_set_pfn_accessed+0x31/0x40
handle_removed_tdp_mmu_page+0x259/0x2e0
__handle_changed_spte+0x223/0x2c0
handle_removed_tdp_mmu_page+0x1c1/0x2e0
__handle_changed_spte+0x223/0x2c0
handle_removed_tdp_mmu_page+0x1c1/0x2e0
__handle_changed_spte+0x223/0x2c0
zap_gfn_range+0x141/0x3b0
kvm_tdp_mmu_zap_invalidated_roots+0xc8/0x130
kvm_mmu_zap_all_fast+0x121/0x190
kvm_mmu_invalidate_zap_pages_in_memslot+0xe/0x10
kvm_page_track_flush_slot+0x5c/0x80
kvm_arch_flush_shadow_memslot+0xe/0x10
kvm_set_memslot+0x172/0x4e0
__kvm_set_memory_region+0x337/0x590
kvm_vm_ioctl+0x49c/0xf80
Reported-by: David Matlack <dmatlack@google.com>
Cc: Ben Gardon <bgardon@google.com>
Cc: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-22-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Allow yielding when zapping SPTEs after the last reference to a valid
root is put. Because KVM must drop all SPTEs in response to relevant
mmu_notifier events, mark defunct roots invalid and reset their refcount
prior to zapping the root. Keeping the refcount elevated while the zap
is in-progress ensures the root is reachable via mmu_notifier until the
zap completes and the last reference to the invalid, defunct root is put.
Allowing kvm_tdp_mmu_put_root() to yield fixes soft lockup issues if the
root in being put has a massive paging structure, e.g. zapping a root
that is backed entirely by 4kb pages for a guest with 32tb of memory can
take hundreds of seconds to complete.
watchdog: BUG: soft lockup - CPU#49 stuck for 485s! [max_guest_memor:52368]
RIP: 0010:kvm_set_pfn_dirty+0x30/0x50 [kvm]
__handle_changed_spte+0x1b2/0x2f0 [kvm]
handle_removed_tdp_mmu_page+0x1a7/0x2b8 [kvm]
__handle_changed_spte+0x1f4/0x2f0 [kvm]
handle_removed_tdp_mmu_page+0x1a7/0x2b8 [kvm]
__handle_changed_spte+0x1f4/0x2f0 [kvm]
tdp_mmu_zap_root+0x307/0x4d0 [kvm]
kvm_tdp_mmu_put_root+0x7c/0xc0 [kvm]
kvm_mmu_free_roots+0x22d/0x350 [kvm]
kvm_mmu_reset_context+0x20/0x60 [kvm]
kvm_arch_vcpu_ioctl_set_sregs+0x5a/0xc0 [kvm]
kvm_vcpu_ioctl+0x5bd/0x710 [kvm]
__se_sys_ioctl+0x77/0xc0
__x64_sys_ioctl+0x1d/0x20
do_syscall_64+0x44/0xa0
entry_SYSCALL_64_after_hwframe+0x44/0xae
KVM currently doesn't put a root from a non-preemptible context, so other
than the mmu_notifier wrinkle, yielding when putting a root is safe.
Yield-unfriendly iteration uses for_each_tdp_mmu_root(), which doesn't
take a reference to each root (it requires mmu_lock be held for the
entire duration of the walk).
tdp_mmu_next_root() is used only by the yield-friendly iterator.
tdp_mmu_zap_root_work() is explicitly yield friendly.
kvm_mmu_free_roots() => mmu_free_root_page() is a much bigger fan-out,
but is still yield-friendly in all call sites, as all callers can be
traced back to some combination of vcpu_run(), kvm_destroy_vm(), and/or
kvm_create_vm().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220226001546.360188-21-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the system worker threads to zap the roots invalidated
by the TDP MMU's "fast zap" mechanism, implemented by
kvm_tdp_mmu_invalidate_all_roots().
