Commit Graph

75008 Commits

Author SHA1 Message Date
Qu Wenruo
9f73f1aef9 btrfs: force v2 space cache usage for subpage mount
[BUG]
For a 4K sector sized btrfs with v1 cache enabled and only mounted on
systems with 4K page size, if it's mounted on subpage (64K page size)
systems, it can cause the following warning on v1 space cache:

 BTRFS error (device dm-1): csum mismatch on free space cache
 BTRFS warning (device dm-1): failed to load free space cache for block group 84082688, rebuilding it now

Although not a big deal, as kernel can rebuild it without problem, such
warning will bother end users, especially if they want to switch the
same btrfs seamlessly between different page sized systems.

[CAUSE]
V1 free space cache is still using fixed PAGE_SIZE for various bitmap,
like BITS_PER_BITMAP.

Such hard-coded PAGE_SIZE usage will cause various mismatch, from v1
cache size to checksum.

Thus kernel will always reject v1 cache with a different PAGE_SIZE with
csum mismatch.

[FIX]
Although we should fix v1 cache, it's already going to be marked
deprecated soon.

And we have v2 cache based on metadata (which is already fully subpage
compatible), and it has almost everything superior than v1 cache.

So just force subpage mount to use v2 cache on mount.

Reported-by: Matt Corallo <blnxfsl@bluematt.me>
CC: stable@vger.kernel.org # 5.15+
Link: https://lore.kernel.org/linux-btrfs/61aa27d1-30fc-c1a9-f0f4-9df544395ec3@bluematt.me/
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-05 21:05:56 +02:00
Filipe Manana
4b73c55fde btrfs: skip compression property for anything other than files and dirs
The compression property only has effect on regular files and directories
(so that it's propagated to files and subdirectories created inside a
directory). For any other inode type (symlink, fifo, device, socket),
it's pointless to set the compression property because it does nothing
and ends up unnecessarily wasting leaf space due to the pointless xattr
(75 or 76 bytes, depending on the compression value). Symlinks in
particular are very common (for example, I have almost 10k symlinks under
/etc, /usr and /var alone) and therefore it's worth to avoid wasting
leaf space with the compression xattr.

For example, the compression property can end up on a symlink or character
device implicitly, through inheritance from a parent directory

  $ mkdir /mnt/testdir
  $ btrfs property set /mnt/testdir compression lzo

  $ ln -s yadayada /mnt/testdir/lnk
  $ mknod /mnt/testdir/dev c 0 0

Or explicitly like this:

  $ ln -s yadayda /mnt/lnk
  $ setfattr -h -n btrfs.compression -v lzo /mnt/lnk

So skip the compression property on inodes that are neither a regular
file nor a directory.

CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-04-27 22:20:21 +02:00
Filipe Manana
193b4e8398 btrfs: do not BUG_ON() on failure to update inode when setting xattr
We are doing a BUG_ON() if we fail to update an inode after setting (or
clearing) a xattr, but there's really no reason to not instead simply
abort the transaction and return the error to the caller. This should be
a rare error because we have previously reserved enough metadata space to
update the inode and the delayed inode should have already been setup, so
an -ENOSPC or -ENOMEM, which are the possible errors, are very unlikely to
happen.

So replace the BUG_ON()s with a transaction abort.

CC: stable@vger.kernel.org # 4.9+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-04-27 22:20:21 +02:00
Filipe Manana
d0e64a981f btrfs: always log symlinks in full mode
On Linux, empty symlinks are invalid, and attempting to create one with
the system call symlink(2) results in an -ENOENT error and this is
explicitly documented in the man page.

If we rename a symlink that was created in the current transaction and its
parent directory was logged before, we actually end up logging the symlink
without logging its content, which is stored in an inline extent. That
means that after a power failure we can end up with an empty symlink,
having no content and an i_size of 0 bytes.

It can be easily reproduced like this:

  $ mkfs.btrfs -f /dev/sdc
  $ mount /dev/sdc /mnt

  $ mkdir /mnt/testdir
  $ sync

  # Create a file inside the directory and fsync the directory.
  $ touch /mnt/testdir/foo
  $ xfs_io -c "fsync" /mnt/testdir

  # Create a symlink inside the directory and then rename the symlink.
  $ ln -s /mnt/testdir/foo /mnt/testdir/bar
  $ mv /mnt/testdir/bar /mnt/testdir/baz

  # Now fsync again the directory, this persist the log tree.
  $ xfs_io -c "fsync" /mnt/testdir

  <power failure>

  $ mount /dev/sdc /mnt
  $ stat -c %s /mnt/testdir/baz
  0
  $ readlink /mnt/testdir/baz
  $

Fix this by always logging symlinks in full mode (LOG_INODE_ALL), so that
their content is also logged.

A test case for fstests will follow.

CC: stable@vger.kernel.org # 4.9+
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-04-27 22:20:21 +02:00
Chung-Chiang Cheng
0e852ab897 btrfs: do not allow compression on nodatacow files
Compression and nodatacow are mutually exclusive. A similar issue was
fixed by commit f37c563bab ("btrfs: add missing check for nocow and
compression inode flags"). Besides ioctl, there is another way to
enable/disable/reset compression directly via xattr. The following
steps will result in a invalid combination.

  $ touch bar
  $ chattr +C bar
  $ lsattr bar
  ---------------C-- bar
  $ setfattr -n btrfs.compression -v zstd bar
  $ lsattr bar
  --------c------C-- bar

To align with the logic in check_fsflags, nocompress will also be
unacceptable after this patch, to prevent mix any compression-related
options with nodatacow.

  $ touch bar
  $ chattr +C bar
  $ lsattr bar
  ---------------C-- bar
  $ setfattr -n btrfs.compression -v zstd bar
  setfattr: bar: Invalid argument
  $ setfattr -n btrfs.compression -v no bar
  setfattr: bar: Invalid argument

When both compression and nodatacow are enabled, then
btrfs_run_delalloc_range prefers nodatacow and no compression happens.

Reported-by: Jayce Lin <jaycelin@synology.com>
CC: stable@vger.kernel.org # 5.10.x: e6f9d69648: btrfs: export a helper for compression hard check
CC: stable@vger.kernel.org # 5.10.x
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chung-Chiang Cheng <cccheng@synology.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-04-27 22:19:33 +02:00
Chung-Chiang Cheng
e6f9d69648 btrfs: export a helper for compression hard check
inode_can_compress will be used outside of inode.c to check the
availability of setting compression flag by xattr. This patch moves
this function as an internal helper and renames it to
btrfs_inode_can_compress.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Chung-Chiang Cheng <cccheng@synology.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-04-27 22:15:40 +02:00
Naohiro Aota
5f0addf7b8 btrfs: zoned: use dedicated lock for data relocation
Currently, we use btrfs_inode_{lock,unlock}() to grant an exclusive
writeback of the relocation data inode in
btrfs_zoned_data_reloc_{lock,unlock}(). However, that can cause a deadlock
in the following path.

