A bug was reported by Yuanxi Liu where allocating 1G pages at runtime is
taking an excessive amount of time for large amounts of memory. Further
testing allocating huge pages that the cost is linear i.e. if allocating
1G pages in batches of 10 then the time to allocate nr_hugepages from
10->20->30->etc increases linearly even though 10 pages are allocated at
each step. Profiles indicated that much of the time is spent checking the
validity within already existing huge pages and then attempting a
migration that fails after isolating the range, draining pages and a whole
lot of other useless work.
Commit eb14d4eefd ("mm,page_alloc: drop unnecessary checks from
pfn_range_valid_contig") removed two checks, one which ignored huge pages
for contiguous allocations as huge pages can sometimes migrate. While
there may be value on migrating a 2M page to satisfy a 1G allocation, it's
potentially expensive if the 1G allocation fails and it's pointless to try
moving a 1G page for a new 1G allocation or scan the tail pages for valid
PFNs.
Reintroduce the PageHuge check and assume any contiguous region with
hugetlbfs pages is unsuitable for a new 1G allocation.
The hpagealloc test allocates huge pages in batches and reports the
average latency per page over time. This test happens just after boot
when fragmentation is not an issue. Units are in milliseconds.
hpagealloc
6.3.0-rc6 6.3.0-rc6 6.3.0-rc6
vanilla hugeallocrevert-v1r1 hugeallocsimple-v1r2
Min Latency 26.42 ( 0.00%) 5.07 ( 80.82%) 18.94 ( 28.30%)
1st-qrtle Latency 356.61 ( 0.00%) 5.34 ( 98.50%) 19.85 ( 94.43%)
2nd-qrtle Latency 697.26 ( 0.00%) 5.47 ( 99.22%) 20.44 ( 97.07%)
3rd-qrtle Latency 972.94 ( 0.00%) 5.50 ( 99.43%) 20.81 ( 97.86%)
Max-1 Latency 26.42 ( 0.00%) 5.07 ( 80.82%) 18.94 ( 28.30%)
Max-5 Latency 82.14 ( 0.00%) 5.11 ( 93.78%) 19.31 ( 76.49%)
Max-10 Latency 150.54 ( 0.00%) 5.20 ( 96.55%) 19.43 ( 87.09%)
Max-90 Latency 1164.45 ( 0.00%) 5.53 ( 99.52%) 20.97 ( 98.20%)
Max-95 Latency 1223.06 ( 0.00%) 5.55 ( 99.55%) 21.06 ( 98.28%)
Max-99 Latency 1278.67 ( 0.00%) 5.57 ( 99.56%) 22.56 ( 98.24%)
Max Latency 1310.90 ( 0.00%) 8.06 ( 99.39%) 26.62 ( 97.97%)
Amean Latency 678.36 ( 0.00%) 5.44 * 99.20%* 20.44 * 96.99%*
6.3.0-rc6 6.3.0-rc6 6.3.0-rc6
vanilla revert-v1 hugeallocfix-v2
Duration User 0.28 0.27 0.30
Duration System 808.66 17.77 35.99
Duration Elapsed 830.87 18.08 36.33
The vanilla kernel is poor, taking up to 1.3 second to allocate a huge
page and almost 10 minutes in total to run the test. Reverting the
problematic commit reduces it to 8ms at worst and the patch takes 26ms.
This patch fixes the main issue with skipping huge pages but leaves the
page_count() out because a page with an elevated count potentially can
migrate.
BugLink: https://bugzilla.kernel.org/show_bug.cgi?id=217022
Link: https://lkml.kernel.org/r/20230414141429.pwgieuwluxwez3rj@techsingularity.net
Fixes: eb14d4eefd ("mm,page_alloc: drop unnecessary checks from pfn_range_valid_contig")
Signed-off-by: Mel Gorman <mgorman@techsingularity.net>
Reported-by: Yuanxi Liu <y.liu@naruida.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The maple tree limits the gap returned to a window that specifically fits
what was asked. This may not be optimal in the case of switching search
directions or a gap that does not satisfy the requested space for other
reasons. Fix the search by retrying the operation and limiting the search
window in the rare occasion that a conflict occurs.
Link: https://lkml.kernel.org/r/20230414185919.4175572-1-Liam.Howlett@oracle.com
Fixes: 3499a13168 ("mm/mmap: use maple tree for unmapped_area{_topdown}")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reported-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Similarly to kmsan_vmap_pages_range_noflush(), kmsan_ioremap_page_range()
must also properly handle allocation/mapping failures. In the case of
such, it must clean up the already created metadata mappings and return an
error code, so that the error can be propagated to ioremap_page_range().
Without doing so, KMSAN may silently fail to bring the metadata for the
page range into a consistent state, which will result in user-visible
crashes when trying to access them.
Link: https://lkml.kernel.org/r/20230413131223.4135168-2-glider@google.com
Fixes: b073d7f8ae ("mm: kmsan: maintain KMSAN metadata for page operations")
Signed-off-by: Alexander Potapenko <glider@google.com>
Reported-by: Dipanjan Das <mail.dipanjan.das@gmail.com>
Link: https://lore.kernel.org/linux-mm/CANX2M5ZRrRA64k0hOif02TjmY9kbbO2aCBPyq79es34RXZ=cAw@mail.gmail.com/
Reviewed-by: Marco Elver <elver@google.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
As reported by Dipanjan Das, when KMSAN is used together with kernel fault
injection (or, generally, even without the latter), calls to kcalloc() or
__vmap_pages_range_noflush() may fail, leaving the metadata mappings for
the virtual mapping in an inconsistent state. When these metadata
mappings are accessed later, the kernel crashes.
To address the problem, we return a non-zero error code from
kmsan_vmap_pages_range_noflush() in the case of any allocation/mapping
failure inside it, and make vmap_pages_range_noflush() return an error if
KMSAN fails to allocate the metadata.
This patch also removes KMSAN_WARN_ON() from vmap_pages_range_noflush(),
as these allocation failures are not fatal anymore.
Link: https://lkml.kernel.org/r/20230413131223.4135168-1-glider@google.com
Fixes: b073d7f8ae ("mm: kmsan: maintain KMSAN metadata for page operations")
Signed-off-by: Alexander Potapenko <glider@google.com>
Reported-by: Dipanjan Das <mail.dipanjan.das@gmail.com>
Link: https://lore.kernel.org/linux-mm/CANX2M5ZRrRA64k0hOif02TjmY9kbbO2aCBPyq79es34RXZ=cAw@mail.gmail.com/
Reviewed-by: Marco Elver <elver@google.com>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
syzbot is reporting circular locking dependency which involves
zonelist_update_seq seqlock [1], for this lock is checked by memory
allocation requests which do not need to be retried.
One deadlock scenario is kmalloc(GFP_ATOMIC) from an interrupt handler.
CPU0
----
__build_all_zonelists() {
write_seqlock(&zonelist_update_seq); // makes zonelist_update_seq.seqcount odd
// e.g. timer interrupt handler runs at this moment
some_timer_func() {
kmalloc(GFP_ATOMIC) {
__alloc_pages_slowpath() {
read_seqbegin(&zonelist_update_seq) {
// spins forever because zonelist_update_seq.seqcount is odd
}
}
}
}
// e.g. timer interrupt handler finishes
write_sequnlock(&zonelist_update_seq); // makes zonelist_update_seq.seqcount even
}
This deadlock scenario can be easily eliminated by not calling
read_seqbegin(&zonelist_update_seq) from !__GFP_DIRECT_RECLAIM allocation
requests, for retry is applicable to only __GFP_DIRECT_RECLAIM allocation
requests. But Michal Hocko does not know whether we should go with this
approach.
Another deadlock scenario which syzbot is reporting is a race between
kmalloc(GFP_ATOMIC) from tty_insert_flip_string_and_push_buffer() with
port->lock held and printk() from __build_all_zonelists() with
zonelist_update_seq held.
CPU0 CPU1
---- ----
pty_write() {
tty_insert_flip_string_and_push_buffer() {
__build_all_zonelists() {
write_seqlock(&zonelist_update_seq);
build_zonelists() {
printk() {
vprintk() {
vprintk_default() {
vprintk_emit() {
console_unlock() {
console_flush_all() {
console_emit_next_record() {
con->write() = serial8250_console_write() {
spin_lock_irqsave(&port->lock, flags);
tty_insert_flip_string() {
tty_insert_flip_string_fixed_flag() {
__tty_buffer_request_room() {
tty_buffer_alloc() {
kmalloc(GFP_ATOMIC | __GFP_NOWARN) {
__alloc_pages_slowpath() {
zonelist_iter_begin() {
read_seqbegin(&zonelist_update_seq); // spins forever because zonelist_update_seq.seqcount is odd
spin_lock_irqsave(&port->lock, flags); // spins forever because port->lock is held
}
}
}
}
}
}
}
}
spin_unlock_irqrestore(&port->lock, flags);
// message is printed to console
spin_unlock_irqrestore(&port->lock, flags);
}
}
}
}
}
}
}
}
}
write_sequnlock(&zonelist_update_seq);
}
}
}
This deadlock scenario can be eliminated by
preventing interrupt context from calling kmalloc(GFP_ATOMIC)
and
preventing printk() from calling console_flush_all()
while zonelist_update_seq.seqcount is odd.
Since Petr Mladek thinks that __build_all_zonelists() can become a
candidate for deferring printk() [2], let's address this problem by
disabling local interrupts in order to avoid kmalloc(GFP_ATOMIC)
and
disabling synchronous printk() in order to avoid console_flush_all()
.
As a side effect of minimizing duration of zonelist_update_seq.seqcount
being odd by disabling synchronous printk(), latency at
read_seqbegin(&zonelist_update_seq) for both !__GFP_DIRECT_RECLAIM and
__GFP_DIRECT_RECLAIM allocation requests will be reduced. Although, from
lockdep perspective, not calling read_seqbegin(&zonelist_update_seq) (i.e.
do not record unnecessary locking dependency) from interrupt context is
still preferable, even if we don't allow calling kmalloc(GFP_ATOMIC)
inside
write_seqlock(&zonelist_update_seq)/write_sequnlock(&zonelist_update_seq)
section...
Link: https://lkml.kernel.org/r/8796b95c-3da3-5885-fddd-6ef55f30e4d3@I-love.SAKURA.ne.jp
Fixes: 3d36424b3b ("mm/page_alloc: fix race condition between build_all_zonelists and page allocation")
Link: https://lkml.kernel.org/r/ZCrs+1cDqPWTDFNM@alley [2]
Reported-by: syzbot <syzbot+223c7461c58c58a4cb10@syzkaller.appspotmail.com>
Link: https://syzkaller.appspot.com/bug?extid=223c7461c58c58a4cb10 [1]
Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Petr Mladek <pmladek@suse.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Ilpo Järvinen <ilpo.jarvinen@linux.intel.com>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Patrick Daly <quic_pdaly@quicinc.com>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
KASAN report null-ptr-deref:
==================================================================
BUG: KASAN: null-ptr-deref in bdi_split_work_to_wbs+0x5c5/0x7b0
Write of size 8 at addr 0000000000000000 by task sync/943
CPU: 5 PID: 943 Comm: sync Tainted: 6.3.0-rc5-next-20230406-dirty #461
Call Trace:
<TASK>
dump_stack_lvl+0x7f/0xc0
print_report+0x2ba/0x340
kasan_report+0xc4/0x120
kasan_check_range+0x1b7/0x2e0
__kasan_check_write+0x24/0x40
bdi_split_work_to_wbs+0x5c5/0x7b0
sync_inodes_sb+0x195/0x630
sync_inodes_one_sb+0x3a/0x50
iterate_supers+0x106/0x1b0
ksys_sync+0x98/0x160
[...]
==================================================================
The race that causes the above issue is as follows:
cpu1 cpu2
-------------------------|-------------------------
inode_switch_wbs
INIT_WORK(&isw->work, inode_switch_wbs_work_fn)
queue_rcu_work(isw_wq, &isw->work)
// queue_work async
inode_switch_wbs_work_fn
wb_put_many(old_wb, nr_switched)
percpu_ref_put_many
ref->data->release(ref)
cgwb_release
queue_work(cgwb_release_wq, &wb->release_work)
// queue_work async
&wb->release_work
cgwb_release_workfn
ksys_sync
iterate_supers
sync_inodes_one_sb
sync_inodes_sb
bdi_split_work_to_wbs
kmalloc(sizeof(*work), GFP_ATOMIC)
// alloc memory failed
percpu_ref_exit
ref->data = NULL
kfree(data)
wb_get(wb)
percpu_ref_get(&wb->refcnt)
percpu_ref_get_many(ref, 1)
atomic_long_add(nr, &ref->data->count)
atomic64_add(i, v)
// trigger null-ptr-deref
bdi_split_work_to_wbs() traverses &bdi->wb_list to split work into all
wbs. If the allocation of new work fails, the on-stack fallback will be
used and the reference count of the current wb is increased afterwards.
If cgroup writeback membership switches occur before getting the reference
count and the current wb is released as old_wd, then calling wb_get() or
wb_put() will trigger the null pointer dereference above.
This issue was introduced in v4.3-rc7 (see fix tag1). Both
sync_inodes_sb() and __writeback_inodes_sb_nr() calls to
bdi_split_work_to_wbs() can trigger this issue. For scenarios called via
sync_inodes_sb(), originally commit 7fc5854f8c ("writeback: synchronize
sync(2) against cgroup writeback membership switches") reduced the
possibility of the issue by adding wb_switch_rwsem, but in v5.14-rc1 (see
fix tag2) removed the "inode_io_list_del_locked(inode, old_wb)" from
inode_switch_wbs_work_fn() so that wb->state contains WB_has_dirty_io,
thus old_wb is not skipped when traversing wbs in bdi_split_work_to_wbs(),
and the issue becomes easily reproducible again.
To solve this problem, percpu_ref_exit() is called under RCU protection to
avoid race between cgwb_release_workfn() and bdi_split_work_to_wbs().
Moreover, replace wb_get() with wb_tryget() in bdi_split_work_to_wbs(),
and skip the current wb if wb_tryget() fails because the wb has already
been shutdown.
Link: https://lkml.kernel.org/r/20230410130826.1492525-1-libaokun1@huawei.com
Fixes: b817525a4a ("writeback: bdi_writeback iteration must not skip dying ones")
Signed-off-by: Baokun Li <libaokun1@huawei.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Acked-by: Tejun Heo <tj@kernel.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Andreas Dilger <adilger.kernel@dilger.ca>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Hou Tao <houtao1@huawei.com>
Cc: yangerkun <yangerkun@huawei.com>
Cc: Zhang Yi <yi.zhang@huawei.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
set_mempolicy_home_node() iterates over a list of VMAs and calls
mbind_range() on each VMA, which also iterates over the singular list of
the VMA passed in and potentially splits the VMA. Since the VMA iterator
is not passed through, set_mempolicy_home_node() may now point to a stale
node in the VMA tree. This can result in a UAF as reported by syzbot.
Avoid the stale maple tree node by passing the VMA iterator through to the
underlying call to split_vma().
mbind_range() is also overly complicated, since there are two calling
functions and one already handles iterating over the VMAs. Simplify
mbind_range() to only handle merging and splitting of the VMAs.
Align the new loop in do_mbind() and existing loop in
set_mempolicy_home_node() to use the reduced mbind_range() function. This
allows for a single location of the range calculation and avoids
constantly looking up the previous VMA (since this is a loop over the
VMAs).
Link: https://lore.kernel.org/linux-mm/000000000000c93feb05f87e24ad@google.com/
Fixes: 66850be55e ("mm/mempolicy: use vma iterator & maple state instead of vma linked list")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reported-by: syzbot+a7c1ec5b1d71ceaa5186@syzkaller.appspotmail.com
Link: https://lkml.kernel.org/r/20230410152205.2294819-1-Liam.Howlett@oracle.com
Tested-by: syzbot+a7c1ec5b1d71ceaa5186@syzkaller.appspotmail.com
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
split_huge_page_to_list() WARNs when called for huge zero pages, which
sounds to me too harsh because it does not imply a kernel bug, but just
notifies the event to admins. On the other hand, this is considered as
critical by syzkaller and makes its testing less efficient, which seems to
me harmful.
So replace the VM_WARN_ON_ONCE_FOLIO with pr_warn_ratelimited.
Link: https://lkml.kernel.org/r/20230406082004.2185420-1-naoya.horiguchi@linux.dev
Fixes: 478d134e95 ("mm/huge_memory: do not overkill when splitting huge_zero_page")
Signed-off-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Reported-by: syzbot+07a218429c8d19b1fb25@syzkaller.appspotmail.com
Link: https://lore.kernel.org/lkml/000000000000a6f34a05e6efcd01@google.com/
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Xu Yu <xuyu@linux.alibaba.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When the loop over the VMA is terminated early due to an error, the return
code could be overwritten with ENOMEM. Fix the return code by only
setting the error on early loop termination when the error is not set.
User-visible effects include: attempts to run mprotect() against a
special mapping or with a poorly-aligned hugetlb address should return
-EINVAL, but they presently return -ENOMEM. In other cases an -EACCESS
should be returned.
Link: https://lkml.kernel.org/r/20230406193050.1363476-1-Liam.Howlett@oracle.com
Fixes: 2286a6914c ("mm: change mprotect_fixup to vma iterator")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Khugepaged collapse an anonymous thp in two rounds of scans. The 2nd
round done in __collapse_huge_page_isolate() after
hpage_collapse_scan_pmd(), during which all the locks will be released
temporarily. It means the pgtable can change during this phase before 2nd
round starts.
It's logically possible some ptes got wr-protected during this phase, and
we can errornously collapse a thp without noticing some ptes are
wr-protected by userfault. e1e267c792 wanted to avoid it but it only
did that for the 1st phase, not the 2nd phase.
Since __collapse_huge_page_isolate() happens after a round of small page
swapins, we don't need to worry on any !present ptes - if it existed
khugepaged will already bail out. So we only need to check present ptes
with uffd-wp bit set there.
This is something I found only but never had a reproducer, I thought it
was one caused a bug in Muhammad's recent pagemap new ioctl work, but it
turns out it's not the cause of that but an userspace bug. However this
seems to still be a real bug even with a very small race window, still
worth to have it fixed and copy stable.
Link: https://lkml.kernel.org/r/20230405155120.3608140-1-peterx@redhat.com
Fixes: e1e267c792 ("khugepaged: skip collapse if uffd-wp detected")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Looks like what we fixed for hugetlb in commit 44f86392bd ("mm/hugetlb:
fix uffd-wp handling for migration entries in
hugetlb_change_protection()") similarly applies to THP.
Setting/clearing uffd-wp on THP migration entries is not implemented
properly. Further, while removing migration PMDs considers the uffd-wp
bit, inserting migration PMDs does not consider the uffd-wp bit.
We have to set/clear independently of the migration entry type in
change_huge_pmd() and properly copy the uffd-wp bit in
set_pmd_migration_entry().
Verified using a simple reproducer that triggers migration of a THP, that
the set_pmd_migration_entry() no longer loses the uffd-wp bit.
Link: https://lkml.kernel.org/r/20230405160236.587705-2-david@redhat.com
Fixes: f45ec5ff16 ("userfaultfd: wp: support swap and page migration")
Signed-off-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Cc: <stable@vger.kernel.org>
Cc: Muhammad Usama Anjum <usama.anjum@collabora.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The ->percpu_pvec_drained was originally introduced by commit d9ed0d08b6
("mm: only drain per-cpu pagevecs once per pagevec usage") to drain
per-cpu pagevecs only once per pagevec usage. But after converting the
swap code to be more folio-based, the commit c2bc16817a ("mm/swap: add
folio_batch_move_lru()") breaks this logic, which would cause
->percpu_pvec_drained to be reset to false, that means per-cpu pagevecs
will be drained multiple times per pagevec usage.
In theory, there should be no functional changes when converting code to
be more folio-based. We should call folio_batch_reinit() in
folio_batch_move_lru() instead of folio_batch_init(). And to verify that
we still need ->percpu_pvec_drained, I ran mmtests/sparsetruncate-tiny and
got the following data:
baseline with
baseline/ patch/
Min Time 326.00 ( 0.00%) 328.00 ( -0.61%)
1st-qrtle Time 334.00 ( 0.00%) 336.00 ( -0.60%)
2nd-qrtle Time 338.00 ( 0.00%) 341.00 ( -0.89%)
3rd-qrtle Time 343.00 ( 0.00%) 347.00 ( -1.17%)
Max-1 Time 326.00 ( 0.00%) 328.00 ( -0.61%)
Max-5 Time 327.00 ( 0.00%) 330.00 ( -0.92%)
Max-10 Time 328.00 ( 0.00%) 331.00 ( -0.91%)
Max-90 Time 350.00 ( 0.00%) 357.00 ( -2.00%)
Max-95 Time 395.00 ( 0.00%) 390.00 ( 1.27%)
Max-99 Time 508.00 ( 0.00%) 434.00 ( 14.57%)
Max Time 547.00 ( 0.00%) 476.00 ( 12.98%)
Amean Time 344.61 ( 0.00%) 345.56 * -0.28%*
Stddev Time 30.34 ( 0.00%) 19.51 ( 35.69%)
CoeffVar Time 8.81 ( 0.00%) 5.65 ( 35.87%)
BAmean-99 Time 342.38 ( 0.00%) 344.27 ( -0.55%)
BAmean-95 Time 338.58 ( 0.00%) 341.87 ( -0.97%)
BAmean-90 Time 336.89 ( 0.00%) 340.26 ( -1.00%)
BAmean-75 Time 335.18 ( 0.00%) 338.40 ( -0.96%)
BAmean-50 Time 332.54 ( 0.00%) 335.42 ( -0.87%)
BAmean-25 Time 329.30 ( 0.00%) 332.00 ( -0.82%)
From the above it can be seen that we get similar data to when
->percpu_pvec_drained was introduced, so we still need it. Let's call
folio_batch_reinit() in folio_batch_move_lru() to restore the original
logic.