At this point, apart from allowing some parallelism in the zapping of
roots, the workqueue is a glorified linked list: work items are added and
flushed entirely within a single kvm->slots_lock critical section. However,
the workqueue fixes a latent issue where kvm_mmu_zap_all_invalidated_roots()
assumes that it owns a reference to all invalid roots; therefore, no
one can set the invalid bit outside kvm_mmu_zap_all_fast(). Putting the
invalidated roots on a linked list... erm, on a workqueue ensures that
tdp_mmu_zap_root_work() only puts back those extra references that
kvm_mmu_zap_all_invalidated_roots() had gifted to it.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Defer TLB flushes to the caller when freeing TDP MMU shadow pages instead
of immediately flushing. Because the shadow pages are freed in an RCU
callback, so long as at least one CPU holds RCU, all CPUs are protected.
For vCPUs running in the guest, i.e. consuming TLB entries, KVM only
needs to ensure the caller services the pending TLB flush before dropping
its RCU protections. I.e. use the caller's RCU as a proxy for all vCPUs
running in the guest.
Deferring the flushes allows batching flushes, e.g. when installing a
1gb hugepage and zapping a pile of SPs. And when zapping an entire root,
deferring flushes allows skipping the flush entirely (because flushes are
not needed in that case).
Avoiding flushes when zapping an entire root is especially important as
synchronizing with other CPUs via IPI after zapping every shadow page can
cause significant performance issues for large VMs. The issue is
exacerbated by KVM zapping entire top-level entries without dropping
RCU protection, which can lead to RCU stalls even when zapping roots
backing relatively "small" amounts of guest memory, e.g. 2tb. Removing
the IPI bottleneck largely mitigates the RCU issues, though it's likely
still a problem for 5-level paging. A future patch will further address
the problem by zapping roots in multiple passes to avoid holding RCU for
an extended duration.
Reviewed-by: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220226001546.360188-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When yielding in the TDP MMU iterator, service any pending TLB flush
before dropping RCU protections in anticipation of using the caller's RCU
"lock" as a proxy for vCPUs in the guest.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-19-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Zap only leaf SPTEs in the TDP MMU's zap_gfn_range(), and rename various
functions accordingly. When removing mappings for functional correctness
(except for the stupid VFIO GPU passthrough memslots bug), zapping the
leaf SPTEs is sufficient as the paging structures themselves do not point
at guest memory and do not directly impact the final translation (in the
TDP MMU).
Note, this aligns the TDP MMU with the legacy/full MMU, which zaps only
the rmaps, a.k.a. leaf SPTEs, in kvm_zap_gfn_range() and
kvm_unmap_gfn_range().
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-18-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that all callers of zap_gfn_range() hold mmu_lock for write, drop
support for zapping with mmu_lock held for read. That all callers hold
mmu_lock for write isn't a random coincidence; now that the paths that
need to zap _everything_ have their own path, the only callers left are
those that need to zap for functional correctness. And when zapping is
required for functional correctness, mmu_lock must be held for write,
otherwise the caller has no guarantees about the state of the TDP MMU
page tables after it has run, e.g. the SPTE(s) it zapped can be
immediately replaced by a vCPU faulting in a page.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-17-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a dedicated helper for zapping a TDP MMU root, and use it in the three
flows that do "zap_all" and intentionally do not do a TLB flush if SPTEs
are zapped (zapping an entire root is safe if and only if it cannot be in
use by any vCPU). Because a TLB flush is never required, unconditionally
pass "false" to tdp_mmu_iter_cond_resched() when potentially yielding.
Opportunistically document why KVM must not yield when zapping roots that
are being zapped by kvm_tdp_mmu_put_root(), i.e. roots whose refcount has
reached zero, and further harden the flow to detect improper KVM behavior
with respect to roots that are supposed to be unreachable.