Thread A takes btrfs_inode_lock() and waits for metadata reservation by
e.g, waiting for writeback:

prealloc_file_extent_cluster()
  - btrfs_inode_lock(&inode->vfs_inode, 0);
  - btrfs_prealloc_file_range()
  ...
    - btrfs_replace_file_extents()
      - btrfs_start_transaction
      ...
        - btrfs_reserve_metadata_bytes()

Thread B (e.g, doing a writeback work) needs to wait for the inode lock to
continue writeback process:

do_writepages
  - btrfs_writepages
    - extent_writpages
      - btrfs_zoned_data_reloc_lock(BTRFS_I(inode));
        - btrfs_inode_lock()

The deadlock is caused by relying on the vfs_inode's lock. By using it, we
introduced unnecessary exclusion of writeback and
btrfs_prealloc_file_range(). Also, the lock at this point is useless as we
don't have any dirty pages in the inode yet.

Introduce fs_info->zoned_data_reloc_io_lock and use it for the exclusive
writeback.

Fixes: 35156d8527 ("btrfs: zoned: only allow one process to add pages to a relocation inode")
CC: stable@vger.kernel.org # 5.16.x: 869f4cdc73: btrfs: zoned: encapsulate inode locking for zoned relocation
CC: stable@vger.kernel.org # 5.16.x
CC: stable@vger.kernel.org # 5.17
Cc: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-04-21 16:06:24 +02:00
Filipe Manana
a692e13d87 btrfs: fix assertion failure during scrub due to block group reallocation
During a scrub, or device replace, we can race with block group removal
and allocation and trigger the following assertion failure:

[7526.385524] assertion failed: cache->start == chunk_offset, in fs/btrfs/scrub.c:3817
[7526.387351] ------------[ cut here ]------------
[7526.387373] kernel BUG at fs/btrfs/ctree.h:3599!
[7526.388001] invalid opcode: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
[7526.388970] CPU: 2 PID: 1158150 Comm: btrfs Not tainted 5.17.0-rc8-btrfs-next-114 #4
[7526.390279] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
[7526.392430] RIP: 0010:assertfail.constprop.0+0x18/0x1a [btrfs]
[7526.393520] Code: f3 48 c7 c7 20 (...)
[7526.396926] RSP: 0018:ffffb9154176bc40 EFLAGS: 00010246
[7526.397690] RAX: 0000000000000048 RBX: ffffa0db8a910000 RCX: 0000000000000000
[7526.398732] RDX: 0000000000000000 RSI: ffffffff9d7239a2 RDI: 00000000ffffffff
[7526.399766] RBP: ffffa0db8a911e10 R08: ffffffffa71a3ca0 R09: 0000000000000001
[7526.400793] R10: 0000000000000001 R11: 0000000000000000 R12: ffffa0db4b170800
[7526.401839] R13: 00000003494b0000 R14: ffffa0db7c55b488 R15: ffffa0db8b19a000
[7526.402874] FS:  00007f6c99c40640(0000) GS:ffffa0de6d200000(0000) knlGS:0000000000000000
[7526.404038] CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[7526.405040] CR2: 00007f31b0882160 CR3: 000000014b38c004 CR4: 0000000000370ee0
[7526.406112] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[7526.407148] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[7526.408169] Call Trace:
[7526.408529]  <TASK>
[7526.408839]  scrub_enumerate_chunks.cold+0x11/0x79 [btrfs]
[7526.409690]  ? do_wait_intr_irq+0xb0/0xb0
[7526.410276]  btrfs_scrub_dev+0x226/0x620 [btrfs]
[7526.410995]  ? preempt_count_add+0x49/0xa0
[7526.411592]  btrfs_ioctl+0x1ab5/0x36d0 [btrfs]
[7526.412278]  ? __fget_files+0xc9/0x1b0
[7526.412825]  ? kvm_sched_clock_read+0x14/0x40
[7526.413459]  ? lock_release+0x155/0x4a0
[7526.414022]  ? __x64_sys_ioctl+0x83/0xb0
[7526.414601]  __x64_sys_ioctl+0x83/0xb0
[7526.415150]  do_syscall_64+0x3b/0xc0
[7526.415675]  entry_SYSCALL_64_after_hwframe+0x44/0xae
[7526.416408] RIP: 0033:0x7f6c99d34397
[7526.416931] Code: 3c 1c e8 1c ff (...)
[7526.419641] RSP: 002b:00007f6c99c3fca8 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[7526.420735] RAX: ffffffffffffffda RBX: 00005624e1e007b0 RCX: 00007f6c99d34397
[7526.421779] RDX: 00005624e1e007b0 RSI: 00000000c400941b RDI: 0000000000000003
[7526.422820] RBP: 0000000000000000 R08: 00007f6c99c40640 R09: 0000000000000000
[7526.423906] R10: 00007f6c99c40640 R11: 0000000000000246 R12: 00007fff746755de
[7526.424924] R13: 00007fff746755df R14: 0000000000000000 R15: 00007f6c99c40640
[7526.425950]  </TASK>

That assertion is relatively new, introduced with commit d04fbe19ae
("btrfs: scrub: cleanup the argument list of scrub_chunk()").

The block group we get at scrub_enumerate_chunks() can actually have a
start address that is smaller then the chunk offset we extracted from a
device extent item we got from the commit root of the device tree.
This is very rare, but it can happen due to a race with block group
removal and allocation. For example, the following steps show how this
can happen:

1) We are at transaction T, and we have the following blocks groups,
   sorted by their logical start address:

   [ bg A, start address A, length 1G (data) ]
   [ bg B, start address B, length 1G (data) ]
   (...)
   [ bg W, start address W, length 1G (data) ]

     --> logical address space hole of 256M,
         there used to be a 256M metadata block group here

   [ bg Y, start address Y, length 256M (metadata) ]

      --> Y matches W's end offset + 256M

   Block group Y is the block group with the highest logical address in
   the whole filesystem;

2) Block group Y is deleted and its extent mapping is removed by the call
   to remove_extent_mapping() made from btrfs_remove_block_group().

   So after this point, the last element of the mapping red black tree,
   its rightmost node, is the mapping for block group W;

3) While still at transaction T, a new data block group is allocated,
   with a length of 1G. When creating the block group we do a call to
   find_next_chunk(), which returns the logical start address for the
   new block group. This calls returns X, which corresponds to the
   end offset of the last block group, the rightmost node in the mapping
   red black tree (fs_info->mapping_tree), plus one.

   So we get a new block group that starts at logical address X and with
   a length of 1G. It spans over the whole logical range of the old block
   group Y, that was previously removed in the same transaction.