Link: https://lkml.kernel.org/r/20230405161854.6931-1-zhengqi.arch@bytedance.com
Fixes: c2bc16817a ("mm/swap: add folio_batch_move_lru()")
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Acked-by: Mel Gorman <mgorman@suse.de>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZDhSiwAKCRDbK58LschI
g8cbAQCH4xrquOeDmYyGXFQGchHZAIj++tKg8ABU4+hYeJtrlwEA6D4W6wjoSZRk
mLSptZ9qro8yZA86BvyPvlBT1h9ELQA=
=StAc
-----END PGP SIGNATURE-----
Daniel Borkmann says:
====================
pull-request: bpf-next 2023-04-13
We've added 260 non-merge commits during the last 36 day(s) which contain
a total of 356 files changed, 21786 insertions(+), 11275 deletions(-).
The main changes are:
1) Rework BPF verifier log behavior and implement it as a rotating log
by default with the option to retain old-style fixed log behavior,
from Andrii Nakryiko.
2) Adds support for using {FOU,GUE} encap with an ipip device operating
in collect_md mode and add a set of BPF kfuncs for controlling encap
params, from Christian Ehrig.
3) Allow BPF programs to detect at load time whether a particular kfunc
exists or not, and also add support for this in light skeleton,
from Alexei Starovoitov.
4) Optimize hashmap lookups when key size is multiple of 4,
from Anton Protopopov.
5) Enable RCU semantics for task BPF kptrs and allow referenced kptr
tasks to be stored in BPF maps, from David Vernet.
6) Add support for stashing local BPF kptr into a map value via
bpf_kptr_xchg(). This is useful e.g. for rbtree node creation
for new cgroups, from Dave Marchevsky.
7) Fix BTF handling of is_int_ptr to skip modifiers to work around
tracing issues where a program cannot be attached, from Feng Zhou.
8) Migrate a big portion of test_verifier unit tests over to
test_progs -a verifier_* via inline asm to ease {read,debug}ability,
from Eduard Zingerman.
9) Several updates to the instruction-set.rst documentation
which is subject to future IETF standardization
(https://lwn.net/Articles/926882/), from Dave Thaler.
10) Fix BPF verifier in the __reg_bound_offset's 64->32 tnum sub-register
known bits information propagation, from Daniel Borkmann.
11) Add skb bitfield compaction work related to BPF with the overall goal
to make more of the sk_buff bits optional, from Jakub Kicinski.
12) BPF selftest cleanups for build id extraction which stand on its own
from the upcoming integration work of build id into struct file object,
from Jiri Olsa.
13) Add fixes and optimizations for xsk descriptor validation and several
selftest improvements for xsk sockets, from Kal Conley.
14) Add BPF links for struct_ops and enable switching implementations
of BPF TCP cong-ctls under a given name by replacing backing
struct_ops map, from Kui-Feng Lee.
15) Remove a misleading BPF verifier env->bypass_spec_v1 check on variable
offset stack read as earlier Spectre checks cover this,
from Luis Gerhorst.
16) Fix issues in copy_from_user_nofault() for BPF and other tracers
to resemble copy_from_user_nmi() from safety PoV, from Florian Lehner
and Alexei Starovoitov.
17) Add --json-summary option to test_progs in order for CI tooling to
ease parsing of test results, from Manu Bretelle.
18) Batch of improvements and refactoring to prep for upcoming
bpf_local_storage conversion to bpf_mem_cache_{alloc,free} allocator,
from Martin KaFai Lau.
19) Improve bpftool's visual program dump which produces the control
flow graph in a DOT format by adding C source inline annotations,
from Quentin Monnet.
20) Fix attaching fentry/fexit/fmod_ret/lsm to modules by extracting
the module name from BTF of the target and searching kallsyms of
the correct module, from Viktor Malik.
21) Improve BPF verifier handling of '<const> <cond> <non_const>'
to better detect whether in particular jmp32 branches are taken,
from Yonghong Song.
22) Allow BPF TCP cong-ctls to write app_limited of struct tcp_sock.
A built-in cc or one from a kernel module is already able to write
to app_limited, from Yixin Shen.
Conflicts:
Documentation/bpf/bpf_devel_QA.rst
b7abcd9c65 ("bpf, doc: Link to submitting-patches.rst for general patch submission info")
0f10f647f4 ("bpf, docs: Use internal linking for link to netdev subsystem doc")
https://lore.kernel.org/all/20230307095812.236eb1be@canb.auug.org.au/
include/net/ip_tunnels.h
bc9d003dc4 ("ip_tunnel: Preserve pointer const in ip_tunnel_info_opts")
ac931d4cde ("ipip,ip_tunnel,sit: Add FOU support for externally controlled ipip devices")
https://lore.kernel.org/all/20230413161235.4093777-1-broonie@kernel.org/
net/bpf/test_run.c
e5995bc7e2 ("bpf, test_run: fix crashes due to XDP frame overwriting/corruption")
294635a816 ("bpf, test_run: fix &xdp_frame misplacement for LIVE_FRAMES")
https://lore.kernel.org/all/20230320102619.05b80a98@canb.auug.org.au/
====================
Link: https://lore.kernel.org/r/20230413191525.7295-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Since commit 8b41fc4454 ("kbuild: create modules.builtin without
Makefile.modbuiltin or tristate.conf"), MODULE_LICENSE declarations
are used to identify modules. As a consequence, uses of the macro
in non-modules will cause modprobe to misidentify their containing
object file as a module when it is not (false positives), and modprobe
might succeed rather than failing with a suitable error message.
So remove it in the files in this commit, none of which can be built as
modules.
Signed-off-by: Nick Alcock <nick.alcock@oracle.com>
Suggested-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: linux-modules@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: Hitomi Hasegawa <hasegawa-hitomi@fujitsu.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Since commit 8b41fc4454 ("kbuild: create modules.builtin without
Makefile.modbuiltin or tristate.conf"), MODULE_LICENSE declarations
are used to identify modules. As a consequence, uses of the macro
in non-modules will cause modprobe to misidentify their containing
object file as a module when it is not (false positives), and modprobe
might succeed rather than failing with a suitable error message.
So remove it in the files in this commit, none of which can be built as
modules.
Signed-off-by: Nick Alcock <nick.alcock@oracle.com>
Suggested-by: Luis Chamberlain <mcgrof@kernel.org>
Cc: Luis Chamberlain <mcgrof@kernel.org>
Cc: linux-modules@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: Hitomi Hasegawa <hasegawa-hitomi@fujitsu.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: linux-mm@kvack.org
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Without CONFIG_SYSCTL, the compiler warns about a few unused functions:
mm/compaction.c:3076:12: error: 'proc_dointvec_minmax_warn_RT_change' defined but not used [-Werror=unused-function]
mm/compaction.c:2780:12: error: 'sysctl_compaction_handler' defined but not used [-Werror=unused-function]
mm/compaction.c:2750:12: error: 'compaction_proactiveness_sysctl_handler' defined but not used [-Werror=unused-function]
The #ifdef is actually not necessary here, as the alternative
register_sysctl_init() stub function does not use its argument, which
lets the compiler drop the rest implicitly, while avoiding the warning.
Fixes: c521126610c3 ("mm: compaction: move compaction sysctl to its own file")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
This moves all compaction sysctls to its own file.
Move sysctl to where the functionality truly belongs to improve
readability, reduce merge conflicts, and facilitate maintenance.
I use x86_defconfig and linux-next-20230327 branch
$ make defconfig;make all -jn
CONFIG_COMPACTION=y
add/remove: 1/0 grow/shrink: 1/1 up/down: 350/-256 (94)
Function old new delta
vm_compaction - 320 +320
kcompactd_init 180 210 +30
vm_table 2112 1856 -256
Total: Before=21119987, After=21120081, chg +0.00%
Despite the addition of 94 bytes the patch still seems a worthwile
cleanup.
Link: https://lore.kernel.org/lkml/067f7347-ba10-5405-920c-0f5f985c84f4@suse.cz/
Signed-off-by: Minghao Chi <chi.minghao@zte.com.cn>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
The sysctl_memory_failure_early_kill and memory_failure_recovery
are only used in memory-failure.c, move them to its own file.
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
[mcgrof: fix by adding empty ctl entry, this caused a crash]
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
There are several issues with copy_from_user_nofault():
- access_ok() is designed for user context only and for that reason
it has WARN_ON_IN_IRQ() which triggers when bpf, kprobe, eprobe
and perf on ppc are calling it from irq.
- it's missing nmi_uaccess_okay() which is a nop on all architectures
except x86 where it's required.
The comment in arch/x86/mm/tlb.c explains the details why it's necessary.
Calling copy_from_user_nofault() from bpf, [ke]probe without this check is not safe.
- __copy_from_user_inatomic() under CONFIG_HARDENED_USERCOPY is calling
check_object_size()->__check_object_size()->check_heap_object()->find_vmap_area()->spin_lock()
which is not safe to do from bpf, [ke]probe and perf due to potential deadlock.
Fix all three issues. At the end the copy_from_user_nofault() becomes
equivalent to copy_from_user_nmi() from safety point of view with
a difference in the return value.
Reported-by: Hsin-Wei Hung <hsinweih@uci.edu>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Florian Lehner <dev@der-flo.net>
Tested-by: Hsin-Wei Hung <hsinweih@uci.edu>
Tested-by: Florian Lehner <dev@der-flo.net>
Link: https://lore.kernel.org/r/20230410174345.4376-2-dev@der-flo.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
gcc inlines kstrdup into kstrdup_const() but it can very efficiently tail
call into it instead:
$ ./scripts/bloat-o-meter ../vmlinux-000 ../obj/vmlinux
add/remove: 0/0 grow/shrink: 0/1 up/down: 0/-84 (-84)
Function old new delta
kstrdup_const 119 35 -84
Link: https://lkml.kernel.org/r/Y/4fDlbIhTLNLFHz@p183
Signed-off-by: Alexey Dobriyan <adobriyan@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This particular combination of flags is used by most filesystems
in their ->write_begin method, although it does find use in a
few other places. Before folios, it warranted its own function
(grab_cache_page_write_begin()), but I think that just having specialised
flags is enough. It certainly helps the few places that have been
converted from grab_cache_page_write_begin() to __filemap_get_folio().
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: https://lore.kernel.org/r/20230324180129.1220691-2-willy@infradead.org
Signed-off-by: Theodore Ts'o <tytso@mit.edu>
During Numa scanning make sure only relevant vmas of the tasks are
scanned.
Before:
All the tasks of a process participate in scanning the vma even if they
do not access vma in it's lifespan.
Now:
Except cases of first few unconditional scans, if a process do
not touch vma (exluding false positive cases of PID collisions)
tasks no longer scan all vma
Logic used:
1) 6 bits of PID used to mark active bit in vma numab status during
fault to remember PIDs accessing vma. (Thanks Mel)
2) Subsequently in scan path, vma scanning is skipped if current PID
had not accessed vma.
3) First two times we do allow unconditional scan to preserve earlier
behaviour of scanning.
Acknowledgement to Bharata B Rao <bharata@amd.com> for initial patch to
store pid information and Peter Zijlstra <peterz@infradead.org> (Usage of
test and set bit)
Link: https://lkml.kernel.org/r/092f03105c7c1d3450f4636b1ea350407f07640e.1677672277.git.raghavendra.kt@amd.com
Signed-off-by: Raghavendra K T <raghavendra.kt@amd.com>
Suggested-by: Mel Gorman <mgorman@techsingularity.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: Disha Talreja <dishaa.talreja@amd.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Mike Rapoport <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
call_rcu() can take a long time when callback offloading is enabled. Its
use in the vm_area_free can cause regressions in the exit path when
multiple VMAs are being freed.
Because exit_mmap() is called only after the last mm user drops its
refcount, the page fault handlers can't be racing with it. Any other
possible user like oom-reaper or process_mrelease are already synchronized
using mmap_lock. Therefore exit_mmap() can free VMAs directly, without
the use of call_rcu().
Expose __vm_area_free() and use it from exit_mmap() to avoid possible
call_rcu() floods and performance regressions caused by it.
Link: https://lkml.kernel.org/r/20230227173632.3292573-33-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Add a new CONFIG_PER_VMA_LOCK_STATS config option to dump extra statistics
about handling page fault under VMA lock.
Link: https://lkml.kernel.org/r/20230227173632.3292573-29-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Due to the possibility of handle_userfault dropping mmap_lock, avoid fault
handling under VMA lock and retry holding mmap_lock. This can be handled
more gracefully in the future.
Link: https://lkml.kernel.org/r/20230227173632.3292573-28-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Suggested-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Due to the possibility of do_swap_page dropping mmap_lock, abort fault
handling under VMA lock and retry holding mmap_lock. This can be handled
more gracefully in the future.
Link: https://lkml.kernel.org/r/20230227173632.3292573-27-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Laurent Dufour <laurent.dufour@fr.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When vma->anon_vma is not set, page fault handler will set it by either
reusing anon_vma of an adjacent VMA if VMAs are compatible or by
allocating a new one. find_mergeable_anon_vma() walks VMA tree to find a
compatible adjacent VMA and that requires not only the faulting VMA to be
stable but also the tree structure and other VMAs inside that tree.
Therefore locking just the faulting VMA is not enough for this search.
Fall back to taking mmap_lock when vma->anon_vma is not set. This
situation happens only on the first page fault and should not affect
overall performance.
Link: https://lkml.kernel.org/r/20230227173632.3292573-25-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Introduce lock_vma_under_rcu function to lookup and lock a VMA during page
fault handling. When VMA is not found, can't be locked or changes after
being locked, the function returns NULL. The lookup is performed under
RCU protection to prevent the found VMA from being destroyed before the
VMA lock is acquired. VMA lock statistics are updated according to the
results. For now only anonymous VMAs can be searched this way. In other
cases the function returns NULL.
Link: https://lkml.kernel.org/r/20230227173632.3292573-24-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Per-vma locking mechanism will search for VMA under RCU protection and
then after locking it, has to ensure it was not removed from the VMA tree
after we found it. To make this check efficient, introduce a
vma->detached flag to mark VMAs which were removed from the VMA tree.
Link: https://lkml.kernel.org/r/20230227173632.3292573-23-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Page fault handlers might need to fire MMU notifications while a new
notifier is being registered. Modify mm_take_all_locks to write-lock all
VMAs and prevent this race with page fault handlers that would hold VMA
locks. VMAs are locked before i_mmap_rwsem and anon_vma to keep the same
locking order as in page fault handlers.
Link: https://lkml.kernel.org/r/20230227173632.3292573-22-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Normally free_pgtables needs to lock affected VMAs except for the case
when VMAs were isolated under VMA write-lock. munmap() does just that,
isolating while holding appropriate locks and then downgrading mmap_lock
and dropping per-VMA locks before freeing page tables. Add a parameter to
free_pgtables for such scenario.
Link: https://lkml.kernel.org/r/20230227173632.3292573-20-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Write-lock VMA as locked before copying it and when copy_vma produces a
new VMA.
Link: https://lkml.kernel.org/r/20230227173632.3292573-18-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: Laurent Dufour <laurent.dufour@fr.ibm.com>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Write-lock all VMAs which might be affected by a merge, split, expand or
shrink operations. All these operations use vma_prepare() before making
the modifications, therefore it provides a centralized place to perform
VMA locking.
[surenb@google.com: remove unnecessary vp->vma check in vma_prepare]
Link: https://lkml.kernel.org/r/20230301022720.1380780-1-surenb@google.com
Link: https://lore.kernel.org/r/202302281802.J93Nma7q-lkp@intel.com/
Link: https://lkml.kernel.org/r/20230227173632.3292573-17-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: David Howells <dhowells@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Laurent Dufour <laurent.dufour@fr.ibm.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Pavel Tatashin <pasha.tatashin@soleen.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Protect VMA from concurrent page fault handler while collapsing a huge
page. Page fault handler needs a stable PMD to use PTL and relies on
per-VMA lock to prevent concurrent PMD changes. pmdp_collapse_flush(),
set_huge_pmd() and collapse_and_free_pmd() can modify a PMD, which will
not be detected by a page fault handler without proper locking.
Before this patch, page tables can be walked under any one of the
mmap_lock, the mapping lock, and the anon_vma lock; so when khugepaged
unlinks and frees page tables, it must ensure that all of those either are
locked or don't exist. This patch adds a fourth lock under which page
tables can be traversed, and so khugepaged must also lock out that one.
[surenb@google.com: vm_lock/i_mmap_rwsem inversion in retract_page_tables]
Link: https://lkml.kernel.org/r/20230303213250.3555716-1-surenb@google.com
[surenb@google.com: build fix]
Link: https://lkml.kernel.org/r/CAJuCfpFjWhtzRE1X=J+_JjgJzNKhq-=JT8yTBSTHthwp0pqWZw@mail.gmail.com
Link: https://lkml.kernel.org/r/20230227173632.3292573-16-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
vma_prepare() acquires all locks required before VMA modifications. Move
vma_prepare() before vma_adjust_trans_huge() so that VMA is locked before
any modification.
Link: https://lkml.kernel.org/r/20230227173632.3292573-15-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Introduce per-VMA locking. The lock implementation relies on a per-vma
and per-mm sequence counters to note exclusive locking:
- read lock - (implemented by vma_start_read) requires the vma
(vm_lock_seq) and mm (mm_lock_seq) sequence counters to differ.
If they match then there must be a vma exclusive lock held somewhere.
- read unlock - (implemented by vma_end_read) is a trivial vma->lock
unlock.
- write lock - (vma_start_write) requires the mmap_lock to be held
exclusively and the current mm counter is assigned to the vma counter.
This will allow multiple vmas to be locked under a single mmap_lock
write lock (e.g. during vma merging). The vma counter is modified
under exclusive vma lock.
- write unlock - (vma_end_write_all) is a batch release of all vma
locks held. It doesn't pair with a specific vma_start_write! It is
done before exclusive mmap_lock is released by incrementing mm
sequence counter (mm_lock_seq).
- write downgrade - if the mmap_lock is downgraded to the read lock, all
vma write locks are released as well (effectivelly same as write
unlock).
Link: https://lkml.kernel.org/r/20230227173632.3292573-13-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Per-VMA locks", v4.
LWN article describing the feature: https://lwn.net/Articles/906852/
Per-vma locks idea that was discussed during SPF [1] discussion at LSF/MM
last year [2], which concluded with suggestion that “a reader/writer
semaphore could be put into the VMA itself; that would have the effect of
using the VMA as a sort of range lock. There would still be contention at
the VMA level, but it would be an improvement.” This patchset implements
this suggested approach.
When handling page faults we lookup the VMA that contains the faulting
page under RCU protection and try to acquire its lock. If that fails we
fall back to using mmap_lock, similar to how SPF handled this situation.
One notable way the implementation deviates from the proposal is the way
VMAs are read-locked. During some of mm updates, multiple VMAs need to be
locked until the end of the update (e.g. vma_merge, split_vma, etc).
Tracking all the locked VMAs, avoiding recursive locks, figuring out when
it's safe to unlock previously locked VMAs would make the code more
complex. So, instead of the usual lock/unlock pattern, the proposed
solution marks a VMA as locked and provides an efficient way to:
1. Identify locked VMAs.
2. Unlock all locked VMAs in bulk.
We also postpone unlocking the locked VMAs until the end of the update,
when we do mmap_write_unlock. Potentially this keeps a VMA locked for
longer than is absolutely necessary but it results in a big reduction of
code complexity.
Read-locking a VMA is done using two sequence numbers - one in the
vm_area_struct and one in the mm_struct. VMA is considered read-locked
when these sequence numbers are equal. To read-lock a VMA we set the
sequence number in vm_area_struct to be equal to the sequence number in
mm_struct. To unlock all VMAs we increment mm_struct's seq number. This
allows for an efficient way to track locked VMAs and to drop the locks on
all VMAs at the end of the update.
The patchset implements per-VMA locking only for anonymous pages which are
not in swap and avoids userfaultfs as their implementation is more
complex. Additional support for file-back page faults, swapped and user
pages can be added incrementally.
Performance benchmarks show similar although slightly smaller benefits as
with SPF patchset (~75% of SPF benefits). Still, with lower complexity
this approach might be more desirable.
Since RFC was posted in September 2022, two separate Google teams outside
of Android evaluated the patchset and confirmed positive results. Here
are the known usecases when per-VMA locks show benefits:
Android:
Apps with high number of threads (~100) launch times improve by up to 20%.