In addition to hardening zapping of roots, isolating zapping of roots
will allow future simplification of zap_gfn_range() by having it zap only
leaf SPTEs, and by removing its tricky "zap all" heuristic. By having
all paths that truly need to free _all_ SPs flow through the dedicated
root zapper, the generic zapper can be freed of those concerns.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-16-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't flush the TLBs when zapping all TDP MMU pages, as the only time KVM
uses the slow version of "zap everything" is when the VM is being
destroyed or the owning mm has exited. In either case, KVM_RUN is
unreachable for the VM, i.e. the guest TLB entries cannot be consumed.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-15-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When recovering a potential hugepage that was shattered for the iTLB
multihit workaround, precisely zap only the target page instead of
iterating over the TDP MMU to find the SP that was passed in. This will
allow future simplification of zap_gfn_range() by having it zap only
leaf SPTEs.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220226001546.360188-14-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refactor __tdp_mmu_set_spte() to work with raw values instead of a
tdp_iter objects so that a future patch can modify SPTEs without doing a
walk, and without having to synthesize a tdp_iter.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-13-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
WARN if the new_spte being set by __tdp_mmu_set_spte() is a REMOVED_SPTE,
which is called out by the comment as being disallowed but not actually
checked. Keep the WARN on the old_spte as well, because overwriting a
REMOVED_SPTE in the non-atomic path is also disallowed (as evidence by
lack of splats with the existing WARN).
Fixes: 08f07c800e ("KVM: x86/mmu: Flush TLBs after zap in TDP MMU PF handler")
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-12-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add helpers to read and write TDP MMU SPTEs instead of open coding
rcu_dereference() all over the place, and to provide a convenient
location to document why KVM doesn't exempt holding mmu_lock for write
from having to hold RCU (and any future changes to the rules).
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-11-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop RCU protection after processing each root when handling MMU notifier
hooks that aren't the "unmap" path, i.e. aren't zapping. Temporarily
drop RCU to let RCU do its thing between roots, and to make it clear that
there's no special behavior that relies on holding RCU across all roots.
Currently, the RCU protection is completely superficial, it's necessary
only to make rcu_dereference() of SPTE pointers happy. A future patch
will rely on holding RCU as a proxy for vCPUs in the guest, e.g. to
ensure shadow pages aren't freed before all vCPUs do a TLB flush (or
rather, acknowledge the need for a flush), but in that case RCU needs to
be held until the flush is complete if and only if the flush is needed
because a shadow page may have been removed. And except for the "unmap"
path, MMU notifier events cannot remove SPs (don't toggle PRESENT bit,
and can't change the PFN for a SP).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-10-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Batch TLB flushes (with other MMUs) when handling ->change_spte()
notifications in the TDP MMU. The MMU notifier path in question doesn't
allow yielding and correcty flushes before dropping mmu_lock.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-9-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Look for a !leaf=>leaf conversion instead of a PFN change when checking
if a SPTE change removed a TDP MMU shadow page. Convert the PFN check
into a WARN, as KVM should never change the PFN of a shadow page (except
when its being zapped or replaced).
From a purely theoretical perspective, it's not illegal to replace a SP
with a hugepage pointing at the same PFN. In practice, it's impossible
as that would require mapping guest memory overtop a kernel-allocated SP.
Either way, the check is odd.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-8-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the "shared" argument of for_each_tdp_mmu_root_yield_safe, thus ensuring
that readers do not ever acquire a reference to an invalid root. After this
patch, all readers except kvm_tdp_mmu_zap_invalidated_roots() treat
refcount=0/valid, refcount=0/invalid and refcount=1/invalid in exactly the
same way. kvm_tdp_mmu_zap_invalidated_roots() is different but it also
does not acquire a reference to the invalid root, and it cannot see
refcount=0/invalid because it is guaranteed to run after
kvm_tdp_mmu_invalidate_all_roots().
