Commit Graph

699 Commits

Author SHA1 Message Date
Linus Torvalds
e5a710d132 Fix a performance regression on large SMT systems, an Intel SMT4
balancing bug, and a topology setup bug on (Intel) hybrid processors.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmUHOVQRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1iOahAAj3YsoNbT/k6m9yp622n1OopaNEQvsK+/
 F2Q5g/hJrm3+W5764rF8CvjhDbmrv6owjp3yUyZLDIfSAFZYMvwoNody3a373Yr3
 VFBMJ00jNIv/TAFCJZYeybg3yViwObKKfpu4JBj//QU+4uGWCoBMolkVekU2bBti
 r50fMxBPgg2Yic57DCC8Y+JZzHI/ydQ3rvVXMzkrTZCO/zY4/YmERM9d+vp4wl4B
 uG9cfXQ4Yf/1gZo0XDlTUkOJUXPnkMgi+N4eHYlGuyOCoIZOfATI24hRaPBoQcdx
 PDwHcKmyNxH9iaRppNQMvi797g3KrKVEmZwlZg1IfsILhKC0F4GsQ85tw8qQWE8j
 brFPkWVUxAUSl4LXoqVInaxDHmJWR2UC3RA7b+BxFF/GMLTow0z4a+JMC6eKlNyR
 uBisZnuEuecqwF9TLhyD3KBHh7PihUPz8PuFHk+Um5sggaUE82I+VwX6uxEi5y8r
 ke2kAkpuMxPWT5lwDmFPAXWfvpZz5vvTIRUxGGj2+s4d8b0YfLtZsx5+uOIacaub
 Gw+wYFfSowph72tR/SUVq0An/UTSPPBxty8eFIVeE6sW9bw3ghTtkf8300xjV7Rj
 sKVxXy/podAo8wG7R6aZfTfsCpohmeEjskiatYdThYamPPx7V0R5pq4twmTXTHLJ
 bFvQ1GFCOu0=
 =jIeN
 -----END PGP SIGNATURE-----

Merge tag 'sched-urgent-2023-09-17' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler fixes from Ingo Molnar:
 "Fix a performance regression on large SMT systems, an Intel SMT4
  balancing bug, and a topology setup bug on (Intel) hybrid processors"

* tag 'sched-urgent-2023-09-17' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/sched: Restore the SD_ASYM_PACKING flag in the DIE domain
  sched/fair: Fix SMT4 group_smt_balance handling
  sched/fair: Optimize should_we_balance() for large SMT systems
2023-09-17 11:10:23 -07:00
Ricardo Neri
108af4b4bd x86/sched: Restore the SD_ASYM_PACKING flag in the DIE domain
Commit 8f2d6c41e5 ("x86/sched: Rewrite topology setup") dropped the
SD_ASYM_PACKING flag in the DIE domain added in commit 044f0e27de
("x86/sched: Add the SD_ASYM_PACKING flag to the die domain of hybrid
processors"). Restore it on hybrid processors.

The die-level domain does not depend on any build configuration and now
x86_sched_itmt_flags() is always needed. Remove the build dependency on
CONFIG_SCHED_[SMT|CLUSTER|MC].

Fixes: 8f2d6c41e5 ("x86/sched: Rewrite topology setup")
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Chen Yu <yu.c.chen@intel.com>
Tested-by: Caleb Callaway <caleb.callaway@intel.com>
Link: https://lkml.kernel.org/r/20230815035747.11529-1-ricardo.neri-calderon@linux.intel.com
2023-09-13 15:03:18 +02:00
Thomas Gleixner
3f874c9b2a x86/smp: Don't send INIT to non-present and non-booted CPUs
Vasant reported that kexec() can hang or reset the machine when it tries to
park CPUs via INIT. This happens when the kernel is using extended APIC,
but the present mask has APIC IDs >= 0x100 enumerated.

As extended APIC can only handle 8 bit of APIC ID sending INIT to APIC ID
0x100 sends INIT to APIC ID 0x0. That's the boot CPU which is special on
x86 and INIT causes the system to hang or resets the machine.

Prevent this by sending INIT only to those CPUs which have been booted
once.

Fixes: 45e34c8af5 ("x86/smp: Put CPUs into INIT on shutdown if possible")
Reported-by: Dheeraj Kumar Srivastava <dheerajkumar.srivastava@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Vasant Hegde <vasant.hegde@amd.com>
Link: https://lore.kernel.org/r/87cyzwjbff.ffs@tglx
2023-09-04 15:41:42 +02:00
Linus Torvalds
1687d8aca5 * Rework apic callbacks, getting rid of unnecessary ones and
coalescing lots of silly duplicates.
  * Use static_calls() instead of indirect calls for apic->foo()
  * Tons of cleanups an crap removal along the way
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmTvfO8ACgkQaDWVMHDJ
 krAP2A//ccii/LuvtTnNEIMMR5w2rwTdHv91ancgFkC8pOeNk37Z8sSLq8tKuLFA
 vgjBIysVIqunuRcNCJ+eqwIIxYfU+UGCWHppzLwO+DY3Q7o9EoTL0BgytdAqxpQQ
 ntEVarqWq25QYXKFoAqbUTJ1UXa42/8HfiXAX/jvP+ACXfilkGPZre6ASxlXeOhm
 XbgPuNQPmXi2WYQH9GCQEsz2Nh80hKap8upK2WbQzzJ3lXsm+xA//4klab0HCYwl
 Uc302uVZozyXRMKbAlwmgasTFOLiV8KKriJ0oHoktBpWgkpdR9uv/RDeSaFR3DAl
 aFmecD4k/Hqezg4yVl+4YpEn2KjxiwARCm4PMW5AV7lpWBPBHAOOai65yJlAi9U6
 bP8pM0+aIx9xg7oWfsTnQ7RkIJ+GZ0w+KZ9LXFM59iu3eV1pAJE3UVyUehe/J1q9
 n8OcH0UeHRlAb8HckqVm1AC7IPvfHw4OAPtUq7z3NFDwbq6i651Tu7f+i2bj31cX
 77Ames+fx6WjxUjyFbJwaK44E7Qez3waztdBfn91qw+m0b+gnKE3ieDNpJTqmm5b
 mKulV7KJwwS6cdqY3+Kr+pIlN+uuGAv7wGzVLcaEAXucDsVn/YAMJHY2+v97xv+n
 J9N+yeaYtmSXVlDsJ6dndMrTQMmcasK1CVXKxs+VYq5Lgf+A68w=
 =eoKm
 -----END PGP SIGNATURE-----

Merge tag 'x86_apic_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 apic updates from Dave Hansen:
 "This includes a very thorough rework of the 'struct apic' handlers.
  Quite a variety of them popped up over the years, especially in the
  32-bit days when odd apics were much more in vogue.

  The end result speaks for itself, which is a removal of a ton of code
  and static calls to replace indirect calls.

  If there's any breakage here, it's likely to be around the 32-bit
  museum pieces that get light to no testing these days.

  Summary:

   - Rework apic callbacks, getting rid of unnecessary ones and
     coalescing lots of silly duplicates.

   - Use static_calls() instead of indirect calls for apic->foo()

   - Tons of cleanups an crap removal along the way"

* tag 'x86_apic_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (64 commits)
  x86/apic: Turn on static calls
  x86/apic: Provide static call infrastructure for APIC callbacks
  x86/apic: Wrap IPI calls into helper functions
  x86/apic: Mark all hotpath APIC callback wrappers __always_inline
  x86/xen/apic: Mark apic __ro_after_init
  x86/apic: Convert other overrides to apic_update_callback()
  x86/apic: Replace acpi_wake_cpu_handler_update() and apic_set_eoi_cb()
  x86/apic: Provide apic_update_callback()
  x86/xen/apic: Use standard apic driver mechanism for Xen PV
  x86/apic: Provide common init infrastructure
  x86/apic: Wrap apic->native_eoi() into a helper
  x86/apic: Nuke ack_APIC_irq()
  x86/apic: Remove pointless arguments from [native_]eoi_write()
  x86/apic/noop: Tidy up the code
  x86/apic: Remove pointless NULL initializations
  x86/apic: Sanitize APIC ID range validation
  x86/apic: Prepare x2APIC for using apic::max_apic_id
  x86/apic: Simplify X2APIC ID validation
  x86/apic: Add max_apic_id member
  x86/apic: Wrap APIC ID validation into an inline
  ...
2023-08-30 10:44:46 -07:00
Linus Torvalds
87fa732dc5 X86 core updates:
- Prevent kprobes on compiler generated CFI checking code.
 
     The compiler generates a instruction sequence for indirect call
     checks. If this sequence is modified with a kprobe, then the check
     fails. So the instructions must be protected against probing.
 