Each thread mmaps several areas upon startup (Stack and Thread-local
storage (TLS), thread signal stack, indirect ref table), which requires
taking mmap_lock in write mode. Page faults take mmap_lock in read mode.
During app launch, both thread creation and page faults establishing the
active workinget are happening in parallel and that causes lock contention
between mm writers and readers even if updates and page faults are
happening in different VMAs. Per-vma locks prevent this contention by
providing more granular lock.
Google Fibers:
We have several dynamically sized thread pools that spawn new threads
under increased load and reduce their number when idling. For example,
Google's in-process scheduling/threading framework, UMCG/Fibers, is backed
by such a thread pool. When idling, only a small number of idle worker
threads are available; when a spike of incoming requests arrive, each
request is handled in its own "fiber", which is a work item posted onto a
UMCG worker thread; quite often these spikes lead to a number of new
threads spawning. Each new thread needs to allocate and register an RSEQ
section on its TLS, then register itself with the kernel as a UMCG worker
thread, and only after that it can be considered by the in-process
UMCG/Fiber scheduler as available to do useful work. In short, during an
incoming workload spike new threads have to be spawned, and they perform
several syscalls (RSEQ registration, UMCG worker registration, memory
allocations) before they can actually start doing useful work. Removing
any bottlenecks on this thread startup path will greatly improve our
services' latencies when faced with request/workload spikes.
At high scale, mmap_lock contention during thread creation and stack page
faults leads to user-visible multi-second serving latencies in a similar
pattern to Android app startup. Per-VMA locking patchset has been run
successfully in limited experiments with user-facing production workloads.
In these experiments, we observed that the peak thread creation rate was
high enough that thread creation is no longer a bottleneck.
TCP zerocopy receive:
From the point of view of TCP zerocopy receive, the per-vma lock patch is
massively beneficial.
In today's implementation, a process with N threads where N - 1 are
performing zerocopy receive and 1 thread is performing madvise() with the
write lock taken (e.g. needs to change vm_flags) will result in all N -1
receive threads blocking until the madvise is done. Conversely, on a busy
process receiving a lot of data, an madvise operation that does need to
take the mmap lock in write mode will need to wait for all of the receives
to be done - a lose:lose proposition. Per-VMA locking _removes_ by
definition this source of contention entirely.
There are other benefits for receive as well, chiefly a reduction in
cacheline bouncing across receiving threads for locking/unlocking the
single mmap lock. On an RPC style synthetic workload with 4KB RPCs:
1a) The find+lock+unlock VMA path in the base case, without the
per-vma lock patchset, is about 0.7% of cycles as measured by perf.
1b) mmap_read_lock + mmap_read_unlock in the base case is about 0.5%
cycles overall - most of this is within the TCP read hotpath (a small
fraction is 'other' usage in the system).
2a) The find+lock+unlock VMA path, with the per-vma patchset and a
trivial patch written to take advantage of it in TCP, is about 0.4% of
cycles (down from 0.7% above)
2b) mmap_read_lock + mmap_read_unlock in the per-vma patchset is <
0.1% cycles and is out of the TCP read hotpath entirely (down from
0.5% before, the remaining usage is the 'other' usage in the system).
So, in addition to entirely removing an onerous source of contention,
it also reduces the CPU cycles of TCP receive zerocopy by about 0.5%+
(compared to overall cycles in perf) for the 'small' RPC scenario.
In https://lkml.kernel.org/r/87fsaqouyd.fsf_-_@stealth, Punit
demonstrated throughput improvements of as much as 188% from this
patchset.
This patch (of 25):
This configuration variable will be used to build the support for VMA
locking during page fault handling.
This is enabled on supported architectures with SMP and MMU set.
The architecture support is needed since the page fault handler is called
from the architecture's page faulting code which needs modifications to
handle faults under VMA lock.
Link: https://lkml.kernel.org/r/20230227173632.3292573-1-surenb@google.com
Link: https://lkml.kernel.org/r/20230227173632.3292573-10-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Prevent filesystems from doing things which sleep in their map_pages
method. This is in preparation for a pagefault path protected only by
RCU.
Link: https://lkml.kernel.org/r/20230327174515.1811532-4-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Darrick J. Wong <djwong@kernel.org>
Cc: Dave Chinner <david@fromorbit.com>
Cc: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Since commit ee6d3dd4ed ("driver core: make kobj_type constant.") the
driver core allows the usage of const struct kobj_type.
Take advantage of this to constify the structure definition to prevent
modification at runtime.
These structures were not constified in commit e56397e8c4
("mm/damon/sysfs: make kobj_type structures constant") as they didn't
exist when that patch was written.
Link: https://lkml.kernel.org/r/20230324-b4-kobj_type-damon2-v1-1-48ddbf1c8fcf@weissschuh.net
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Reviewed-by: SeongJae Park <sj@kernel.org>
Reviewed-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Turn a pr_info() into a pr_debug() to prevent dmesg spamming on systems
where memory hotplug is a frequent operation.
Link: https://lkml.kernel.org/r/20230323174349.35990-1-krckatom@amazon.de
Signed-off-by: Tomas Krcka <krckatom@amazon.de>
Suggested-by: Jan H. Schönherr <jschoenh@amazon.de>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Pasha Tatashin <pasha.tatashin@soleen.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Rather than setting err = -1 and only resetting if we hit merge cases,
explicitly check the non-mergeable case to make it abundantly clear that
we only proceed with the rest if something is mergeable, default err to 0
and only update if an error might occur.
Move the merge_prev, merge_next cases closer to the logic determining
curr, next and reorder initial variables so they are more logically
grouped.
This has no functional impact.
Link: https://lkml.kernel.org/r/99259fbc6403e80e270e1cc4612abbc8620b121b.1679516210.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: David Hildenbrand <david@redhat.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vernon Yang <vernon2gm@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Previously, vma was an uninitialised variable which was only definitely
assigned as a result of the logic covering all possible input cases - for
it to have remained uninitialised, prev would have to be NULL, and next
would _have_ to be mergeable.
The value of res defaults to NULL, so we can neatly eliminate the
assignment to res and vma in the if (prev) block and ensure that both res
and vma are both explicitly assigned, by just setting both to prev.
In addition we add an explanation as to under what circumstances both
might change, and since we absolutely do rely on addr == curr->vm_start
should curr exist, assert that this is the case.
Link: https://lkml.kernel.org/r/83938bed24422cbe5954bbf491341674becfe567.1679516210.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vernon Yang <vernon2gm@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use find_vma_intersection() and vma_lookup() to both simplify the logic
and to fold the end == next->vm_start condition into one block.
This groups all of the simple range checks together and establishes the
invariant that, if prev, curr or next are non-NULL then their positions
are as expected.
This has no functional impact.
Link: https://lkml.kernel.org/r/c6d960641b4ba58fa6ad3d07bf68c27d847963c8.1679516210.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vernon Yang <vernon2gm@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "further cleanup of vma_merge()", v2.
Following on from Vlastimil Babka's patch series "cleanup vma_merge() and
improve mergeability tests" which was in turn based on Liam's prior
cleanups, this patch series introduces changes discussed in review of
Vlastimil's series and goes further in attempting to make the logic as
clear as possible.
Nearly all of this should have absolutely no functional impact, however it
does add a singular VM_WARN_ON() case.
With many thanks to Vernon for helping kick start the discussion around
simplification - abstract use of vma did indeed turn out not to be
necessary - and to Liam for his excellent suggestions which greatly
simplified things.
This patch (of 4):
Previously the ASCII diagram above vma_merge() and the accompanying
variable naming was rather confusing, however recent efforts by Liam
Howlett and Vlastimil Babka have significantly improved matters.
This patch goes a little further - replacing 'X' with 'N' which feels a
lot more natural and replacing what was 'N' with 'C' which stands for
'concurrent' VMA.
No word quite describes a VMA that has coincident start as the input span,
concurrent, abbreviated to 'curr' (and which can be thought of also as
'current') however fits intuitions well alongside prev and next.
This has no functional impact.
Link: https://lkml.kernel.org/r/cover.1679431180.git.lstoakes@gmail.com
Link: https://lkml.kernel.org/r/6001e08fa7e119470cbb1d2b6275ad8d742ff9a7.1679431180.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Liam Howlett <liam.howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vernon Yang <vernon2gm@gmail.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Having previously laid the foundation for converting vread() to an
iterator function, pull the trigger and do so.
This patch attempts to provide minimal refactoring and to reflect the
existing logic as best we can, for example we continue to zero portions of
memory not read, as before.
Overall, there should be no functional difference other than a performance
improvement in /proc/kcore access to vmalloc regions.
Now we have eliminated the need for a bounce buffer in read_kcore_iter(),
we dispense with it, and try to write to user memory optimistically but
with faults disabled via copy_page_to_iter_nofault(). We already have
preemption disabled by holding a spin lock. We continue faulting in until
the operation is complete.
Additionally, we must account for the fact that at any point a copy may
fail (most likely due to a fault not being able to occur), we exit
indicating fewer bytes retrieved than expected.
[sfr@canb.auug.org.au: fix sparc64 warning]
Link: https://lkml.kernel.org/r/20230320144721.663280c3@canb.auug.org.au
[lstoakes@gmail.com: redo Stephen's sparc build fix]
Link: https://lkml.kernel.org/r/8506cbc667c39205e65a323f750ff9c11a463798.1679566220.git.lstoakes@gmail.com
[akpm@linux-foundation.org: unbreak uio.h includes]
Link: https://lkml.kernel.org/r/941f88bc5ab928e6656e1e2593b91bf0f8c81e1b.1679511146.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Reviewed-by: Baoquan He <bhe@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: David Hildenbrand <david@redhat.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Jiri Olsa <jolsa@kernel.org>
Cc: Liu Shixin <liushixin2@huawei.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Normal page init path frees pages during the boot in MAX_ORDER chunks, but
deferred page init path does it in pageblock blocks.
Change deferred page init path to work in MAX_ORDER blocks.
For cases when MAX_ORDER is larger than pageblock, set migrate type to
MIGRATE_MOVABLE for all pageblocks covered by the page.
Link: https://lkml.kernel.org/r/20230321002415.20843-1-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This functionality's sole user, the drm ttm module, removed support for it
in commit 0d97950953 ("drm/ttm: remove ttm_bo_vm_insert_huge()") as the
whole approach is currently unworkable without a PMD/PUD special bit and
updates to GUP.
Link: https://lkml.kernel.org/r/604c2ad79659d4b8a6e3e1611c6219d5d3233988.1678661628.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Cc: Aaron Tomlin <atomlin@atomlin.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: "Russell King (Oracle)" <linux@armlinux.org.uk>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Remove drm/ttm-specific mm changes".
Functionality was added specifically for the DRM TTM driver to support
mapping memory for VM_MIXEDMAP VMAs with customised protection flags,
however this has now been rolled back as issues were found with this
approach.
This series removes the mm changes too, retaining some of the useful
comments.
This patch (of 3):
The sole user of vmf_insert_mixed_prot(), the drm ttm module, stopped
using this in commit f91142c621 ("drm/ttm: nuke VM_MIXEDMAP on BO
mappings v3") citing use of VM_MIXEDMAP in this case being terribly
broken.
Remove this now-dead code and references to it, but retain the useful
description of the prot != vma->vm_page_prot case, moving it to
vmf_insert_pfn_prot() instead.
Link: https://lkml.kernel.org/r/cover.1678661628.git.lstoakes@gmail.com
Link: https://lkml.kernel.org/r/a069644388e6f1593a7020d15840e6fc9f39bcaf.1678661628.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Christian König <christian.koenig@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Cc: Aaron Tomlin <atomlin@atomlin.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Heiko Carstens <hca@linux.ibm.com>
Cc: Huacai Chen <chenhuacai@kernel.org>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: "Russell King (Oracle)" <linux@armlinux.org.uk>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently the memtest results were only presented in dmesg.
When running a large fleet of devices without ECC RAM it's currently not
easy to do bulk monitoring for memory corruption. You have to parse
dmesg, but that's a ring buffer so the error might disappear after some
time. In general I do not consider dmesg to be a great API to query RAM
status.
In several companies I've seen such errors remain undetected and cause
issues for way too long. So I think it makes sense to provide a
monitoring API, so that we can safely detect and act upon them.
This adds /proc/meminfo entry which can be easily used by scripts.
Link: https://lkml.kernel.org/r/20230321103430.7130-1-tomas.mudrunka@gmail.com
Signed-off-by: Tomas Mudrunka <tomas.mudrunka@gmail.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
vmalloc_init() is called only from mm_core_init(), there is no need to
declare it in include/linux/vmalloc.h
Move vmalloc_init() declaration to mm/internal.h
Link: https://lkml.kernel.org/r/20230321170513.2401534-14-rppt@kernel.org
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Doug Berger <opendmb@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
kmem_cache_init() is called only from mm_core_init(), there is no need to
declare it in include/linux/slab.h
Move kmem_cache_init() declaration to mm/slab.h
Link: https://lkml.kernel.org/r/20230321170513.2401534-13-rppt@kernel.org
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Doug Berger <opendmb@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
mem_init_print_info() is only called from mm_core_init().
Move it close to the caller and make it static.
Link: https://lkml.kernel.org/r/20230321170513.2401534-12-rppt@kernel.org
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Doug Berger <opendmb@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When deferred initialization of struct pages is enabled, page_ext_init()
must be called after all the deferred initialization is done, but there is
no point to keep it a separate call from kernel_init_freeable() right
after page_alloc_init_late().
Fold the call to page_ext_init() into page_alloc_init_late() and localize
deferred_struct_pages variable.
Link: https://lkml.kernel.org/r/20230321170513.2401534-11-rppt@kernel.org
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Doug Berger <opendmb@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
init_mem_debugging_and_hardening() is only called from mm_core_init().
Move it close to the caller, make it static and rename it to
mem_debugging_and_hardening_init() for consistency with surrounding
convention.
Link: https://lkml.kernel.org/r/20230321170513.2401534-10-rppt@kernel.org
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Doug Berger <opendmb@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
and drop pgtable_init() as it has no real value and its name is
misleading.
Link: https://lkml.kernel.org/r/20230321170513.2401534-9-rppt@kernel.org
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Doug Berger <opendmb@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Sergei Shtylyov <sergei.shtylyov@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Make mm_init() a part of mm/ codebase. mm_core_init() better describes
what the function does and does not clash with mm_init() in kernel/fork.c
Link: https://lkml.kernel.org/r/20230321170513.2401534-8-rppt@kernel.org
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Doug Berger <opendmb@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The page_alloc_init() name is really misleading because all this function
does is sets up CPU hotplug callbacks for the page allocator.
Rename it to page_alloc_init_cpuhp() so that name will reflect what the
function does.
Link: https://lkml.kernel.org/r/20230321170513.2401534-6-rppt@kernel.org
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Doug Berger <opendmb@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The hashdist variable must be initialized before the first call to
alloc_large_system_hash() and free_area_init() looks like a better place
for it than page_alloc_init().
Move hashdist handling to mm/mm_init.c
Link: https://lkml.kernel.org/r/20230321170513.2401534-5-rppt@kernel.org
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Doug Berger <opendmb@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The bulk of memory management initialization code is spread all over
mm/page_alloc.c and makes navigating through page allocator functionality
difficult.
Move most of the functions marked __init and __meminit to mm/mm_init.c to
make it better localized and allow some more spare room before
mm/page_alloc.c reaches 10k lines.
No functional changes.
Link: https://lkml.kernel.org/r/20230321170513.2401534-4-rppt@kernel.org
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Doug Berger <opendmb@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Instead of duplicating long static_branch_enabled(&check_pages_enabled)
wrap it in a helper function is_check_pages_enabled()
Link: https://lkml.kernel.org/r/20230321170513.2401534-3-rppt@kernel.org
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Doug Berger <opendmb@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The get_page_from_free_area() helper is only used in mm/page_alloc.c so
move it there to reduce noise in include/linux/mmzone.h
Link: https://lkml.kernel.org/r/20230319114214.2133332-1-rppt@kernel.org
Signed-off-by: Mike Rapoport (IBM) <rppt@kernel.org>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
All use of this value is now at page granularity, so specify the variable
as such too. This simplifies the logic.
We maintain the debugfs entry to ensure that there are no user-visible
changes.
Link: https://lkml.kernel.org/r/4995bad07fe9baa51c786fa0d81819dddfb57654.1679089214.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "Refactor do_fault_around()"
Refactor do_fault_around() to avoid bitwise tricks and rather difficult to
follow logic. Additionally, prefer fault_around_pages to
fault_around_bytes as the operations are performed at a base page
granularity.
This patch (of 2):
The existing logic is confusing and fails to abstract a number of bitwise
tricks.
Use ALIGN_DOWN() to perform alignment, pte_index() to obtain a PTE index
and represent the address range using PTE offsets, which naturally make it
clear that the operation is intended to occur within only a single PTE and
prevent spanning of more than one page table.
We rely on the fact that fault_around_bytes will always be page-aligned,
at least one page in size, a power of two and that it will not exceed
PAGE_SIZE * PTRS_PER_PTE in size (i.e. the address space mapped by a
PTE). These are all guaranteed by fault_around_bytes_set().
Link: https://lkml.kernel.org/r/cover.1679089214.git.lstoakes@gmail.com
Link: https://lkml.kernel.org/r/d125db1c3665a63b80cea29d56407825482e2262.1679089214.git.lstoakes@gmail.com
Signed-off-by: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When trying to isolate a migratable pageblock, it can contain several
normal pages or several hugetlb pages (e.g. CONT-PTE 64K hugetlb on arm64)
in a pageblock. That means we may hold the lru lock of a normal page to
continue to isolate the next hugetlb page by isolate_or_dissolve_huge_page()
in the same migratable pageblock.
However in the isolate_or_dissolve_huge_page(), it may allocate a new hugetlb
page and dissolve the old one by alloc_and_dissolve_hugetlb_folio() if the
hugetlb's refcount is zero. That means we can still enter the direct compaction
path to allocate a new hugetlb page under the current lru lock, which
may cause possible deadlock.
To avoid this possible deadlock, we should release the lru lock when
trying to isolate a hugetbl page. Moreover it does not make sense to take
the lru lock to isolate a hugetlb, which is not in the lru list.
Link: https://lkml.kernel.org/r/7ab3bffebe59fb419234a68dec1e4572a2518563.1678962352.git.baolin.wang@linux.alibaba.com
Fixes: 369fa227c2 ("mm: make alloc_contig_range handle free hugetlb pages")
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: William Lam <william.lam@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
commit b717d6b93b ("mm: compaction: include compound page count for
scanning in pageblock isolation") added compound page statistics for
scanning in pageblock isolation, to make sure the number of scanned pages
is always larger than the number of isolated pages when isolating
mirgratable or free pageblock.
However, when failing to isolate the pages when scanning the migratable or
free pageblocks, the isolation failure path did not consider the scanning
statistics of the compound pages, which result in showing the incorrect
number of scanned pages in tracepoints or in vmstats which will confuse
people about the page scanning pressure in memory compaction.
Thus we should take into account the number of scanning pages when failing
to isolate the compound pages to make the statistics accurate.
Link: https://lkml.kernel.org/r/73d6250a90707649cc010731aedc27f946d722ed.1678962352.git.baolin.wang@linux.alibaba.com
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Mel Gorman <mgorman@techsingularity.net>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Oscar Salvador <osalvador@suse.de>
Cc: William Lam <william.lam@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This effectively reverts d014cd7c1c ("mm, mremap: fix mremap() expanding
for vma's with vm_ops->close()"). After the recent changes, vma_merge()
is able to handle the expansion properly even when the vma being expanded
has a vm_ops->close operation, so we don't need to special case it
anymore.
Link: https://lkml.kernel.org/r/20230309111258.24079-11-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Since pre-git times, is_mergeable_vma() returns false for a vma with
vm_ops->close, so that no owner assumptions are violated in case the vma
is removed as part of the merge.
This check is currently very conservative and can prevent merging even
situations where vma can't be removed, such as simple expansion of
previous vma, as evidenced by commit d014cd7c1c ("mm, mremap: fix
mremap() expanding for vma's with vm_ops->close()")
In order to allow more merging when appropriate and simplify the code that
was made more complex by commit d014cd7c1c, start distinguishing cases
where the vma can be really removed, and allow merging with vm_ops->close
otherwise.
As a first step, add a may_remove_vma parameter to is_mergeable_vma().
can_vma_merge_before() sets it to true, because when called from
vma_merge(), a removal of the vma is possible.
In can_vma_merge_after(), pass the parameter as false, because no
removal can occur in each of its callers:
- vma_merge() calls it on the 'prev' vma, which is never removed
- mmap_region() and do_brk_flags() call it to determine if it can expand
a vma, which is not removed
As a result, vma's with vm_ops->close may now merge with compatible ranges
in more situations than previously. We can also revert commit
d014cd7c1c as the next step to simplify mremap code again.
