Commit Graph

26 Commits

Author SHA1 Message Date
Thomas Weißschuh
6217642027 fs: avoid empty option when generating legacy mount string
As each option string fragment is always prepended with a comma it would
happen that the whole string always starts with a comma. This could be
interpreted by filesystem drivers as an empty option and may produce
errors.

For example the NTFS driver from ntfs.ko behaves like this and fails
when mounted via the new API.

Link: https://github.com/util-linux/util-linux/issues/2298
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Fixes: 3e1aeb00e6 ("vfs: Implement a filesystem superblock creation/configuration context")
Cc: stable@vger.kernel.org
Message-Id: <20230607-fs-empty-option-v1-1-20c8dbf4671b@weissschuh.net>
Signed-off-by: Christian Brauner <brauner@kernel.org>
2023-06-07 21:49:55 +02:00
Jamie Hill-Daniel
722d94847d vfs: fs_context: fix up param length parsing in legacy_parse_param
The "PAGE_SIZE - 2 - size" calculation in legacy_parse_param() is an
unsigned type so a large value of "size" results in a high positive
value instead of a negative value as expected.  Fix this by getting rid
of the subtraction.

Signed-off-by: Jamie Hill-Daniel <jamie@hill-daniel.co.uk>
Signed-off-by: William Liu <willsroot@protonmail.com>
Tested-by: Salvatore Bonaccorso <carnil@debian.org>
Tested-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Acked-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-18 09:23:19 +02:00
Yutian Yang
bb902cb47c memcg: charge fs_context and legacy_fs_context
This patch adds accounting flags to fs_context and legacy_fs_context
allocation sites so that kernel could correctly charge these objects.

We have written a PoC to demonstrate the effect of the missing-charging
bugs.  The PoC takes around 1,200MB unaccounted memory, while it is
charged for only 362MB memory usage.  We evaluate the PoC on QEMU x86_64
v5.2.90 + Linux kernel v5.10.19 + Debian buster.  All the limitations
including ulimits and sysctl variables are set as default.  Specifically,
the hard NOFILE limit and nr_open in sysctl are both 1,048,576.

/*------------------------- POC code ----------------------------*/

#define _GNU_SOURCE
#include <sys/types.h>
#include <sys/file.h>
#include <time.h>
#include <sys/wait.h>
#include <stdint.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <signal.h>
#include <sched.h>
#include <fcntl.h>
#include <linux/mount.h>

#define errExit(msg)    do { perror(msg); exit(EXIT_FAILURE); \
                        } while (0)

#define STACK_SIZE (8 * 1024)
#ifndef __NR_fsopen
#define __NR_fsopen 430
#endif
static inline int fsopen(const char *fs_name, unsigned int flags)
{
        return syscall(__NR_fsopen, fs_name, flags);
}

static char thread_stack[512][STACK_SIZE];

int thread_fn(void* arg)
{
  for (int i = 0; i< 800000; ++i) {
    int fsfd = fsopen("nfs", FSOPEN_CLOEXEC);
    if (fsfd == -1) {
      errExit("fsopen");
    }
  }
  while(1);
  return 0;
}

int main(int argc, char *argv[]) {
  int thread_pid;
  for (int i = 0; i < 1; ++i) {
    thread_pid = clone(thread_fn, thread_stack[i] + STACK_SIZE, \
      SIGCHLD, NULL);
  }
  while(1);
  return 0;
}

/*-------------------------- end --------------------------------*/

Link: https://lkml.kernel.org/r/1626517201-24086-1-git-send-email-nglaive@gmail.com
Signed-off-by: Yutian Yang <nglaive@gmail.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: <shenwenbo@zju.edu.cn>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03 09:58:12 -07:00
Christian Brauner
d1d488d813 fs: add vfs_parse_fs_param_source() helper
Add a simple helper that filesystems can use in their parameter parser
to parse the "source" parameter. A few places open-coded this function
and that already caused a bug in the cgroup v1 parser that we fixed.
Let's make it harder to get this wrong by introducing a helper which
performs all necessary checks.