   - A few minor cleanups for the SMP code
 
 Thanks,
 
 	tglx
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmTvO50THHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoSS/D/4xIz99FKNzowrhR9LYQpvjBLmrFY2L
 Hz/l+iHarNU8VE9eeTpYt0F3Ho7cUaMbC4juqxNthfjPOtkGotO6FLLOxWfkVkzz
 k54N2o4cUX7Hwi/HEpKwjzQ1ggLwxEUafeczvFg5aU3PlKcpzscT5todxxRrw+vz
 WA9JIuMlwVRwl+Jodzp+LsUGWaF1gT1aVBvFZGXFJ12GB58NMn+Nm9g77BmsYN2H
 jUQjsKLq32S1aU8Bq+YNIr9XWagTvDicJ617cwyzy1HivKadeBF2bj5+uJioxLFZ
 8YN9PyXtICkYJ/TrOsVJ5XxuNWNpyZ2x8OwCVdYboqeooylOJTHx1pUBufNQIpAr
 qx2npX6NOK29QFVXiTJoP3K+4sv/G4EL6FO3Sf2J92/4HPiTlhINGCjm/UAqbJcJ
 5Y3QfnIqB6ohCm7/e648ht5U+vdiNMzMAFj/jgNyqV8KBUQoXG58ygNP42V+Qq8+
 Is5oDv4M1BgynUG8FaIQV3LXFHFLA6dielgdJwTy7TZry0O9rU5qieUDskD6GBVv
 6ayiEqYKyXyJZw6YEzY/kDUxnpIRnqq0Lzbdn7TjH5cetnlfImc477jv8m3Um8ZP
 FMVe20MN79yuKPVlvkt2tCPEYttDXufQDHtDJp2WCp1/TizmGEW51sdsacw+YXrS
 M1uUljSmEeSM6Q==
 =nODz
 -----END PGP SIGNATURE-----

Merge tag 'x86-core-2023-08-30-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 core updates from Thomas Gleixner:

 - Prevent kprobes on compiler generated CFI checking code.

   The compiler generates an instruction sequence for indirect call
   checks. If this sequence is modified with a kprobe, then the check
   fails. So the instructions must be protected against probing.

 - A few minor cleanups for the SMP code

* tag 'x86-core-2023-08-30-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/kprobes: Prohibit probing on compiler generated CFI checking code
  x86/smpboot: Change smp_store_boot_cpu_info() to static
  x86/smp: Remove a non-existent function declaration
  x86/smpboot: Remove a stray comment about CPU hotplug
2023-08-30 10:10:31 -07:00
Linus Torvalds
3ca9a836ff Scheduler changes for v6.6:
- The biggest change is introduction of a new iteration of the
   SCHED_FAIR interactivity code: the EEVDF ("Earliest Eligible Virtual
   Deadline First") scheduler.
 
   EEVDF too is a virtual-time scheduler, with two parameters (weight
   and relative deadline), compared to CFS that had weight only.
   It completely reworks the base scheduler: placement, preemption,
   picking -- everything.
 
   LWN.net, as usual, has a terrific writeup about EEVDF:
 
      https://lwn.net/Articles/925371/
 
   Preemption (both tick and wakeup) is driven by testing against
   a fresh pick. Because the tree is now effectively an interval
   tree, and the selection is no longer the 'leftmost' task,
   over-scheduling is less of a problem. A lot of the CFS
   heuristics are removed or replaced by more natural latency-space
   parameters & constructs.
 
   In terms of expected performance regressions: we'll and can fix
   everything where a 'good' workload misbehaves with the new scheduler,
   but EEVDF inevitably changes workload scheduling in a binary fashion,
   hopefully for the better in the overwhelming majority of cases,
   but in some cases it won't, especially in adversarial loads that
   got lucky with the previous code, such as some variants of hackbench.
   We are trying hard to err on the side of fixing all performance
   regressions, but we expect some inevitable post-release iterations
   of that process.
 
 - Improve load-balancing on hybrid x86 systems: enable cluster
   scheduling (again).
 
 - Improve & fix bandwidth-scheduling on nohz systems.
 
 - Improve bandwidth-throttling.
 
 - Use lock guards to simplify and de-goto-ify control flow.
 
 - Misc improvements, cleanups and fixes.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmTtDOgRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1iS4g//b9yewVW9OPxetKoN8zIJA0TjFYuuOVHK
 BlCJi5dbzXeCTrtENI65BRA7kPbTQ3AjwLRQ2BallAZ4dJceK0RhlZJvcrMNsm4e
 Adcpoch/FbqPKCrtAJQY04Ln1B244n/KyVifYett9220dMgTFQGJJYxrTc2G2+Kp
 F44vdUHzRczIE+KeOgBild1CwfKv5Zn5xgaXgtuoPLZtWBE0C1fSSzbK/PTINcUx
 bS4NVxK0CpOqSiNjnugV8KsYb71/0U6IgShBVjfHsrlBYigOH2NbVTH5xyjF8f83
 WxiGstlhxj+N6Kv4L6FOJIAr2BIggH82j3FaPACmv4c8pzEoBBbvlAJkfinLEgbn
 Povg3OF2t6uZ8NoHjeu3WxOjBsphbpkFz7H5nno1ibXSIR/JyUH5MdBPSx93QITB
 QoUKQpr/L8zWauWDOEzSaJjEsZbl8rkcIVq5Bk0bR3qn2xkZsIeVte+vCEu3+tBc
 b4JOZjq7AuPDqPnsBLvuyiFZ7zwsAfm+pOD5UF3/zbLjPn1N/7wTNQZ29zjc04jl
 SifpCZGgF1KlG8m8wNTlSfVvq0ksppCzJt+C6VFuejZ191IGpirQHn4Vp0sluMhC
 WRzXhb7v37Bq5JY10GMfeKb/jAiRs68kozhzqVPsBSAPS6I6jJssONgedq+LbQdC
 tFsmE9n09do=
 =XtCD
 -----END PGP SIGNATURE-----

Merge tag 'sched-core-2023-08-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler updates from Ingo Molnar:

 - The biggest change is introduction of a new iteration of the
   SCHED_FAIR interactivity code: the EEVDF ("Earliest Eligible Virtual
   Deadline First") scheduler

   EEVDF too is a virtual-time scheduler, with two parameters (weight
   and relative deadline), compared to CFS that had weight only. It
   completely reworks the base scheduler: placement, preemption, picking
   -- everything

   LWN.net, as usual, has a terrific writeup about EEVDF:

      https://lwn.net/Articles/925371/

   Preemption (both tick and wakeup) is driven by testing against a
   fresh pick. Because the tree is now effectively an interval tree, and
   the selection is no longer the 'leftmost' task, over-scheduling is
   less of a problem. A lot of the CFS heuristics are removed or
   replaced by more natural latency-space parameters & constructs

   In terms of expected performance regressions: we will and can fix
   everything where a 'good' workload misbehaves with the new scheduler,
   but EEVDF inevitably changes workload scheduling in a binary fashion,
   hopefully for the better in the overwhelming majority of cases, but
   in some cases it won't, especially in adversarial loads that got
   lucky with the previous code, such as some variants of hackbench. We
   are trying hard to err on the side of fixing all performance
   regressions, but we expect some inevitable post-release iterations of
   that process

 - Improve load-balancing on hybrid x86 systems: enable cluster
   scheduling (again)

 - Improve & fix bandwidth-scheduling on nohz systems

 - Improve bandwidth-throttling

 - Use lock guards to simplify and de-goto-ify control flow

 - Misc improvements, cleanups and fixes

* tag 'sched-core-2023-08-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (43 commits)
  sched/eevdf/doc: Modify the documented knob to base_slice_ns as well
  sched/eevdf: Curb wakeup-preemption
  sched: Simplify sched_core_cpu_{starting,deactivate}()
  sched: Simplify try_steal_cookie()
  sched: Simplify sched_tick_remote()
  sched: Simplify sched_exec()
  sched: Simplify ttwu()
  sched: Simplify wake_up_if_idle()
  sched: Simplify: migrate_swap_stop()
  sched: Simplify sysctl_sched_uclamp_handler()
  sched: Simplify get_nohz_timer_target()
  sched/rt: sysctl_sched_rr_timeslice show default timeslice after reset
  sched/rt: Fix sysctl_sched_rr_timeslice intial value
  sched/fair: Block nohz tick_stop when cfs bandwidth in use
  sched, cgroup: Restore meaning to hierarchical_quota
  MAINTAINERS: Add Peter explicitly to the psi section
  sched/psi: Select KERNFS as needed
  sched/topology: Align group flags when removing degenerate domain
  sched/fair: remove util_est boosting
  sched/fair: Propagate enqueue flags into place_entity()
  ...
2023-08-28 16:43:39 -07:00
Thomas Gleixner
9132d720eb x86/apic: Wrap APIC ID validation into an inline
Prepare for removing the callback and making this as simple comparison to
an upper limit, which is the obvious solution to do for limit checks...

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
2023-08-09 11:58:30 -07:00
Thomas Gleixner
79c9a17c16 x86/apic/32: Decrapify the def_bigsmp mechanism
If the system has more than 8 CPUs then XAPIC and the bigsmp APIC driver is
required. This is ensured via:

  1) Enumerating all possible CPUs up to NR_CPUS

  2) Checking at boot CPU APIC setup time whether the system has more than
     8 CPUs and has an XAPIC.

     If that's the case then it's attempted to install the bigsmp APIC
     driver and a magic variable 'def_to_bigsmp' is set to one.

  3) If that magic variable is set and CONFIG_X86_BIGSMP=n and the system
     has more than 8 CPUs smp_sanity_check() removes all CPUs >= #8 from
     the present and possible mask in the most convoluted way.

This logic is completely broken for the case where the bigsmp driver is
enabled, but not selected due to a command line option specifying the
default APIC. In that case the system boots with default APIC in logical
destination mode and fails to reduce the number of CPUs.