[vbabka@suse.cz: adjust comment as suggested by Lorenzo]
Link: https://lkml.kernel.org/r/74f2ea6c-f1a9-6dd7-260c-25e660f42379@suse.cz
Link: https://lkml.kernel.org/r/20230309111258.24079-10-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The comments already mention returning 'true' so make the code match them.
Link: https://lkml.kernel.org/r/20230309111258.24079-9-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The variable 'adj_next' holds the value by which we adjust vm_start of a
vma in variable 'adjust', that's either 'next' or 'mid', so the current
name is inaccurate. Rename it to 'adj_start'.
Link: https://lkml.kernel.org/r/20230309111258.24079-8-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
There are several places where we test if 'mid' is really the area NNNN in
the diagram and the tests have two variants and are non-obvious to follow.
Instead, set 'mid' to NULL up-front if it's not the NNNN area, and
simplify the tests.
Also update the description in comment accordingly.
[vbabka@suse.cz: adjust/add comments as suggested by Lorenzo]
Link: https://lkml.kernel.org/r/def43190-53f7-a607-d1b0-b657565f4288@suse.cz
Link: https://lkml.kernel.org/r/20230309111258.24079-7-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Lorenzo Stoakes <lstoakes@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
It is more intuitive to go from prev to mid and then next. No functional
change.
Link: https://lkml.kernel.org/r/20230309111258.24079-6-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Almost all cases now use the 'next' pointer for the vma following the
merged area, and the cases diagram shows it as XXXX. Case 4 is different
as it uses 'mid' and NNNN, so change it for consistency. No functional
change.
Link: https://lkml.kernel.org/r/20230309111258.24079-5-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Case 1 is now shown in the comment as next vma being merged with prev, so
use 'next' instead of 'mid'. In case 1 they both point to the same vma.
As a consequence, in case 6, the dup_anon_vma() is now tried first on
'next' and then on 'mid', before it was the opposite order. This is not a
functional change, as those two vma's cannnot have a different anon_vma,
as that would have prevented the merging in the first place.
Link: https://lkml.kernel.org/r/20230309111258.24079-4-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In case 3 we we use 'next' for everything but vma_pgoff. So use 'next'
for that as well, instead of 'mid', for consistency. Then in case 8 we
have to use 'mid' explicitly, which should also make the intent more
obvious.
Adjust the diagram for cases 1-3 in the comment to match the code - we are
using 'next' for case 3 so mark the range with XXXX instead of NNNN. For
case 2 that's a no-op as the code doesn't touch 'next' or 'mid'. For case
1 it's now wrong but that will be fixed next.
No functional change.
Link: https://lkml.kernel.org/r/20230309111258.24079-3-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "cleanup vma_merge() and improve mergeability tests".
My initial goal here was to try making the check for vm_ops->close in
is_mergeable_vma() only be applied for vma's that would be truly removed
as part of the merge (see Patch 9). This would then allow reverting the
quick fix d014cd7c1c ("mm, mremap: fix mremap() expanding for vma's with
vm_ops->close()"). This was successful enough to allow the revert (Patch
10). Checks using can_vma_merge_before() are still pessimistic about
possible vma removal, and making them precise would probably complicate
the vma_merge() code too much.
Liam's 6.3-rc1 simplification of vma_merge() and removal of __vma_adjust()
was very much helpful in understanding the vma_merge() implementation and
especially when vma removals can happen, which is now very obvious. While
studing the code, I've found ways to make it hopefully even more easy to
follow, so that's the patches 1-8. That made me also notice a bug that's
now already fixed in 6.3-rc1.
This patch (of 10):
In the merging preparation part of vma_merge(), some vma pointer variables
are assigned for later execution of the merge, but also read from in the
block itself. The code is easier follow and check against the cases
diagram in the comment if the code reads only from the "primary" vma
variables prev, mid, next instead. No functional change.
Link: https://lkml.kernel.org/r/20230309111258.24079-1-vbabka@suse.cz
Link: https://lkml.kernel.org/r/20230309111258.24079-2-vbabka@suse.cz
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Lorenzo Stoakes <lstoakes@gmail.com>]
Reviewed-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Suren Baghdasaryan <surenb@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
UFFDIO_COPY already has UFFDIO_COPY_MODE_WP, so when installing a new PTE
to resolve a missing fault, one can install a write-protected one. This
is useful when using UFFDIO_REGISTER_MODE_{MISSING,WP} in combination.
This was motivated by testing HugeTLB HGM [1], and in particular its
interaction with userfaultfd features. Existing userfaultfd code supports
using WP and MINOR modes together (i.e. you can register an area with
both enabled), but without this CONTINUE flag the combination is in
practice unusable.
So, add an analogous UFFDIO_CONTINUE_MODE_WP, which does the same thing as
UFFDIO_COPY_MODE_WP, but for *minor* faults.
Update the selftest to do some very basic exercising of the new flag.
Update Documentation/ to describe how these flags are used (neither the
COPY nor the new CONTINUE versions of this mode flag were described there
before).
[1]: https://patchwork.kernel.org/project/linux-mm/cover/20230218002819.1486479-1-jthoughton@google.com/
Link: https://lkml.kernel.org/r/20230314221250.682452-5-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nadav Amit <namit@vmware.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Many userfaultfd ioctl functions take both a 'mode' and a 'wp_copy'
argument. In future commits we plan to plumb the flags through to more
places, so we'd be proliferating the very long argument list even further.
Let's take the time to simplify the argument list. Combine the two
arguments into one - and generalize, so when we add more flags in the
future, it doesn't imply more function arguments.
Since the modes (copy, zeropage, continue) are mutually exclusive, store
them as an integer value (0, 1, 2) in the low bits. Place combine-able
flag bits in the high bits.
This is quite similar to an earlier patch proposed by Nadav Amit
("userfaultfd: introduce uffd_flags" [1]). The main difference is that
patch only handled flags, whereas this patch *also* combines the "mode"
argument into the same type to shorten the argument list.
[1]: https://lore.kernel.org/all/20220619233449.181323-2-namit@vmware.com/
Link: https://lkml.kernel.org/r/20230314221250.682452-4-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Acked-by: James Houghton <jthoughton@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Quite a few userfaultfd functions took both mm and vma pointers as
arguments. Since the mm is trivially accessible via vma->vm_mm, there's
no reason to pass both; it just needlessly extends the already long
argument list.
Get rid of the mm pointer, where possible, to shorten the argument list.
Link: https://lkml.kernel.org/r/20230314221250.682452-3-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nadav Amit <namit@vmware.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm: userfaultfd: refactor and add UFFDIO_CONTINUE_MODE_WP",
v5.
- Commits 1-3 refactor userfaultfd ioctl code without behavior changes, with the
main goal of improving consistency and reducing the number of function args.
- Commit 4 adds UFFDIO_CONTINUE_MODE_WP.
This patch (of 4):
The basic problem is, over time we've added new userfaultfd ioctls, and
we've refactored the code so functions which used to handle only one case
are now re-used to deal with several cases. While this happened, we
didn't bother to rename the functions.
Similarly, as we added new functions, we cargo-culted pieces of the
now-inconsistent naming scheme, so those functions too ended up with names
that don't make a lot of sense.
A key point here is, "copy" in most userfaultfd code refers specifically
to UFFDIO_COPY, where we allocate a new page and copy its contents from
userspace. There are many functions with "copy" in the name that don't
actually do this (at least in some cases).
So, rename things into a consistent scheme. The high level idea is that
the call stack for userfaultfd ioctls becomes:
userfaultfd_ioctl
-> userfaultfd_(particular ioctl)
-> mfill_atomic_(particular kind of fill operation)
-> mfill_atomic /* loops over pages in range */
-> mfill_atomic_pte /* deals with single pages */
-> mfill_atomic_pte_(particular kind of fill operation)
-> mfill_atomic_install_pte
There are of course some special cases (shmem, hugetlb), but this is the
general structure which all function names now adhere to.
Link: https://lkml.kernel.org/r/20230314221250.682452-1-axelrasmussen@google.com
Link: https://lkml.kernel.org/r/20230314221250.682452-2-axelrasmussen@google.com
Signed-off-by: Axel Rasmussen <axelrasmussen@google.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Hugh Dickins <hughd@google.com>
Cc: James Houghton <jthoughton@google.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Nadav Amit <namit@vmware.com>
Cc: Shuah Khan <shuah@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
MAX_ORDER is not inclusive: the maximum allocation order buddy allocator
can deliver is MAX_ORDER-1.
Fix MAX_ORDER usage in calculate_order().
Link: https://lkml.kernel.org/r/20230315113133.11326-9-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
MAX_ORDER is not inclusive: the maximum allocation order buddy allocator
can deliver is MAX_ORDER-1.
Fix MAX_ORDER usage in page_reporting_register().
Link: https://lkml.kernel.org/r/20230315113133.11326-8-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm/uffd: Add feature bit UFFD_FEATURE_WP_UNPOPULATED", v4.
The new feature bit makes anonymous memory acts the same as file memory on
userfaultfd-wp in that it'll also wr-protect none ptes.
It can be useful in two cases:
(1) Uffd-wp app that needs to wr-protect none ptes like QEMU snapshot,
so pre-fault can be replaced by enabling this flag and speed up
protections
(2) It helps to implement async uffd-wp mode that Muhammad is working on [1]
It's debatable whether this is the most ideal solution because with the
new feature bit set, wr-protect none pte needs to pre-populate the
pgtables to the last level (PAGE_SIZE). But it seems fine so far to
service either purpose above, so we can leave optimizations for later.
The series brings pte markers to anonymous memory too. There's some
change in the common mm code path in the 1st patch, great to have some eye
looking at it, but hopefully they're still relatively straightforward.
This patch (of 2):
This is a new feature that controls how uffd-wp handles none ptes. When
it's set, the kernel will handle anonymous memory the same way as file
memory, by allowing the user to wr-protect unpopulated ptes.
File memories handles none ptes consistently by allowing wr-protecting of
none ptes because of the unawareness of page cache being exist or not.
For anonymous it was not as persistent because we used to assume that we
don't need protections on none ptes or known zero pages.
One use case of such a feature bit was VM live snapshot, where if without
wr-protecting empty ptes the snapshot can contain random rubbish in the
holes of the anonymous memory, which can cause misbehave of the guest when
the guest OS assumes the pages should be all zeros.
QEMU worked it around by pre-populate the section with reads to fill in
zero page entries before starting the whole snapshot process [1].
Recently there's another need raised on using userfaultfd wr-protect for
detecting dirty pages (to replace soft-dirty in some cases) [2]. In that
case if without being able to wr-protect none ptes by default, the dirty
info can get lost, since we cannot treat every none pte to be dirty (the
current design is identify a page dirty based on uffd-wp bit being
cleared).
In general, we want to be able to wr-protect empty ptes too even for
anonymous.
This patch implements UFFD_FEATURE_WP_UNPOPULATED so that it'll make
uffd-wp handling on none ptes being consistent no matter what the memory
type is underneath. It doesn't have any impact on file memories so far
because we already have pte markers taking care of that. So it only
affects anonymous.
The feature bit is by default off, so the old behavior will be maintained.
Sometimes it may be wanted because the wr-protect of none ptes will
contain overheads not only during UFFDIO_WRITEPROTECT (by applying pte
markers to anonymous), but also on creating the pgtables to store the pte
markers. So there's potentially less chance of using thp on the first
fault for a none pmd or larger than a pmd.
The major implementation part is teaching the whole kernel to understand
pte markers even for anonymously mapped ranges, meanwhile allowing the
UFFDIO_WRITEPROTECT ioctl to apply pte markers for anonymous too when the
new feature bit is set.
Note that even if the patch subject starts with mm/uffd, there're a few
small refactors to major mm path of handling anonymous page faults. But
they should be straightforward.
With WP_UNPOPUATED, application like QEMU can avoid pre-read faults all
the memory before wr-protect during taking a live snapshot. Quotting from
Muhammad's test result here [3] based on a simple program [4]:
(1) With huge page disabled
echo madvise > /sys/kernel/mm/transparent_hugepage/enabled
./uffd_wp_perf
Test DEFAULT: 4
Test PRE-READ: 1111453 (pre-fault 1101011)
Test MADVISE: 278276 (pre-fault 266378)
Test WP-UNPOPULATE: 11712
(2) With Huge page enabled
echo always > /sys/kernel/mm/transparent_hugepage/enabled
./uffd_wp_perf
Test DEFAULT: 4
Test PRE-READ: 22521 (pre-fault 22348)
Test MADVISE: 4909 (pre-fault 4743)
Test WP-UNPOPULATE: 14448
There'll be a great perf boost for no-thp case, while for thp enabled with
extreme case of all-thp-zero WP_UNPOPULATED can be slower than MADVISE,
but that's low possibility in reality, also the overhead was not reduced
but postponed until a follow up write on any huge zero thp, so potentially
it is faster by making the follow up writes slower.
[1] https://lore.kernel.org/all/20210401092226.102804-4-andrey.gruzdev@virtuozzo.com/
[2] https://lore.kernel.org/all/Y+v2HJ8+3i%2FKzDBu@x1n/
[3] https://lore.kernel.org/all/d0eb0a13-16dc-1ac1-653a-78b7273781e3@collabora.com/
[4] https://github.com/xzpeter/clibs/blob/master/uffd-test/uffd-wp-perf.c
[peterx@redhat.com: comment changes, oneliner fix to khugepaged]
Link: https://lkml.kernel.org/r/ZB2/8jPhD3fpx5U8@x1n
Link: https://lkml.kernel.org/r/20230309223711.823547-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20230309223711.823547-2-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Muhammad Usama Anjum <usama.anjum@collabora.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: Paul Gofman <pgofman@codeweavers.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
KASAN suppresses reports for bad accesses done by the KASAN reporting
code. The reporting code might access poisoned memory for reporting
purposes.
Software KASAN modes do this by suppressing reports during reporting via
current->kasan_depth, the same way they suppress reports during accesses
to poisoned slab metadata.
Hardware Tag-Based KASAN does not use current->kasan_depth, and instead
resets pointer tags for accesses to poisoned memory done by the reporting
code.
Despite that, a recursive report can still happen:
1. On hardware with faulty MTE support. This was observed by Weizhao
Ouyang on a faulty hardware that caused memory tags to randomly change
from time to time.
2. Theoretically, due to a previous MTE-undetected memory corruption.
A recursive report can happen via:
1. Accessing a pointer with a non-reset tag in the reporting code, e.g.
slab->slab_cache, which is what Weizhao Ouyang observed.
2. Theoretically, via external non-annotated routines, e.g. stackdepot.
To resolve this issue, resetting tags for all of the pointers in the
reporting code and all the used external routines would be impractical.
Instead, disable tag checking done by the CPU for the duration of KASAN
reporting for Hardware Tag-Based KASAN.
Without this fix, Hardware Tag-Based KASAN reporting code might deadlock.
[andreyknvl@google.com: disable preemption instead of migration, fix comment typo]
Link: https://lkml.kernel.org/r/d14417c8bc5eea7589e99381203432f15c0f9138.1680114854.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/59f433e00f7fa985e8bf9f7caf78574db16b67ab.1678491668.git.andreyknvl@google.com
Fixes: 2e903b9147 ("kasan, arm64: implement HW_TAGS runtime")
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reported-by: Weizhao Ouyang <ouyangweizhao@zeku.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Add two new tagging-related routines arch_suppress_tag_checks_start/stop
that suppress MTE tag checking via the TCO register.
These rouines are used in the next patch.
[andreyknvl@google.com: drop __ from mte_disable/enable_tco names]
Link: https://lkml.kernel.org/r/7ad5e5a9db79e3aba08d8f43aca24350b04080f6.1680114854.git.andreyknvl@google.com
Link: https://lkml.kernel.org/r/75a362551c3c54b70ae59a3492cabb51c105fa6b.1678491668.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Weizhao Ouyang <ouyangweizhao@zeku.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Rename arch_enable_tagging_sync/async/asymm to
arch_enable_tag_checks_sync/async/asymm, as the new name better reflects
their function.
Also rename kasan_enable_tagging to kasan_enable_hw_tags for the same
reason.
Link: https://lkml.kernel.org/r/069ef5b77715c1ac8d69b186725576c32b149491.1678491668.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Weizhao Ouyang <ouyangweizhao@zeku.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
mm/kasan/kasan.h provides a number of empty defines for a few
arch-specific tagging-related routines, in case the architecture code
didn't define them.
The original idea was to simplify integration in case another architecture
starts supporting memory tagging. However, right now, if any of those
routines are not provided by an architecture, Hardware Tag-Based KASAN
won't work.
Drop the empty defines, as it would be better to get compiler errors
rather than runtime crashes when adding support for a new architecture.
Also drop empty hw_enable_tagging_sync/async/asymm defines for
!CONFIG_KASAN_HW_TAGS case, as those are only used in mm/kasan/hw_tags.c.
Link: https://lkml.kernel.org/r/bc919c144f8684a7fd9ba70c356ac2a75e775e29.1678491668.git.andreyknvl@google.com
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Weizhao Ouyang <ouyangweizhao@zeku.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Instead of returning NULL for all errors, distinguish between:
- no entry found and not asked to allocated (-ENOENT)
- failed to allocate memory (-ENOMEM)
- would block (-EAGAIN)
so that callers don't have to guess the error based on the passed in
flags.
Also pass through the error through the direct callers: filemap_get_folio,
filemap_lock_folio filemap_grab_folio and filemap_get_incore_folio.
[hch@lst.de: fix null-pointer deref]
Link: https://lkml.kernel.org/r/20230310070023.GA13563@lst.de
Link: https://lkml.kernel.org/r/20230310043137.GA1624890@u2004
Link: https://lkml.kernel.org/r/20230307143410.28031-8-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Ryusuke Konishi <konishi.ryusuke@gmail.com> [nilfs2]
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
FGP_ENTRY is unused now, so remove it.
Link: https://lkml.kernel.org/r/20230307143410.28031-7-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use the very low level filemap_get_entry helper to look up the entry in
the xarray, and then:
- don't bother locking the folio if only doing a userfault notification
- open code locking the page and checking for truncation in a related
code block
This will allow to eventually remove the FGP_ENTRY flag.
[hughd@google.com: adjust the new comment line]
Link: https://lkml.kernel.org/r/af178ebb-1076-a38c-1dc1-2a37ccce4a3@google.com
Link: https://lkml.kernel.org/r/20230307143410.28031-6-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Hugh Dickins <hughd@google.com>
Acked-by: Hugh Dickins <hughd@google.com>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
To avoid use of the FGP_ENTRY flag, adapt shmem_get_partial_folio() to use
filemap_get_entry() and folio_lock() instead of __filemap_get_folio().
Update "page" in the comments there to "folio".
Link: https://lkml.kernel.org/r/9d1aaa4-1337-fb81-6f37-74ebc96f9ef@google.com
Signed-off-by: Hugh Dickins <hughd@google.com>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
filemap_get_incore_folio wants to look at the details of xa_is_value
entries, but doesn't need any of the other logic in filemap_get_folio.
Switch it to use the lower-level filemap_get_entry interface.
Link: https://lkml.kernel.org/r/20230307143410.28031-4-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
mapping_get_entry is useful for page cache API users that need to know
about xa_value internals. Rename it and make it available in pagemap.h.
Link: https://lkml.kernel.org/r/20230307143410.28031-3-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "return an ERR_PTR from __filemap_get_folio", v3.
__filemap_get_folio and its wrappers can return NULL for three different
conditions, which in some cases requires the caller to reverse engineer
the decision making. This is fixed by returning an ERR_PTR instead of
NULL and thus transporting the reason for the failure. But to make
that work we first need to ensure that no xa_value special case is
returned and thus return the FGP_ENTRY flag. It turns out that flag
is barely used and can usually be deal with in a better way.
This patch (of 7):
split_huge_pages_in_file never wants to do anything with the special value
enties. Switch to using filemap_get_folio to not even see them.
Link: https://lkml.kernel.org/r/20230307143410.28031-1-hch@lst.de
Link: https://lkml.kernel.org/r/20230307143410.28031-2-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Hugh Dickins <hughd@google.com>
Cc: Andreas Gruenbacher <agruenba@redhat.com>
Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Set the 'empty' bool directly from the result of the function that
determines its value instead of adding additional logic.
Link: https://lkml.kernel.org/r/20230126215125.4069751-13-kbusch@meta.com
Signed-off-by: Keith Busch <kbusch@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Tony Battersby <tonyb@cybernetics.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The allocated dmapool pages are never freed for the lifetime of the pool.
There is no need for the two level list+stack lookup for finding a free
block since nothing is ever removed from the list. Just use a simple
stack, reducing time complexity to constant.
The implementation inserts the stack linking elements and the dma handle
of the block within itself when freed. This means the smallest possible
dmapool block is increased to at most 16 bytes to accommodate these
fields, but there are no exisiting users requesting a dma pool smaller
than that anyway.