Opportunistically add a lockdep assertion to the yield-safe iterator.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Eager page splitting is an optimization; it does not have to be performed on
invalid roots. It is also the only case in which a reader might acquire
a reference to an invalid root, so after this change we know that readers
will skip both dying and invalid roots.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Assert that mmu_lock is held for write by users of the yield-unfriendly
TDP iterator. The nature of a shared walk means that the caller needs to
play nice with other tasks modifying the page tables, which is more or
less the same thing as playing nice with yielding. Theoretically, KVM
could gain a flow where it could legitimately take mmu_lock for read in
a non-preemptible context, but that's highly unlikely and any such case
should be viewed with a fair amount of scrutiny.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Remove the misleading flush "handling" when zapping invalidated TDP MMU
roots, and document that flushing is unnecessary for all flavors of MMUs
when zapping invalid/obsolete roots/pages. The "handling" in the TDP MMU
is dead code, as zap_gfn_range() is called with shared=true, in which
case it will never return true due to the flushing being handled by
tdp_mmu_zap_spte_atomic().
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly ignore the result of zap_gfn_range() when putting the last
reference to a TDP MMU root, and add a pile of comments to formalize the
TDP MMU's behavior of deferring TLB flushes to alloc/reuse. Note, this
only affects the !shared case, as zap_gfn_range() subtly never returns
true for "flush" as the flush is handled by tdp_mmu_zap_spte_atomic().
Putting the root without a flush is ok because even if there are stale
references to the root in the TLB, they are unreachable because KVM will
not run the guest with the same ASID without first flushing (where ASID
in this context refers to both SVM's explicit ASID and Intel's implicit
ASID that is constructed from VPID+PCID+EPT4A+etc...).
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220226001546.360188-5-seanjc@google.com>
Reviewed-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fix misleading and arguably wrong comments in the TDP MMU's fast zap
flow. The comments, and the fact that actually zapping invalid roots was
added separately, strongly suggests that zapping invalid roots is an
optimization and not required for correctness. That is a lie.
KVM _must_ zap invalid roots before returning from kvm_mmu_zap_all_fast(),
because when it's called from kvm_mmu_invalidate_zap_pages_in_memslot(),
KVM is relying on it to fully remove all references to the memslot. Once
the memslot is gone, KVM's mmu_notifier hooks will be unable to find the
stale references as the hva=>gfn translation is done via the memslots.
If KVM doesn't immediately zap SPTEs and userspace unmaps a range after
deleting a memslot, KVM will fail to zap in response to the mmu_notifier
due to not finding a memslot corresponding to the notifier's range, which
leads to a variation of use-after-free.
The other misleading comment (and code) explicitly states that roots
without a reference should be skipped. While that's technically true,
it's also extremely misleading as it should be impossible for KVM to
encounter a defunct root on the list while holding mmu_lock for write.
Opportunistically add a WARN to enforce that invariant.
Fixes: b7cccd397f ("KVM: x86/mmu: Fast invalidation for TDP MMU")
Fixes: 4c6654bd16 ("KVM: x86/mmu: Tear down roots before kvm_mmu_zap_all_fast returns")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly check for present SPTEs when clearing dirty bits in the TDP
MMU. This isn't strictly required for correctness, as setting the dirty
bit in a defunct SPTE will not change the SPTE from !PRESENT to PRESENT.
However, the guarded MMU_WARN_ON() in spte_ad_need_write_protect() would
complain if anyone actually turned on KVM's MMU debugging.
Fixes: a6a0b05da9 ("kvm: x86/mmu: Support dirty logging for the TDP MMU")
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220226001546.360188-3-seanjc@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The root_hpa and root_pgd fields form essentially a struct kvm_mmu_root_info.
Use the struct to have more consistency between mmu->root and
mmu->prev_roots.
The patch is entirely search and replace except for cached_root_available,
which does not need a temporary struct kvm_mmu_root_info anymore.
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a tracepoint that records whenever KVM eagerly splits a huge page
and the error status of the split to indicate if it succeeded or failed
and why.
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-18-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When using KVM_DIRTY_LOG_INITIALLY_SET, huge pages are not
write-protected when dirty logging is enabled on the memslot. Instead
they are write-protected once userspace invokes KVM_CLEAR_DIRTY_LOG for
the first time and only for the specific sub-region being cleared.