Link: https://syzkaller.appspot.com/bug?id=6312526aba5beae046fdae8f00399f87aab48b12
Cc: Christoph Hellwig <hch@lst.de>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Christian Brauner <christian.brauner@ubuntu.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-14 09:19:06 -07:00
Gustavo A. R. Silva
df561f6688 treewide: Use fallthrough pseudo-keyword
Replace the existing /* fall through */ comments and its variants with
the new pseudo-keyword macro fallthrough[1]. Also, remove unnecessary
fall-through markings when it is the case.

[1] https://www.kernel.org/doc/html/v5.7/process/deprecated.html?highlight=fallthrough#implicit-switch-case-fall-through

Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
2020-08-23 17:36:59 -05:00
Miklos Szeredi
55923e4d7d vfs: don't parse "silent" option
Parsing "silent" and clearing SB_SILENT makes zero sense.

Parsing "silent" and setting SB_SILENT would make a bit more sense, but
apparently nobody cares.

Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-05-14 16:44:25 +02:00
Miklos Szeredi
caaef1ba8c vfs: don't parse "posixacl" option
Unlike the others, this is _not_ a standard option accepted by mount(8).

In fact SB_POSIXACL is an internal flag, and accepting MS_POSIXACL on the
mount(2) interface is possibly a bug.

The only filesystem that apparently wants to handle the "posixacl" option
is 9p, but it has special handling of that option besides setting
SB_POSIXACL.

Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-05-14 16:44:25 +02:00
Miklos Szeredi
9193ae87a8 vfs: don't parse forbidden flags
Makes little sense to keep this blacklist synced with what mount(8) parses
and what it doesn't.  E.g. it has various forms of "*atime" options, but
not "atime"...

Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
2020-05-14 16:44:25 +02:00
Al Viro
cc3c0b533a add prefix to fs_context->log
... turning it into struct p_log embedded into fs_context.  Initialize
the prefix with fs_type->name, turning fs_parse() into a trivial
inline wrapper for __fs_parse().

This makes fs_parameter_description->name completely unused.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-02-07 14:48:35 -05:00
Al Viro
9f09f649ca teach logfc() to handle prefices, give it saner calling conventions
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-02-07 14:48:32 -05:00
Al Viro
34264ae3fa don't bother with explicit length argument for __lookup_constant()
Have the arrays of constant_table self-terminated (by NULL ->name
in the final entry).  Simplifies lookup_constant() and allows to
reuse the search for enum params as well.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-02-07 14:47:52 -05:00
Al Viro
0f89589a8c Pass consistent param->type to fs_parse()
As it is, vfs_parse_fs_string() makes "foo" and "foo=" indistinguishable;
both get fs_value_is_string for ->type and NULL for ->string.  To make
it even more unpleasant, that combination is impossible to produce with
fsconfig().

Much saner rules would be
        "foo"           => fs_value_is_flag, NULL
	"foo="          => fs_value_is_string, ""
	"foo=bar"       => fs_value_is_string, "bar"
All cases are distinguishable, all results are expressable by fsconfig(),
->has_value checks are much simpler that way (to the point of the field
being useless) and quite a few regressions go away (gfs2 has no business
accepting -o nodebug=, for example).

Partially based upon patches from Miklos.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-02-07 00:10:29 -05:00
David Howells
c7eb686963 vfs: subtype handling moved to fuse
The unused vfs code can be removed.  Don't pass empty subtype (same as if
->parse callback isn't called).

The bits that are left involve determining whether it's permitted to split the
filesystem type string passed in to mount(2).  Consequently, this means that we
cannot get rid of the FS_HAS_SUBTYPE flag unless we define that a type string
with a dot in it always indicates a subtype specification.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
2019-09-06 21:28:49 +02:00
Eric Biggers
1dd9bc08cf vfs: set fs_context::user_ns for reconfigure
fs_context::user_ns is used by fuse_parse_param(), even during remount,
so it needs to be set to the existing value for reconfigure.