Removing the list has a significant change in performance. Using the
kernel's micro-benchmarking self test:
Before:
# modprobe dmapool_test
dmapool test: size:16 blocks:8192 time:57282
dmapool test: size:64 blocks:8192 time:172562
dmapool test: size:256 blocks:8192 time:789247
dmapool test: size:1024 blocks:2048 time:371823
dmapool test: size:4096 blocks:1024 time:362237
After:
# modprobe dmapool_test
dmapool test: size:16 blocks:8192 time:24997
dmapool test: size:64 blocks:8192 time:26584
dmapool test: size:256 blocks:8192 time:33542
dmapool test: size:1024 blocks:2048 time:9022
dmapool test: size:4096 blocks:1024 time:6045
The module test allocates quite a few blocks that may not accurately
represent how these pools are used in real life. For a more marco level
benchmark, running fio high-depth + high-batched on nvme, this patch shows
submission and completion latency reduced by ~100usec each, 1% IOPs
improvement, and perf record's time spent in dma_pool_alloc/free were
reduced by half.
[kbusch@kernel.org: push new blocks in ascending order]
Link: https://lkml.kernel.org/r/20230221165400.1595247-1-kbusch@meta.com
Link: https://lkml.kernel.org/r/20230126215125.4069751-12-kbusch@meta.com
Signed-off-by: Keith Busch <kbusch@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Tested-by: Bryan O'Donoghue <bryan.odonoghue@linaro.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Tony Battersby <tonyb@cybernetics.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
If debug is enabled, dmapool will poison the range, so no need to clear it
to 0 immediately before writing over it.
Link: https://lkml.kernel.org/r/20230126215125.4069751-11-kbusch@meta.com
Signed-off-by: Keith Busch <kbusch@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Tony Battersby <tonyb@cybernetics.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The actions for busy and not busy are mostly the same, so combine these
and remove the unnecessary function. Also, the pool is about to be freed
so there's no need to poison the page data since we only check for poison
on alloc, which can't be done on a freed pool.
Link: https://lkml.kernel.org/r/20230126215125.4069751-10-kbusch@meta.com
Signed-off-by: Keith Busch <kbusch@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Tony Battersby <tonyb@cybernetics.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Various fields of the dma pool are set in different places. Move it all
to one function.
Link: https://lkml.kernel.org/r/20230126215125.4069751-9-kbusch@meta.com
Signed-off-by: Keith Busch <kbusch@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Tony Battersby <tonyb@cybernetics.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Handle the error in a condition so the good path can be in the normal
flow.
Link: https://lkml.kernel.org/r/20230126215125.4069751-8-kbusch@meta.com
Signed-off-by: Keith Busch <kbusch@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Tony Battersby <tonyb@cybernetics.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Clean up the normal path by moving the debug code outside it.
Link: https://lkml.kernel.org/r/20230126215125.4069751-7-kbusch@meta.com
Signed-off-by: Keith Busch <kbusch@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Tony Battersby <tonyb@cybernetics.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Avoid double-memset of the same allocated memory in dma_pool_alloc() when
both DMAPOOL_DEBUG is enabled and init_on_alloc=1.
Link: https://lkml.kernel.org/r/20230126215125.4069751-6-kbusch@meta.com
Signed-off-by: Tony Battersby <tonyb@cybernetics.com>
Signed-off-by: Keith Busch <kbusch@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
To represent the size of a single allocation, dmapool currently uses
'unsigned int' in some places and 'size_t' in other places. Standardize
on 'unsigned int' to reduce overhead, but use 'size_t' when counting all
the blocks in the entire pool.
Link: https://lkml.kernel.org/r/20230126215125.4069751-5-kbusch@meta.com
Signed-off-by: Tony Battersby <tonyb@cybernetics.com>
Signed-off-by: Keith Busch <kbusch@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use sysfs_emit instead of scnprintf, snprintf or sprintf.
Link: https://lkml.kernel.org/r/20230126215125.4069751-4-kbusch@meta.com
Signed-off-by: Tony Battersby <tonyb@cybernetics.com>
Signed-off-by: Keith Busch <kbusch@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
dmapool originally tried to support pools without a device because
dma_alloc_coherent() supports allocations without a device. But nobody
ended up using dma pools without a device, and trying to do so will result
in an oops. So remove the checks for pool->dev == NULL since they are
unneeded bloat.
[kbusch@kernel.org: add check for null dev on create]
Link: https://lkml.kernel.org/r/20230126215125.4069751-3-kbusch@meta.com
Signed-off-by: Tony Battersby <tonyb@cybernetics.com>
Signed-off-by: Keith Busch <kbusch@kernel.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "dmapool enhancements", v4.
Time spent in dma_pool alloc/free increases linearly with the number of
pages backing the pool. We can reduce this to constant time with minor
changes to how free pages are tracked.
This patch (of 12):
Provide a module that allocates and frees many blocks of various sizes and
report how long it takes. This is intended to provide a consistent way to
measure how changes to the dma_pool_alloc/free routines affect timing.
Link: https://lkml.kernel.org/r/20230126215125.4069751-1-kbusch@meta.com
Link: https://lkml.kernel.org/r/20230126215125.4069751-2-kbusch@meta.com
Signed-off-by: Keith Busch <kbusch@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Tony Battersby <tonyb@cybernetics.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The si->lock must be held when deleting the si from the available list.
Otherwise, another thread can re-add the si to the available list, which
can lead to memory corruption. The only place we have found where this
happens is in the swapoff path. This case can be described as below:
core 0 core 1
swapoff
del_from_avail_list(si) waiting
try lock si->lock acquire swap_avail_lock
and re-add si into
swap_avail_head
acquire si->lock but missing si already being added again, and continuing
to clear SWP_WRITEOK, etc.
It can be easily found that a massive warning messages can be triggered
inside get_swap_pages() by some special cases, for example, we call
madvise(MADV_PAGEOUT) on blocks of touched memory concurrently, meanwhile,
run much swapon-swapoff operations (e.g. stress-ng-swap).
However, in the worst case, panic can be caused by the above scene. In
swapoff(), the memory used by si could be kept in swap_info[] after
turning off a swap. This means memory corruption will not be caused
immediately until allocated and reset for a new swap in the swapon path.
A panic message caused: (with CONFIG_PLIST_DEBUG enabled)
------------[ cut here ]------------
top: 00000000e58a3003, n: 0000000013e75cda, p: 000000008cd4451a
prev: 0000000035b1e58a, n: 000000008cd4451a, p: 000000002150ee8d
next: 000000008cd4451a, n: 000000008cd4451a, p: 000000008cd4451a
WARNING: CPU: 21 PID: 1843 at lib/plist.c:60 plist_check_prev_next_node+0x50/0x70
Modules linked in: rfkill(E) crct10dif_ce(E)...
CPU: 21 PID: 1843 Comm: stress-ng Kdump: ... 5.10.134+
Hardware name: Alibaba Cloud ECS, BIOS 0.0.0 02/06/2015
pstate: 60400005 (nZCv daif +PAN -UAO -TCO BTYPE=--)
pc : plist_check_prev_next_node+0x50/0x70
lr : plist_check_prev_next_node+0x50/0x70
sp : ffff0018009d3c30
x29: ffff0018009d3c40 x28: ffff800011b32a98
x27: 0000000000000000 x26: ffff001803908000
x25: ffff8000128ea088 x24: ffff800011b32a48
x23: 0000000000000028 x22: ffff001800875c00
x21: ffff800010f9e520 x20: ffff001800875c00
x19: ffff001800fdc6e0 x18: 0000000000000030
x17: 0000000000000000 x16: 0000000000000000
x15: 0736076307640766 x14: 0730073007380731
x13: 0736076307640766 x12: 0730073007380731
x11: 000000000004058d x10: 0000000085a85b76
x9 : ffff8000101436e4 x8 : ffff800011c8ce08
x7 : 0000000000000000 x6 : 0000000000000001
x5 : ffff0017df9ed338 x4 : 0000000000000001
x3 : ffff8017ce62a000 x2 : ffff0017df9ed340
x1 : 0000000000000000 x0 : 0000000000000000
Call trace:
plist_check_prev_next_node+0x50/0x70
plist_check_head+0x80/0xf0
plist_add+0x28/0x140
add_to_avail_list+0x9c/0xf0
_enable_swap_info+0x78/0xb4
__do_sys_swapon+0x918/0xa10
__arm64_sys_swapon+0x20/0x30
el0_svc_common+0x8c/0x220
do_el0_svc+0x2c/0x90
el0_svc+0x1c/0x30
el0_sync_handler+0xa8/0xb0
el0_sync+0x148/0x180
irq event stamp: 2082270
Now, si->lock locked before calling 'del_from_avail_list()' to make sure
other thread see the si had been deleted and SWP_WRITEOK cleared together,
will not reinsert again.
This problem exists in versions after stable 5.10.y.
Link: https://lkml.kernel.org/r/20230404154716.23058-1-rongwei.wang@linux.alibaba.com
Fixes: a2468cc9bf ("swap: choose swap device according to numa node")
Tested-by: Yongchen Yin <wb-yyc939293@alibaba-inc.com>
Signed-off-by: Rongwei Wang <rongwei.wang@linux.alibaba.com>
Cc: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Device exclusive page table entries are used to prevent CPU access to a
page whilst it is being accessed from a device. Typically this is used to
implement atomic operations when the underlying bus does not support
atomic access. When a CPU thread encounters a device exclusive entry it
locks the page and restores the original entry after calling mmu notifiers
to signal drivers that exclusive access is no longer available.
The device exclusive entry holds a reference to the page making it safe to
access the struct page whilst the entry is present. However the fault
handling code does not hold the PTL when taking the page lock. This means
if there are multiple threads faulting concurrently on the device
exclusive entry one will remove the entry whilst others will wait on the
page lock without holding a reference.
This can lead to threads locking or waiting on a folio with a zero
refcount. Whilst mmap_lock prevents the pages getting freed via munmap()
they may still be freed by a migration. This leads to warnings such as
PAGE_FLAGS_CHECK_AT_FREE due to the page being locked when the refcount
drops to zero.
Fix this by trying to take a reference on the folio before locking it.
The code already checks the PTE under the PTL and aborts if the entry is
no longer there. It is also possible the folio has been unmapped, freed
and re-allocated allowing a reference to be taken on an unrelated folio.
This case is also detected by the PTE check and the folio is unlocked
without further changes.
Link: https://lkml.kernel.org/r/20230330012519.804116-1-apopple@nvidia.com
Fixes: b756a3b5e7 ("mm: device exclusive memory access")
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Reviewed-by: Ralph Campbell <rcampbell@nvidia.com>
Reviewed-by: John Hubbard <jhubbard@nvidia.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This patch fixes an issue that a hugetlb uffd-wr-protected mapping can be
writable even with uffd-wp bit set. It only happens with hugetlb private
mappings, when someone firstly wr-protects a missing pte (which will
install a pte marker), then a write to the same page without any prior
access to the page.
Userfaultfd-wp trap for hugetlb was implemented in hugetlb_fault() before
reaching hugetlb_wp() to avoid taking more locks that userfault won't
need. However there's one CoW optimization path that can trigger
hugetlb_wp() inside hugetlb_no_page(), which will bypass the trap.
This patch skips hugetlb_wp() for CoW and retries the fault if uffd-wp bit
is detected. The new path will only trigger in the CoW optimization path
because generic hugetlb_fault() (e.g. when a present pte was
wr-protected) will resolve the uffd-wp bit already. Also make sure
anonymous UNSHARE won't be affected and can still be resolved, IOW only
skip CoW not CoR.
This patch will be needed for v5.19+ hence copy stable.
[peterx@redhat.com: v2]
Link: https://lkml.kernel.org/r/ZBzOqwF2wrHgBVZb@x1n
[peterx@redhat.com: v3]
Link: https://lkml.kernel.org/r/20230324142620.2344140-1-peterx@redhat.com
Link: https://lkml.kernel.org/r/20230321191840.1897940-1-peterx@redhat.com
Fixes: 166f3ecc0d ("mm/hugetlb: hook page faults for uffd write protection")
Signed-off-by: Peter Xu <peterx@redhat.com>
Reported-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Tested-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: Mike Rapoport <rppt@linux.vnet.ibm.com>
Cc: Nadav Amit <nadav.amit@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use the maple tree in RCU mode for VMA tracking.
The maple tree tracks the stack and is able to update the pivot
(lower/upper boundary) in-place to allow the page fault handler to write
to the tree while holding just the mmap read lock. This is safe as the
writes to the stack have a guard VMA which ensures there will always be a
NULL in the direction of the growth and thus will only update a pivot.
It is possible, but not recommended, to have VMAs that grow up/down
without guard VMAs. syzbot has constructed a testcase which sets up a VMA
to grow and consume the empty space. Overwriting the entire NULL entry
causes the tree to be altered in a way that is not safe for concurrent
readers; the readers may see a node being rewritten or one that does not
match the maple state they are using.
Enabling RCU mode allows the concurrent readers to see a stable node and
will return the expected result.
[Liam.Howlett@Oracle.com: we don't need to free the nodes with RCU[
Link: https://lore.kernel.org/linux-mm/000000000000b0a65805f663ace6@google.com/
Link: https://lkml.kernel.org/r/20230227173632.3292573-9-surenb@google.com
Fixes: d4af56c5c7 ("mm: start tracking VMAs with maple tree")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Reported-by: syzbot+8d95422d3537159ca390@syzkaller.appspotmail.com
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Now that the SRCU Kconfig option is unconditionally selected, there is
no longer any point in selecting it. Therefore, remove the "select SRCU"
Kconfig statements.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: <linux-mm@kvack.org>
Reviewed-by: John Ogness <john.ogness@linutronix.de>
Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org>
We need the fixes in here for testing, as well as the driver core
changes for documentation updates to build on.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
INVALID_IOASID and IOMMU_PASID_INVALID are duplicated. Rename
INVALID_IOASID and consolidate since we are moving away from IOASID
infrastructure.
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Link: https://lore.kernel.org/r/20230322200803.869130-7-jacob.jun.pan@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
These just return the address and length of the current iovec segment
in the iterator. Convert existing iov_iter_iovec() users to use them
instead of getting a copy of the current vec.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
A series by myself to remove CONFIG_SLOB:
The SLOB allocator was deprecated in 6.2 and there have been no
complaints so far so let's proceed with the removal.
Besides the code cleanup, the main immediate benefit will be allowing
kfree() family of function to work on kmem_cache_alloc() objects, which
was incompatible with SLOB. This includes kfree_rcu() which had no
kmem_cache_free_rcu() counterpart yet and now it shouldn't be necessary
anymore.
Otherwise it's all straightforward removal. After this series, 'git grep
slob' or 'git grep SLOB' will have 3 remaining relevant hits in non-mm
code:
- tomoyo - patch submitted and carried there, doesn't need to wait for
this series
- skbuff - patch to cleanup now-unnecessary #ifdefs will be posted to
netdev after this is merged, as requested to avoid conflicts
- ftrace ring_buffer - patch to remove obsolete comment is carried there
The rest of 'git grep SLOB' hits are false positives, or intentional
(CREDITS, and mm/Kconfig SLUB_TINY description to help those that will
happen to migrate later).
This will make it easier to free objects in situations when they can
come from either kmalloc() or kmem_cache_alloc(), and also allow
kfree_rcu() for freeing objects from kmem_cache_alloc().
For the SLAB and SLUB allocators this was always possible so with SLOB
gone, we can document it as supported.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: "Paul E. McKenney" <paulmck@kernel.org>
Cc: Frederic Weisbecker <frederic@kernel.org>
Cc: Neeraj Upadhyay <quic_neeraju@quicinc.com>
Cc: Josh Triplett <josh@joshtriplett.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Lai Jiangshan <jiangshanlai@gmail.com>
Cc: Joel Fernandes <joel@joelfernandes.org>
CONFIG_SLOB has been removed from Kconfig. Remove code and #ifdef's
specific to SLOB in the slab headers and common code.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Reviewed-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Acked-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Remove SLOB from Kconfig and Makefile. Everything under #ifdef
CONFIG_SLOB, and mm/slob.c is now dead code.
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Acked-by: Lorenzo Stoakes <lstoakes@gmail.com>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
TRANSPARENT_HUGEPAGE_NEVER_DAX has nothing to do with DAX. It's set when
has_transparent_hugepage() returns false, checked in hugepage_vma_check()
and will disable THP completely if false. Rename it to
TRANSPARENT_HUGEPAGE_UNSUPPORTED to reflect its real purpose.
[peterx@redhat.com: fix comment, per David]
Link: https://lkml.kernel.org/r/ZBMzQW674oHQJV7F@x1n
Link: https://lkml.kernel.org/r/20230315171642.1244625-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
It's more clear and simple to just use IS_ENABLED(CONFIG_HWPOISON_INJECT)
to check whether or not to enable HWPoison injector module instead of
CONFIG_HWPOISON_INJECT/CONFIG_HWPOISON_INJECT_MODULE.
Link: https://lkml.kernel.org/r/20230313053929.84607-1-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Acked-by: Naoya Horiguchi <naoya.horiguchi@nec.com>
Cc: Miaohe Lin <linmiaohe@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Now there are no readers of shrinker_rwsem, so we can simply replace it
with mutex lock.
Link: https://lkml.kernel.org/r/20230313112819.38938-9-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill Tkhai <tkhai@ya.ru>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Christian König <christian.koenig@amd.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently, the synchronize_shrinkers() is only used by TTM pool. It only
requires that no shrinkers run in parallel, and doesn't care about
registering and unregistering of shrinkers.
Since slab shrink is protected by SRCU, synchronize_srcu() is sufficient
to ensure that no shrinker is running in parallel. So the shrinker_rwsem
in synchronize_shrinkers() is no longer needed, just remove it.
Link: https://lkml.kernel.org/r/20230313112819.38938-8-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill Tkhai <tkhai@ya.ru>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Christian König <christian.koenig@amd.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
For now, reparent_shrinker_deferred() is the only holder of read lock of
shrinker_rwsem. And it already holds the global cgroup_mutex, so it will
not be called in parallel.
Therefore, in order to convert shrinker_rwsem to shrinker_mutex later,
here we change to hold the write lock of shrinker_rwsem to reparent.
Link: https://lkml.kernel.org/r/20230313112819.38938-7-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill Tkhai <tkhai@ya.ru>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Christian König <christian.koenig@amd.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Like global and memcg slab shrink, also use SRCU to make count and scan
operations in memory shrinker debugfs lockless.
Link: https://lkml.kernel.org/r/20230313112819.38938-6-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill Tkhai <tkhai@ya.ru>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Christian König <christian.koenig@amd.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
After we make slab shrink lockless with SRCU, the longest sleep
unregister_shrinker() will be a sleep waiting for all do_shrink_slab()
calls.
To avoid long unbreakable action in the unregister_shrinker(), add
shrinker_srcu_generation to restore a check similar to the
rwsem_is_contendent() check that we had before.
And for memcg slab shrink, we unlock SRCU and continue iterations from the
next shrinker id.
Link: https://lkml.kernel.org/r/20230313112819.38938-5-zhengqi.arch@bytedance.com
Signed-off-by: Kirill Tkhai <tkhai@ya.ru>
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Christian König <christian.koenig@amd.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Like global slab shrink, this commit also uses SRCU to make memcg slab
shrink lockless.
We can reproduce the down_read_trylock() hotspot through the
following script:
```
DIR="/root/shrinker/memcg/mnt"
do_create()
{
mkdir -p /sys/fs/cgroup/memory/test
mkdir -p /sys/fs/cgroup/perf_event/test
echo 4G > /sys/fs/cgroup/memory/test/memory.limit_in_bytes
for i in `seq 0 $1`;
do
mkdir -p /sys/fs/cgroup/memory/test/$i;
echo $$ > /sys/fs/cgroup/memory/test/$i/cgroup.procs;
echo $$ > /sys/fs/cgroup/perf_event/test/cgroup.procs;
mkdir -p $DIR/$i;
done
}
do_mount()
{
for i in `seq $1 $2`;
do
mount -t tmpfs $i $DIR/$i;
done
}
do_touch()
{
for i in `seq $1 $2`;
do
echo $$ > /sys/fs/cgroup/memory/test/$i/cgroup.procs;
echo $$ > /sys/fs/cgroup/perf_event/test/cgroup.procs;
dd if=/dev/zero of=$DIR/$i/file$i bs=1M count=1 &
done
}
case "$1" in
touch)
do_touch $2 $3
;;
test)
do_create 4000
do_mount 0 4000
do_touch 0 3000
;;
*)
exit 1
;;
esac
```
Save the above script, then run test and touch commands.
Then we can use the following perf command to view hotspots:
perf top -U -F 999
1) Before applying this patchset:
32.31% [kernel] [k] down_read_trylock
19.40% [kernel] [k] pv_native_safe_halt
16.24% [kernel] [k] up_read
15.70% [kernel] [k] shrink_slab
4.69% [kernel] [k] _find_next_bit
2.62% [kernel] [k] shrink_node
1.78% [kernel] [k] shrink_lruvec
0.76% [kernel] [k] do_shrink_slab
2) After applying this patchset:
27.83% [kernel] [k] _find_next_bit
16.97% [kernel] [k] shrink_slab
15.82% [kernel] [k] pv_native_safe_halt
9.58% [kernel] [k] shrink_node
8.31% [kernel] [k] shrink_lruvec
5.64% [kernel] [k] do_shrink_slab
3.88% [kernel] [k] mem_cgroup_iter
At the same time, we use the following perf command to capture
IPC information:
perf stat -e cycles,instructions -G test -a --repeat 5 -- sleep 10
1) Before applying this patchset:
Performance counter stats for 'system wide' (5 runs):
454187219766 cycles test ( +- 1.84% )
78896433101 instructions test # 0.17 insn per cycle ( +- 0.44% )
10.0020430 +- 0.0000366 seconds time elapsed ( +- 0.00% )
2) After applying this patchset:
Performance counter stats for 'system wide' (5 runs):
841954709443 cycles test ( +- 15.80% ) (98.69%)
527258677936 instructions test # 0.63 insn per cycle ( +- 15.11% ) (98.68%)
10.01064 +- 0.00831 seconds time elapsed ( +- 0.08% )
We can see that IPC drops very seriously when calling
down_read_trylock() at high frequency. After using SRCU,
the IPC is at a normal level.