That aside the above which is sprinkled over 3 different places is yet
another piece of art.

It would have been too obvious to check the requirements upfront and limit
nr_cpu_ids _before_ enumerating tons of CPUs and then removing them again.

Implement exactly this. Check the bigsmp requirement when the boot APIC is
registered which happens _before_ ACPI/MPTABLE parsing and limit the number
of CPUs to 8 if it can't be used. Switch it over when the boot CPU apic is
set up if necessary.

[ dhansen: fix nr_cpu_ids off-by-one in default_setup_apic_routing() ]

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
2023-08-09 11:58:25 -07:00
Thomas Gleixner
55cc40d3df x86/apic: Nuke another processor check
The boot CPUs local APIC is now always registered, so there is no point to
have another unreadable validatation for it.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
2023-08-09 11:58:22 -07:00
Thomas Gleixner
e8122513ff x86/apic: Sanitize num_processors handling
num_processors is 0 by default and only gets incremented when local APICs
are registered.

Make init_apic_mappings(), which tries to enable the local APIC in the case
that no SMP configuration was found set num_processors to 1.

This allows to remove yet another check for the local APIC and yet another
place which registers the boot CPUs local APIC ID.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
2023-08-09 11:58:21 -07:00
Thomas Gleixner
249ada2c82 x86/apic: Remove the pointless APIC version check
This historical leftover is really uninteresting today. Whatever MPTABLE or
MADT delivers we only trust the hardware anyway.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
2023-08-09 11:58:19 -07:00
Thomas Gleixner
1d90c9f731 x86/apic: Nuke unused apic::inquire_remote_apic()
Put it to the other historical leftovers.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
2023-08-09 11:58:18 -07:00
Thomas Gleixner
a6625b473b x86/apic: Get rid of hard_smp_processor_id()
No point in having a wrapper around read_apic_id().

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
2023-08-09 11:58:17 -07:00
Sohil Mehta
d7114f83ee x86/smpboot: Change smp_store_boot_cpu_info() to static
The function is only used locally. Convert it to a static one.

Signed-off-by: Sohil Mehta <sohil.mehta@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230727180533.3119660-4-sohil.mehta@intel.com
2023-07-28 10:17:53 +02:00
Sohil Mehta
52defa4a5e x86/smpboot: Remove a stray comment about CPU hotplug
This old comment is irrelavant to the logic of disabling interrupts and
could be misleading. Remove it.

Now, hlt_play_dead() resembles the code that the comment was initially
added for, but, it doesn't make sense anymore because an offlined cpu
could also be put into other states such as mwait.

Signed-off-by: Sohil Mehta <sohil.mehta@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230727180533.3119660-2-sohil.mehta@intel.com
2023-07-28 10:17:53 +02:00
Laurent Dufour
91b4a7dbfe cpu/SMT: Remove topology_smt_supported()
Since the maximum number of threads is now passed to cpu_smt_set_num_threads(),
checking that value is enough to know whether SMT is supported.

Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20230705145143.40545-6-ldufour@linux.ibm.com
2023-07-28 09:53:37 +02:00
Peter Zijlstra
17953249bf x86/sched: Enable cluster scheduling on Hybrid
With the SMT vs non-SMT balancing issues sorted, also enable the
cluster domain for Hybrid machines.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
2023-07-13 15:21:53 +02:00
Linus Torvalds
e3da8db055 A single fix for the mechanism to park CPUs with an INIT IPI.
On shutdown or kexec, the kernel tries to park the non-boot CPUs with an
 INIT IPI. But the same code path is also used by the crash utility. If the
 CPU which panics is not the boot CPU then it sends an INIT IPI to the boot
 CPU which resets the machine. Prevent this by validating that the CPU which
 runs the stop mechanism is the boot CPU. If not, leave the other CPUs in
 HLT.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmSqoEcTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoYNSEACwo5zgibek27qeMvJGfNztm0qRa4mw
 wN0qV31yaNcEfhqL8bMU8n3wvEA+pZBqhaU5fyalY+yxc29jI/j9eda5zR+Fi9e5
 kVyFT2M0rVSDLFraoQeD+T/tSSK2MJtswF12ytY5mHzHMCb6Uy9fNCpUiQlB+i81
 AcnlKQk9ifZXFdMJPj5E+E6l776T8NZPoYEdFgJloxaYOGTdFJDWDlryx4LD7Urz
 Fx/ec8Ug/FYSPl2XzXHugvHjNefxKoomcZ3v3CSZonBcav7Gz6F06HAR5vVRWSHx
 4Dlh6zdy+60YKBmkvpb+RJIBMo8aXclwT+tntaoJvGHZ+PNASO6JVz9PvmoNgfWK
 Oy2n1K687qIOY6d+yxUZgbZpwXX5bG6kc0xbicUNigGagrYTfd83G5RAfwxNkqsY
 23Qw4Ue8uxve4M8iM/FfxKIShuDBiLCIDDIrWDjEkvIAnr1pd+NPUv7kqOTI7Kz/
 srNgcOwalypzuS93lgaN1yjRv1mmaPXhdhjy0DwGbC54bKgNzfq+7z75Ibn0dSFF
 JUPFVjztB+ymnM6PJ1dR77SvPi+xOi60nw7L+Qu9US4yKkW0NeGiIWVsggNorbU6
 UPFSE5gxwFD0w1EZ9W+IDeOZUNhjJUINZsn8txm+tb+oEqTIGRPHPOo0C1dBmLW9
 AmDIeHljj0iWIw==
 =DOCF
 -----END PGP SIGNATURE-----

Merge tag 'x86-core-2023-07-09' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 fix from Thomas Gleixner:
 "A single fix for the mechanism to park CPUs with an INIT IPI.

  On shutdown or kexec, the kernel tries to park the non-boot CPUs with
  an INIT IPI. But the same code path is also used by the crash utility.
  If the CPU which panics is not the boot CPU then it sends an INIT IPI
  to the boot CPU which resets the machine.

  Prevent this by validating that the CPU which runs the stop mechanism
  is the boot CPU. If not, leave the other CPUs in HLT"

* tag 'x86-core-2023-07-09' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/smp: Don't send INIT to boot CPU
2023-07-09 10:08:38 -07:00
Thomas Gleixner
b1472a60a5 x86/smp: Don't send INIT to boot CPU
Parking CPUs in INIT works well, except for the crash case when the CPU
which invokes smp_park_other_cpus_in_init() is not the boot CPU. Sending
INIT to the boot CPU resets the whole machine.

Prevent this by validating that this runs on the boot CPU. If not fall back
and let CPUs hang in HLT.

Fixes: 45e34c8af5 ("x86/smp: Put CPUs into INIT on shutdown if possible")
Reported-by: Baokun Li <libaokun1@huawei.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Baokun Li <libaokun1@huawei.com>
Link: https://lore.kernel.org/r/87ttui91jo.ffs@tglx
2023-07-07 15:42:31 +02:00
Linus Torvalds
ed3b7923a8 Scheduler changes for v6.5:
- Scheduler SMP load-balancer improvements:
 
     - Avoid unnecessary migrations within SMT domains on hybrid systems.
 
       Problem:
 
         On hybrid CPU systems, (processors with a mixture of higher-frequency
 	SMT cores and lower-frequency non-SMT cores), under the old code
 	lower-priority CPUs pulled tasks from the higher-priority cores if
 	more than one SMT sibling was busy - resulting in many unnecessary
 	task migrations.
 
       Solution:
 
         The new code improves the load balancer to recognize SMT cores with more
         than one busy sibling and allows lower-priority CPUs to pull tasks, which
         avoids superfluous migrations and lets lower-priority cores inspect all SMT
         siblings for the busiest queue.
 
     - Implement the 'runnable boosting' feature in the EAS balancer: consider CPU
       contention in frequency, EAS max util & load-balance busiest CPU selection.
 
       This improves CPU utilization for certain workloads, while leaves other key
       workloads unchanged.
 
 - Scheduler infrastructure improvements:
 
     - Rewrite the scheduler topology setup code by consolidating it
       into the build_sched_topology() helper function and building
       it dynamically on the fly.
 
     - Resolve the local_clock() vs. noinstr complications by rewriting
       the code: provide separate sched_clock_noinstr() and
       local_clock_noinstr() functions to be used in instrumentation code,
       and make sure it is all instrumentation-safe.
 
 - Fixes:
 
     - Fix a kthread_park() race with wait_woken()
 
     - Fix misc wait_task_inactive() bugs unearthed by the -rt merge:
        - Fix UP PREEMPT bug by unifying the SMP and UP implementations.
        - Fix task_struct::saved_state handling.
 
     - Fix various rq clock update bugs, unearthed by turning on the rq clock
       debugging code.
 
     - Fix the PSI WINDOW_MIN_US trigger limit, which was easy to trigger by
       creating enough cgroups, by removing the warnign and restricting
       window size triggers to PSI file write-permission or CAP_SYS_RESOURCE.
 
     - Propagate SMT flags in the topology when removing degenerate domain
 
     - Fix grub_reclaim() calculation bug in the deadline scheduler code
 
     - Avoid resetting the min update period when it is unnecessary, in
       psi_trigger_destroy().
 
     - Don't balance a task to its current running CPU in load_balance(),
       which was possible on certain NUMA topologies with overlapping
       groups.
 