   However the device extent allocated to block group X is not the same
   device extent that was used by block group Y, and it also does not
   overlap that extent, which must be always the case because we allocate
   extents by searching through the commit root of the device tree
   (otherwise it could corrupt a filesystem after a power failure or
   an unclean shutdown in general), so the extent allocator is behaving
   as expected;

4) We have a task running scrub, currently at scrub_enumerate_chunks().
   There it searches for device extent items in the device tree, using
   its commit root. It finds a device extent item that was used by
   block group Y, and it extracts the value Y from that item into the
   local variable 'chunk_offset', using btrfs_dev_extent_chunk_offset();

   It then calls btrfs_lookup_block_group() to find block group for
   the logical address Y - since there's currently no block group that
   starts at that logical address, it returns block group X, because
   its range contains Y.

   This results in triggering the assertion:

      ASSERT(cache->start == chunk_offset);

   right before calling scrub_chunk(), as cache->start is X and
   chunk_offset is Y.

This is more likely to happen of filesystems not larger than 50G, because
for these filesystems we use a 256M size for metadata block groups and
a 1G size for data block groups, while for filesystems larger than 50G,
we use a 1G size for both data and metadata block groups (except for
zoned filesystems). It could also happen on any filesystem size due to
the fact that system block groups are always smaller (32M) than both
data and metadata block groups, but these are not frequently deleted, so
much less likely to trigger the race.

So make scrub skip any block group with a start offset that is less than
the value we expect, as that means it's a new block group that was created
in the current transaction. It's pointless to continue and try to scrub
its extents, because scrub searches for extents using the commit root, so
it won't find any. For a device replace, skip it as well for the same
reasons, and we don't need to worry about the possibility of extents of
the new block group not being to the new device, because we have the write
duplication setup done through btrfs_map_block().

Fixes: d04fbe19ae ("btrfs: scrub: cleanup the argument list of scrub_chunk()")
CC: stable@vger.kernel.org # 5.17
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-04-21 16:06:19 +02:00
Christoph Hellwig
0fdf977d45 btrfs: fix direct I/O writes for split bios on zoned devices
When a bio is split in btrfs_submit_direct, dip->file_offset contains
the file offset for the first bio.  But this means the start value used
in btrfs_end_dio_bio to record the write location for zone devices is
incorrect for subsequent bios.

CC: stable@vger.kernel.org # 5.16+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-04-19 15:45:04 +02:00
Christoph Hellwig
00d825258b btrfs: fix direct I/O read repair for split bios
When a bio is split in btrfs_submit_direct, dip->file_offset contains
the file offset for the first bio.  But this means the start value used
in btrfs_check_read_dio_bio is incorrect for subsequent bios.  Add
a file_offset field to struct btrfs_bio to pass along the correct offset.

Given that check_data_csum only uses start of an error message this
means problems with this miscalculation will only show up when I/O fails
or checksums mismatch.

The logic was removed in f4f39fc5dc ("btrfs: remove btrfs_bio::logical
member") but we need it due to the bio splitting.

CC: stable@vger.kernel.org # 5.16+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-04-19 15:44:56 +02:00
Christoph Hellwig
50f1cff3d8 btrfs: fix and document the zoned device choice in alloc_new_bio
Zone Append bios only need a valid block device in struct bio, but
not the device in the btrfs_bio.  Use the information from
btrfs_zoned_get_device to set up bi_bdev and fix zoned writes on
multi-device file system with non-homogeneous capabilities and remove
the pointless btrfs_bio.device assignment.

Add big fat comments explaining what is going on here.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-04-19 15:44:49 +02:00
Filipe Manana
50ff57888d btrfs: fix leaked plug after failure syncing log on zoned filesystems
On a zoned filesystem, if we fail to allocate the root node for the log
root tree while syncing the log, we end up returning without finishing
the IO plug we started before, resulting in leaking resources as we
have started writeback for extent buffers of a log tree before. That
allocation failure, which typically is either -ENOMEM or -ENOSPC, is not
fatal and the fsync can safely fallback to a full transaction commit.

So release the IO plug if we fail to allocate the extent buffer for the
root of the log root tree when syncing the log on a zoned filesystem.

Fixes: 3ddebf27fc ("btrfs: zoned: reorder log node allocation on zoned filesystem")
CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-04-19 15:44:17 +02:00
Dennis Zhou
acee08aaf6 btrfs: fix btrfs_submit_compressed_write cgroup attribution
This restores the logic from commit 46bcff2bfc ("btrfs: fix compressed
write bio blkcg attribution") which added cgroup attribution to btrfs
writeback. It also adds back the REQ_CGROUP_PUNT flag for these ios.

Fixes: 9150724048 ("btrfs: determine stripe boundary at bio allocation time in btrfs_submit_compressed_write")
CC: stable@vger.kernel.org # 5.16+
Signed-off-by: Dennis Zhou <dennis@kernel.org>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-04-06 00:50:51 +02:00
Jia-Ju Bai
168a2f776b btrfs: fix root ref counts in error handling in btrfs_get_root_ref
In btrfs_get_root_ref(), when btrfs_insert_fs_root() fails,
btrfs_put_root() can happen for two reasons:

- the root already exists in the tree, in that case it returns the
  reference obtained in btrfs_lookup_fs_root()

- another error so the cleanup is done in the fail label

Calling btrfs_put_root() unconditionally would lead to double decrement
of the root reference possibly freeing it in the second case.

Reported-by: TOTE Robot <oslab@tsinghua.edu.cn>
Fixes: bc44d7c4b2 ("btrfs: push btrfs_grab_fs_root into btrfs_get_fs_root")
CC: stable@vger.kernel.org # 5.10+
Signed-off-by: Jia-Ju Bai <baijiaju1990@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-04-06 00:50:47 +02:00
Naohiro Aota
760e69c4c2 btrfs: zoned: activate block group only for extent allocation
In btrfs_make_block_group(), we activate the allocated block group,
expecting that the block group is soon used for allocation. However, the
chunk allocation from flush_space() context broke the assumption. There
can be a large time gap between the chunk allocation time and the extent
allocation time from the chunk.

Activating the empty block groups pre-allocated from flush_space()
context can exhaust the active zone counter of a device. Once we use all
the active zone counts for empty pre-allocated block groups, we cannot
activate new block group for the other things: metadata, tree-log, or
data relocation block group.  That failure results in a fake -ENOSPC.

This patch introduces CHUNK_ALLOC_FORCE_FOR_EXTENT to distinguish the
chunk allocation from find_free_extent(). Now, the new block group is
activated only in that context.

Fixes: eb66a010d5 ("btrfs: zoned: activate new block group")
CC: stable@vger.kernel.org # 5.16+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-04-06 00:50:41 +02:00
Naohiro Aota
820c363bd5 btrfs: return allocated block group from do_chunk_alloc()
Return the allocated block group from do_chunk_alloc(). This is a
preparation patch for the next patch.

