.ko is normally not included in Kconfig help, make it consistent.
Signed-off-by: Pavel Machek <pavel@ucw.cz>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Remove a period from end of command-line and fix misplaced comma.
Signed-off-by: Masanori Kobayasi <zap03216@nifty.ne.jp>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
This is a trivial patch that removes an unnecessary void pointer cast.
Signed-off-by: Chris Sanford <crsanford@gmail.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
The first formal parameter of the rb_link_node() is a pointer, and the
"node" is define a data struct (pls see line 67 and line 73 in the
doc), so the actual parameter should use "&data->node".
Signed-off-by: Figo.zhang <figo.zhang@kolorific.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
The real 'armflash' map driver is selected by CONFIG_MTD_ARM_INTEGRATOR
Signed-off-by: Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Just for the sake of readability, removing extra space
Signed-off-by: Viral Mehta <viral.mehta@einfochips.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
The advertised flag for not updating the time was wrong.
Signed-off-by: Wolfram Sang <w.sang@pengutronix.de>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
As explained by Benjamin Herrenschmidt:
Oh and btw, your patch alone doesn't fix powerpc, because it's missing
a whole bunch of GFP_KERNEL's in the arch code... You would have to
grep the entire kernel for things that check slab_is_available() and
even then you'll be missing some.
For example, slab_is_available() didn't always exist, and so in the
early days on powerpc, we used a mem_init_done global that is set form
mem_init() (not perfect but works in practice). And we still have code
using that to do the test.
Therefore, mask out __GFP_WAIT, __GFP_IO, and __GFP_FS in the slab allocators
in early boot code to avoid enabling interrupts.
Signed-off-by: Pekka Enberg <penberg@cs.helsinki.fi>
Regression from commit 28e211700a.
Need to free temporary buffer allocated in xfs_getbmap().
Signed-off-by: Felix Blyakher <felixb@sgi.com>
Signed-off-by: Hedi Berriche <hedi@sgi.com>
Reported-by: Justin Piszcz <jpiszcz@lucidpixels.com>
Reviewed-by: Eric Sandeen <sandeen@sandeen.net>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Conflicts:
drivers/message/fusion/mptsas.c
fixed up conflict between req->data_len accessors and mptsas driver updates.
Signed-off-by: James Bottomley <James.Bottomley@HansenPartnership.com>
Support the VIRTIO_RING_F_INDIRECT_DESC feature.
This is a simple matter of changing the descriptor walking
code to operate on a struct vring_desc* and supplying it
with an indirect table if detected.
Signed-off-by: Mark McLoughlin <markmc@redhat.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The Guest only really needs to tell us about activity when we're going
to listen to the eventfd: normally, we don't want to know.
So if there are no available buffers, turn on notifications, re-check,
then wait for the Guest to notify us via the eventfd, then turn
notifications off again.
There's enough else going on that the differences are in the noise.
Before: Secs RxKicks TxKicks
1G TCP Guest->Host: 3.94 4686 32815
1M normal pings: 104 142862 1000010
1M 1k pings (-l 120): 57 142026 1000007
After:
1G TCP Guest->Host: 3.76 4691 32811
1M normal pings: 111 142859 997467
1M 1k pings (-l 120): 55 19648 501549
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Rather than triggering an interrupt every time, we only trigger an
interrupt when there are no more incoming packets (or the recv queue
is full).
However, the overhead of doing the select to figure this out is
measurable: 1M pings goes from 98 to 104 seconds, and 1G Guest->Host
TCP goes from 3.69 to 3.94 seconds. It's close to the noise though.
I tested various timeouts, including reducing it as the number of
pending packets increased, timing a 1 gigabyte TCP send from Guest ->
Host and Host -> Guest (GSO disabled, to increase packet rate).
// time tcpblast -o -s 65536 -c 16k 192.168.2.1:9999 > /dev/null
Timeout Guest->Host Pkts/irq Host->Guest Pkts/irq
Before 11.3s 1.0 6.3s 1.0
0 11.7s 1.0 6.6s 23.5
1 17.1s 8.8 8.6s 26.0
1/pending 13.4s 1.9 6.6s 23.8
2/pending 13.6s 2.8 6.6s 24.1
5/pending 14.1s 5.0 6.6s 24.4
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
If we track how many buffers we've used, we can tell whether we really
need to interrupt the Guest. This happens as a side effect of
spurious notifications.
Spurious notifications happen because it can take a while before the
Host thread wakes up and sets the VRING_USED_F_NO_NOTIFY flag, and
meanwhile the Guest can more notifications.