Enhance KVM_CLEAR_DIRTY_LOG to also try to split huge pages prior to
write-protecting to avoid causing write-protection faults on vCPU
threads. This also allows userspace to smear the cost of huge page
splitting across multiple ioctls, rather than splitting the entire
memslot as is the case when initially-all-set is not used.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-17-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When dirty logging is enabled without initially-all-set, try to split
all huge pages in the memslot down to 4KB pages so that vCPUs do not
have to take expensive write-protection faults to split huge pages.
Eager page splitting is best-effort only. This commit only adds the
support for the TDP MMU, and even there splitting may fail due to out
of memory conditions. Failures to split a huge page is fine from a
correctness standpoint because KVM will always follow up splitting by
write-protecting any remaining huge pages.
Eager page splitting moves the cost of splitting huge pages off of the
vCPU threads and onto the thread enabling dirty logging on the memslot.
This is useful because:
1. Splitting on the vCPU thread interrupts vCPUs execution and is
disruptive to customers whereas splitting on VM ioctl threads can
run in parallel with vCPU execution.
2. Splitting all huge pages at once is more efficient because it does
not require performing VM-exit handling or walking the page table for
every 4KiB page in the memslot, and greatly reduces the amount of
contention on the mmu_lock.
For example, when running dirty_log_perf_test with 96 virtual CPUs, 1GiB
per vCPU, and 1GiB HugeTLB memory, the time it takes vCPUs to write to
all of their memory after dirty logging is enabled decreased by 95% from
2.94s to 0.14s.
Eager Page Splitting is over 100x more efficient than the current
implementation of splitting on fault under the read lock. For example,
taking the same workload as above, Eager Page Splitting reduced the CPU
required to split all huge pages from ~270 CPU-seconds ((2.94s - 0.14s)
* 96 vCPU threads) to only 1.55 CPU-seconds.
Eager page splitting does increase the amount of time it takes to enable
dirty logging since it has split all huge pages. For example, the time
it took to enable dirty logging in the 96GiB region of the
aforementioned test increased from 0.001s to 1.55s.
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-16-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Separate the allocation of shadow pages from their initialization. This
is in preparation for splitting huge pages outside of the vCPU fault
context, which requires a different allocation mechanism.
No functional changed intended.
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-15-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Derive the page role from the parent shadow page, since the only thing
that changes is the level. This is in preparation for splitting huge
pages during VM-ioctls which do not have access to the vCPU MMU context.
No functional change intended.
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-14-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The vCPU's mmu_role already has the correct values for direct,
has_4_byte_gpte, access, and ad_disabled. Remove the code that was
redundantly overwriting these fields with the same values.
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-13-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Instead of passing a pointer to the root page table and the root level
separately, pass in a pointer to the root kvm_mmu_page struct. This
reduces the number of arguments by 1, cutting down on line lengths.
No functional change intended.
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-12-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Consolidate the logic to atomically replace an SPTE with an SPTE that
points to a new page table into a single helper function. This will be
used in a follow-up commit to split huge pages, which involves replacing
each huge page SPTE with an SPTE that points to a page table.
Opportunistically drop the call to trace_kvm_mmu_get_page() in
kvm_tdp_mmu_map() since it is redundant with the identical tracepoint in
tdp_mmu_alloc_sp().
No functional change intended.
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-8-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
First remove tdp_mmu_ from the name since it is redundant given that it
is a static function in tdp_mmu.c. There is a pattern of using tdp_mmu_
as a prefix in the names of static TDP MMU functions, but all of the
other handle_*() variants do not include such a prefix. So drop it
entirely.