     - Fix the sched-debug printing of rq->nr_uninterruptible
 
 - Cleanups:
 
     - Address various -Wmissing-prototype warnings, as a preparation
       to (maybe) enable this warning in the future.
 
     - Remove unused code
 
     - Mark more functions __init
 
     - Fix shadow-variable warnings
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmSatWQRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1j62xAAuGOx1LcDfRGC6WGQzp1zOdlsVQtnDvlS
 qL58zYSHgizprpVQ3j87SBaG4CHCdvd2Bo36yW0lNZS4nd203qdq7fkrMb3hPP/w
 egUQUzMegf5fF6BWldKeMjuHSt+twFQz/ZAKK8iSbAir6CHNAqbNst1oL0i/+Tyk
 o33hBs1hT5tnbFb1NSVZkX4k+qT3LzTW4K2QgjjGtkScr6yHh2BdEVefyigWOjdo
 9s02d00ll9a2r+F5txlN7Dnw6TN7rmTXGMOJU5bZvBE90/anNiAorMXHJdEKCyUR
 u9+JtBdJWiCplGa/tSRcxT16ZW1VdtTnd9q66TDhXREd2UNDFqBEyg5Wl77K4Tlf
 vKFajmj/to+cTbuv6m6TVR+zyXpdEpdL6F04P44U3qiJvDobBqeDNKHHIqpmbHXl
 AXUXcPWTVAzXX1Ce5M+BeAgTBQ1T7C5tELILrTNQHJvO1s9VVBRFZ/l65Ps4vu7T
 wIZ781IFuopk0zWqHovNvgKrJ7oFmOQQZFttQEe8n6nafkjI7u+IZ8FayiGaUMRr
 4GawFGUCEdYh8z9qyslGKe8Q/Rphfk6hxMFRYUJpDmubQ0PkMeDjDGq77jDGl1PF
 VqwSDEyOaBJs7Gqf/mem00JtzBmXhkhm1SEjggHMI2IQbr/eeBXoLQOn3CDapO/N
 PiDbtX760ic=
 =EWQA
 -----END PGP SIGNATURE-----

Merge tag 'sched-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull scheduler updates from Ingo Molnar:
 "Scheduler SMP load-balancer improvements:

   - Avoid unnecessary migrations within SMT domains on hybrid systems.

     Problem:

        On hybrid CPU systems, (processors with a mixture of
        higher-frequency SMT cores and lower-frequency non-SMT cores),
        under the old code lower-priority CPUs pulled tasks from the
        higher-priority cores if more than one SMT sibling was busy -
        resulting in many unnecessary task migrations.

     Solution:

        The new code improves the load balancer to recognize SMT cores
        with more than one busy sibling and allows lower-priority CPUs
        to pull tasks, which avoids superfluous migrations and lets
        lower-priority cores inspect all SMT siblings for the busiest
        queue.

   - Implement the 'runnable boosting' feature in the EAS balancer:
     consider CPU contention in frequency, EAS max util & load-balance
     busiest CPU selection.

     This improves CPU utilization for certain workloads, while leaves
     other key workloads unchanged.

  Scheduler infrastructure improvements:

   - Rewrite the scheduler topology setup code by consolidating it into
     the build_sched_topology() helper function and building it
     dynamically on the fly.

   - Resolve the local_clock() vs. noinstr complications by rewriting
     the code: provide separate sched_clock_noinstr() and
     local_clock_noinstr() functions to be used in instrumentation code,
     and make sure it is all instrumentation-safe.

  Fixes:

   - Fix a kthread_park() race with wait_woken()

   - Fix misc wait_task_inactive() bugs unearthed by the -rt merge:
       - Fix UP PREEMPT bug by unifying the SMP and UP implementations
       - Fix task_struct::saved_state handling

   - Fix various rq clock update bugs, unearthed by turning on the rq
     clock debugging code.

   - Fix the PSI WINDOW_MIN_US trigger limit, which was easy to trigger
     by creating enough cgroups, by removing the warnign and restricting
     window size triggers to PSI file write-permission or
     CAP_SYS_RESOURCE.

   - Propagate SMT flags in the topology when removing degenerate domain

   - Fix grub_reclaim() calculation bug in the deadline scheduler code

   - Avoid resetting the min update period when it is unnecessary, in
     psi_trigger_destroy().

   - Don't balance a task to its current running CPU in load_balance(),
     which was possible on certain NUMA topologies with overlapping
     groups.

   - Fix the sched-debug printing of rq->nr_uninterruptible

  Cleanups:

   - Address various -Wmissing-prototype warnings, as a preparation to
     (maybe) enable this warning in the future.

   - Remove unused code

   - Mark more functions __init

   - Fix shadow-variable warnings"

* tag 'sched-core-2023-06-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (50 commits)
  sched/core: Avoid multiple calling update_rq_clock() in __cfsb_csd_unthrottle()
  sched/core: Avoid double calling update_rq_clock() in __balance_push_cpu_stop()
  sched/core: Fixed missing rq clock update before calling set_rq_offline()
  sched/deadline: Update GRUB description in the documentation
  sched/deadline: Fix bandwidth reclaim equation in GRUB
  sched/wait: Fix a kthread_park race with wait_woken()
  sched/topology: Mark set_sched_topology() __init
  sched/fair: Rename variable cpu_util eff_util
  arm64/arch_timer: Fix MMIO byteswap
  sched/fair, cpufreq: Introduce 'runnable boosting'
  sched/fair: Refactor CPU utilization functions
  cpuidle: Use local_clock_noinstr()
  sched/clock: Provide local_clock_noinstr()
  x86/tsc: Provide sched_clock_noinstr()
  clocksource: hyper-v: Provide noinstr sched_clock()
  clocksource: hyper-v: Adjust hv_read_tsc_page_tsc() to avoid special casing U64_MAX
  x86/vdso: Fix gettimeofday masking
  math64: Always inline u128 version of mul_u64_u64_shr()
  s390/time: Provide sched_clock_noinstr()
  loongarch: Provide noinstr sched_clock_read()
  ...
2023-06-27 14:03:21 -07:00
Linus Torvalds
88afbb21d4 A set of fixes for kexec(), reboot and shutdown issues
- Ensure that the WBINVD in stop_this_cpu() has been completed before the
    control CPU proceedes.
 
    stop_this_cpu() is used for kexec(), reboot and shutdown to park the APs
    in a HLT loop.
 
    The control CPU sends an IPI to the APs and waits for their CPU online bits
    to be cleared. Once they all are marked "offline" it proceeds.
 
    But stop_this_cpu() clears the CPU online bit before issuing WBINVD,
    which means there is no guarantee that the AP has reached the HLT loop.
 
    This was reported to cause intermittent reboot/shutdown failures due to
    some dubious interaction with the firmware.
 
    This is not only a problem of WBINVD. The code to actually "stop" the
    CPU which runs between clearing the online bit and reaching the HLT loop
    can cause large enough delays on its own (think virtualization). That's
    especially dangerous for kexec() as kexec() expects that all APs are in
    a safe state and not executing code while the boot CPU jumps to the new
    kernel. There are more issues vs. kexec() which are addressed separately.
 
    Cure this by implementing an explicit synchronization point right before
    the AP reaches HLT. This guarantees that the AP has completed the full
    stop proceedure.
 
  - Fix the condition for WBINVD in stop_this_cpu().
 
    The WBINVD in stop_this_cpu() is required for ensuring that when
    switching to or from memory encryption no dirty data is left in the
    cache lines which might cause a write back in the wrong more later.
 
    This checks CPUID directly because the feature bit might have been
    cleared due to a command line option.
 
    But that CPUID check accesses leaf 0x8000001f::EAX unconditionally. Intel
    CPUs return the content of the highest supported leaf when a non-existing
    leaf is read, while AMD CPUs return all zeros for unsupported leafs.
 
    So the result of the test on Intel CPUs is lottery and on AMD its just
    correct by chance.
 
    While harmless it's incorrect and causes the conditional wbinvd() to be
    issued where not required, which caused the above issue to be unearthed.
 
  - Make kexec() robust against AP code execution
 
    Ashok observed triple faults when doing kexec() on a system which had
    been booted with "nosmt".
 
    It turned out that the SMT siblings which had been brought up partially
    are parked in mwait_play_dead() to enable power savings.
 
    mwait_play_dead() is monitoring the thread flags of the AP's idle task,
    which has been chosen as it's unlikely to be written to.
 
    But kexec() can overwrite the previous kernel text and data including
    page tables etc. When it overwrites the cache lines monitored by an AP
    that AP resumes execution after the MWAIT on eventually overwritten
    text, stack and page tables, which obviously might end up in a triple
    fault easily.
 
    Make this more robust in several steps:
 
     1) Use an explicit per CPU cache line for monitoring.
 
     2) Write a command to these cache lines to kick APs out of MWAIT before
        proceeding with kexec(), shutdown or reboot.
 
        The APs confirm the wakeup by writing status back and then enter a
        HLT loop.
 
     3) If the system uses INIT/INIT/STARTUP for AP bringup, park the APs
        in INIT state.
 
        HLT is not a guarantee that an AP won't wake up and resume
        execution. HLT is woken up by NMI and SMI. SMI puts the CPU back
        into HLT (+/- firmware bugs), but NMI is delivered to the CPU which
        executes the NMI handler. Same issue as the MWAIT scenario described
        above.
 