CC: stable@vger.kernel.org # 5.16+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-04-06 00:50:39 +02:00
Naohiro Aota
a690e5f2db btrfs: mark resumed async balance as writing
When btrfs balance is interrupted with umount, the background balance
resumes on the next mount. There is a potential deadlock with FS freezing
here like as described in commit 26559780b953 ("btrfs: zoned: mark
relocation as writing"). Mark the process as sb_writing to avoid it.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
CC: stable@vger.kernel.org # 4.9+
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-04-06 00:49:50 +02:00
Nikolay Borisov
d03ae0d3b6 btrfs: remove support of balance v1 ioctl
It was scheduled for removal in kernel v5.18 commit 6c405b2409
("btrfs: deprecate BTRFS_IOC_BALANCE ioctl") thus its time has come.

Reviewed-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-04-06 00:49:39 +02:00
Naohiro Aota
6d82ad13c4 btrfs: release correct delalloc amount in direct IO write path
Running generic/406 causes the following WARNING in btrfs_destroy_inode()
which tells there are outstanding extents left.

In btrfs_get_blocks_direct_write(), we reserve a temporary outstanding
extents with btrfs_delalloc_reserve_metadata() (or indirectly from
btrfs_delalloc_reserve_space(()). We then release the outstanding extents
with btrfs_delalloc_release_extents(). However, the "len" can be modified
in the COW case, which releases fewer outstanding extents than expected.

Fix it by calling btrfs_delalloc_release_extents() for the original length.

To reproduce the warning, the filesystem should be 1 GiB.  It's
triggering a short-write, due to not being able to allocate a large
extent and instead allocating a smaller one.

  WARNING: CPU: 0 PID: 757 at fs/btrfs/inode.c:8848 btrfs_destroy_inode+0x1e6/0x210 [btrfs]
  Modules linked in: btrfs blake2b_generic xor lzo_compress
  lzo_decompress raid6_pq zstd zstd_decompress zstd_compress xxhash zram
  zsmalloc
  CPU: 0 PID: 757 Comm: umount Not tainted 5.17.0-rc8+ #101
  Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS d55cb5a 04/01/2014
  RIP: 0010:btrfs_destroy_inode+0x1e6/0x210 [btrfs]
  RSP: 0018:ffffc9000327bda8 EFLAGS: 00010206
  RAX: 0000000000000000 RBX: ffff888100548b78 RCX: 0000000000000000
  RDX: 0000000000026900 RSI: 0000000000000000 RDI: ffff888100548b78
  RBP: ffff888100548940 R08: 0000000000000000 R09: ffff88810b48aba8
  R10: 0000000000000001 R11: ffff8881004eb240 R12: ffff88810b48a800
  R13: ffff88810b48ec08 R14: ffff88810b48ed00 R15: ffff888100490c68
  FS:  00007f8549ea0b80(0000) GS:ffff888237c00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 0000000080050033
  CR2: 00007f854a09e733 CR3: 000000010a2e9003 CR4: 0000000000370eb0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
  Call Trace:
   <TASK>
   destroy_inode+0x33/0x70
   dispose_list+0x43/0x60
   evict_inodes+0x161/0x1b0
   generic_shutdown_super+0x2d/0x110
   kill_anon_super+0xf/0x20
   btrfs_kill_super+0xd/0x20 [btrfs]
   deactivate_locked_super+0x27/0x90
   cleanup_mnt+0x12c/0x180
   task_work_run+0x54/0x80
   exit_to_user_mode_prepare+0x152/0x160
   syscall_exit_to_user_mode+0x12/0x30
   do_syscall_64+0x42/0x80
   entry_SYSCALL_64_after_hwframe+0x44/0xae
   RIP: 0033:0x7f854a000fb7

Fixes: f0bfa76a11 ("btrfs: fix ENOSPC failure when attempting direct IO write into NOCOW range")
CC: stable@vger.kernel.org # 5.17
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Tested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-04-06 00:49:35 +02:00
Nathan Chancellor
6d4a6b515c btrfs: remove unused variable in btrfs_{start,write}_dirty_block_groups()
Clang's version of -Wunused-but-set-variable recently gained support for
unary operations, which reveals two unused variables:

  fs/btrfs/block-group.c:2949:6: error: variable 'num_started' set but not used [-Werror,-Wunused-but-set-variable]
          int num_started = 0;
              ^
  fs/btrfs/block-group.c:3116:6: error: variable 'num_started' set but not used [-Werror,-Wunused-but-set-variable]
          int num_started = 0;
              ^
  2 errors generated.

These variables appear to be unused from their introduction, so just
remove them to silence the warnings.

Fixes: c9dc4c6578 ("Btrfs: two stage dirty block group writeout")
Fixes: 1bbc621ef2 ("Btrfs: allow block group cache writeout outside critical section in commit")
CC: stable@vger.kernel.org # 5.4+
Link: https://github.com/ClangBuiltLinux/linux/issues/1614
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-04-06 00:49:15 +02:00
Haowen Bai
9435be734a btrfs: zoned: remove redundant condition in btrfs_run_delalloc_range
The logic !A || A && B is equivalent to !A || B. so we can
make code clear.

Note: though it's preferred to be in the more human readable form, there
have been repeated reports and patches as the expression is detected by
tools so apply it to reduce the load.

Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Haowen Bai <baihaowen@meizu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ add note ]
Signed-off-by: David Sterba <dsterba@suse.com>
2022-04-06 00:49:09 +02:00
Kaiwen Hu
60021bd754 btrfs: prevent subvol with swapfile from being deleted
A subvolume with an active swapfile must not be deleted otherwise it
would not be possible to deactivate it.

After the subvolume is deleted, we cannot swapoff the swapfile in this
deleted subvolume because the path is unreachable.  The swapfile is
still active and holding references, the filesystem cannot be unmounted.

The test looks like this:

  mkfs.btrfs -f $dev > /dev/null
  mount $dev $mnt

  btrfs sub create $mnt/subvol
  touch $mnt/subvol/swapfile
  chmod 600 $mnt/subvol/swapfile
  chattr +C $mnt/subvol/swapfile
  dd if=/dev/zero of=$mnt/subvol/swapfile bs=1K count=4096
  mkswap $mnt/subvol/swapfile
  swapon $mnt/subvol/swapfile

  btrfs sub delete $mnt/subvol
  swapoff $mnt/subvol/swapfile  # failed: No such file or directory
  swapoff --all

  unmount $mnt                  # target is busy.

To prevent above issue, we simply check that whether the subvolume
contains any active swapfile, and stop the deleting process.  This
behavior is like snapshot ioctl dealing with a swapfile.

CC: stable@vger.kernel.org # 5.4+
Reviewed-by: Robbie Ko <robbieko@synology.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Kaiwen Hu <kevinhu@synology.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-24 17:50:57 +01:00
Josef Bacik
a7d16d9a07 btrfs: do not warn for free space inode in cow_file_range
This is a long time leftover from when I originally added the free space
inode, the point was to catch cases where we weren't honoring the NOCOW
flag.  However there exists a race with relocation, if we allocate our
free space inode in a block group that is about to be relocated, we
could trigger the COW path before the relocation has the opportunity to
find the extents and delete the free space cache.  In production where
we have auto-relocation enabled we're seeing this WARN_ON_ONCE() around
5k times in a 2 week period, so not super common but enough that it's at
the top of our metrics.