Then change "page" to "pt" to convey that this is operating on a page
table rather than an struct page. Purposely use "pt" instead of "sp"
since this function takes the raw RCU-protected page table pointer as an
argument rather than a pointer to the struct kvm_mmu_page.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-7-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename 3 functions in tdp_mmu.c that handle shadow pages:
alloc_tdp_mmu_page() -> tdp_mmu_alloc_sp()
tdp_mmu_link_page() -> tdp_mmu_link_sp()
tdp_mmu_unlink_page() -> tdp_mmu_unlink_sp()
These changed make tdp_mmu a consistent prefix before the verb in the
function name, and make it more clear that these functions deal with
kvm_mmu_page structs rather than struct pages.
One could argue that "shadow page" is the wrong term for a page table in
the TDP MMU since it never actually shadows a guest page table.
However, "shadow page" (or "sp" for short) has evolved to become the
standard term in KVM when referring to a kvm_mmu_page struct, and its
associated page table and other metadata, regardless of whether the page
table shadows a guest page table. So this commit just makes the TDP MMU
more consistent with the rest of KVM.
No functional change intended.
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-6-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
tdp_mmu_set_spte_atomic() and tdp_mmu_zap_spte_atomic() return a bool
with true indicating the SPTE modification was successful and false
indicating failure. Change these functions to return an int instead
since that is the common practice.
Opportunistically fix up the kernel-doc style for the Return section
above tdp_mmu_set_spte_atomic().
No functional change intended.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-5-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Consolidate a bunch of code that was manually re-reading the spte if the
cmpxchg failed. There is no extra cost of doing this because we already
have the spte value as a result of the cmpxchg (and in fact this
eliminates re-reading the spte), and none of the call sites depend on
iter->old_spte retaining the stale spte value.
Reviewed-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220119230739.2234394-4-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Check SPTE writable invariants when setting SPTEs rather than in
spte_can_locklessly_be_made_writable(). By the time KVM checks
spte_can_locklessly_be_made_writable(), the SPTE has long been since
corrupted.
Note that these invariants only apply to shadow-present leaf SPTEs (i.e.
not to MMIO SPTEs, non-leaf SPTEs, etc.). Add a comment explaining the
restriction and only instrument the code paths that set shadow-present
leaf SPTEs.
To account for access tracking, also check the SPTE writable invariants
when marking an SPTE as an access track SPTE. This also lets us remove
a redundant WARN from mark_spte_for_access_track().
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220125230518.1697048-3-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The "struct kvm *kvm" parameter of kvm_tdp_mmu_get_root() is not used,
so remove it. No functional change intended.
Signed-off-by: Jinrong Liang <cloudliang@tencent.com>
Message-Id: <20220125095909.38122-5-cloudliang@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Zap both valid and invalid roots when zapping/unmapping a gfn range, as
KVM must ensure it holds no references to the freed page after returning
from the unmap operation. Most notably, the TDP MMU doesn't zap invalid
roots in mmu_notifier callbacks. This leads to use-after-free and other
issues if the mmu_notifier runs to completion while an invalid root
zapper yields as KVM fails to honor the requirement that there must be
_no_ references to the page after the mmu_notifier returns.
The bug is most easily reproduced by hacking KVM to cause a collision
between set_nx_huge_pages() and kvm_mmu_notifier_release(), but the bug
exists between kvm_mmu_notifier_invalidate_range_start() and memslot
updates as well. Invalidating a root ensures pages aren't accessible by
the guest, and KVM won't read or write page data itself, but KVM will
trigger e.g. kvm_set_pfn_dirty() when zapping SPTEs, and thus completing
a zap of an invalid root _after_ the mmu_notifier returns is fatal.