Link: https://lkml.kernel.org/r/20230313112819.38938-4-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: Kirill Tkhai <tkhai@ya.ru>
Acked-by: Vlastimil Babka <Vbabka@suse.cz>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Christian König <christian.koenig@amd.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The shrinker_rwsem is a global read-write lock in shrinkers subsystem,
which protects most operations such as slab shrink, registration and
unregistration of shrinkers, etc. This can easily cause problems in the
following cases.
1) When the memory pressure is high and there are many
filesystems mounted or unmounted at the same time,
slab shrink will be affected (down_read_trylock()
failed).
Such as the real workload mentioned by Kirill Tkhai:
```
One of the real workloads from my experience is start
of an overcommitted node containing many starting
containers after node crash (or many resuming containers
after reboot for kernel update). In these cases memory
pressure is huge, and the node goes round in long reclaim.
```
2) If a shrinker is blocked (such as the case mentioned
in [1]) and a writer comes in (such as mount a fs),
then this writer will be blocked and cause all
subsequent shrinker-related operations to be blocked.
Even if there is no competitor when shrinking slab, there may still be a
problem. If we have a long shrinker list and we do not reclaim enough
memory with each shrinker, then the down_read_trylock() may be called with
high frequency. Because of the poor multicore scalability of atomic
operations, this can lead to a significant drop in IPC (instructions per
cycle).
So many times in history ([2],[3],[4],[5]), some people wanted to replace
shrinker_rwsem trylock with SRCU in the slab shrink, but all these patches
were abandoned because SRCU was not unconditionally enabled.
But now, since commit 1cd0bd06093c ("rcu: Remove CONFIG_SRCU"), the SRCU
is unconditionally enabled. So it's time to use SRCU to protect readers
who previously held shrinker_rwsem.
This commit uses SRCU to make global slab shrink lockless,
the memcg slab shrink is handled in the subsequent patch.
[1]. https://lore.kernel.org/lkml/20191129214541.3110-1-ptikhomirov@virtuozzo.com/
[2]. https://lore.kernel.org/all/1437080113.3596.2.camel@stgolabs.net/
[3]. https://lore.kernel.org/lkml/1510609063-3327-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp/
[4]. https://lore.kernel.org/lkml/153365347929.19074.12509495712735843805.stgit@localhost.localdomain/
[5]. https://lore.kernel.org/lkml/20210927074823.5825-1-sultan@kerneltoast.com/
Link: https://lkml.kernel.org/r/20230313112819.38938-3-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill Tkhai <tkhai@ya.ru>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Christian König <christian.koenig@amd.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "make slab shrink lockless", v5.
This patch series aims to make slab shrink lockless.
1. Background
=============
On our servers, we often find the following system cpu hotspots:
52.22% [kernel] [k] down_read_trylock
19.60% [kernel] [k] up_read
8.86% [kernel] [k] shrink_slab
2.44% [kernel] [k] idr_find
1.25% [kernel] [k] count_shadow_nodes
1.18% [kernel] [k] shrink lruvec
0.71% [kernel] [k] mem_cgroup_iter
0.71% [kernel] [k] shrink_node
0.55% [kernel] [k] find_next_bit
And we used bpftrace to capture its calltrace as follows:
@[
down_read_trylock+1
shrink_slab+128
shrink_node+371
do_try_to_free_pages+232
try_to_free_pages+243
_alloc_pages_slowpath+771
_alloc_pages_nodemask+702
pagecache_get_page+255
filemap_fault+1361
ext4_filemap_fault+44
__do_fault+76
handle_mm_fault+3543
do_user_addr_fault+442
do_page_fault+48
page_fault+62
]: 1161690
@[
down_read_trylock+1
shrink_slab+128
shrink_node+371
balance_pgdat+690
kswapd+389
kthread+246
ret_from_fork+31
]: 8424884
@[
down_read_trylock+1
shrink_slab+128
shrink_node+371
do_try_to_free_pages+232
try_to_free_pages+243
__alloc_pages_slowpath+771
__alloc_pages_nodemask+702
__do_page_cache_readahead+244
filemap_fault+1674
ext4_filemap_fault+44
__do_fault+76
handle_mm_fault+3543
do_user_addr_fault+442
do_page_fault+48
page_fault+62
]: 20917631
We can see that down_read_trylock() of shrinker_rwsem is being called with
high frequency at that time. Because of the poor multicore scalability of
atomic operations, this can lead to a significant drop in IPC
(instructions per cycle).
And more, the shrinker_rwsem is a global read-write lock in shrinkers
subsystem, which protects most operations such as slab shrink,
registration and unregistration of shrinkers, etc. This can easily cause
problems in the following cases.
1) When the memory pressure is high and there are many filesystems
mounted or unmounted at the same time, slab shrink will be affected
(down_read_trylock() failed).
Such as the real workload mentioned by Kirill Tkhai:
```
One of the real workloads from my experience is start of an
overcommitted node containing many starting containers after node crash
(or many resuming containers after reboot for kernel update). In these
cases memory pressure is huge, and the node goes round in long reclaim.
```
2) If a shrinker is blocked (such as the case mentioned in [1]) and a
writer comes in (such as mount a fs), then this writer will be blocked
and cause all subsequent shrinker-related operations to be blocked.
[1]. https://lore.kernel.org/lkml/20191129214541.3110-1-ptikhomirov@virtuozzo.com/
All the above cases can be solved by replacing the shrinker_rwsem trylocks
with SRCU.
2. Survey
=========
Before doing the code implementation, I found that there were many similar
submissions in the community:
a. Davidlohr Bueso submitted a patch in 2015.
Subject: [PATCH -next v2] mm: srcu-ify shrinkers
Link: https://lore.kernel.org/all/1437080113.3596.2.camel@stgolabs.net/
Result: It was finally merged into the linux-next branch,
but failed on arm allnoconfig (without CONFIG_SRCU)
b. Tetsuo Handa submitted a patchset in 2017.
Subject: [PATCH 1/2] mm,vmscan: Kill global shrinker lock.
Link: https://lore.kernel.org/lkml/1510609063-3327-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp/
Result: Finally chose to use the current simple way (break
when rwsem_is_contended()). And Christoph Hellwig suggested to
using SRCU, but SRCU was not unconditionally enabled at the
time.
c. Kirill Tkhai submitted a patchset in 2018.
Subject: [PATCH RFC 00/10] Introduce lockless shrink_slab()
Link: https://lore.kernel.org/lkml/153365347929.19074.12509495712735843805.stgit@localhost.localdomain/
Result: At that time, SRCU was not unconditionally enabled,
and there were some objections to enabling SRCU. Later,
because Kirill's focus was moved to other things, this patchset
was not continued to be updated.
d. Sultan Alsawaf submitted a patch in 2021.
Subject: [PATCH] mm: vmscan: Replace shrinker_rwsem trylocks with SRCU protection
Link: https://lore.kernel.org/lkml/20210927074823.5825-1-sultan@kerneltoast.com/
Result: Rejected because SRCU was not unconditionally enabled.
We can find that almost all these historical commits were abandoned
because SRCU was not unconditionally enabled. But now SRCU has been
unconditionally enable by Paul E. McKenney in 2023 [2], so it's time to
replace shrinker_rwsem trylocks with SRCU.
[2] https://lore.kernel.org/lkml/20230105003759.GA1769545@paulmck-ThinkPad-P17-Gen-1/
3. Reproduction and testing
===========================
We can reproduce the down_read_trylock() hotspot through the following script:
```
#!/bin/bash
DIR="/root/shrinker/memcg/mnt"
do_create()
{
mkdir -p /sys/fs/cgroup/memory/test
mkdir -p /sys/fs/cgroup/perf_event/test
echo 4G > /sys/fs/cgroup/memory/test/memory.limit_in_bytes
for i in `seq 0 $1`;
do
mkdir -p /sys/fs/cgroup/memory/test/$i;
echo $$ > /sys/fs/cgroup/memory/test/$i/cgroup.procs;
echo $$ > /sys/fs/cgroup/perf_event/test/cgroup.procs;
mkdir -p $DIR/$i;
done
}
do_mount()
{
for i in `seq $1 $2`;
do
mount -t tmpfs $i $DIR/$i;
done
}
do_touch()
{
for i in `seq $1 $2`;
do
echo $$ > /sys/fs/cgroup/memory/test/$i/cgroup.procs;
echo $$ > /sys/fs/cgroup/perf_event/test/cgroup.procs;
dd if=/dev/zero of=$DIR/$i/file$i bs=1M count=1 &
done
}
case "$1" in
touch)
do_touch $2 $3
;;
test)
do_create 4000
do_mount 0 4000
do_touch 0 3000
;;
*)
exit 1
;;
esac
```
Save the above script, then run test and touch commands. Then we can use
the following perf command to view hotspots:
perf top -U -F 999
1) Before applying this patchset:
32.31% [kernel] [k] down_read_trylock
19.40% [kernel] [k] pv_native_safe_halt
16.24% [kernel] [k] up_read
15.70% [kernel] [k] shrink_slab
4.69% [kernel] [k] _find_next_bit
2.62% [kernel] [k] shrink_node
1.78% [kernel] [k] shrink_lruvec
0.76% [kernel] [k] do_shrink_slab
2) After applying this patchset:
27.83% [kernel] [k] _find_next_bit
16.97% [kernel] [k] shrink_slab
15.82% [kernel] [k] pv_native_safe_halt
9.58% [kernel] [k] shrink_node
8.31% [kernel] [k] shrink_lruvec
5.64% [kernel] [k] do_shrink_slab
3.88% [kernel] [k] mem_cgroup_iter
At the same time, we use the following perf command to capture IPC
information:
perf stat -e cycles,instructions -G test -a --repeat 5 -- sleep 10
1) Before applying this patchset:
Performance counter stats for 'system wide' (5 runs):
454187219766 cycles test ( +- 1.84% )
78896433101 instructions test # 0.17 insn per cycle ( +- 0.44% )
10.0020430 +- 0.0000366 seconds time elapsed ( +- 0.00% )
2) After applying this patchset:
Performance counter stats for 'system wide' (5 runs):
841954709443 cycles test ( +- 15.80% ) (98.69%)
527258677936 instructions test # 0.63 insn per cycle ( +- 15.11% ) (98.68%)
10.01064 +- 0.00831 seconds time elapsed ( +- 0.08% )
We can see that IPC drops very seriously when calling down_read_trylock()
at high frequency. After using SRCU, the IPC is at a normal level.
This patch (of 8):
To prepare for the subsequent lockless memcg slab shrink, add a map_nr_max
field to struct shrinker_info to records its own real shrinker_nr_max.
Link: https://lkml.kernel.org/r/20230313112819.38938-1-zhengqi.arch@bytedance.com
Link: https://lkml.kernel.org/r/20230313112819.38938-2-zhengqi.arch@bytedance.com
Signed-off-by: Qi Zheng <zhengqi.arch@bytedance.com>
Suggested-by: Kirill Tkhai <tkhai@ya.ru>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Kirill Tkhai <tkhai@ya.ru>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Christian König <christian.koenig@amd.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Paul E. McKenney <paulmck@kernel.org>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Sultan Alsawaf <sultan@kerneltoast.com>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Cc: Yang Shi <shy828301@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Code inspection reveals that PG_skip_kasan_poison is redundant with
kasantag, because the former is intended to be set iff the latter is the
match-all tag. It can also be observed that it's basically pointless to
poison pages which have kasantag=0, because any pages with this tag would
have been pointed to by pointers with match-all tags, so poisoning the
pages would have little to no effect in terms of bug detection.
Therefore, change the condition in should_skip_kasan_poison() to check
kasantag instead, and remove PG_skip_kasan_poison and associated flags.
Link: https://lkml.kernel.org/r/20230310042914.3805818-3-pcc@google.com
Link: https://linux-review.googlesource.com/id/I57f825f2eaeaf7e8389d6cf4597c8a5821359838
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In doing experimentations with shmem having the option to avoid swap
becomes a useful mechanism. One of the *raves* about brd over shmem is
you can avoid swap, but that's not really a good reason to use brd if we
can instead use shmem. Using brd has its own good reasons to exist, but
just because "tmpfs" doesn't let you do that is not a great reason to
avoid it if we can easily add support for it.
I don't add support for reconfiguring incompatible options, but if we
really wanted to we can add support for that.
To avoid swap we use mapping_set_unevictable() upon inode creation, and
put a WARN_ON_ONCE() stop-gap on writepages() for reclaim.
Link: https://lkml.kernel.org/r/20230309230545.2930737-7-mcgrof@kernel.org
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Acked-by: Christian Brauner <brauner@kernel.org>
Tested-by: Xin Hao <xhao@linux.alibaba.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Cc: Adam Manzanares <a.manzanares@samsung.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Pankaj Raghav <p.raghav@samsung.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In theory when info->flags & VM_LOCKED we should not be getting
shem_writepage() called so we should be verifying this with a
WARN_ON_ONCE(). Since we should not be swapping then best to ensure we
also don't do the folio split earlier too. So just move the check early
to avoid folio splits in case its a dubious call.
We also have a similar early bail when !total_swap_pages so just move that
earlier to avoid the possible folio split in the same situation.
Link: https://lkml.kernel.org/r/20230309230545.2930737-5-mcgrof@kernel.org
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Tested-by: Xin Hao <xhao@linux.alibaba.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Cc: Adam Manzanares <a.manzanares@samsung.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Pankaj Raghav <p.raghav@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
i915_gem requires huge folios to be split when swapping. However we have
check for usage of writepages() to ensure it used only for swap purposes
later. Avoid the splits if we're not being called for reclaim, even if
they should in theory not happen.
This makes the conditions easier to follow on shem_writepage().
Link: https://lkml.kernel.org/r/20230309230545.2930737-4-mcgrof@kernel.org
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Tested-by: Xin Hao <xhao@linux.alibaba.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Cc: Adam Manzanares <a.manzanares@samsung.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Pankaj Raghav <p.raghav@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
shmem_writepage() sets up variables typically used *after* a possible huge
page split. However even if that does happen the address space mapping
should not change, and the inode does not change either. So it should be
safe to set that from the very beginning.
This commit makes no functional changes.
Link: https://lkml.kernel.org/r/20230309230545.2930737-3-mcgrof@kernel.org
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Tested-by: Xin Hao <xhao@linux.alibaba.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Cc: Adam Manzanares <a.manzanares@samsung.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Pankaj Raghav <p.raghav@samsung.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "tmpfs: add the option to disable swap", v2.
I'm doing this work as part of future experimentation with tmpfs and the
page cache, but given a common complaint found about tmpfs is the
innability to work without the page cache I figured this might be useful
to others. It turns out it is -- at least Christian Brauner indicates
systemd uses ramfs for a few use-cases because they don't want to use swap
and so having this option would let them move over to using tmpfs for
those small use cases, see systemd-creds(1).
To see if you hit swap:
mkswap /dev/nvme2n1
swapon /dev/nvme2n1
free -h
With swap - what we see today
=============================
mount -t tmpfs -o size=5G tmpfs /data-tmpfs/
dd if=/dev/urandom of=/data-tmpfs/5g-rand2 bs=1G count=5
free -h
total used free shared buff/cache available
Mem: 3.7Gi 2.6Gi 1.2Gi 2.2Gi 2.2Gi 1.2Gi
Swap: 99Gi 2.8Gi 97Gi
Without swap
=============
free -h
total used free shared buff/cache available
Mem: 3.7Gi 387Mi 3.4Gi 2.1Mi 57Mi 3.3Gi
Swap: 99Gi 0B 99Gi
mount -t tmpfs -o size=5G -o noswap tmpfs /data-tmpfs/
dd if=/dev/urandom of=/data-tmpfs/5g-rand2 bs=1G count=5
free -h
total used free shared buff/cache available
Mem: 3.7Gi 2.6Gi 1.2Gi 2.3Gi 2.3Gi 1.1Gi
Swap: 99Gi 21Mi 99Gi
The mix and match remount testing
=================================
# Cannot disable swap after it was first enabled:
mount -t tmpfs -o size=5G tmpfs /data-tmpfs/
mount -t tmpfs -o remount -o size=5G -o noswap tmpfs /data-tmpfs/
mount: /data-tmpfs: mount point not mounted or bad option.
dmesg(1) may have more information after failed mount system call.
dmesg -c
tmpfs: Cannot disable swap on remount
# Remount with the same noswap option is OK:
mount -t tmpfs -o size=5G -o noswap tmpfs /data-tmpfs/
mount -t tmpfs -o remount -o size=5G -o noswap tmpfs /data-tmpfs/
dmesg -c
# Trying to enable swap with a remount after it first disabled:
mount -t tmpfs -o size=5G -o noswap tmpfs /data-tmpfs/
mount -t tmpfs -o remount -o size=5G tmpfs /data-tmpfs/
mount: /data-tmpfs: mount point not mounted or bad option.
dmesg(1) may have more information after failed mount system call.
dmesg -c
tmpfs: Cannot enable swap on remount if it was disabled on first mount
This patch (of 6):
Matthew notes we should not need to check the folio lock on the
writepage() callback so remove it. This sanity check has been lingering
since linux-history days. We remove this as we tidy up the writepage()
callback to make things a bit clearer.
Link: https://lkml.kernel.org/r/20230309230545.2930737-1-mcgrof@kernel.org
Link: https://lkml.kernel.org/r/20230309230545.2930737-2-mcgrof@kernel.org
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Suggested-by: Matthew Wilcox <willy@infradead.org>
Acked-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Christian Brauner <brauner@kernel.org>
Tested-by: Xin Hao <xhao@linux.alibaba.com>
Reviewed-by: Davidlohr Bueso <dave@stgolabs.net>
Cc: Adam Manzanares <a.manzanares@samsung.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Pankaj Raghav <p.raghav@samsung.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The last remaining user of folio_write_one through the write_one_page
wrapper is jfs, so move the functionality there and hard code the call to
metapage_writepage.
Note that the use of the pagecache by the JFS 'metapage' buffer cache is a
bit odd, and we could probably do without VM-level dirty tracking at all,
but that's a change for another time.
Link: https://lkml.kernel.org/r/20230307143125.27778-4-hch@lst.de
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Cc: Changwei Ge <gechangwei@live.cn>
Cc: Evgeniy Dushistov <dushistov@mail.ru>
Cc: Gang He <ghe@suse.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jan Kara via Ocfs2-devel <ocfs2-devel@oss.oracle.com>
Cc: Joel Becker <jlbec@evilplan.org>
Cc: Joseph Qi <jiangqi903@gmail.com>
Cc: Joseph Qi <joseph.qi@linux.alibaba.com>
Cc: Jun Piao <piaojun@huawei.com>
Cc: Junxiao Bi <junxiao.bi@oracle.com>
Cc: Mark Fasheh <mark@fasheh.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Ensure that KMSAN does not report false positives in instrumented callers
of stack_depot_save(), stack_depot_print(), and stack_depot_fetch().
Link: https://lkml.kernel.org/r/20230306111322.205724-2-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Marco Elver <elver@google.com>
Cc: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The knob for cgroup v1 memory controller: memory.soft_limit_in_bytes is
not protected by any locking so it can be modified while it is used. This
is not an actual problem because races are unlikely. But it is better to
use [READ|WRITE]_ONCE to prevent compiler from doing anything funky.
The access of memcg->soft_limit is lockless, so it can be concurrently set
at the same time as we are trying to read it. All occurrences of
memcg->soft_limit are updated with [READ|WRITE]_ONCE.
[findns94@gmail.com: v3]
Link: https://lkml.kernel.org/r/20230308162555.14195-5-findns94@gmail.com
Link: https://lkml.kernel.org/r/20230306154138.3775-5-findns94@gmail.com
Signed-off-by: Yue Zhao <findns94@gmail.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Tang Yizhou <tangyeechou@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The knob for cgroup v1 memory controller: memory.oom_control is not
protected by any locking so it can be modified while it is used. This is
not an actual problem because races are unlikely. But it is better to use
[READ|WRITE]_ONCE to prevent compiler from doing anything funky.
The access of memcg->oom_kill_disable is lockless, so it can be
concurrently set at the same time as we are trying to read it. All
occurrences of memcg->oom_kill_disable are updated with [READ|WRITE]_ONCE.