We're properly handling the error here, and with us phasing out v1 space
cache anyway just drop the WARN_ON_ONCE.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-24 17:50:53 +01:00
Qu Wenruo
75a36a7d3e btrfs: avoid defragging extents whose next extents are not targets
[BUG]
There is a report that autodefrag is defragging single sector, which
is completely waste of IO, and no help for defragging:

   btrfs-cleaner-808 defrag_one_locked_range: root=256 ino=651122 start=0 len=4096

[CAUSE]
In defrag_collect_targets(), we check if the current range (A) can be merged
with next one (B).

If mergeable, we will add range A into target for defrag.

However there is a catch for autodefrag, when checking mergeability
against range B, we intentionally pass 0 as @newer_than, hoping to get a
higher chance to merge with the next extent.

But in the next iteration, range B will looked up by defrag_lookup_extent(),
with non-zero @newer_than.

And if range B is not really newer, it will rejected directly, causing
only range A being defragged, while we expect to defrag both range A and
B.

[FIX]
Since the root cause is the difference in check condition of
defrag_check_next_extent() and defrag_collect_targets(), we fix it by:

1. Pass @newer_than to defrag_check_next_extent()
2. Pass @extent_thresh to defrag_check_next_extent()

This makes the check between defrag_collect_targets() and
defrag_check_next_extent() more consistent.

While there is still some minor difference, the remaining checks are
focus on runtime flags like writeback/delalloc, which are mostly
transient and safe to be checked only in defrag_collect_targets().

Link: https://github.com/btrfs/linux/issues/423#issuecomment-1066981856
CC: stable@vger.kernel.org # 5.16+
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-24 17:50:39 +01:00
Darrick J. Wong
05fd9564e9 btrfs: fix fallocate to use file_modified to update permissions consistently
Since the initial introduction of (posix) fallocate back at the turn of
the century, it has been possible to use this syscall to change the
user-visible contents of files.  This can happen by extending the file
size during a preallocation, or through any of the newer modes (punch,
zero range).  Because the call can be used to change file contents, we
should treat it like we do any other modification to a file -- update
the mtime, and drop set[ug]id privileges/capabilities.

The VFS function file_modified() does all this for us if pass it a
locked inode, so let's make fallocate drop permissions correctly.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Darrick J. Wong <djwong@kernel.org>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-24 17:48:02 +01:00
Qu Wenruo
bbac58698a btrfs: remove device item and update super block in the same transaction
[BUG]
There is a report that a btrfs has a bad super block num devices.

This makes btrfs to reject the fs completely.

  BTRFS error (device sdd3): super_num_devices 3 mismatch with num_devices 2 found here
  BTRFS error (device sdd3): failed to read chunk tree: -22
  BTRFS error (device sdd3): open_ctree failed

[CAUSE]
During btrfs device removal, chunk tree and super block num devs are
updated in two different transactions:

  btrfs_rm_device()
  |- btrfs_rm_dev_item(device)
  |  |- trans = btrfs_start_transaction()
  |  |  Now we got transaction X
  |  |
  |  |- btrfs_del_item()
  |  |  Now device item is removed from chunk tree
  |  |
  |  |- btrfs_commit_transaction()
  |     Transaction X got committed, super num devs untouched,
  |     but device item removed from chunk tree.
  |     (AKA, super num devs is already incorrect)
  |
  |- cur_devices->num_devices--;
  |- cur_devices->total_devices--;
  |- btrfs_set_super_num_devices()
     All those operations are not in transaction X, thus it will
     only be written back to disk in next transaction.

So after the transaction X in btrfs_rm_dev_item() committed, but before
transaction X+1 (which can be minutes away), a power loss happen, then
we got the super num mismatch.

[FIX]
Instead of starting and committing a transaction inside
btrfs_rm_dev_item(), start a transaction in side btrfs_rm_device() and
pass it to btrfs_rm_dev_item().

And only commit the transaction after everything is done.

Reported-by: Luca Béla Palkovics <luca.bela.palkovics@gmail.com>
Link: https://lore.kernel.org/linux-btrfs/CA+8xDSpvdm_U0QLBAnrH=zqDq_cWCOH5TiV46CKmp3igr44okQ@mail.gmail.com/
CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-24 17:47:58 +01:00
Ethan Lien
b642b52d0b btrfs: fix qgroup reserve overflow the qgroup limit
We use extent_changeset->bytes_changed in qgroup_reserve_data() to record
how many bytes we set for EXTENT_QGROUP_RESERVED state. Currently the
bytes_changed is set as "unsigned int", and it will overflow if we try to
fallocate a range larger than 4GiB. The result is we reserve less bytes
and eventually break the qgroup limit.

Unlike regular buffered/direct write, which we use one changeset for
each ordered extent, which can never be larger than 256M.  For
fallocate, we use one changeset for the whole range, thus it no longer
respects the 256M per extent limit, and caused the problem.

The following example test script reproduces the problem:

  $ cat qgroup-overflow.sh
  #!/bin/bash

  DEV=/dev/sdj
  MNT=/mnt/sdj

  mkfs.btrfs -f $DEV
  mount $DEV $MNT

  # Set qgroup limit to 2GiB.
  btrfs quota enable $MNT
  btrfs qgroup limit 2G $MNT

  # Try to fallocate a 3GiB file. This should fail.
  echo
  echo "Try to fallocate a 3GiB file..."
  fallocate -l 3G $MNT/3G.file

  # Try to fallocate a 5GiB file.
  echo
  echo "Try to fallocate a 5GiB file..."
  fallocate -l 5G $MNT/5G.file

  # See we break the qgroup limit.
  echo
  sync
  btrfs qgroup show -r $MNT

  umount $MNT

When running the test:

  $ ./qgroup-overflow.sh
  (...)

  Try to fallocate a 3GiB file...
  fallocate: fallocate failed: Disk quota exceeded

  Try to fallocate a 5GiB file...

  qgroupid         rfer         excl     max_rfer
  --------         ----         ----     --------
  0/5           5.00GiB      5.00GiB      2.00GiB

Since we have no control of how bytes_changed is used, it's better to
set it to u64.

CC: stable@vger.kernel.org # 4.14+
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Ethan Lien <ethanlien@synology.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-23 23:34:15 +01:00
Johannes Thumshirn
62ed0bf731 btrfs: zoned: remove left over ASSERT checking for single profile
With commit dcf5652291f6 ("btrfs: zoned: allow DUP on meta-data block
groups") we started allowing DUP on metadata block groups, so the
ASSERT()s in btrfs_can_activate_zone() and btrfs_zoned_get_device() are
no longer valid and in fact even harmful.