WARNING: CPU: 24 PID: 1496 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:173 [kvm]
RIP: 0010:kvm_is_zone_device_pfn+0x96/0xa0 [kvm]
Call Trace:
<TASK>
kvm_set_pfn_dirty+0xa8/0xe0 [kvm]
__handle_changed_spte+0x2ab/0x5e0 [kvm]
__handle_changed_spte+0x2ab/0x5e0 [kvm]
__handle_changed_spte+0x2ab/0x5e0 [kvm]
zap_gfn_range+0x1f3/0x310 [kvm]
kvm_tdp_mmu_zap_invalidated_roots+0x50/0x90 [kvm]
kvm_mmu_zap_all_fast+0x177/0x1a0 [kvm]
set_nx_huge_pages+0xb4/0x190 [kvm]
param_attr_store+0x70/0x100
module_attr_store+0x19/0x30
kernfs_fop_write_iter+0x119/0x1b0
new_sync_write+0x11c/0x1b0
vfs_write+0x1cc/0x270
ksys_write+0x5f/0xe0
do_syscall_64+0x38/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
</TASK>
Fixes: b7cccd397f ("KVM: x86/mmu: Fast invalidation for TDP MMU")
Cc: stable@vger.kernel.org
Cc: Ben Gardon <bgardon@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211215011557.399940-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the check for an invalid root out of kvm_tdp_mmu_get_root() and into
the one place it actually matters, tdp_mmu_next_root(), as the other user
already has an implicit validity check. A future bug fix will need to
get references to invalid roots to honor mmu_notifier requests; there's
no point in forcing what will be a common path to open code getting a
reference to a root.
No functional change intended.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211215011557.399940-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the common TDP MMU zap helper when handling an MMU notifier unmap
event, the two flows are semantically identical. Consolidate the code in
preparation for a future bug fix, as both kvm_tdp_mmu_unmap_gfn_range()
and __kvm_tdp_mmu_zap_gfn_range() are guilty of not zapping SPTEs in
invalid roots.
No functional change intended.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211215011557.399940-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When the TDP MMU is write-protection GFNs for page table protection (as
opposed to for dirty logging, or due to the HVA not being writable), it
checks if the SPTE is already write-protected and if so skips modifying
the SPTE and the TLB flush.
This behavior is incorrect because it fails to check if the SPTE
is write-protected for page table protection, i.e. fails to check
that MMU-writable is '0'. If the SPTE was write-protected for dirty
logging but not page table protection, the SPTE could locklessly be made
writable, and vCPUs could still be running with writable mappings cached
in their TLB.
Fix this by only skipping setting the SPTE if the SPTE is already
write-protected *and* MMU-writable is already clear. Technically,
checking only MMU-writable would suffice; a SPTE cannot be writable
without MMU-writable being set. But check both to be paranoid and
because it arguably yields more readable code.
Fixes: 46044f72c3 ("kvm: x86/mmu: Support write protection for nesting in tdp MMU")
Cc: stable@vger.kernel.org
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220113233020.3986005-2-dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Pick commit fdba608f15 ("KVM: VMX: Wake vCPU when delivering posted
IRQ even if vCPU == this vCPU"). In addition to fixing a bug, it
also aligns the non-nested and nested usage of triggering posted
interrupts, allowing for additional cleanups.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
After dropping mmu_lock in the TDP MMU, restart the iterator during
tdp_iter_next() and do not advance the iterator. Advancing the iterator
results in skipping the top-level SPTE and all its children, which is
fatal if any of the skipped SPTEs were not visited before yielding.
When zapping all SPTEs, i.e. when min_level == root_level, restarting the
iter and then invoking tdp_iter_next() is always fatal if the current gfn
has as a valid SPTE, as advancing the iterator results in try_step_side()
skipping the current gfn, which wasn't visited before yielding.
Sprinkle WARNs on iter->yielded being true in various helpers that are
often used in conjunction with yielding, and tag the helper with
__must_check to reduce the probabily of improper usage.
Failing to zap a top-level SPTE manifests in one of two ways. If a valid
SPTE is skipped by both kvm_tdp_mmu_zap_all() and kvm_tdp_mmu_put_root(),
the shadow page will be leaked and KVM will WARN accordingly.