A real fix would be to use wake counts, rather than a suppression
flag, but the practical difference is generally in the noise: the
interrupt is usually coalesced into a pending one anyway so we just
save a system call which isn't clearly measurable.
Secs Spurious IRQS
1G TCP Guest->Host: 3.93 58
1M normal pings: 100 72
1M 1k pings (-l 120): 57 492904
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Rather than sending an interrupt on every buffer, we only send an interrupt
when we're about to wait for the Guest to send us a new one. The console
input and network input still send interrupts manually, but the block device,
network and console output queues can simply rely on this logic to send
interrupts to the Guest at the right time.
The patch is cluttered by moving trigger_irq() higher in the code.
In practice, two factors make this optimization less interesting:
(1) we often only get one input at a time, even for networking,
(2) triggering an interrupt rapidly tends to get coalesced anyway.
Before: Secs RxIRQS TxIRQs
1G TCP Guest->Host: 3.72 32784 32771
1M normal pings: 99 1000004 995541
100,000 1k pings (-l 120): 5 49510 49058
After:
1G TCP Guest->Host: 3.69 32809 32769
1M normal pings: 99 1000004 996196
100,000 1k pings (-l 120): 5 52435 52361
(Note the interrupt count on 100k pings goes *up*: see next patch).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We no longer need an efficient mechanism to force the Guest back into
host userspace, as each device is serviced without bothering the main
Guest process (aka. the Launcher).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Currently lguest has three threads: the main Launcher thread, a Waker
thread, and a thread for the block device (because synchronous block
was simply too painful to bear).
The Waker selects() on all the input file descriptors (eg. stdin, net
devices, pipe to the block thread) and when one becomes readable it calls
into the kernel to kick the Launcher thread out into userspace, which
repeats the poll, services the device(s), and then tells the kernel to
release the Waker before re-entering the kernel to run the Guest.
Also, to make a slightly-decent network transmit routine, the Launcher
would suppress further network interrupts while it set a timer: that
signal handler would write to a pipe, which would rouse the Waker
which would prod the Launcher out of the kernel to check the network
device again.
Now we can convert all our virtqueues to separate threads: each one has
a separate eventfd for when the Guest pokes the device, and can trigger
interrupts in the Guest directly.
The linecount shows how much this simplifies, but to really bring it
home, here's an strace analysis of single Guest->Host ping before:
* Guest sends packet, notifies xmit vq, return control to Launcher
* Launcher clears notification flag on xmit ring
* Launcher writes packet to TUN device
writev(4, [{"\0\0\0\0\0\0\0\0\0\0", 10}, {"\366\r\224`\2058\272m\224vf\274\10\0E\0\0T\0\0@\0@\1\265"..., 98}], 2) = 108
* Launcher sets up interrupt for Guest (xmit ring is empty)
write(10, "\2\0\0\0\3\0\0\0", 8) = 0
* Launcher sets up timer for interrupt mitigation
setitimer(ITIMER_REAL, {it_interval={0, 0}, it_value={0, 505}}, NULL) = 0
* Launcher re-runs guest
pread64(10, 0xbfa5f4d4, 4, 0) ...
* Waker notices reply packet in tun device (it was in select)
select(12, [0 3 4 6 11], NULL, NULL, NULL) = 1 (in [4])
* Waker kicks Launcher out of guest:
pwrite64(10, "\3\0\0\0\1\0\0\0", 8, 0) = 0
* Launcher returns from running guest:
... = -1 EAGAIN (Resource temporarily unavailable)
* Launcher looks at input fds:
select(7, [0 3 4 6], NULL, NULL, {0, 0}) = 1 (in [4], left {0, 0})
* Launcher reads pong from tun device:
readv(4, [{"\0\0\0\0\0\0\0\0\0\0", 10}, {"\272m\224vf\274\366\r\224`\2058\10\0E\0\0T\364\26\0\0@"..., 1518}], 2) = 108
* Launcher injects guest notification:
write(10, "\2\0\0\0\2\0\0\0", 8) = 0
* Launcher rechecks fds:
select(7, [0 3 4 6], NULL, NULL, {0, 0}) = 0 (Timeout)
* Launcher clears Waker:
pwrite64(10, "\3\0\0\0\0\0\0\0", 8, 0) = 0
* Launcher reruns Guest:
pread64(10, 0xbfa5f4d4, 4, 0) = ? ERESTARTSYS (To be restarted)
* Signal comes in, uses pipe to wake up Launcher:
--- SIGALRM (Alarm clock) @ 0 (0) ---
write(8, "\0", 1) = 1
sigreturn() = ? (mask now [])
* Waker sees write on pipe:
select(12, [0 3 4 6 11], NULL, NULL, NULL) = 1 (in [6])
* Waker kicks Launcher out of Guest:
pwrite64(10, "\3\0\0\0\1\0\0\0", 8, 0) = 0
* Launcher exits from kernel:
pread64(10, 0xbfa5f4d4, 4, 0) = -1 EAGAIN (Resource temporarily unavailable)
* Launcher looks to see what fd woke it:
select(7, [0 3 4 6], NULL, NULL, {0, 0}) = 1 (in [6], left {0, 0})
* Launcher reads timeout fd, sets notification flag on xmit ring
read(6, "\0", 32) = 1
* Launcher rechecks fds:
select(7, [0 3 4 6], NULL, NULL, {0, 0}) = 0 (Timeout)
* Launcher clears Waker:
pwrite64(10, "\3\0\0\0\0\0\0\0", 8, 0) = 0
* Launcher resumes Guest:
pread64(10, "\0p\0\4", 4, 0) ....