Reproducer:

	#include <fcntl.h>
	#include <sys/mount.h>

	int main()
	{
		char opts[128];
		int fd = open("/dev/fuse", O_RDWR);

		sprintf(opts, "fd=%d,rootmode=040000,user_id=0,group_id=0", fd);
		mkdir("mnt", 0777);
		mount("foo",  "mnt", "fuse.foo", 0, opts);
		mount("foo", "mnt", "fuse.foo", MS_REMOUNT, opts);
	}

Crash:
	BUG: kernel NULL pointer dereference, address: 0000000000000000
	#PF: supervisor read access in kernel mode
	#PF: error_code(0x0000) - not-present page
	PGD 0 P4D 0
	Oops: 0000 [#1] SMP
	CPU: 0 PID: 129 Comm: syz_make_kuid Not tainted 5.3.0-rc5-next-20190821 #3
	Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-20181126_142135-anatol 04/01/2014
	RIP: 0010:map_id_range_down+0xb/0xc0 kernel/user_namespace.c:291
	[...]
	Call Trace:
	 map_id_down kernel/user_namespace.c:312 [inline]
	 make_kuid+0xe/0x10 kernel/user_namespace.c:389
	 fuse_parse_param+0x116/0x210 fs/fuse/inode.c:523
	 vfs_parse_fs_param+0xdb/0x1b0 fs/fs_context.c:145
	 vfs_parse_fs_string+0x6a/0xa0 fs/fs_context.c:188
	 generic_parse_monolithic+0x85/0xc0 fs/fs_context.c:228
	 parse_monolithic_mount_data+0x1b/0x20 fs/fs_context.c:708
	 do_remount fs/namespace.c:2525 [inline]
	 do_mount+0x39a/0xa60 fs/namespace.c:3107
	 ksys_mount+0x7d/0xd0 fs/namespace.c:3325
	 __do_sys_mount fs/namespace.c:3339 [inline]
	 __se_sys_mount fs/namespace.c:3336 [inline]
	 __x64_sys_mount+0x20/0x30 fs/namespace.c:3336
	 do_syscall_64+0x4a/0x1a0 arch/x86/entry/common.c:290
	 entry_SYSCALL_64_after_hwframe+0x49/0xbe

Reported-by: syzbot+7d6a57304857423318a5@syzkaller.appspotmail.com
Fixes: 408cbe695350 ("vfs: Convert fuse to use the new mount API")
Cc: David Howells <dhowells@redhat.com>
Cc: Miklos Szeredi <miklos@szeredi.hu>
Signed-off-by: Eric Biggers <ebiggers@google.com>
Reviewed-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-09-05 14:33:45 -04:00
Thomas Gleixner
b4d0d230cc treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 36
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms of the gnu general public licence as published by
  the free software foundation either version 2 of the licence or at
  your option any later version

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-or-later

has been chosen to replace the boilerplate/reference in 114 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190520170857.552531963@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-24 17:27:11 +02:00
David Howells
ecdab150fd vfs: syscall: Add fsconfig() for configuring and managing a context
Add a syscall for configuring a filesystem creation context and triggering
actions upon it, to be used in conjunction with fsopen, fspick and fsmount.

    long fsconfig(int fs_fd, unsigned int cmd, const char *key,
		  const void *value, int aux);

Where fs_fd indicates the context, cmd indicates the action to take, key
indicates the parameter name for parameter-setting actions and, if needed,
value points to a buffer containing the value and aux can give more
information for the value.

The following command IDs are proposed:

 (*) FSCONFIG_SET_FLAG: No value is specified.  The parameter must be
     boolean in nature.  The key may be prefixed with "no" to invert the
     setting. value must be NULL and aux must be 0.

 (*) FSCONFIG_SET_STRING: A string value is specified.  The parameter can
     be expecting boolean, integer, string or take a path.  A conversion to
     an appropriate type will be attempted (which may include looking up as
     a path).  value points to a NUL-terminated string and aux must be 0.