        Sending an INIT/INIT sequence to the APs puts them into wait for
        STARTUP state, which is safe against NMI.
 
     There is still an issue remaining which can't be fixed: #MCE
 
     If the AP sits in HLT and receives a broadcast #MCE it will try to
     handle it with the obvious consequences.
 
     INIT/INIT clears CR4.MCE in the AP which will cause a broadcast #MCE to
     shut down the machine.
 
     So there is a choice between fire (HLT) and frying pan (INIT). Frying
     pan has been chosen as it's at least preventing the NMI issue.
 
     On systems which are not using INIT/INIT/STARTUP there is not much
     which can be done right now, but at least the obvious and easy to
     trigger MWAIT issue has been addressed.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmSZfpQTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoeZpD/9gSJN2qtGqoOgE8bWAenEeqppmBGFE
 EAhuhsvN1qG9JosUFo4KzxsGD/aWt2P6XglBDrGti8mFNol67jutmwWklntL3/ZR
 m8D6D+Pl7/CaDgACDTDbrnVC3lOGyMhD301yJrnBigS/SEoHeHI9UtadbHukuLQj
 TlKt5KtAnap15bE6QL846cDIptB9SjYLLPULo3i4azXEis/l6eAkffwAR6dmKlBh
 2RbhLK1xPPG9nqWYjqZXnex09acKwD9xY9xHj4+GampV4UqHJRWfW0YtFs5ENi01
 r3FVCdKEcvMkUw0zh0IAviBRs2vCI/R3YSfEc7P0264yn5WzMhAT+OGCovNjByiW
 sB4Iqa+Yf6aoBWwux6W4d22xu7uYhmFk/jiLyRZJPW/gvGZCZATT/x/T2hRoaYA8
 3S0Rs7n/gbfvynQETgniifuM0bXRW0lEJAmn840GwyVQwlpDEPBJSwW4El49kbkc
 +dHxnmpMCfnBxfVLS1YDd4WOmkWBeECNcW330FShlQQ8mM3UG31+Q8Jc55Ze9SW0
 w1h+IgIOHlA0DpQUUM8DJTSuxFx2piQsZxjOtzd70+BiKZpCsHqVLIp4qfnf+/GO
 gyP0cCQLbafpABbV9uVy8A/qgUGi0Qii0GJfCTy0OdmU+JX3C2C/gsM3uN0g3qAj
 vUhkuCXEGL5k1w==
 =KgZ0
 -----END PGP SIGNATURE-----

Merge tag 'x86-core-2023-06-26' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 core updates from Thomas Gleixner:
 "A set of fixes for kexec(), reboot and shutdown issues:

   - Ensure that the WBINVD in stop_this_cpu() has been completed before
     the control CPU proceedes.

     stop_this_cpu() is used for kexec(), reboot and shutdown to park
     the APs in a HLT loop.

     The control CPU sends an IPI to the APs and waits for their CPU
     online bits to be cleared. Once they all are marked "offline" it
     proceeds.

     But stop_this_cpu() clears the CPU online bit before issuing
     WBINVD, which means there is no guarantee that the AP has reached
     the HLT loop.

     This was reported to cause intermittent reboot/shutdown failures
     due to some dubious interaction with the firmware.

     This is not only a problem of WBINVD. The code to actually "stop"
     the CPU which runs between clearing the online bit and reaching the
     HLT loop can cause large enough delays on its own (think
     virtualization). That's especially dangerous for kexec() as kexec()
     expects that all APs are in a safe state and not executing code
     while the boot CPU jumps to the new kernel. There are more issues
     vs kexec() which are addressed separately.

     Cure this by implementing an explicit synchronization point right
     before the AP reaches HLT. This guarantees that the AP has
     completed the full stop proceedure.

   - Fix the condition for WBINVD in stop_this_cpu().

     The WBINVD in stop_this_cpu() is required for ensuring that when
     switching to or from memory encryption no dirty data is left in the
     cache lines which might cause a write back in the wrong more later.

     This checks CPUID directly because the feature bit might have been
     cleared due to a command line option.

     But that CPUID check accesses leaf 0x8000001f::EAX unconditionally.
     Intel CPUs return the content of the highest supported leaf when a
     non-existing leaf is read, while AMD CPUs return all zeros for
     unsupported leafs.

     So the result of the test on Intel CPUs is lottery and on AMD its
     just correct by chance.

     While harmless it's incorrect and causes the conditional wbinvd()
     to be issued where not required, which caused the above issue to be
     unearthed.

   - Make kexec() robust against AP code execution

     Ashok observed triple faults when doing kexec() on a system which
     had been booted with "nosmt".

     It turned out that the SMT siblings which had been brought up
     partially are parked in mwait_play_dead() to enable power savings.

     mwait_play_dead() is monitoring the thread flags of the AP's idle
     task, which has been chosen as it's unlikely to be written to.

     But kexec() can overwrite the previous kernel text and data
     including page tables etc. When it overwrites the cache lines
     monitored by an AP that AP resumes execution after the MWAIT on
     eventually overwritten text, stack and page tables, which obviously
     might end up in a triple fault easily.

     Make this more robust in several steps:

      1) Use an explicit per CPU cache line for monitoring.

      2) Write a command to these cache lines to kick APs out of MWAIT
         before proceeding with kexec(), shutdown or reboot.

         The APs confirm the wakeup by writing status back and then
         enter a HLT loop.

      3) If the system uses INIT/INIT/STARTUP for AP bringup, park the
         APs in INIT state.

         HLT is not a guarantee that an AP won't wake up and resume
         execution. HLT is woken up by NMI and SMI. SMI puts the CPU
         back into HLT (+/- firmware bugs), but NMI is delivered to the
         CPU which executes the NMI handler. Same issue as the MWAIT
         scenario described above.

         Sending an INIT/INIT sequence to the APs puts them into wait
         for STARTUP state, which is safe against NMI.

     There is still an issue remaining which can't be fixed: #MCE

     If the AP sits in HLT and receives a broadcast #MCE it will try to
     handle it with the obvious consequences.

     INIT/INIT clears CR4.MCE in the AP which will cause a broadcast
     #MCE to shut down the machine.

     So there is a choice between fire (HLT) and frying pan (INIT).
     Frying pan has been chosen as it's at least preventing the NMI
     issue.

     On systems which are not using INIT/INIT/STARTUP there is not much
     which can be done right now, but at least the obvious and easy to
     trigger MWAIT issue has been addressed"

* tag 'x86-core-2023-06-26' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/smp: Put CPUs into INIT on shutdown if possible
  x86/smp: Split sending INIT IPI out into a helper function
  x86/smp: Cure kexec() vs. mwait_play_dead() breakage
  x86/smp: Use dedicated cache-line for mwait_play_dead()
  x86/smp: Remove pointless wmb()s from native_stop_other_cpus()
  x86/smp: Dont access non-existing CPUID leaf
  x86/smp: Make stop_other_cpus() more robust
2023-06-26 14:45:53 -07:00
Linus Torvalds
9244724fbf A large update for SMP management:
- Parallel CPU bringup
 
     The reason why people are interested in parallel bringup is to shorten
     the (kexec) reboot time of cloud servers to reduce the downtime of the
     VM tenants.
 
     The current fully serialized bringup does the following per AP:
 
       1) Prepare callbacks (allocate, intialize, create threads)
       2) Kick the AP alive (e.g. INIT/SIPI on x86)
       3) Wait for the AP to report alive state
       4) Let the AP continue through the atomic bringup
       5) Let the AP run the threaded bringup to full online state
 
     There are two significant delays:
 
       #3 The time for an AP to report alive state in start_secondary() on
          x86 has been measured in the range between 350us and 3.5ms
          depending on vendor and CPU type, BIOS microcode size etc.
 
       #4 The atomic bringup does the microcode update. This has been
          measured to take up to ~8ms on the primary threads depending on
          the microcode patch size to apply.
 
     On a two socket SKL server with 56 cores (112 threads) the boot CPU
     spends on current mainline about 800ms busy waiting for the APs to come
     up and apply microcode. That's more than 80% of the actual onlining
     procedure.
 
     This can be reduced significantly by splitting the bringup mechanism
     into two parts:
 
       1) Run the prepare callbacks and kick the AP alive for each AP which
       	 needs to be brought up.
 
 	 The APs wake up, do their firmware initialization and run the low
       	 level kernel startup code including microcode loading in parallel
       	 up to the first synchronization point. (#1 and #2 above)
 
       2) Run the rest of the bringup code strictly serialized per CPU
       	 (#3 - #5 above) as it's done today.
 
 	 Parallelizing that stage of the CPU bringup might be possible in
 	 theory, but it's questionable whether required surgery would be
 	 justified for a pretty small gain.
 
     If the system is large enough the first AP is already waiting at the
     first synchronization point when the boot CPU finished the wake-up of
     the last AP. That reduces the AP bringup time on that SKL from ~800ms
     to ~80ms, i.e. by a factor ~10x.
 
     The actual gain varies wildly depending on the system, CPU, microcode
     patch size and other factors. There are some opportunities to reduce
     the overhead further, but that needs some deep surgery in the x86 CPU
     bringup code.
 