strace analysis of single Guest->Host ping after:
* Guest sends packet, notifies xmit vq, creates event on eventfd.
* Network xmit thread wakes from read on eventfd:
read(7, "\1\0\0\0\0\0\0\0", 8) = 8
* Network xmit thread writes packet to TUN device
writev(4, [{"\0\0\0\0\0\0\0\0\0\0", 10}, {"J\217\232FI\37j\27\375\276\0\304\10\0E\0\0T\0\0@\0@\1\265"..., 98}], 2) = 108
* Network recv thread wakes up from read on tunfd:
readv(4, [{"\0\0\0\0\0\0\0\0\0\0", 10}, {"j\27\375\276\0\304J\217\232FI\37\10\0E\0\0TiO\0\0@\1\214"..., 1518}], 2) = 108
* Network recv thread sets up interrupt for the Guest
write(6, "\2\0\0\0\2\0\0\0", 8) = 0
* Network recv thread goes back to reading tunfd
13:39:42.460285 readv(4, <unfinished ...>
* Network xmit thread sets up interrupt for Guest (xmit ring is empty)
write(6, "\2\0\0\0\3\0\0\0", 8) = 0
* Network xmit thread goes back to reading from eventfd
read(7, <unfinished ...>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Currently, when a Guest wants to perform I/O it calls LHCALL_NOTIFY with
an address: the main Launcher process returns with this address, and figures
out what device to run.
A far nicer model is to let processes bind an eventfd to an address: if we
find one, we simply signal the eventfd.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Cc: Davide Libenzi <davidel@xmailserver.org>
lguest wants to attach eventfds to guest notifications, and lguest is
usually a module.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
To: Davide Libenzi <davidel@xmailserver.org>
We currently only allow the Launcher process to send interrupts, but it
as we already send interrupts from the hrtimer, it's a simple matter of
extracting that code into a common set_interrupt routine.
As we switch to a thread per virtqueue, this avoids a bottleneck through the
main Launcher process.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
1) j wasn't initialized in setup_pagetables, so they weren't set up for me
causing immediate guest crashes.
2) gpte_addr should not re-read the pmd from the Guest. Especially
not BUG_ON() based on the value. If we ever supported SMP guests,
they could trigger that. And the Launcher could also trigger it
(tho currently root-only).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This version requires that host and guest have the same PAE status.
NX cap is not offered to the guest, yet.
Signed-off-by: Matias Zabaljauregui <zabaljauregui@gmail.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Add support for kvm_hypercall4(); PAE wants it.
Signed-off-by: Matias Zabaljauregui <zabaljauregui at gmail.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
replace LHCALL_SET_PMD with LHCALL_SET_PGD hypercall name
(That's really what it is, and the confusion gets worse with PAE support)
Signed-off-by: Matias Zabaljauregui <zabaljauregui@gmail.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Reported-by: Jeremy Fitzhardinge <jeremy@goop.org>
Some cleanups and replace direct assignment with native_set_* macros which properly handle 64-bit entries when PAE is activated
Signed-off-by: Matias Zabaljauregui <zabaljauregui@gmail.com>
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The "len" field in the used ring for virtio indicates the number of
bytes *written* to the buffer. This means the guest doesn't have to
zero the buffers in advance as it always knows the used length.
Erroneously, the console and network example code puts the length
*read* into that field. The guest ignores it, but it's wrong.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>