WARNING: CPU: 1 PID: 3509 at arch/x86/kvm/mmu/tdp_mmu.c:46 [kvm]
RIP: 0010:kvm_mmu_uninit_tdp_mmu+0x3e/0x50 [kvm]
Call Trace:
<TASK>
kvm_arch_destroy_vm+0x130/0x1b0 [kvm]
kvm_destroy_vm+0x162/0x2a0 [kvm]
kvm_vcpu_release+0x34/0x60 [kvm]
__fput+0x82/0x240
task_work_run+0x5c/0x90
do_exit+0x364/0xa10
? futex_unqueue+0x38/0x60
do_group_exit+0x33/0xa0
get_signal+0x155/0x850
arch_do_signal_or_restart+0xed/0x750
exit_to_user_mode_prepare+0xc5/0x120
syscall_exit_to_user_mode+0x1d/0x40
do_syscall_64+0x48/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
If kvm_tdp_mmu_zap_all() skips a gfn/SPTE but that SPTE is then zapped by
kvm_tdp_mmu_put_root(), KVM triggers a use-after-free in the form of
marking a struct page as dirty/accessed after it has been put back on the
free list. This directly triggers a WARN due to encountering a page with
page_count() == 0, but it can also lead to data corruption and additional
errors in the kernel.
WARNING: CPU: 7 PID: 1995658 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:171
RIP: 0010:kvm_is_zone_device_pfn.part.0+0x9e/0xd0 [kvm]
Call Trace:
<TASK>
kvm_set_pfn_dirty+0x120/0x1d0 [kvm]
__handle_changed_spte+0x92e/0xca0 [kvm]
__handle_changed_spte+0x63c/0xca0 [kvm]
__handle_changed_spte+0x63c/0xca0 [kvm]
__handle_changed_spte+0x63c/0xca0 [kvm]
zap_gfn_range+0x549/0x620 [kvm]
kvm_tdp_mmu_put_root+0x1b6/0x270 [kvm]
mmu_free_root_page+0x219/0x2c0 [kvm]
kvm_mmu_free_roots+0x1b4/0x4e0 [kvm]
kvm_mmu_unload+0x1c/0xa0 [kvm]
kvm_arch_destroy_vm+0x1f2/0x5c0 [kvm]
kvm_put_kvm+0x3b1/0x8b0 [kvm]
kvm_vcpu_release+0x4e/0x70 [kvm]
__fput+0x1f7/0x8c0
task_work_run+0xf8/0x1a0
do_exit+0x97b/0x2230
do_group_exit+0xda/0x2a0
get_signal+0x3be/0x1e50
arch_do_signal_or_restart+0x244/0x17f0
exit_to_user_mode_prepare+0xcb/0x120
syscall_exit_to_user_mode+0x1d/0x40
do_syscall_64+0x4d/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Note, the underlying bug existed even before commit 1af4a96025 ("KVM:
x86/mmu: Yield in TDU MMU iter even if no SPTES changed") moved calls to
tdp_mmu_iter_cond_resched() to the beginning of loops, as KVM could still
incorrectly advance past a top-level entry when yielding on a lower-level
entry. But with respect to leaking shadow pages, the bug was introduced
by yielding before processing the current gfn.
Alternatively, tdp_mmu_iter_cond_resched() could simply fall through, or
callers could jump to their "retry" label. The downside of that approach
is that tdp_mmu_iter_cond_resched() _must_ be called before anything else
in the loop, and there's no easy way to enfornce that requirement.
Ideally, KVM would handling the cond_resched() fully within the iterator
macro (the code is actually quite clean) and avoid this entire class of
bugs, but that is extremely difficult do while also supporting yielding
after tdp_mmu_set_spte_atomic() fails. Yielding after failing to set a
SPTE is very desirable as the "owner" of the REMOVED_SPTE isn't strictly
bounded, e.g. if it's zapping a high-level shadow page, the REMOVED_SPTE
may block operations on the SPTE for a significant amount of time.
Fixes: faaf05b00a ("kvm: x86/mmu: Support zapping SPTEs in the TDP MMU")
Fixes: 1af4a96025 ("KVM: x86/mmu: Yield in TDU MMU iter even if no SPTES changed")
Reported-by: Ignat Korchagin <ignat@cloudflare.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211214033528.123268-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>