 (*) FSCONFIG_SET_BINARY: A binary blob is specified.  value points to
     the blob and aux indicates its size.  The parameter must be expecting
     a blob.

 (*) FSCONFIG_SET_PATH: A non-empty path is specified.  The parameter must
     be expecting a path object.  value points to a NUL-terminated string
     that is the path and aux is a file descriptor at which to start a
     relative lookup or AT_FDCWD.

 (*) FSCONFIG_SET_PATH_EMPTY: As fsconfig_set_path, but with AT_EMPTY_PATH
     implied.

 (*) FSCONFIG_SET_FD: An open file descriptor is specified.  value must
     be NULL and aux indicates the file descriptor.

 (*) FSCONFIG_CMD_CREATE: Trigger superblock creation.

 (*) FSCONFIG_CMD_RECONFIGURE: Trigger superblock reconfiguration.

For the "set" command IDs, the idea is that the file_system_type will point
to a list of parameters and the types of value that those parameters expect
to take.  The core code can then do the parse and argument conversion and
then give the LSM and FS a cooked option or array of options to use.

Source specification is also done the same way same way, using special keys
"source", "source1", "source2", etc..

[!] Note that, for the moment, the key and value are just glued back
together and handed to the filesystem.  Every filesystem that uses options
uses match_token() and co. to do this, and this will need to be changed -
but not all at once.

Example usage:

    fd = fsopen("ext4", FSOPEN_CLOEXEC);
    fsconfig(fd, fsconfig_set_path, "source", "/dev/sda1", AT_FDCWD);
    fsconfig(fd, fsconfig_set_path_empty, "journal_path", "", journal_fd);
    fsconfig(fd, fsconfig_set_fd, "journal_fd", "", journal_fd);
    fsconfig(fd, fsconfig_set_flag, "user_xattr", NULL, 0);
    fsconfig(fd, fsconfig_set_flag, "noacl", NULL, 0);
    fsconfig(fd, fsconfig_set_string, "sb", "1", 0);
    fsconfig(fd, fsconfig_set_string, "errors", "continue", 0);
    fsconfig(fd, fsconfig_set_string, "data", "journal", 0);
    fsconfig(fd, fsconfig_set_string, "context", "unconfined_u:...", 0);
    fsconfig(fd, fsconfig_cmd_create, NULL, NULL, 0);
    mfd = fsmount(fd, FSMOUNT_CLOEXEC, MS_NOEXEC);

or:

    fd = fsopen("ext4", FSOPEN_CLOEXEC);
    fsconfig(fd, fsconfig_set_string, "source", "/dev/sda1", 0);
    fsconfig(fd, fsconfig_cmd_create, NULL, NULL, 0);
    mfd = fsmount(fd, FSMOUNT_CLOEXEC, MS_NOEXEC);

or:

    fd = fsopen("afs", FSOPEN_CLOEXEC);
    fsconfig(fd, fsconfig_set_string, "source", "#grand.central.org:root.cell", 0);
    fsconfig(fd, fsconfig_cmd_create, NULL, NULL, 0);
    mfd = fsmount(fd, FSMOUNT_CLOEXEC, MS_NOEXEC);

or:

    fd = fsopen("jffs2", FSOPEN_CLOEXEC);
    fsconfig(fd, fsconfig_set_string, "source", "mtd0", 0);
    fsconfig(fd, fsconfig_cmd_create, NULL, NULL, 0);
    mfd = fsmount(fd, FSMOUNT_CLOEXEC, MS_NOEXEC);

Signed-off-by: David Howells <dhowells@redhat.com>
cc: linux-api@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-03-20 18:49:06 -04:00
David Howells
007ec26cdc vfs: Implement logging through fs_context
Implement the ability for filesystems to log error, warning and
informational messages through the fs_context.  These can be extracted by
userspace by reading from an fd created by fsopen().

Error messages are prefixed with "e ", warnings with "w " and informational
messages with "i ".

Inside the kernel, formatted messages are malloc'd but unformatted messages
are not copied if they're either in the core .rodata section or in the
.rodata section of the filesystem module pinned by fs_context::fs_type.
The messages are only good till the fs_type is released.