[findns94@gmail.com: v3]
Link: https://lkml.kernel.org/r/20230308162555.14195-4-findns94@gmail.com
Link: https://lkml.kernel.org/r/20230306154138.377-4-findns94@gmail.com
Signed-off-by: Yue Zhao <findns94@gmail.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Tang Yizhou <tangyeechou@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The knob for cgroup v1 memory controller: memory.swappiness is not
protected by any locking so it can be modified while it is used. This is
not an actual problem because races are unlikely. But it is better to use
[READ|WRITE]_ONCE to prevent compiler from doing anything funky.
The access of memcg->swappiness and vm_swappiness is lockless, so both of
them can be concurrently set at the same time as we are trying to read
them. All occurrences of memcg->swappiness and vm_swappiness are updated
with [READ|WRITE]_ONCE.
[findns94@gmail.com: v3]
Link: https://lkml.kernel.org/r/20230308162555.14195-3-findns94@gmail.com
Link: https://lkml.kernel.org/r/20230306154138.3775-3-findns94@gmail.com
Signed-off-by: Yue Zhao <findns94@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Tang Yizhou <tangyeechou@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm, memcg: cgroup v1 and v2 tunable load/store tearing
fixes", v2.
This patch series helps to prevent load/store tearing in
several cgroup knobs.
As kindly pointed out by Michal Hocko and Roman Gushchin
, the changelog has been rephrased.
Besides, more knobs were checked, according to kind suggestions
from Shakeel Butt and Muchun Song.
This patch (of 4):
The knob for cgroup v2 memory controller: memory.oom.group
is not protected by any locking so it can be modified while it is used.
This is not an actual problem because races are unlikely (the knob is
usually configured long before any workloads hits actual memcg oom)
but it is better to use READ_ONCE/WRITE_ONCE to prevent compiler from
doing anything funky.
The access of memcg->oom_group is lockless, so it can be
concurrently set at the same time as we are trying to read it.
Link: https://lkml.kernel.org/r/20230306154138.3775-1-findns94@gmail.com
Link: https://lkml.kernel.org/r/20230306154138.3775-2-findns94@gmail.com
Signed-off-by: Yue Zhao <findns94@gmail.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Tang Yizhou <tangyeechou@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
s390 can do more fine-grained handling of spurious TLB protection faults,
when there also is the PTE pointer available.
Therefore, pass on the PTE pointer to flush_tlb_fix_spurious_fault() as an
additional parameter.
This will add no functional change to other architectures, but those with
private flush_tlb_fix_spurious_fault() implementations need to be made
aware of the new parameter.
Link: https://lkml.kernel.org/r/20230306161548.661740-1-gerald.schaefer@linux.ibm.com
Signed-off-by: Gerald Schaefer <gerald.schaefer@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Acked-by: Michael Ellerman <mpe@ellerman.id.au> [powerpc]
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Will Deacon <will@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We keep the old fullness (3/4 threshold) reporting in
zs_stats_size_show(). Switch from allmost full/empty stats to
fine-grained per inuse ratio (fullness group) reporting, which gives
signicantly more data on classes fragmentation.
Link: https://lkml.kernel.org/r/20230304034835.2082479-5-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The zsmalloc compaction algorithm has the potential to waste some CPU
cycles, particularly when compacting pages within the same fullness group.
This is due to the way it selects the head page of the fullness list for
source and destination pages, and how it reinserts those pages during each
iteration. The algorithm may first use a page as a migration destination
and then as a migration source, leading to an unnecessary back-and-forth
movement of objects.
Consider the following fullness list:
PageA PageB PageC PageD PageE
During the first iteration, the compaction algorithm will select PageA as
the source and PageB as the destination. All of PageA's objects will be
moved to PageB, and then PageA will be released while PageB is reinserted
into the fullness list.
PageB PageC PageD PageE
During the next iteration, the compaction algorithm will again select the
head of the list as the source and destination, meaning that PageB will
now serve as the source and PageC as the destination. This will result in
the objects being moved away from PageB, the same objects that were just
moved to PageB in the previous iteration.
To prevent this avalanche effect, the compaction algorithm should not
reinsert the destination page between iterations. By doing so, the most
optimal page will continue to be used and its usage ratio will increase,
reducing internal fragmentation. The destination page should only be
reinserted into the fullness list if:
- It becomes full
- No source page is available.
TEST
====
It's very challenging to reliably test this series. I ended up developing
my own synthetic test that has 100% reproducibility. The test generates
significan fragmentation (for each size class) and then performs
compaction for each class individually and tracks the number of memcpy()
in zs_object_copy(), so that we can compare the amount work compaction
does on per-class basis.
Total amount of work (zram mm_stat objs_moved)
----------------------------------------------
Old fullness grouping, old compaction algorithm:
323977 memcpy() in zs_object_copy().
Old fullness grouping, new compaction algorithm:
262944 memcpy() in zs_object_copy().
New fullness grouping, new compaction algorithm:
213978 memcpy() in zs_object_copy().
Per-class compaction memcpy() comparison (T-test)
-------------------------------------------------
x Old fullness grouping, old compaction algorithm
+ Old fullness grouping, new compaction algorithm
N Min Max Median Avg Stddev
x 140 349 3513 2461 2314.1214 806.03271
+ 140 289 2778 2006 1878.1714 641.02073
Difference at 95.0% confidence
-435.95 +/- 170.595
-18.8387% +/- 7.37193%
(Student's t, pooled s = 728.216)
x Old fullness grouping, old compaction algorithm
+ New fullness grouping, new compaction algorithm
N Min Max Median Avg Stddev
x 140 349 3513 2461 2314.1214 806.03271
+ 140 226 2279 1644 1528.4143 524.85268
Difference at 95.0% confidence
-785.707 +/- 159.331
-33.9527% +/- 6.88516%
(Student's t, pooled s = 680.132)
Link: https://lkml.kernel.org/r/20230304034835.2082479-4-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Each zspage maintains ->inuse counter which keeps track of the number of
objects stored in the zspage. The ->inuse counter also determines the
zspage's "fullness group" which is calculated as the ratio of the "inuse"
objects to the total number of objects the zspage can hold
(objs_per_zspage). The closer the ->inuse counter is to objs_per_zspage,
the better.
Each size class maintains several fullness lists, that keep track of
zspages of particular "fullness". Pages within each fullness list are
stored in random order with regard to the ->inuse counter. This is
because sorting the zspages by ->inuse counter each time obj_malloc() or
obj_free() is called would be too expensive. However, the ->inuse counter
is still a crucial factor in many situations.
For the two major zsmalloc operations, zs_malloc() and zs_compact(), we
typically select the head zspage from the corresponding fullness list as
the best candidate zspage. However, this assumption is not always
accurate.
For the zs_malloc() operation, the optimal candidate zspage should have
the highest ->inuse counter. This is because the goal is to maximize the
number of ZS_FULL zspages and make full use of all allocated memory.
For the zs_compact() operation, the optimal source zspage should have the
lowest ->inuse counter. This is because compaction needs to move objects
in use to another page before it can release the zspage and return its
physical pages to the buddy allocator. The fewer objects in use, the
quicker compaction can release the zspage. Additionally, compaction is
measured by the number of pages it releases.
This patch reworks the fullness grouping mechanism. Instead of having two
groups - ZS_ALMOST_EMPTY (usage ratio below 3/4) and ZS_ALMOST_FULL (usage
ration above 3/4) - that result in too many zspages being included in the
ALMOST_EMPTY group for specific classes, size classes maintain a larger
number of fullness lists that give strict guarantees on the minimum and
maximum ->inuse values within each group. Each group represents a 10%
change in the ->inuse ratio compared to neighboring groups. In essence,
there are groups for zspages with 0%, 10%, 20% usage ratios, and so on, up
to 100%.
This enhances the selection of candidate zspages for both zs_malloc() and
zs_compact(). A printout of the ->inuse counters of the first 7 zspages
per (random) class fullness group:
class-768 objs_per_zspage 16:
fullness 100%: empty
fullness 99%: empty
fullness 90%: empty
fullness 80%: empty
fullness 70%: empty
fullness 60%: 8 8 9 9 8 8 8
fullness 50%: empty
fullness 40%: 5 5 6 5 5 5 5
fullness 30%: 4 4 4 4 4 4 4
fullness 20%: 2 3 2 3 3 2 2
fullness 10%: 1 1 1 1 1 1 1
fullness 0%: empty
The zs_malloc() function searches through the groups of pages starting
with the one having the highest usage ratio. This means that it always
selects a zspage from the group with the least internal fragmentation
(highest usage ratio) and makes it even less fragmented by increasing its
usage ratio.
The zs_compact() function, on the other hand, begins by scanning the group
with the highest fragmentation (lowest usage ratio) to locate the source
page. The first available zspage is selected, and then the function moves
downward to find a destination zspage in the group with the lowest
internal fragmentation (highest usage ratio).
Link: https://lkml.kernel.org/r/20230304034835.2082479-3-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "zsmalloc: fine-grained fullness and new compaction
algorithm", v4.
Existing zsmalloc page fullness grouping leads to suboptimal page
selection for both zs_malloc() and zs_compact(). This patchset reworks
zsmalloc fullness grouping/classification.
Additinally it also implements new compaction algorithm that is expected
to use less CPU-cycles (as it potentially does fewer memcpy-s in
zs_object_copy()).
Test (synthetic) results can be seen in patch 0003.
This patch (of 4):
This optimization has no effect. It only ensures that when a zspage was
added to its corresponding fullness list, its "inuse" counter was higher
or lower than the "inuse" counter of the zspage at the head of the list.
The intention was to keep busy zspages at the head, so they could be
filled up and moved to the ZS_FULL fullness group more quickly. However,
this doesn't work as the "inuse" counter of a zspage can be modified by
obj_free() but the zspage may still belong to the same fullness list. So,
fix_fullness_group() won't change the zspage's position in relation to the
head's "inuse" counter, leading to a largely random order of zspages
within the fullness list.
For instance, consider a printout of the "inuse" counters of the first 10
zspages in a class that holds 93 objects per zspage:
ZS_ALMOST_EMPTY: 36 67 68 64 35 54 63 52
As we can see the zspage with the lowest "inuse" counter
is actually the head of the fullness list.
Remove this pointless "optimisation".
Link: https://lkml.kernel.org/r/20230304034835.2082479-1-senozhatsky@chromium.org
Link: https://lkml.kernel.org/r/20230304034835.2082479-2-senozhatsky@chromium.org
Signed-off-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
commit 5478afc55a ("kmsan: fix memcpy tests") uses OPTIMIZER_HIDE_VAR()
to hide the uninitialized var from the compiler optimizations.
However OPTIMIZER_HIDE_VAR(uninit) enforces an immediate check of @uninit,
so memcpy tests did not actually check the behavior of memcpy(), because
they always contained a KMSAN report.
Replace OPTIMIZER_HIDE_VAR() with a file-local macro that just clobbers
the memory with a barrier(), and add a test case for memcpy() that does
not expect an error report.
Also reflow kmsan_test.c with clang-format.
Link: https://lkml.kernel.org/r/20230303141433.3422671-2-glider@google.com
Signed-off-by: Alexander Potapenko <glider@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Daniel Vetter <daniel@ffwll.ch>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Helge Deller <deller@gmx.de>
Cc: Kees Cook <keescook@chromium.org>
Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Explicit memcg uncharging is not needed when the memcg accounting has the
same lifespan of the page/folio. That becomes the case for khugepaged
after Yang & Zach's recent rework so the hpage will be allocated for each
collapse rather than being cached.
Cleanup the explicit memcg uncharge in khugepaged failure path and leave
that for put_page().
Link: https://lkml.kernel.org/r/20230303151218.311015-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Suggested-by: Zach O'Keefe <zokeefe@google.com>
Reviewed-by: Zach O'Keefe <zokeefe@google.com>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: David Stevens <stevensd@chromium.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Since the following commit arch_make_huge_pte() should be used directly in
generic memory subsystem as a platform provided page table helper, instead
of pte_mkhuge(). Change hugetlb_basic_tests() to call
arch_make_huge_pte() directly, and update its relevant documentation entry
as required.
'commit 16785bd774 ("mm: merge pte_mkhuge() call into arch_make_huge_pte()")'
Link: https://lkml.kernel.org/r/20230302114845.421674-1-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reported-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Link: https://lore.kernel.org/all/1ea45095-0926-a56a-a273-816709e9075e@csgroup.eu/
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: David Hildenbrand <david@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Cc: Mike Rapoport <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Since the following commit, arch_make_huge_pte() should be used directly
in generic memory subsystem as a platform provided page table helper,
instead of pte_mkhuge(). This just drops pte_mkhuge() from
remove_migration_pte(), which has now become redundant.
'commit 16785bd774 ("mm: merge pte_mkhuge() call into arch_make_huge_pte()")'
Link: https://lkml.kernel.org/r/20230302025349.358341-1-anshuman.khandual@arm.com
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Reported-by: Christophe Leroy <christophe.leroy@csgroup.eu>
Link: https://lore.kernel.org/all/1ea45095-0926-a56a-a273-816709e9075e@csgroup.eu/
Reviewed-by: David Hildenbrand <david@redhat.com>
Cc: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
All the callers of cgroup_throttle_swaprate() are converted to
folio_throttle_swaprate(), so make __cgroup_throttle_swaprate() to take a
folio, and rename it to __folio_throttle_swaprate(), also rename gfp_mask
to gfp and drop redundant extern keyword. finally, drop unused
cgroup_throttle_swaprate().
Link: https://lkml.kernel.org/r/20230302115835.105364-8-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Directly use folio_throttle_swaprate() instead of
cgroup_throttle_swaprate().
Link: https://lkml.kernel.org/r/20230302115835.105364-7-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Directly use folio_throttle_swaprate() instead of
cgroup_throttle_swaprate().
Link: https://lkml.kernel.org/r/20230302115835.105364-6-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Directly use folio_throttle_swaprate() instead of
cgroup_throttle_swaprate().
Link: https://lkml.kernel.org/r/20230302115835.105364-5-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Directly use folio_throttle_swaprate() instead of
cgroup_throttle_swaprate().
Link: https://lkml.kernel.org/r/20230302115835.105364-4-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Directly use folio_throttle_swaprate() instead of
cgroup_throttle_swaprate().
Link: https://lkml.kernel.org/r/20230302115835.105364-3-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm: remove cgroup_throttle_swaprate() completely", v2.
Convert all the caller functions of cgroup_throttle_swaprate() to use
folios, and use folio_throttle_swaprate(), which allows us to remove
cgroup_throttle_swaprate() completely.
This patch (of 7):
Convert from page to folio within __do_huge_pmd_anonymous_page(), as we
need the precise page which is to be stored at this PTE in the folio, the
function still keep a page as the parameter.
Link: https://lkml.kernel.org/r/20230302115835.105364-1-wangkefeng.wang@huawei.com
Link: https://lkml.kernel.org/r/20230302115835.105364-2-wangkefeng.wang@huawei.com
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Use atomic_try_cmpxchg instead of atomic_cmpxchg (*ptr, old, new) == old
in set_tlb_ubc_flush_pending. 86 CMPXCHG instruction returns success in
ZF flag, so this change saves a compare after cmpxchg (and related move
instruction in front of cmpxchg).
Also, try_cmpxchg implicitly assigns old *ptr value to "old" when cmpxchg
fails.
No functional change intended.
Link: https://lkml.kernel.org/r/20230227214228.3533299-1-ubizjak@gmail.com
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
%pGp format is used to display 'flags' field of a struct page. However,
some page flags (i.e. PG_buddy, see page-flags.h for more details) are
stored in page_type field. To display human-readable output of page_type,
introduce %pGt format.
It is important to note the meaning of bits are different in page_type.
if page_type is 0xffffffff, no flags are set. Setting PG_buddy
(0x00000080) flag results in a page_type of 0xffffff7f. Clearing a bit
actually means setting a flag. Bits in page_type are inverted when
displaying type names.
Only values for which page_type_has_type() returns true are considered as
page_type, to avoid confusion with mapcount values. if it returns false,
only raw values are displayed and not page type names.
Link: https://lkml.kernel.org/r/20230130042514.2418-3-42.hyeyoo@gmail.com
Signed-off-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Petr Mladek <pmladek@suse.com> [vsprintf part]
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Joe Perches <joe@perches.com>
Cc: John Ogness <john.ogness@linutronix.de>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Steven Rostedt (Google) <rostedt@goodmis.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This adds the following tracepoints to ksm:
- start / stop scan
- ksm enter / exit
- merge a page
- merge a page with ksm
- remove a page
- remove a rmap item
This patch has been split off from the RFC patch series "mm:
process/cgroup ksm support".
Link: https://lkml.kernel.org/r/20230210214645.2720847-1-shr@devkernel.io
Signed-off-by: Stefan Roesch <shr@devkernel.io>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The worst-case scenario on finding same element pages is that almost all
elements are same at the first glance but only last few elements are
different.
Since the same element tends to be grouped from the beginning of the
pages, if we check the first element with the last element before looping
through all elements, we might have some chances to quickly detect
non-same element pages.
1. Test is done under LG webOS TV (64-bit arch)
2. Dump the swap-out pages (~819200 pages)
3. Analyze the pages with simple test script which counts the iteration
number and measures the speed at off-line
Under 64-bit arch, the worst iteration count is PAGE_SIZE / 8 bytes = 512.
The speed is based on the time to consume page_same_filled() function
only. The result, on average, is listed as below:
Num of Iter Speed(MB/s)
Looping-Forward (Orig) 38 99265
Looping-Backward 36 102725
Last-element-check (This Patch) 33 125072
The result shows that the average iteration count decreases by 13% and the
speed increases by 25% with this patch. This patch does not increase the
overall time complexity, though.
I also ran simpler version which uses backward loop. Just looping
backward also makes some improvement, but less than this patch.
A similar change has already been made to zram in 90f82cbfe5 ("zram: try
to avoid worst-case scenario on same element pages").
Link: https://lkml.kernel.org/r/20230205190036.1730134-1-taejoon.song@lge.com
Signed-off-by: Taejoon Song <taejoon.song@lge.com>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Taejoon Song <taejoon.song@lge.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: <yjay.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This patch improves the design doc. Specifically,
1. add a section for the per-memcg mm_struct list, and
2. add a section for the PID controller.
Link: https://lkml.kernel.org/r/20230214035445.1250139-2-talumbau@google.com
Signed-off-by: T.J. Alumbaugh <talumbau@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This patch cleans up the sysfs code. Specifically,
1. use sysfs_emit(),
2. use __ATTR_RW(), and
3. constify multi-gen LRU struct attribute_group.
Link: https://lkml.kernel.org/r/20230214035445.1250139-1-talumbau@google.com
Signed-off-by: T.J. Alumbaugh <talumbau@google.com>
Cc: Yu Zhao <yuzhao@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Syzbot reports a warning in untrack_pfn(). Digging into the root we found
that this is due to memory allocation failure in pmd_alloc_one. And this
failure is produced due to failslab.
In copy_page_range(), memory alloaction for pmd failed. During the error
handling process in copy_page_range(), mmput() is called to remove all
vmas. While untrack_pfn this empty pfn, warning happens.
Here's a simplified flow:
dup_mm
dup_mmap
copy_page_range
copy_p4d_range
copy_pud_range
copy_pmd_range
pmd_alloc
__pmd_alloc
pmd_alloc_one
page = alloc_pages(gfp, 0);
if (!page)
return NULL;
mmput
exit_mmap
unmap_vmas
unmap_single_vma
untrack_pfn
follow_phys
WARN_ON_ONCE(1);
Since this vma is not generate successfully, we can clear flag VM_PAT. In
this case, untrack_pfn() will not be called while cleaning this vma.
Function untrack_pfn_moved() has also been renamed to fit the new logic.
Link: https://lkml.kernel.org/r/20230217025615.1595558-1-mawupeng1@huawei.com
Signed-off-by: Ma Wupeng <mawupeng1@huawei.com>
Reported-by: <syzbot+5f488e922d047d8f00cc@syzkaller.appspotmail.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@suse.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Suresh Siddha <suresh.b.siddha@intel.com>
Cc: Toshi Kani <toshi.kani@hp.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
mwriteprotect_range() errors out if [start, end) doesn't fall in one VMA.
We are facing a use case where multiple VMAs are present in one range of
interest. For example, the following pseudocode reproduces the error
which we are trying to fix:
- Allocate memory of size 16 pages with PROT_NONE with mmap
- Register userfaultfd
- Change protection of the first half (1 to 8 pages) of memory to
PROT_READ | PROT_WRITE. This breaks the memory area in two VMAs.
- Now UFFDIO_WRITEPROTECT_MODE_WP on the whole memory of 16 pages errors
out.
This is a simple use case where user may or may not know if the memory
area has been divided into multiple VMAs.
We need an implementation which doesn't disrupt the already present users.
So keeping things simple, stop going over all the VMAs if any one of the
VMA hasn't been registered in WP mode. While at it, remove the un-needed
error check as well.