     For now this is only enabled on x86, but the core functionality
     obviously works for all SMP capable architectures.
 
   - Enhancements for SMP function call tracing so it is possible to locate
     the scheduling and the actual execution points. That allows to measure
     IPI delivery time precisely.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmSZb/YTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoRoOD/9vAiGI3IhGyZcX/RjXxauSHf8Pmqll
 05jUubFi5Vi3tKI1ubMOsnMmJTw2yy5xDyS/iGj7AcbRLq9uQd3iMtsXXHNBzo/X
 FNxnuWTXYUj0vcOYJ+j4puBumFzzpRCprqccMInH0kUnSWzbnaQCeelicZORAf+w
 zUYrswK4HpBXHDOnvPw6Z7MYQe+zyDQSwjSftstLyROzu+lCEw/9KUaysY2epShJ
 wHClxS2XqMnpY4rJ/CmJAlRhD0Plb89zXyo6k9YZYVDWoAcmBZy6vaTO4qoR171L
 37ApqrgsksMkjFycCMnmrFIlkeb7bkrYDQ5y+xqC3JPTlYDKOYmITV5fZ83HD77o
 K7FAhl/CgkPq2Ec+d82GFLVBKR1rijbwHf7a0nhfUy0yMeaJCxGp4uQ45uQ09asi
 a/VG2T38EgxVdseC92HRhcdd3pipwCb5wqjCH/XdhdlQrk9NfeIeP+TxF4QhADhg
 dApp3ifhHSnuEul7+HNUkC6U+Zc8UeDPdu5lvxSTp2ooQ0JwaGgC5PJq3nI9RUi2
 Vv826NHOknEjFInOQcwvp6SJPfcuSTF75Yx6xKz8EZ3HHxpvlolxZLq+3ohSfOKn
 2efOuZO5bEu4S/G2tRDYcy+CBvNVSrtZmCVqSOS039c8quBWQV7cj0334cjzf+5T
 TRiSzvssbYYmaw==
 =Y8if
 -----END PGP SIGNATURE-----

Merge tag 'smp-core-2023-06-26' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull SMP updates from Thomas Gleixner:
 "A large update for SMP management:

   - Parallel CPU bringup

     The reason why people are interested in parallel bringup is to
     shorten the (kexec) reboot time of cloud servers to reduce the
     downtime of the VM tenants.

     The current fully serialized bringup does the following per AP:

       1) Prepare callbacks (allocate, intialize, create threads)
       2) Kick the AP alive (e.g. INIT/SIPI on x86)
       3) Wait for the AP to report alive state
       4) Let the AP continue through the atomic bringup
       5) Let the AP run the threaded bringup to full online state

     There are two significant delays:

       #3 The time for an AP to report alive state in start_secondary()
          on x86 has been measured in the range between 350us and 3.5ms
          depending on vendor and CPU type, BIOS microcode size etc.

       #4 The atomic bringup does the microcode update. This has been
          measured to take up to ~8ms on the primary threads depending
          on the microcode patch size to apply.

     On a two socket SKL server with 56 cores (112 threads) the boot CPU
     spends on current mainline about 800ms busy waiting for the APs to
     come up and apply microcode. That's more than 80% of the actual
     onlining procedure.

     This can be reduced significantly by splitting the bringup
     mechanism into two parts:

       1) Run the prepare callbacks and kick the AP alive for each AP
          which needs to be brought up.

          The APs wake up, do their firmware initialization and run the
          low level kernel startup code including microcode loading in
          parallel up to the first synchronization point. (#1 and #2
          above)

       2) Run the rest of the bringup code strictly serialized per CPU
          (#3 - #5 above) as it's done today.

          Parallelizing that stage of the CPU bringup might be possible
          in theory, but it's questionable whether required surgery
          would be justified for a pretty small gain.

     If the system is large enough the first AP is already waiting at
     the first synchronization point when the boot CPU finished the
     wake-up of the last AP. That reduces the AP bringup time on that
     SKL from ~800ms to ~80ms, i.e. by a factor ~10x.

     The actual gain varies wildly depending on the system, CPU,
     microcode patch size and other factors. There are some
     opportunities to reduce the overhead further, but that needs some
     deep surgery in the x86 CPU bringup code.

     For now this is only enabled on x86, but the core functionality
     obviously works for all SMP capable architectures.

   - Enhancements for SMP function call tracing so it is possible to
     locate the scheduling and the actual execution points. That allows
     to measure IPI delivery time precisely"

* tag 'smp-core-2023-06-26' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
  trace,smp: Add tracepoints for scheduling remotelly called functions
  trace,smp: Add tracepoints around remotelly called functions
  MAINTAINERS: Add CPU HOTPLUG entry
  x86/smpboot: Fix the parallel bringup decision
  x86/realmode: Make stack lock work in trampoline_compat()
  x86/smp: Initialize cpu_primary_thread_mask late
  cpu/hotplug: Fix off by one in cpuhp_bringup_mask()
  x86/apic: Fix use of X{,2}APIC_ENABLE in asm with older binutils
  x86/smpboot/64: Implement arch_cpuhp_init_parallel_bringup() and enable it
  x86/smpboot: Support parallel startup of secondary CPUs
  x86/smpboot: Implement a bit spinlock to protect the realmode stack
  x86/apic: Save the APIC virtual base address
  cpu/hotplug: Allow "parallel" bringup up to CPUHP_BP_KICK_AP_STATE
  x86/apic: Provide cpu_primary_thread mask
  x86/smpboot: Enable split CPU startup
  cpu/hotplug: Provide a split up CPUHP_BRINGUP mechanism
  cpu/hotplug: Reset task stack state in _cpu_up()
  cpu/hotplug: Remove unused state functions
  riscv: Switch to hotplug core state synchronization
  parisc: Switch to hotplug core state synchronization
  ...
2023-06-26 13:59:56 -07:00
Thomas Gleixner
45e34c8af5 x86/smp: Put CPUs into INIT on shutdown if possible
Parking CPUs in a HLT loop is not completely safe vs. kexec() as HLT can
resume execution due to NMI, SMI and MCE, which has the same issue as the
MWAIT loop.

Kicking the secondary CPUs into INIT makes this safe against NMI and SMI.

A broadcast MCE will take the machine down, but a broadcast MCE which makes
HLT resume and execute overwritten text, pagetables or data will end up in
a disaster too.

So chose the lesser of two evils and kick the secondary CPUs into INIT
unless the system has installed special wakeup mechanisms which are not
using INIT.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230615193330.608657211@linutronix.de
2023-06-20 14:51:47 +02:00
Thomas Gleixner
6087dd5e86 x86/smp: Split sending INIT IPI out into a helper function
Putting CPUs into INIT is a safer place during kexec() to park CPUs.

Split the INIT assert/deassert sequence out so it can be reused.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Link: https://lore.kernel.org/r/20230615193330.551157083@linutronix.de
2023-06-20 14:51:47 +02:00
Thomas Gleixner
d7893093a7 x86/smp: Cure kexec() vs. mwait_play_dead() breakage
TLDR: It's a mess.

When kexec() is executed on a system with offline CPUs, which are parked in
mwait_play_dead() it can end up in a triple fault during the bootup of the
kexec kernel or cause hard to diagnose data corruption.

The reason is that kexec() eventually overwrites the previous kernel's text,
page tables, data and stack. If it writes to the cache line which is
monitored by a previously offlined CPU, MWAIT resumes execution and ends
up executing the wrong text, dereferencing overwritten page tables or
corrupting the kexec kernels data.

Cure this by bringing the offlined CPUs out of MWAIT into HLT.

Write to the monitored cache line of each offline CPU, which makes MWAIT
resume execution. The written control word tells the offlined CPUs to issue
HLT, which does not have the MWAIT problem.

That does not help, if a stray NMI, MCE or SMI hits the offlined CPUs as
those make it come out of HLT.

A follow up change will put them into INIT, which protects at least against
NMI and SMI.

Fixes: ea53069231 ("x86, hotplug: Use mwait to offline a processor, fix the legacy case")
Reported-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230615193330.492257119@linutronix.de
2023-06-20 14:51:47 +02:00
Thomas Gleixner
f9c9987bf5 x86/smp: Use dedicated cache-line for mwait_play_dead()
Monitoring idletask::thread_info::flags in mwait_play_dead() has been an
obvious choice as all what is needed is a cache line which is not written
by other CPUs.

But there is a use case where a "dead" CPU needs to be brought out of
MWAIT: kexec().

This is required as kexec() can overwrite text, pagetables, stacks and the
monitored cacheline of the original kernel. The latter causes MWAIT to
resume execution which obviously causes havoc on the kexec kernel which
results usually in triple faults.

Use a dedicated per CPU storage to prepare for that.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230615193330.434553750@linutronix.de
2023-06-20 14:51:47 +02:00
Peter Zijlstra
8f2d6c41e5 x86/sched: Rewrite topology setup
Instead of having a number of fixed topologies to pick from; build one
on the fly. This is both simpler now and simpler to extend in the
future.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20230601153522.GB559993%40hirez.programming.kicks-ass.net
2023-06-05 21:11:03 +02:00
Thomas Gleixner
ff3cfcb0d4 x86/smpboot: Fix the parallel bringup decision
The decision to allow parallel bringup of secondary CPUs checks
CC_ATTR_GUEST_STATE_ENCRYPT to detect encrypted guests. Those cannot use
parallel bootup because accessing the local APIC is intercepted and raises
a #VC or #VE, which cannot be handled at that point.