Note that the logging object is shared between duplicated fs_context
structures.  This is so that such as NFS which do a mount within a mount
can get at least some of the errors from the inner mount.

Five logging functions are provided for this:

 (1) void logfc(struct fs_context *fc, const char *fmt, ...);

     This logs a message into the context.  If the buffer is full, the
     earliest message is discarded.

 (2) void errorf(fc, fmt, ...);

     This wraps logfc() to log an error.

 (3) void invalf(fc, fmt, ...);

     This wraps errorf() and returns -EINVAL for convenience.

 (4) void warnf(fc, fmt, ...);

     This wraps logfc() to log a warning.

 (5) void infof(fc, fmt, ...);

     This wraps logfc() to log an informational message.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-03-20 18:49:06 -04:00
David Howells
24dcb3d90a vfs: syscall: Add fsopen() to prepare for superblock creation
Provide an fsopen() system call that starts the process of preparing to
create a superblock that will then be mountable, using an fd as a context
handle.  fsopen() is given the name of the filesystem that will be used:

	int mfd = fsopen(const char *fsname, unsigned int flags);

where flags can be 0 or FSOPEN_CLOEXEC.

For example:

	sfd = fsopen("ext4", FSOPEN_CLOEXEC);
	fsconfig(sfd, FSCONFIG_SET_PATH, "source", "/dev/sda1", AT_FDCWD);
	fsconfig(sfd, FSCONFIG_SET_FLAG, "noatime", NULL, 0);
	fsconfig(sfd, FSCONFIG_SET_FLAG, "acl", NULL, 0);
	fsconfig(sfd, FSCONFIG_SET_FLAG, "user_xattr", NULL, 0);
	fsconfig(sfd, FSCONFIG_SET_STRING, "sb", "1", 0);
	fsconfig(sfd, FSCONFIG_CMD_CREATE, NULL, NULL, 0);
	fsinfo(sfd, NULL, ...); // query new superblock attributes
	mfd = fsmount(sfd, FSMOUNT_CLOEXEC, MS_RELATIME);
	move_mount(mfd, "", sfd, AT_FDCWD, "/mnt", MOVE_MOUNT_F_EMPTY_PATH);

	sfd = fsopen("afs", -1);
	fsconfig(fd, FSCONFIG_SET_STRING, "source",
		 "#grand.central.org:root.cell", 0);
	fsconfig(fd, FSCONFIG_CMD_CREATE, NULL, NULL, 0);
	mfd = fsmount(sfd, 0, MS_NODEV);
	move_mount(mfd, "", sfd, AT_FDCWD, "/mnt", MOVE_MOUNT_F_EMPTY_PATH);

If an error is reported at any step, an error message may be available to be
read() back (ENODATA will be reported if there isn't an error available) in
the form:

	"e <subsys>:<problem>"
	"e SELinux:Mount on mountpoint not permitted"

Once fsmount() has been called, further fsconfig() calls will incur EBUSY,
even if the fsmount() fails.  read() is still possible to retrieve error
information.

The fsopen() syscall creates a mount context and hangs it of the fd that it
returns.

Netlink is not used because it is optional and would make the core VFS
dependent on the networking layer and also potentially add network
namespace issues.

Note that, for the moment, the caller must have SYS_CAP_ADMIN to use
fsopen().

Signed-off-by: David Howells <dhowells@redhat.com>
cc: linux-api@vger.kernel.org
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-03-20 18:49:06 -04:00
David Howells
e7582e16a1 vfs: Implement logging through fs_context
Implement the ability for filesystems to log error, warning and
informational messages through the fs_context.  In the future, these will
be extractable by userspace by reading from an fd created by the fsopen()
syscall.

Error messages are prefixed with "e ", warnings with "w " and informational
messages with "i ".

In the future, inside the kernel, formatted messages will be malloc'd but
unformatted messages will not copied if they're either in the core .rodata
section or in the .rodata section of the filesystem module pinned by
fs_context::fs_type.  The messages will only be good till the fs_type is
released.