Fixes: dcf5652291f6 ("btrfs: zoned: allow DUP on meta-data block groups")
CC: stable@vger.kernel.org # 5.17
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-23 23:34:15 +01:00
Johannes Thumshirn
0b9e66762a btrfs: zoned: traverse devices under chunk_mutex in btrfs_can_activate_zone
btrfs_can_activate_zone() can be called with the device_list_mutex already
held, which will lead to a deadlock:

insert_dev_extents() // Takes device_list_mutex
`-> insert_dev_extent()
 `-> btrfs_insert_empty_item()
  `-> btrfs_insert_empty_items()
   `-> btrfs_search_slot()
    `-> btrfs_cow_block()
     `-> __btrfs_cow_block()
      `-> btrfs_alloc_tree_block()
       `-> btrfs_reserve_extent()
        `-> find_free_extent()
         `-> find_free_extent_update_loop()
          `-> can_allocate_chunk()
           `-> btrfs_can_activate_zone() // Takes device_list_mutex again

Instead of using the RCU on fs_devices->device_list we
can use fs_devices->alloc_list, protected by the chunk_mutex to traverse
the list of active devices.

We are in the chunk allocation thread. The newer chunk allocation
happens from the devices in the fs_device->alloc_list protected by the
chunk_mutex.

  btrfs_create_chunk()
    lockdep_assert_held(&info->chunk_mutex);
    gather_device_info
      list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list)

Also, a device that reappears after the mount won't join the alloc_list
yet and, it will be in the dev_list, which we don't want to consider in
the context of the chunk alloc.

  [15.166572] WARNING: possible recursive locking detected
  [15.167117] 5.17.0-rc6-dennis #79 Not tainted
  [15.167487] --------------------------------------------
  [15.167733] kworker/u8:3/146 is trying to acquire lock:
  [15.167733] ffff888102962ee0 (&fs_devs->device_list_mutex){+.+.}-{3:3}, at: find_free_extent+0x15a/0x14f0 [btrfs]
  [15.167733]
  [15.167733] but task is already holding lock:
  [15.167733] ffff888102962ee0 (&fs_devs->device_list_mutex){+.+.}-{3:3}, at: btrfs_create_pending_block_groups+0x20a/0x560 [btrfs]
  [15.167733]
  [15.167733] other info that might help us debug this:
  [15.167733]  Possible unsafe locking scenario:
  [15.167733]
  [15.171834]        CPU0
  [15.171834]        ----
  [15.171834]   lock(&fs_devs->device_list_mutex);
  [15.171834]   lock(&fs_devs->device_list_mutex);
  [15.171834]
  [15.171834]  *** DEADLOCK ***
  [15.171834]
  [15.171834]  May be due to missing lock nesting notation
  [15.171834]
  [15.171834] 5 locks held by kworker/u8:3/146:
  [15.171834]  #0: ffff888100050938 ((wq_completion)events_unbound){+.+.}-{0:0}, at: process_one_work+0x1c3/0x5a0
  [15.171834]  #1: ffffc9000067be80 ((work_completion)(&fs_info->async_data_reclaim_work)){+.+.}-{0:0}, at: process_one_work+0x1c3/0x5a0
  [15.176244]  #2: ffff88810521e620 (sb_internal){.+.+}-{0:0}, at: flush_space+0x335/0x600 [btrfs]
  [15.176244]  #3: ffff888102962ee0 (&fs_devs->device_list_mutex){+.+.}-{3:3}, at: btrfs_create_pending_block_groups+0x20a/0x560 [btrfs]
  [15.176244]  #4: ffff8881152e4b78 (btrfs-dev-00){++++}-{3:3}, at: __btrfs_tree_lock+0x27/0x130 [btrfs]
  [15.179641]
  [15.179641] stack backtrace:
  [15.179641] CPU: 1 PID: 146 Comm: kworker/u8:3 Not tainted 5.17.0-rc6-dennis #79
  [15.179641] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1.fc35 04/01/2014
  [15.179641] Workqueue: events_unbound btrfs_async_reclaim_data_space [btrfs]
  [15.179641] Call Trace:
  [15.179641]  <TASK>
  [15.179641]  dump_stack_lvl+0x45/0x59
  [15.179641]  __lock_acquire.cold+0x217/0x2b2
  [15.179641]  lock_acquire+0xbf/0x2b0
  [15.183838]  ? find_free_extent+0x15a/0x14f0 [btrfs]
  [15.183838]  __mutex_lock+0x8e/0x970
  [15.183838]  ? find_free_extent+0x15a/0x14f0 [btrfs]
  [15.183838]  ? find_free_extent+0x15a/0x14f0 [btrfs]
  [15.183838]  ? lock_is_held_type+0xd7/0x130
  [15.183838]  ? find_free_extent+0x15a/0x14f0 [btrfs]
  [15.183838]  find_free_extent+0x15a/0x14f0 [btrfs]
  [15.183838]  ? _raw_spin_unlock+0x24/0x40
  [15.183838]  ? btrfs_get_alloc_profile+0x106/0x230 [btrfs]
  [15.187601]  btrfs_reserve_extent+0x131/0x260 [btrfs]
  [15.187601]  btrfs_alloc_tree_block+0xb5/0x3b0 [btrfs]
  [15.187601]  __btrfs_cow_block+0x138/0x600 [btrfs]
  [15.187601]  btrfs_cow_block+0x10f/0x230 [btrfs]
  [15.187601]  btrfs_search_slot+0x55f/0xbc0 [btrfs]
  [15.187601]  ? lock_is_held_type+0xd7/0x130
  [15.187601]  btrfs_insert_empty_items+0x2d/0x60 [btrfs]
  [15.187601]  btrfs_create_pending_block_groups+0x2b3/0x560 [btrfs]
  [15.187601]  __btrfs_end_transaction+0x36/0x2a0 [btrfs]
  [15.192037]  flush_space+0x374/0x600 [btrfs]
  [15.192037]  ? find_held_lock+0x2b/0x80
  [15.192037]  ? btrfs_async_reclaim_data_space+0x49/0x180 [btrfs]
  [15.192037]  ? lock_release+0x131/0x2b0
  [15.192037]  btrfs_async_reclaim_data_space+0x70/0x180 [btrfs]
  [15.192037]  process_one_work+0x24c/0x5a0
  [15.192037]  worker_thread+0x4a/0x3d0

Fixes: a85f05e59b ("btrfs: zoned: avoid chunk allocation if active block group has enough space")
CC: stable@vger.kernel.org # 5.16+
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-23 23:34:09 +01:00
Nikolay Borisov
d3e2996707 btrfs: zoned: put block group after final usage
It's counter-intuitive (and wrong) to put the block group _before_ the
final usage in submit_eb_page. Fix it by re-ordering the call to
btrfs_put_block_group after its final reference. Also fix a minor typo
in 'implies'

Fixes: be1a1d7a5d ("btrfs: zoned: finish fully written block group")
CC: stable@vger.kernel.org # 5.16+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:54 +01:00
Dongliang Mu
79c9234ba5 btrfs: don't access possibly stale fs_info data in device_list_add
Syzbot reported a possible use-after-free in printing information
in device_list_add.