The check works correctly, but only for AMD encrypted guests. TDX does not
set that flag.

As there is no real connection between CC attributes and the inability to
support parallel bringup, replace this with a generic control flag in
x86_cpuinit and let SEV-ES and TDX init code disable it.

Fixes: 0c7ffa32db ("x86/smpboot/64: Implement arch_cpuhp_init_parallel_bringup() and enable it")
Reported-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Tom Lendacky <thomas.lendacky@amd.com>
Tested-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/r/87ilc9gd2d.ffs@tglx
2023-05-31 16:49:34 +02:00
Thomas Gleixner
0c7ffa32db x86/smpboot/64: Implement arch_cpuhp_init_parallel_bringup() and enable it
Implement the validation function which tells the core code whether
parallel bringup is possible.

The only condition for now is that the kernel does not run in an encrypted
guest as these will trap the RDMSR via #VC, which cannot be handled at that
point in early startup.

There was an earlier variant for AMD-SEV which used the GHBC protocol for
retrieving the APIC ID via CPUID, but there is no guarantee that the
initial APIC ID in CPUID is the same as the real APIC ID. There is no
enforcement from the secure firmware and the hypervisor can assign APIC IDs
as it sees fit as long as the ACPI/MADT table is consistent with that
assignment.

Unfortunately there is no RDMSR GHCB protocol at the moment, so enabling
AMD-SEV guests for parallel startup needs some more thought.

Intel-TDX provides a secure RDMSR hypercall, but supporting that is outside
the scope of this change.

Fixup announce_cpu() as e.g. on Hyper-V CPU1 is the secondary sibling of
CPU0, which makes the @cpu == 1 logic in announce_cpu() fall apart.

[ mikelley: Reported the announce_cpu() fallout

Originally-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205257.467571745@linutronix.de
2023-05-15 13:45:05 +02:00
David Woodhouse
7e75178a09 x86/smpboot: Support parallel startup of secondary CPUs
In parallel startup mode the APs are kicked alive by the control CPU
quickly after each other and run through the early startup code in
parallel. The real-mode startup code is already serialized with a
bit-spinlock to protect the real-mode stack.

In parallel startup mode the smpboot_control variable obviously cannot
contain the Linux CPU number so the APs have to determine their Linux CPU
number on their own. This is required to find the CPUs per CPU offset in
order to find the idle task stack and other per CPU data.

To achieve this, export the cpuid_to_apicid[] array so that each AP can
find its own CPU number by searching therein based on its APIC ID.

Introduce a flag in the top bits of smpboot_control which indicates that
the AP should find its CPU number by reading the APIC ID from the APIC.

This is required because CPUID based APIC ID retrieval can only provide the
initial APIC ID, which might have been overruled by the firmware. Some AMD
APUs come up with APIC ID = initial APIC ID + 0x10, so the APIC ID to CPU
number lookup would fail miserably if based on CPUID. Also virtualization
can make its own APIC ID assignements. The only requirement is that the
APIC IDs are consistent with the APCI/MADT table.

For the boot CPU or in case parallel bringup is disabled the control bits
are empty and the CPU number is directly available in bit 0-23 of
smpboot_control.

[ tglx: Initial proof of concept patch with bitlock and APIC ID lookup ]
[ dwmw2: Rework and testing, commit message, CPUID 0x1 and CPU0 support ]
[ seanc: Fix stray override of initial_gs in common_cpu_up() ]
[ Oleksandr Natalenko: reported suspend/resume issue fixed in
  x86_acpi_suspend_lowlevel ]
[ tglx: Make it read the APIC ID from the APIC instead of using CPUID,
  	split the bitlock part out ]

Co-developed-by: Thomas Gleixner <tglx@linutronix.de>
Co-developed-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205257.411554373@linutronix.de
2023-05-15 13:45:04 +02:00
Thomas Gleixner
f54d4434c2 x86/apic: Provide cpu_primary_thread mask
Make the primary thread tracking CPU mask based in preparation for simpler
handling of parallel bootup.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205257.186599880@linutronix.de
2023-05-15 13:45:02 +02:00
Thomas Gleixner
8b5a0f957c x86/smpboot: Enable split CPU startup
The x86 CPU bringup state currently does AP wake-up, wait for AP to
respond and then release it for full bringup.

It is safe to be split into a wake-up and and a separate wait+release
state.

Provide the required functions and enable the split CPU bringup, which
prepares for parallel bringup, where the bringup of the non-boot CPUs takes
two iterations: One to prepare and wake all APs and the second to wait and
release them. Depending on timing this can eliminate the wait time
completely.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205257.133453992@linutronix.de
2023-05-15 13:45:01 +02:00
Thomas Gleixner
2711b8e2b7 x86/smpboot: Switch to hotplug core state synchronization
The new AP state tracking and synchronization mechanism in the CPU hotplug
core code allows to remove quite some x86 specific code:

  1) The AP alive synchronization based on cpumasks

  2) The decision whether an AP can be brought up again

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205256.529657366@linutronix.de
2023-05-15 13:44:56 +02:00
Thomas Gleixner
e464640cf7 x86/smpboot: Remove wait for cpu_online()
Now that the core code drops sparse_irq_lock after the idle thread
synchronized, it's pointless to wait for the AP to mark itself online.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205256.316417181@linutronix.de
2023-05-15 13:44:54 +02:00
Thomas Gleixner
c8b7fb09d1 x86/smpboot: Remove cpu_callin_mask
Now that TSC synchronization is SMP function call based there is no reason
to wait for the AP to be set in smp_callin_mask. The control CPU waits for
the AP to set itself in the online mask anyway.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205256.206394064@linutronix.de
2023-05-15 13:44:53 +02:00
Thomas Gleixner
9d349d47f0 x86/smpboot: Make TSC synchronization function call based
Spin-waiting on the control CPU until the AP reaches the TSC
synchronization is just a waste especially in the case that there is no
synchronization required.

As the synchronization has to run with interrupts disabled the control CPU
part can just be done from a SMP function call. The upcoming AP issues that
call async only in the case that synchronization is required.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205256.148255496@linutronix.de
2023-05-15 13:44:53 +02:00
Thomas Gleixner
d4f28f07c2 x86/smpboot: Move synchronization masks to SMP boot code
The usage is in smpboot.c and not in the CPU initialization code.

The XEN_PV usage of cpu_callout_mask is obsolete as cpu_init() not longer
waits and cacheinfo has its own CPU mask now, so cpu_callout_mask can be
made static too.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205256.091511483@linutronix.de
2023-05-15 13:44:52 +02:00
Thomas Gleixner
e94cd1503b x86/smpboot: Get rid of cpu_init_secondary()
The synchronization of the AP with the control CPU is a SMP boot problem
and has nothing to do with cpu_init().

Open code cpu_init_secondary() in start_secondary() and move
wait_for_master_cpu() into the SMP boot code.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205255.981999763@linutronix.de
2023-05-15 13:44:51 +02:00
David Woodhouse
2b3be65d2e x86/smpboot: Split up native_cpu_up() into separate phases and document them
There are four logical parts to what native_cpu_up() does on the BSP (or
on the controlling CPU for a later hotplug):

 1) Wake the AP by sending the INIT/SIPI/SIPI sequence.

 2) Wait for the AP to make it as far as wait_for_master_cpu() which
    sets that CPU's bit in cpu_initialized_mask, then sets the bit in
    cpu_callout_mask to let the AP proceed through cpu_init().

 3) Wait for the AP to finish cpu_init() and get as far as the
    smp_callin() call, which sets that CPU's bit in cpu_callin_mask.

 4) Perform the TSC synchronization and wait for the AP to actually
    mark itself online in cpu_online_mask.

In preparation to allow these phases to operate in parallel on multiple
APs, split them out into separate functions and document the interactions
a little more clearly in both the BP and AP code paths.

No functional change intended.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205255.928917242@linutronix.de
2023-05-15 13:44:51 +02:00
Thomas Gleixner
c7f15dd3f0 x86/smpboot: Remove unnecessary barrier()
Peter stumbled over the barrier() after the invocation of smp_callin() in
start_secondary():

  "...this barrier() and it's comment seem weird vs smp_callin(). That
   function ends with an atomic bitop (it has to, at the very least it must
   not be weaker than store-release) but also has an explicit wmb() to order
   setup vs CPU_STARTING.

   There is no way the smp_processor_id() referred to in this comment can land
   before cpu_init() even without the barrier()."

The barrier() along with the comment was added in 2003 with commit
d8f19f2cac70 ("[PATCH] x86-64 merge") in the history tree. One of those
well documented combo patches of that time which changes world and some
more. The context back then was:

	/*
	 * Dont put anything before smp_callin(), SMP
	 * booting is too fragile that we want to limit the
	 * things done here to the most necessary things.
	 */
	cpu_init();
	smp_callin();

+	/* otherwise gcc will move up smp_processor_id before the cpu_init */
+ 	barrier();

	Dprintk("cpu %d: waiting for commence\n", smp_processor_id());

Even back in 2003 the compiler was not allowed to reorder that
smp_processor_id() invocation before the cpu_init() function call.
Especially not as smp_processor_id() resolved to:

  asm volatile("movl %%gs:%c1,%0":"=r" (ret__):"i"(pda_offset(field)):"memory");

There is no trace of this change in any mailing list archive including the
back then official x86_64 list discuss@x86-64.org, which would explain the
problem this change solved.