Note that the logging object will be shared between duplicated fs_context
structures.  This is so that such as NFS which do a mount within a mount
can get at least some of the errors from the inner mount.

Five logging functions are provided for this:

 (1) void logfc(struct fs_context *fc, const char *fmt, ...);

     This logs a message into the context.  If the buffer is full, the
     earliest message is discarded.

 (2) void errorf(fc, fmt, ...);

     This wraps logfc() to log an error.

 (3) void invalf(fc, fmt, ...);

     This wraps errorf() and returns -EINVAL for convenience.

 (4) void warnf(fc, fmt, ...);

     This wraps logfc() to log a warning.

 (5) void infof(fc, fmt, ...);

     This wraps logfc() to log an informational message.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-02-28 03:29:37 -05:00
Al Viro
0b52075ee6 introduce cloning of fs_context
new primitive: vfs_dup_fs_context().  Comes with fs_context
method (->dup()) for copying the filesystem-specific parts
of fs_context, along with LSM one (->fs_context_dup()) for
doing the same to LSM parts.

[needs better commit message, and change of Author:, anyway]

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-02-28 03:29:27 -05:00
David Howells
3e1aeb00e6 vfs: Implement a filesystem superblock creation/configuration context
[AV - unfuck kern_mount_data(); we want non-NULL ->mnt_ns on long-living
mounts]
[AV - reordering fs/namespace.c is badly overdue, but let's keep it
separate from that series]
[AV - drop simple_pin_fs() change]
[AV - clean vfs_kern_mount() failure exits up]

Implement a filesystem context concept to be used during superblock
creation for mount and superblock reconfiguration for remount.

The mounting procedure then becomes:

 (1) Allocate new fs_context context.

 (2) Configure the context.

 (3) Create superblock.

 (4) Query the superblock.

 (5) Create a mount for the superblock.

 (6) Destroy the context.

Rather than calling fs_type->mount(), an fs_context struct is created and
fs_type->init_fs_context() is called to set it up.  Pointers exist for the
filesystem and LSM to hang their private data off.

A set of operations has to be set by ->init_fs_context() to provide
freeing, duplication, option parsing, binary data parsing, validation,
mounting and superblock filling.

Legacy filesystems are supported by the provision of a set of legacy
fs_context operations that build up a list of mount options and then invoke
fs_type->mount() from within the fs_context ->get_tree() operation.  This
allows all filesystems to be accessed using fs_context.

It should be noted that, whilst this patch adds a lot of lines of code,
there is quite a bit of duplication with existing code that can be
eliminated should all filesystems be converted over.

Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-02-28 03:29:26 -05:00
Al Viro
f3a09c9201 introduce fs_context methods
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-01-30 17:44:27 -05:00
Al Viro
e1a91586d5 fs_context flavour for submounts
This is an eventual replacement for vfs_submount() uses.  Unlike the
"mount" and "remount" cases, the users of that thing are not in VFS -
they are buried in various ->d_automount() instances and rather than
converting them all at once we introduce the (thankfully small and
simple) infrastructure here and deal with the prospective users in
afs, nfs, etc. parts of the series.

Here we just introduce a new constructor (fs_context_for_submount())
along with the corresponding enum constant to be put into fc->purpose
for those.

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-01-30 17:44:27 -05:00
David Howells
8d0347f6c3 convert do_remount_sb() to fs_context
Replace do_remount_sb() with a function, reconfigure_super(), that's
fs_context aware.  The fs_context is expected to be parameterised already
and have ->root pointing to the superblock to be reconfigured.

A legacy wrapper is provided that is intended to be called from the
fs_context ops when those appear, but for now is called directly from
reconfigure_super().  This wrapper invokes the ->remount_fs() superblock op
for the moment.  It is intended that the remount_fs() op will be phased
out.