Very similar with the bug fixed by commit 0697d9a610 ("btrfs: don't
access possibly stale fs_info data for printing duplicate device"),
but this time the use occurs in btrfs_info_in_rcu.

  Call Trace:
   kasan_report.cold+0x83/0xdf mm/kasan/report.c:459
   btrfs_printk+0x395/0x425 fs/btrfs/super.c:244
   device_list_add.cold+0xd7/0x2ed fs/btrfs/volumes.c:957
   btrfs_scan_one_device+0x4c7/0x5c0 fs/btrfs/volumes.c:1387
   btrfs_control_ioctl+0x12a/0x2d0 fs/btrfs/super.c:2409
   vfs_ioctl fs/ioctl.c:51 [inline]
   __do_sys_ioctl fs/ioctl.c:874 [inline]
   __se_sys_ioctl fs/ioctl.c:860 [inline]
   __x64_sys_ioctl+0x193/0x200 fs/ioctl.c:860
   do_syscall_x64 arch/x86/entry/common.c:50 [inline]
   do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
   entry_SYSCALL_64_after_hwframe+0x44/0xae

Fix this by modifying device->fs_info to NULL too.

Reported-and-tested-by: syzbot+82650a4e0ed38f218363@syzkaller.appspotmail.com
CC: stable@vger.kernel.org # 4.19+
Signed-off-by: Dongliang Mu <mudongliangabcd@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:54 +01:00
Niels Dossche
bf7bd725b0 btrfs: add lockdep_assert_held to need_preemptive_reclaim
In a previous patch ("btrfs: extend locking to all space_info members
accesses") the locking for the space_info members was extended in
btrfs_preempt_reclaim_metadata_space because not all the member
accesses that needed locks were actually locked (bytes_pinned et al).

It was then suggested to also add a call to lockdep_assert_held to
need_preemptive_reclaim. This function also works with space_info
members. As of now, it has only two call sites which both hold the lock.

Suggested-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Niels Dossche <dossche.niels@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:53 +01:00
Qu Wenruo
3777369ff1 btrfs: verify the tranisd of the to-be-written dirty extent buffer
[BUG]
There is a bug report that a bitflip in the transid part of an extent
buffer makes btrfs to reject certain tree blocks:

  BTRFS error (device dm-0): parent transid verify failed on 1382301696 wanted 262166 found 22

[CAUSE]
Note the failed transid check, hex(262166) = 0x40016, while
hex(22) = 0x16.

It's an obvious bitflip.

Furthermore, the reporter also confirmed the bitflip is from the
hardware, so it's a real hardware caused bitflip, and such problem can
not be detected by the existing tree-checker framework.

As tree-checker can only verify the content inside one tree block, while
generation of a tree block can only be verified against its parent.

So such problem remain undetected.

[FIX]
Although tree-checker can not verify it at write-time, we still have a
quick (but not the most accurate) way to catch such obvious corruption.

Function csum_one_extent_buffer() is called before we submit metadata
write.

Thus it means, all the extent buffer passed in should be dirty tree
blocks, and should be newer than last committed transaction.

Using that we can catch the above bitflip.

Although it's not a perfect solution, as if the corrupted generation is
higher than the correct value, we have no way to catch it at all.

Reported-by: Christoph Anton Mitterer <calestyo@scientia.org>
Link: https://lore.kernel.org/linux-btrfs/2dfcbc130c55cc6fd067b93752e90bd2b079baca.camel@scientia.org/
CC: stable@vger.kernel.org # 5.15+
Signed-off-by: Qu Wenruo <wqu@sus,ree.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:53 +01:00
Qu Wenruo
9a4ffa1bd6 btrfs: unify the error handling of btrfs_read_buffer()
There is one oddball error handling of btrfs_read_buffer():

	ret = btrfs_read_buffer(tmp, gen, parent_level - 1, &first_key);
	if (!ret) {
		*eb_ret = tmp;
		return 0;
	}
	free_extent_buffer(tmp);
	btrfs_release_path(p);
	return -EIO;

While all other call sites check the error first.  Unify the behavior.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:53 +01:00
Qu Wenruo
4eb150d612 btrfs: unify the error handling pattern for read_tree_block()
We had an error handling pattern for read_tree_block() like this:

	eb = read_tree_block();
	if (IS_ERR(eb)) {
		/*
		 * Handling error here
		 * Normally ended up with return or goto out.
		 */
	} else if (!extent_buffer_uptodate(eb)) {
		/*
		 * Different error handling here
		 * Normally also ended up with return or goto out;
		 */
	}

This is fine, but if we want to add extra check for each
read_tree_block(), the existing if-else-if is not that expandable and
will take reader some seconds to figure out there is no extra branch.

Here we change it to a more common way, without the extra else:

	eb = read_tree_block();
	if (IS_ERR(eb)) {
		/*
		 * Handling error here
		 */
		return eb or goto out;
	}
	if (!extent_buffer_uptodate(eb)) {
		/*
		 * Different error handling here
		 */
		return eb or goto out;
	}

This also removes some oddball call sites which uses some creative way
to check error.

Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:53 +01:00
Josef Bacik
8f8aa4c7a9 btrfs: factor out do_free_extent_accounting helper
__btrfs_free_extent() does all of the hard work of updating the extent
ref items, and then at the end if we dropped the extent completely it
does the cleanup accounting work.  We're going to only want to do that
work for metadata with extent tree v2, so extract this bit into its own
helper.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:53 +01:00
Josef Bacik
5b2a54bb7c btrfs: remove last_ref from the extent freeing code
This is a remnant of the work I did for qgroups a long time ago to only
run for a block when we had dropped the last ref.  We haven't done that
for years, but the code remains.  Drop this remnant.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:53 +01:00
Josef Bacik
3466670558 btrfs: add a alloc_reserved_extent helper
We duplicate this logic for both data and metadata, at this point we've
already done our type specific extent root operations, this is just
doing the accounting and removing the space from the free space tree.
Extract this common logic out into a helper.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:53 +01:00
Josef Bacik
b3c958a369 btrfs: remove BUG_ON(ret) in alloc_reserved_tree_block
Switch this to an ASSERT() and return the error in the normal case.

Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:53 +01:00
Filipe Manana
313ab75399 btrfs: add and use helper for unlinking inode during log replay
During log replay there is this pattern of running delayed items after
every inode unlink. To avoid repeating this several times, move the
logic into an helper function and use it instead of calling
btrfs_unlink_inode() followed by btrfs_run_delayed_items().