The debug prints are gone by now and the the only smp_processor_id()
invocation today is farther down in start_secondary() after locking
vector_lock which itself prevents reordering.

Even if the compiler would be allowed to reorder this, the code would still
be correct as GSBASE is set up early in the assembly code and is valid when
the CPU reaches start_secondary(), while the code at the time when this
barrier was added did the GSBASE setup in cpu_init().

As the barrier has zero value, remove it.

Reported-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205255.875713771@linutronix.de
2023-05-15 13:44:50 +02:00
Thomas Gleixner
5475abbde7 x86/smpboot: Remove the CPU0 hotplug kludge
This was introduced with commit e1c467e690 ("x86, hotplug: Wake up CPU0
via NMI instead of INIT, SIPI, SIPI") to eventually support physical
hotplug of CPU0:

 "We'll change this code in the future to wake up hard offlined CPU0 if
  real platform and request are available."

11 years later this has not happened and physical hotplug is not officially
supported. Remove the cruft.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205255.768845190@linutronix.de
2023-05-15 13:44:49 +02:00
Thomas Gleixner
134a12827b x86/smpboot: Avoid pointless delay calibration if TSC is synchronized
When TSC is synchronized across sockets then there is no reason to
calibrate the delay for the first CPU which comes up on a socket.

Just reuse the existing calibration value.

This removes 100ms pointlessly wasted time from CPU hotplug per socket.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205255.608773568@linutronix.de
2023-05-15 13:44:48 +02:00
Thomas Gleixner
ba831b7b1a cpu/hotplug: Mark arch_disable_smp_support() and bringup_nonboot_cpus() __init
No point in keeping them around.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205255.551974164@linutronix.de
2023-05-15 13:44:47 +02:00
Thomas Gleixner
5107e3ebb8 x86/smpboot: Cleanup topology_phys_to_logical_pkg()/die()
Make topology_phys_to_logical_pkg_die() static as it's only used in
smpboot.c and fixup the kernel-doc warnings for both functions.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205255.493750666@linutronix.de
2023-05-15 13:44:47 +02:00
Chen Yu
044f0e27de x86/sched: Add the SD_ASYM_PACKING flag to the die domain of hybrid processors
Intel Meteor Lake hybrid processors have cores in two separate dies. The
cores in one of the dies have higher maximum frequency. Use the SD_ASYM_
PACKING flag to give higher priority to the die with CPUs of higher maximum
frequency.

Suggested-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Chen Yu <yu.c.chen@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230406203148.19182-13-ricardo.neri-calderon@linux.intel.com
2023-05-08 10:58:38 +02:00
Ricardo Neri
995998ebde x86/sched: Remove SD_ASYM_PACKING from the SMT domain flags
There is no difference between any of the SMT siblings of a physical core.
Do not do asym_packing load balancing at this level.

Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20230406203148.19182-11-ricardo.neri-calderon@linux.intel.com
2023-05-08 10:58:37 +02:00
Linus Torvalds
2aff7c706c Objtool changes for v6.4:
- Mark arch_cpu_idle_dead() __noreturn, make all architectures & drivers that did
    this inconsistently follow this new, common convention, and fix all the fallout
    that objtool can now detect statically.
 
  - Fix/improve the ORC unwinder becoming unreliable due to UNWIND_HINT_EMPTY ambiguity,
    split it into UNWIND_HINT_END_OF_STACK and UNWIND_HINT_UNDEFINED to resolve it.
 
  - Fix noinstr violations in the KCSAN code and the lkdtm/stackleak code.
 
  - Generate ORC data for __pfx code
 
  - Add more __noreturn annotations to various kernel startup/shutdown/panic functions.
 
  - Misc improvements & fixes.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmRK1x0RHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1ghxQ/+IkCynMYtdF5OG9YwbcGJqsPSfOPMEcEM
 pUSFYg+gGPBDT/fJfcVSqvUtdnWbLC2kXt9yiswXz3X3J2nmNkBk5YKQftsNDcul
 TmKeqIIAK51XTncpegKH0EGnOX63oZ9Vxa8CTPdDlb+YF23Km2FoudGRI9F5qbUd
 LoraXqGYeiaeySkGyWmZVl6Uc8dIxnMkTN3H/oI9aB6TOrsi059hAtFcSaFfyemP
 c4LqXXCH7k2baiQt+qaLZ8cuZVG/+K5r2N2cmjO5kmJc6ynIaFnfMe4XxZLjp5LT
 /PulYI15bXkvSARKx5CRh/CDHMOx5Blw+ASO0RhWbdy0WH4ZhhcaVF5AeIpPW86a
 1LBcz97rMp72WmvKgrJeVO1r9+ll4SI6/YKGJRsxsCMdP3hgFpqntXyVjTFNdTM1
 0gH6H5v55x06vJHvhtTk8SR3PfMTEM2fRU5jXEOrGowoGifx+wNUwORiwj6LE3KQ
 SKUdT19RNzoW3VkFxhgk65ThK1S7YsJUKRoac3YdhttpqqqtFV//erenrZoR4k/p
 vzvKy68EQ7RCNyD5wNWNFe0YjeJl5G8gQ8bUm4Xmab7djjgz+pn4WpQB8yYKJLAo
 x9dqQ+6eUbw3Hcgk6qQ9E+r/svbulnAL0AeALAWK/91DwnZ2mCzKroFkLN7napKi
 fRho4CqzrtM=
 =NwEV
 -----END PGP SIGNATURE-----

Merge tag 'objtool-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull objtool updates from Ingo Molnar:

 - Mark arch_cpu_idle_dead() __noreturn, make all architectures &
   drivers that did this inconsistently follow this new, common
   convention, and fix all the fallout that objtool can now detect
   statically

 - Fix/improve the ORC unwinder becoming unreliable due to
   UNWIND_HINT_EMPTY ambiguity, split it into UNWIND_HINT_END_OF_STACK
   and UNWIND_HINT_UNDEFINED to resolve it

 - Fix noinstr violations in the KCSAN code and the lkdtm/stackleak code

 - Generate ORC data for __pfx code

 - Add more __noreturn annotations to various kernel startup/shutdown
   and panic functions

 - Misc improvements & fixes

* tag 'objtool-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
  x86/hyperv: Mark hv_ghcb_terminate() as noreturn
  scsi: message: fusion: Mark mpt_halt_firmware() __noreturn
  x86/cpu: Mark {hlt,resume}_play_dead() __noreturn
  btrfs: Mark btrfs_assertfail() __noreturn
  objtool: Include weak functions in global_noreturns check
  cpu: Mark nmi_panic_self_stop() __noreturn
  cpu: Mark panic_smp_self_stop() __noreturn
  arm64/cpu: Mark cpu_park_loop() and friends __noreturn
  x86/head: Mark *_start_kernel() __noreturn
  init: Mark start_kernel() __noreturn
  init: Mark [arch_call_]rest_init() __noreturn
  objtool: Generate ORC data for __pfx code
  x86/linkage: Fix padding for typed functions
  objtool: Separate prefix code from stack validation code
  objtool: Remove superfluous dead_end_function() check
  objtool: Add symbol iteration helpers
  objtool: Add WARN_INSN()
  scripts/objdump-func: Support multiple functions
  context_tracking: Fix KCSAN noinstr violation
  objtool: Add stackleak instrumentation to uaccess safe list
  ...
2023-04-28 14:02:54 -07:00
Josh Poimboeuf
52668badd3 x86/cpu: Mark {hlt,resume}_play_dead() __noreturn
Fixes the following warning:

  vmlinux.o: warning: objtool: resume_play_dead+0x21: unreachable instruction

Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/ce1407c4bf88b1334fe40413126343792a77ca50.1681342859.git.jpoimboe@kernel.org
2023-04-14 17:31:27 +02:00
David Woodhouse
805ae9dc3b x86/smpboot: Reference count on smpboot_setup_warm_reset_vector()
When bringing up a secondary CPU from do_boot_cpu(), the warm reset flag
is set in CMOS and the starting IP for the trampoline written inside the
BDA at 0x467. Once the CPU is running, the CMOS flag is unset and the
value in the BDA cleared.

To allow for parallel bringup of CPUs, add a reference count to track the
number of CPUs currently bring brought up, and clear the state only when
the count reaches zero.

Since the RTC spinlock is required to write to the CMOS, it can be used
for mutual exclusion on the refcount too.

Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Usama Arif <usama.arif@bytedance.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Tested-by: Kim Phillips <kim.phillips@amd.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Link: https://lore.kernel.org/r/20230316222109.1940300-5-usama.arif@bytedance.com
2023-03-21 13:35:53 +01:00
Brian Gerst
8f6be6d870 x86/smpboot: Remove initial_gs
Given its CPU#, each CPU can find its own per-cpu offset, and directly set
GSBASE accordingly. The global variable can be eliminated.

Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Usama Arif <usama.arif@bytedance.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Usama Arif <usama.arif@bytedance.com>
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20230316222109.1940300-9-usama.arif@bytedance.com
2023-03-21 13:35:53 +01:00