[akpm@linux-foundation.org: s/VM_WARN_ON_ONCE/VM_WARN_ONCE/ to fix build]
Link: https://lkml.kernel.org/r/20230217105558.832710-1-usama.anjum@collabora.com
Signed-off-by: Muhammad Usama Anjum <usama.anjum@collabora.com>
Acked-by: Peter Xu <peterx@redhat.com>
Acked-by: David Hildenbrand <david@redhat.com>
Reported-by: Paul Gofman <pgofman@codeweavers.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Historically, we have performed sanity checks on all struct pages being
allocated or freed, making sure they have no unexpected page flags or
certain field values. This can detect insufficient cleanup and some cases
of use-after-free, although on its own it can't always identify the
culprit. The result is a warning and the "bad page" being leaked.
The checks do need some cpu cycles, so in 4.7 with commits 479f854a20
("mm, page_alloc: defer debugging checks of pages allocated from the PCP")
and 4db7548ccb ("mm, page_alloc: defer debugging checks of freed pages
until a PCP drain") they were no longer performed in the hot paths when
allocating and freeing from pcplists, but only when pcplists are bypassed,
refilled or drained. For debugging purposes, with CONFIG_DEBUG_VM enabled
the checks were instead still done in the hot paths and not when refilling
or draining pcplists.
With 4462b32c92 ("mm, page_alloc: more extensive free page checking with
debug_pagealloc"), enabling debug_pagealloc also moved the sanity checks
back to hot pahs. When both debug_pagealloc and CONFIG_DEBUG_VM are
enabled, the checks are done both in hotpaths and pcplist refill/drain.
Even though the non-debug default today might seem to be a sensible
tradeoff between overhead and ability to detect bad pages, on closer look
it's arguably not. As most allocations go through the pcplists, catching
any bad pages when refilling or draining pcplists has only a small chance,
insufficient for debugging or serious hardening purposes. On the other
hand the cost of the checks is concentrated in the already expensive
drain/refill batching operations, and those are done under the often
contended zone lock. That was recently identified as an issue for page
allocation and the zone lock contention reduced by moving the checks
outside of the locked section with a patch "mm: reduce lock contention of
pcp buffer refill", but the cost of the checks is still visible compared
to their removal [1]. In the pcplist draining path free_pcppages_bulk()
the checks are still done under zone->lock.
Thus, remove the checks from pcplist refill and drain paths completely.
Introduce a static key check_pages_enabled to control checks during page
allocation a freeing (whether pcplist is used or bypassed). The static
key is enabled if either is true:
- kernel is built with CONFIG_DEBUG_VM=y (debugging)
- debug_pagealloc or page poisoning is boot-time enabled (debugging)
- init_on_alloc or init_on_free is boot-time enabled (hardening)
The resulting user visible changes:
- no checks when draining/refilling pcplists - less overhead, with
likely no practical reduction of ability to catch bad pages
- no checks when bypassing pcplists in default config (no
debugging/hardening) - less overhead etc. as above
- on typical hardened kernels [2], checks are now performed on each page
allocation/free (previously only when bypassing/draining/refilling
pcplists) - the init_on_alloc/init_on_free enabled should be sufficient
indication for preferring more costly alloc/free operations for
hardening purposes and we shouldn't need to introduce another toggle
- code (various wrappers) removal and simplification
[1] https://lore.kernel.org/all/68ba44d8-6899-c018-dcb3-36f3a96e6bea@sra.uni-hannover.de/
[2] https://lore.kernel.org/all/63ebc499.a70a0220.9ac51.29ea@mx.google.com/
[akpm@linux-foundation.org: coding-style cleanups]
[akpm@linux-foundation.org: make check_pages_enabled static]
Link: https://lkml.kernel.org/r/20230216095131.17336-1-vbabka@suse.cz
Reported-by: Alexander Halbuer <halbuer@sra.uni-hannover.de>
Reported-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
rmqueue_bulk() batches the allocation of multiple elements to refill the
per-CPU buffers into a single hold of the zone lock. Each element is
allocated and checked using check_pcp_refill(). The check touches every
related struct page which is especially expensive for higher order
allocations (huge pages).
This patch reduces the time holding the lock by moving the check out of
the critical section similar to rmqueue_buddy() which allocates a single
element.
Measurements of parallel allocation-heavy workloads show a reduction of
the average huge page allocation latency of 50 percent for two cores and
nearly 90 percent for 24 cores.
Link: https://lkml.kernel.org/r/20230201162549.68384-1-halbuer@sra.uni-hannover.de
Signed-off-by: Alexander Halbuer <halbuer@sra.uni-hannover.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Since commit ee6d3dd4ed ("driver core: make kobj_type constant.") the
driver core allows the usage of const struct kobj_type.
Take advantage of this to constify the structure definition to prevent
modification at runtime.
Link: https://lkml.kernel.org/r/20230220-kobj_type-mm-cma-v1-1-45996cff1a81@weissschuh.net
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Cc: Wedson Almeida Filho <wedsonaf@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
If memory charge failed, instead of returning the hpage but with an error,
allow the function to cleanup the folio properly, which is normally what a
function should do in this case - either return successfully, or return
with no side effect of partial runs with an indicated error.
This will also avoid the caller calling mem_cgroup_uncharge()
unnecessarily with either anon or shmem path (even if it's safe to do so).
Link: https://lkml.kernel.org/r/20230222195247.791227-1-peterx@redhat.com
Signed-off-by: Peter Xu <peterx@redhat.com>
Reviewed-by: David Stevens <stevensd@chromium.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Reviewed-by: Zach O'Keefe <zokeefe@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The check of IS_ENABLED(CONFIG_PROC_SYSCTL) is unnecessary since
register_sysctl_init() will be empty in this case. So, there is no
warnings after removing the check.
Link: https://lkml.kernel.org/r/20230223065947.64134-1-songmuchun@bytedance.com
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The struct pages could be discontiguous when the kfence pool is allocated
via alloc_contig_pages() with CONFIG_SPARSEMEM and
!CONFIG_SPARSEMEM_VMEMMAP.
This may result in setting PG_slab and memcg_data to a arbitrary
address (may be not used as a struct page), which in the worst case
might corrupt the kernel.
So the iteration should use nth_page().
Link: https://lkml.kernel.org/r/20230323025003.94447-1-songmuchun@bytedance.com
Fixes: 0ce20dd840 ("mm: add Kernel Electric-Fence infrastructure")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Reviewed-by: Marco Elver <elver@google.com>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: SeongJae Park <sjpark@amazon.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
It does not reset PG_slab and memcg_data when KFENCE fails to initialize
kfence pool at runtime. It is reporting a "Bad page state" message when
kfence pool is freed to buddy. The checking of whether it is a compound
head page seems unnecessary since we already guarantee this when
allocating kfence pool. Remove the check to simplify the code.
Link: https://lkml.kernel.org/r/20230320030059.20189-1-songmuchun@bytedance.com
Fixes: 0ce20dd840 ("mm: add Kernel Electric-Fence infrastructure")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: Marco Elver <elver@google.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: SeongJae Park <sjpark@amazon.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Kfence only needs its pool to be mapped as page granularity, if it is
inited early. Previous judgement was a bit over protected. From [1], Mark
suggested to "just map the KFENCE region a page granularity". So I
decouple it from judgement and do page granularity mapping for kfence
pool only. Need to be noticed that late init of kfence pool still requires
page granularity mapping.
Page granularity mapping in theory cost more(2M per 1GB) memory on arm64
platform. Like what I've tested on QEMU(emulated 1GB RAM) with
gki_defconfig, also turning off rodata protection:
Before:
[root@liebao ]# cat /proc/meminfo
MemTotal: 999484 kB
After:
[root@liebao ]# cat /proc/meminfo
MemTotal: 1001480 kB
To implement this, also relocate the kfence pool allocation before the
linear mapping setting up, arm64_kfence_alloc_pool is to allocate phys
addr, __kfence_pool is to be set after linear mapping set up.
LINK: [1] https://lore.kernel.org/linux-arm-kernel/Y+IsdrvDNILA59UN@FVFF77S0Q05N/
Suggested-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Zhenhua Huang <quic_zhenhuah@quicinc.com>
Reviewed-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Marco Elver <elver@google.com>
Link: https://lore.kernel.org/r/1679066974-690-1-git-send-email-quic_zhenhuah@quicinc.com
Signed-off-by: Will Deacon <will@kernel.org>
for other subsystems.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZB48xAAKCRDdBJ7gKXxA
js2rAP4zvcMn90vBJhWNElsA7pBgDYD66QCK6JBDHGe3J1qdeQEA8D606pjMBWkL
ly7NifwCjOtFhfDRgEHOXu8g8g1k1QM=
=Cswg
-----END PGP SIGNATURE-----
Merge tag 'mm-hotfixes-stable-2023-03-24-17-09' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull misc fixes from Andrew Morton:
"21 hotfixes, 8 of which are cc:stable. 11 are for MM, the remainder
are for other subsystems"
* tag 'mm-hotfixes-stable-2023-03-24-17-09' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (21 commits)
mm: mmap: remove newline at the end of the trace
mailmap: add entries for Richard Leitner
kcsan: avoid passing -g for test
kfence: avoid passing -g for test
mm: kfence: fix using kfence_metadata without initialization in show_object()
lib: dhry: fix unstable smp_processor_id(_) usage
mailmap: add entry for Enric Balletbo i Serra
mailmap: map Sai Prakash Ranjan's old address to his current one
mailmap: map Rajendra Nayak's old address to his current one
Revert "kasan: drop skip_kasan_poison variable in free_pages_prepare"
mailmap: add entry for Tobias Klauser
kasan, powerpc: don't rename memintrinsics if compiler adds prefixes
mm/ksm: fix race with VMA iteration and mm_struct teardown
kselftest: vm: fix unused variable warning
mm: fix error handling for map_deny_write_exec
mm: deduplicate error handling for map_deny_write_exec
checksyscalls: ignore fstat to silence build warning on LoongArch
nilfs2: fix kernel-infoleak in nilfs_ioctl_wrap_copy()
test_maple_tree: add more testing for mas_empty_area()
maple_tree: fix mas_skip_node() end slot detection
...
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEe7vIQRWZI0iWSE3xu+CwddJFiJoFAmQduWQACgkQu+CwddJF
iJrFXQf7BExyS3TCExTNSCXOR5KdHEkZvfbsWH4be9hngrbVbZhfbVLuxjYsfawS
sWO8eobVy7EHXs2aaA1b9xrfkNIWy4Hy6HHaVNziVDi7inJq/mrAs/QJfMCJn1DM
VXKG4KpP/mP568H9npehQGNPWa60epmiKlnD+sNLTYJGzYA7s2SJkqGGhP7qY7M9
ceb8E/xQoM7kh6Z82wIscYP/uuaoWIVgdg/ww7BkvpKUF7i2w813GDencjvjF79y
U/CdBLGkW32+UBPleH0XQfBhVQZWw7zR6URiBo02YId7aktzEFfUARJAxY/01+M8
/ovR75329lfqsBjG9ErlD8kr3WbXRA==
=+x78
-----END PGP SIGNATURE-----
Merge tag 'slab-fix-for-6.3-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab
Pull slab fix from Vlastimil Babka:
"A single build fix for a corner case configuration that is apparently
possible to achieve on some arches, from Geert"
* tag 'slab-fix-for-6.3-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab:
mm/slab: Fix undefined init_cache_node_node() for NUMA and !SMP
Commit 002f290627 ("cpuset: use static key better and convert to new API")
has used __cpuset_node_allowed() instead of cpuset_node_allowed() to check
whether we can allocate on a memory node. Now this function isn't used by
anyone, so we can do the follow things to clean up it.
1. remove unused codes
2. rename __cpuset_node_allowed() to cpuset_node_allowed()
3. update comments in mm/page_alloc.c
Suggested-by: Waiman Long <longman@redhat.com>
Signed-off-by: Haifeng Xu <haifeng.xu@shopee.com>
Acked-by: Waiman Long <longman@redhat.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Nathan reported that when building with GNU as and a version of clang that
defaults to DWARF5:
$ make -skj"$(nproc)" ARCH=riscv CROSS_COMPILE=riscv64-linux-gnu- \
LLVM=1 LLVM_IAS=0 O=build \
mrproper allmodconfig mm/kfence/kfence_test.o
/tmp/kfence_test-08a0a0.s: Assembler messages:
/tmp/kfence_test-08a0a0.s:14627: Error: non-constant .uleb128 is not supported
/tmp/kfence_test-08a0a0.s:14628: Error: non-constant .uleb128 is not supported
/tmp/kfence_test-08a0a0.s:14632: Error: non-constant .uleb128 is not supported
/tmp/kfence_test-08a0a0.s:14633: Error: non-constant .uleb128 is not supported
/tmp/kfence_test-08a0a0.s:14639: Error: non-constant .uleb128 is not supported
...
This is because `-g` defaults to the compiler debug info default. If the
assembler does not support some of the directives used, the above errors
occur. To fix, remove the explicit passing of `-g`.
All the test wants is that stack traces print valid function names, and
debug info is not required for that. (I currently cannot recall why I
added the explicit `-g`.)
Link: https://lkml.kernel.org/r/20230316224705.709984-1-elver@google.com
Fixes: bc8fbc5f30 ("kfence: add test suite")
Signed-off-by: Marco Elver <elver@google.com>
Reported-by: Nathan Chancellor <nathan@kernel.org>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The variable kfence_metadata is initialized in kfence_init_pool(), then,
it is not initialized if kfence is disabled after booting. In this case,
kfence_metadata will be used (e.g. ->lock and ->state fields) without
initialization when reading /sys/kernel/debug/kfence/objects. There will
be a warning if you enable CONFIG_DEBUG_SPINLOCK. Fix it by creating
debugfs files when necessary.
Link: https://lkml.kernel.org/r/20230315034441.44321-1-songmuchun@bytedance.com
Fixes: 0ce20dd840 ("mm: add Kernel Electric-Fence infrastructure")
Signed-off-by: Muchun Song <songmuchun@bytedance.com>
Tested-by: Marco Elver <elver@google.com>
Reviewed-by: Marco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Jann Horn <jannh@google.com>
Cc: SeongJae Park <sjpark@amazon.de>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This reverts commit 487a32ec24.
should_skip_kasan_poison() reads the PG_skip_kasan_poison flag from
page->flags. However, this line of code in free_pages_prepare():
page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
clears most of page->flags, including PG_skip_kasan_poison, before calling
should_skip_kasan_poison(), which meant that it would never return true as
a result of the page flag being set. Therefore, fix the code to call
should_skip_kasan_poison() before clearing the flags, as we were doing
before the reverted patch.
This fixes a measurable performance regression introduced in the reverted
commit, where munmap() takes longer than intended if HW tags KASAN is
supported and enabled at runtime. Without this patch, we see a
single-digit percentage performance regression in a particular
mmap()-heavy benchmark when enabling HW tags KASAN, and with the patch,
there is no statistically significant performance impact when enabling HW
tags KASAN.
Link: https://lkml.kernel.org/r/20230310042914.3805818-2-pcc@google.com
Fixes: 487a32ec24 ("kasan: drop skip_kasan_poison variable in free_pages_prepare")
Link: https://linux-review.googlesource.com/id/Ic4f13affeebd20548758438bb9ed9ca40e312b79
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Catalin Marinas <catalin.marinas@arm.com> [arm64]
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: <stable@vger.kernel.org> [6.1]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
exit_mmap() will tear down the VMAs and maple tree with the mmap_lock held
in write mode. Ensure that the maple tree is still valid by checking
ksm_test_exit() after taking the mmap_lock in read mode, but before the
for_each_vma() iterator dereferences a destroyed maple tree.
Since the maple tree is destroyed, the flags telling lockdep to check an
external lock has been cleared. Skip the for_each_vma() iterator to avoid
dereferencing a maple tree without the external lock flag, which would
create a lockdep warning.
Link: https://lkml.kernel.org/r/20230308220310.3119196-1-Liam.Howlett@oracle.com
Fixes: a5f18ba072 ("mm/ksm: use vma iterators instead of vma linked list")
Signed-off-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reported-by: Pengfei Xu <pengfei.xu@intel.com>
Link: https://lore.kernel.org/lkml/ZAdUUhSbaa6fHS36@xpf.sh.intel.com/
Reported-by: syzbot+2ee18845e89ae76342c5@syzkaller.appspotmail.com
Link: https://syzkaller.appspot.com/bug?id=64a3e95957cd3deab99df7cd7b5a9475af92c93e
Acked-by: David Hildenbrand <david@redhat.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: <heng.su@intel.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Gao Xiang has reported that the page allocator complains about high order
__GFP_NOFAIL request coming from the vmalloc core:
__alloc_pages+0x1cb/0x5b0 mm/page_alloc.c:5549
alloc_pages+0x1aa/0x270 mm/mempolicy.c:2286
vm_area_alloc_pages mm/vmalloc.c:2989 [inline]
__vmalloc_area_node mm/vmalloc.c:3057 [inline]
__vmalloc_node_range+0x978/0x13c0 mm/vmalloc.c:3227
kvmalloc_node+0x156/0x1a0 mm/util.c:606
kvmalloc include/linux/slab.h:737 [inline]
kvmalloc_array include/linux/slab.h:755 [inline]
kvcalloc include/linux/slab.h:760 [inline]
it seems that I have completely missed high order allocation backing
vmalloc areas case when implementing __GFP_NOFAIL support. This means
that [k]vmalloc at al. can allocate higher order allocations with
__GFP_NOFAIL which can trigger OOM killer for non-costly orders easily or
cause a lot of reclaim/compaction activity if those requests cannot be
satisfied.
Fix the issue by falling back to zero order allocations for __GFP_NOFAIL
requests if the high order request fails.
Link: https://lkml.kernel.org/r/ZAXynvdNqcI0f6Us@dhcp22.suse.cz
Fixes: 9376130c39 ("mm/vmalloc: add support for __GFP_NOFAIL")
Reported-by: Gao Xiang <hsiangkao@linux.alibaba.com>
Link: https://lkml.kernel.org/r/20230305053035.1911-1-hsiangkao@linux.alibaba.com
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Uladzislau Rezki (Sony) <urezki@gmail.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Baoquan He <bhe@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Mel Gorman <mgorman@techsingularity.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
sh/migor_defconfig:
mm/slab.c: In function ‘slab_memory_callback’:
mm/slab.c:1127:23: error: implicit declaration of function ‘init_cache_node_node’; did you mean ‘drain_cache_node_node’? [-Werror=implicit-function-declaration]
1127 | ret = init_cache_node_node(nid);
| ^~~~~~~~~~~~~~~~~~~~
| drain_cache_node_node
The #ifdef condition protecting the definition of init_cache_node_node()
no longer matches the conditions protecting the (multiple) users.
Fix this by syncing the conditions.
Fixes: 76af6a054d ("mm/migrate: add CPU hotplug to demotion #ifdef")
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Link: https://lore.kernel.org/r/b5bdea22-ed2f-3187-6efe-0c72330270a4@infradead.org
Signed-off-by: Geert Uytterhoeven <geert+renesas@glider.be>
Reviewed-by: John Paul Adrian Glaubitz <glaubitz@physik.fu-berlin.de>
Acked-by: Randy Dunlap <rdunlap@infradead.org>
Cc: <stable@vger.kernel.org>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
This moves all hugetlb sysctls to its own file, also kill an
useless hugetlb_treat_movable_handler() defination.
Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com>
Reviewed-by: Luis Chamberlain <mcgrof@kernel.org>
Reviewed-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Muchun Song <songmuchun@bytedance.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
The module pointer in class_create() never actually did anything, and it
shouldn't have been requred to be set as a parameter even if it did
something. So just remove it and fix up all callers of the function in
the kernel tree at the same time.
Cc: "Rafael J. Wysocki" <rafael@kernel.org>
Acked-by: Benjamin Tissoires <benjamin.tissoires@redhat.com>
Link: https://lore.kernel.org/r/20230313181843.1207845-4-gregkh@linuxfoundation.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Since commit ab4d5ed5ee ("slub: Enable sysfs support for
!CONFIG_SLUB_DEBUG"), disabling SLUB_DEBUG no longer disables sysfs
support completely, so fix the description. Also update the path to
/sys/kernel/slab.
Signed-off-by: Vernon Yang <vernon2gm@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
untagged_addr() removes tags/metadata from the address and brings it to
the canonical form. The helper is implemented on arm64 and sparc. Both of
them do untagging based on global rules.
However, Linear Address Masking (LAM) on x86 introduces per-process
settings for untagging. As a result, untagged_addr() is now only
suitable for untagging addresses for the current proccess.
The new helper untagged_addr_remote() has to be used when the address
targets remote process. It requires the mmap lock for target mm to be
taken.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Alexander Potapenko <glider@google.com>
Link: https://lore.kernel.org/all/20230312112612.31869-6-kirill.shutemov%40linux.intel.com
Since commit ee6d3dd4ed ("driver core: make kobj_type constant.")
the driver core allows the usage of const struct kobj_type.
Take advantage of this to constify the structure definition to prevent
modification at runtime.
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Acked-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
The last remaining user of folio_write_one through the write_one_page
wrapper is jfs, so move the functionality there and hard code the
call to metapage_writepage.
Note that the use of the pagecache by the JFS 'metapage' buffer cache
is a bit odd, and we could probably do without VM-level dirty tracking
at all, but that's a change for another time.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Dave Kleikamp <dave.kleikamp@oracle.com>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>