The fs_context->purpose is set to FS_CONTEXT_FOR_RECONFIGURE to indicate
that the context is being used for reconfiguration.

do_umount_root() is provided to consolidate remount-to-R/O for umount and
emergency remount by creating a context and invoking reconfiguration.

do_remount(), do_umount() and do_emergency_remount_callback() are switched
to use the new process.

[AV -- fold UMOUNT and EMERGENCY_REMOUNT in; fixes the
umount / bug, gets rid of pointless complexity]
[AV -- set ->net_ns in all cases; nfs remount will need that]
[AV -- shift security_sb_remount() call into reconfigure_super(); the callers
that didn't do security_sb_remount() have NULL fc->security anyway, so it's
a no-op for them]

Signed-off-by: David Howells <dhowells@redhat.com>
Co-developed-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-01-30 17:44:26 -05:00
Al Viro
c9ce29ed79 vfs_get_tree(): evict the call of security_sb_kern_mount()
Right now vfs_get_tree() calls security_sb_kern_mount() (i.e.
mount MAC) unless it gets MS_KERNMOUNT or MS_SUBMOUNT in flags.
Doing it that way is both clumsy and imprecise.

Consider the callers' tree of vfs_get_tree():
vfs_get_tree()
        <- do_new_mount()
	<- vfs_kern_mount()
		<- simple_pin_fs()
		<- vfs_submount()
		<- kern_mount_data()
		<- init_mount_tree()
		<- btrfs_mount()
			<- vfs_get_tree()
		<- nfs_do_root_mount()
			<- nfs4_try_mount()
				<- nfs_fs_mount()
					<- vfs_get_tree()
			<- nfs4_referral_mount()

do_new_mount() always does need MAC (we are guaranteed that neither
MS_KERNMOUNT nor MS_SUBMOUNT will be passed there).

simple_pin_fs(), vfs_submount() and kern_mount_data() pass explicit
flags inhibiting that check.  So does nfs4_referral_mount() (the
flags there are ulimately coming from vfs_submount()).

init_mount_tree() is called too early for anything LSM-related; it
doesn't matter whether we attempt those checks, they'll do nothing.

Finally, in case of btrfs_mount() and nfs_fs_mount(), doing MAC
is pointless - either the caller will do it, or the flags are
such that we wouldn't have done it either.

In other words, the one and only case when we want that check
done is when we are called from do_new_mount(), and there we
want it unconditionally.

So let's simply move it there.  The superblock is still locked,
so nobody is going to get access to it (via ustat(2), etc.)
until we get a chance to apply the checks - we are free to
move them to any point up to where we drop ->s_umount (in
do_new_mount_fc()).

Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-01-30 17:44:26 -05:00
David Howells
9bc61ab18b vfs: Introduce fs_context, switch vfs_kern_mount() to it.
Introduce a filesystem context concept to be used during superblock
creation for mount and superblock reconfiguration for remount.  This is
allocated at the beginning of the mount procedure and into it is placed:

 (1) Filesystem type.

 (2) Namespaces.

 (3) Source/Device names (there may be multiple).

 (4) Superblock flags (SB_*).

 (5) Security details.

 (6) Filesystem-specific data, as set by the mount options.

Accessor functions are then provided to set up a context, parameterise it
from monolithic mount data (the data page passed to mount(2)) and tear it
down again.

A legacy wrapper is provided that implements what will be the basic
operations, wrapping access to filesystems that aren't yet aware of the
fs_context.

Finally, vfs_kern_mount() is changed to make use of the fs_context and
mount_fs() is replaced by vfs_get_tree(), called from vfs_kern_mount().
[AV -- add missing kstrdup()]
[AV -- put_cred() can be unconditional - fc->cred can't be NULL]
[AV -- take legacy_validate() contents into legacy_parse_monolithic()]
[AV -- merge KERNEL_MOUNT and USER_MOUNT]
[AV -- don't unlock superblock on success return from vfs_get_tree()]
[AV -- kill 'reference' argument of init_fs_context()]

Signed-off-by: David Howells <dhowells@redhat.com>
Co-developed-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2019-01-30 17:44:23 -05:00