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:53 +01:00
Niels Dossche
06bae87663 btrfs: extend locking to all space_info members accesses
bytes_pinned is always accessed under space_info->lock, except in
btrfs_preempt_reclaim_metadata_space, however the other members are
accessed under that lock. The reserved member of the rsv's are also
partially accessed under a lock and partially not. Move all these
accesses into the same lock to ensure consistency.

This could potentially race and lead to a flush instead of a commit but
it's not a big problem as it's only for preemptive flush.

CC: stable@vger.kernel.org # 5.15+
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Niels Dossche <niels.dossche@ugent.be>
Signed-off-by: Niels Dossche <dossche.niels@gmail.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:53 +01:00
Naohiro Aota
ca5e4ea0be btrfs: zoned: mark relocation as writing
There is a hung_task issue with running generic/068 on an SMR
device. The hang occurs while a process is trying to thaw the
filesystem. The process is trying to take sb->s_umount to thaw the
FS. The lock is held by fsstress, which calls btrfs_sync_fs() and is
waiting for an ordered extent to finish. However, as the FS is frozen,
the ordered extents never finish.

Having an ordered extent while the FS is frozen is the root cause of
the hang. The ordered extent is initiated from btrfs_relocate_chunk()
which is called from btrfs_reclaim_bgs_work().

This commit adds sb_*_write() around btrfs_relocate_chunk() call
site. For the usual "btrfs balance" command, we already call it with
mnt_want_file() in btrfs_ioctl_balance().

Fixes: 18bb8bbf13 ("btrfs: zoned: automatically reclaim zones")
CC: stable@vger.kernel.org # 5.13+
Link: https://github.com/naota/linux/issues/56
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:53 +01:00
Josef Bacik
9f5710bbfd fs: allow cross-vfsmount reflink/dedupe
Currently we disallow reflink and dedupe if the two files aren't on the
same vfsmount.  However we really only need to disallow it if they're
not on the same super block.  It is very common for btrfs to have a main
subvolume that is mounted and then different subvolumes mounted at
different locations.  It's allowed to reflink between these volumes, but
the vfsmount check disallows this.  Instead fix dedupe to check for the
same superblock, and simply remove the vfsmount check for reflink as it
already does the superblock check.

Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:53 +01:00
Josef Bacik
ae460f058e btrfs: remove the cross file system checks from remap
The sb check is already done in do_clone_file_range, and the mnt check
(which will hopefully go away in a subsequent patch) is done in
ioctl_file_clone().  Remove the check in our code and put an ASSERT() to
make sure it doesn't change underneath us.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:52 +01:00
Josef Bacik
7eefae6bb1 btrfs: pass btrfs_fs_info to btrfs_recover_relocation
We don't need a root here, we just need the btrfs_fs_info, we can just
get the specific roots we need from fs_info.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:52 +01:00
Josef Bacik
33c4418499 btrfs: pass btrfs_fs_info for deleting snapshots and cleaner
We're passing a root around here, but we only really need the fs_info,
so fix up btrfs_clean_one_deleted_snapshot() to take an fs_info instead,
and then fix up all the callers appropriately.

Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:52 +01:00
Sweet Tea Dorminy
c067da8781 btrfs: add filesystems state details to error messages
When a filesystem goes read-only due to an error, multiple errors tend
to be reported, some of which are knock-on failures. Logging fs_states,
in btrfs_handle_fs_error() and btrfs_printk() helps distinguish the
first error from subsequent messages which may only exist due to an
error state.

Under the new format, most initial errors will look like:
`BTRFS: error (device loop0) in ...`
while subsequent errors will begin with:
`error (device loop0: state E) in ...`

An initial transaction abort error will look like
`error (device loop0: state A) in ...`
and subsequent messages will contain
`(device loop0: state EA) in ...`

In addition to the error states we can also print other states that are
temporary, like remounting, device replace, or indicate a global state
that may affect functionality.

Now implemented:

E - filesystem error detected
A - transaction aborted
L - log tree errors

M - remounting in progress
R - device replace in progress
C - data checksums not verified (mounted with ignoredatacsums)

Signed-off-by: Sweet Tea Dorminy <sweettea-kernel@dorminy.me>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:52 +01:00
Filipe Manana
b2d9f2dc01 btrfs: deal with unexpected extent type during reflinking
Smatch complains about a possible dereference of a pointer that was not
initialized:

    CC [M]  fs/btrfs/reflink.o
    CHECK   fs/btrfs/reflink.c
  fs/btrfs/reflink.c:533 btrfs_clone() error: potentially dereferencing uninitialized 'trans'.

This is because we are not dealing with the case where the type of a file
extent has an unexpected value (not regular, not prealloc and not inline),
in which case the transaction handle pointer is not initialized.

Such unexpected type should be impossible, except in case of some memory
corruption caused either by bad hardware or some software bug causing
something like a buffer overrun.

So ASSERT that if the extent type is neither regular nor prealloc, then
it must be inline. Bail out with -EUCLEAN and a warning in case it is
not. This silences smatch.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:52 +01:00
Filipe Manana
1f4613cdbe btrfs: fix unexpected error path when reflinking an inline extent
When reflinking an inline extent, we assert that its file offset is 0 and
that its uncompressed length is not greater than the sector size. We then
return an error if one of those conditions is not satisfied. However we
use a return statement, which results in returning from btrfs_clone()
without freeing the path and buffer that were allocated before, as well as
not clearing the flag BTRFS_INODE_NO_DELALLOC_FLUSH for the destination
inode.

Fix that by jumping to the 'out' label instead, and also add a WARN_ON()
for each condition so that in case assertions are disabled, we get to
known which of the unexpected conditions triggered the error.

Fixes: a61e1e0df9 ("Btrfs: simplify inline extent handling when doing reflinks")
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:52 +01:00
Filipe Manana
23e3337faf btrfs: reset last_reflink_trans after fsyncing inode
When an inode has a last_reflink_trans matching the current transaction,
we have to take special care when logging its checksums in order to
avoid getting checksum items with overlapping ranges in a log tree,
which could result in missing checksums after log replay (more on that
in the changelogs of commit 40e046acbd ("Btrfs: fix missing data
checksums after replaying a log tree") and commit e289f03ea7 ("btrfs:
fix corrupt log due to concurrent fsync of inodes with shared extents")).
We also need to make sure a full fsync will copy all old file extent
items it finds in modified leaves, because they might have been copied
from some other inode.

However once we fsync an inode, we don't need to keep paying the price of
that extra special care in future fsyncs done in the same transaction,
unless the inode is used for another reflink operation or the full sync
flag is set on it (truncate, failure to allocate extent maps for holes,
and other exceptional and infrequent cases).

So after we fsync an inode reset its last_unlink_trans to zero. In case
another reflink happens, we continue to update the last_reflink_trans of
the inode, just as before. Also set last_reflink_trans to the generation
of the last transaction that modified the inode whenever we need to set
the full sync flag on the inode, just like when we need to load an inode
from disk after eviction.

Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-03-14 13:13:52 +01:00