fix:
arch/x86/kernel/acpi/sleep.c:24: warning: 'temp_stack' defined but not used
[ Sven Wegener <sven.wegener@stealer.net>: fix build bug ]
Signed-off-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Acked-by: Pavel Machek <pavel@suse.cz>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
When a CPU core is shut down, all of its caches need to be flushed
to prevent stale data from causing errors if the core is resumed.
Current Linux suspend code performs an assignment after the flush,
which can add dirty data back to the cache. On some AMD platforms,
additional speculative reads have caused crashes on resume because
of this dirty data.
Relocate the cache flush to be the very last thing done before
halting. Tie into an assembly line so the compile will not
reorder it. Add some documentation explaining what is going
on and why we're doing this.
Signed-off-by: Mark Langsdorf <mark.langsdorf@amd.com>
Acked-by: Mark Borden <mark.borden@amd.com>
Acked-by: Michael Hohmuth <michael.hohmuth@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Currently, setup_p4_watchdog() use CCCR_OVF_PMI1 to enable the counter
overflow interrupts to the second logical core. But this bit doesn't work
on Pentium 4 Ds (model 4, stepping 4) and this patch avoids its use on
these processors. Tested on 4 different machines that have this
specific model with success.
Signed-off-by: Aristeu Rozanski <aris@redhat.com>
Cc: jvillalovos@redhat.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
If sysfs registration fails all memory used by IOMMU is freed. This
happens after dma_ops initialization and the functions will access the
freed memory then.
Fix this by initializing dma_ops after the sysfs registration.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
This patch adds device table initializations which forbids memory accesses
for devices per default and disables all page faults.
Signed-off-by: Joerg Roedel <joerg.roedel@amd.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
msr_open tests for someone trying to open a device for a nonexistent CPU.
However, the function always returns 0, not ret like it should, hence
userspace can BUG the kernel trivially. This bug was introduced by the
cdev lock_kernel pushdown patch last May.
The BUG can be reproduced with these commands:
# mknod fubar c 202 8 <-- pick a number less than NR_CPUS that is not
the number of an online CPU
# cat fubar
Signed-off-by: Darrick J. Wong <djwong@us.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
AMD SB700 based systems with spread spectrum enabled use a SMM based
HPET emulation to provide proper frequency setting. The SMM code is
initialized with the first HPET register access and takes some time to
complete. During this time the config register reads 0xffffffff. We
check for max. 1000 loops whether the config register reads a non
0xffffffff value to make sure that HPET is up and running before we go
further. A counting loop is safe, as the HPET access takes thousands
of CPU cycles. On non SB700 based machines this check is only done
once and has no side effects.
Based on a quirk patch from: crane cai <crane.cai@amd.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
clear bits for cpu nr > 8.
This allows us to boot the full range of possible CPUs that the
supported APIC model will allow. Previously we'd hang or boot up
with less than 8 CPUs.
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Tested-by: Jeff Chua <jeff.chua.linux@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
For some reason we had two parsers registered for maxcpus=. One in init/main.c
and another in arch/x86/smpboot.c. So I nuked the one in arch/x86.
Also 64-bit kernels used to handle maxcpus= as documented in
Documentation/cpu-hotplug.txt. CPUs with 'id > maxcpus' are initialized
but not booted. 32-bit version for some reason ignored them even though
all the infrastructure for booting them later is there.
In the current mainline both 64 and 32 bit versions are broken.
This patch restores the correct behaviour. I've tested x86_64 version on
4- and 8- way Core2 and 2-way Opteron based machines. Various config
combinations SMP, !SMP, CPU_HOTPLUG, !CPU_HOTPLUG.
Booted with maxcpus=1 and maxcpus=4, etc. Everything is working as expected.
So far we've received two reports from different people confirming that 32-bit
version also works fine, both on dual core laptops and 16way server machines.
[v2: This version fixes visws breakage pointed out by Ingo.]
Signed-off-by: Max Krasnyansky <maxk@qualcomm.com>
Cc: lizf@cn.fujitsu.com
Cc: jeff.chua.linux@gmail.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
SGI UV will have MMCFG base addresses that are greater than 4GB (32 bits).
v2: Use CONFIG_RESOURCES_64BIT instead of CONFIG_X86_64.
v3: Create a flag, that is set by platform specific code,
to disable the > 4GB check.
Signed-off-by: John Keller <jpk@sgi.com>
Cc: jpk@sgi.com
Signed-off-by: Ingo Molnar <mingo@elte.hu>
WARNING: vmlinux.o(.text+0xcd1f): Section mismatch in reference from the function find_and_reserve_crashkernel() to the function .init.text:find_e820_area()
The function find_and_reserve_crashkernel() references
the function __init find_e820_area().
This is often because find_and_reserve_crashkernel lacks a __init
annotation or the annotation of find_e820_area is wrong.
WARNING: vmlinux.o(.text+0xcd38): Section mismatch in reference from the function find_and_reserve_crashkernel() to the function .init.text:reserve_bootmem_generic()
The function find_and_reserve_crashkernel() references
the function __init reserve_bootmem_generic().
This is often because find_and_reserve_crashkernel lacks a __init
annotation or the annotation of reserve_bootmem_generic is wrong.
find_and_reserve_crashkernel is called from __init function (reserve_crashkernel)
and calls 2 __init functions (find_e820_area, reserve_bootmem_generic),
so mark it __init
Signed-off-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
WARNING: vmlinux.o(.text+0x14cf8): Section mismatch in reference from the function map_high() to the function .init.text:init_extra_mapping_uc()
The function map_high() references
the function __init init_extra_mapping_uc().
This is often because map_high lacks a __init
annotation or the annotation of init_extra_mapping_uc is wrong.
WARNING: vmlinux.o(.text+0x14d05): Section mismatch in reference from the function map_high() to the function .init.text:init_extra_mapping_wb()
The function map_high() references
the function __init init_extra_mapping_wb().
This is often because map_high lacks a __init
annotation or the annotation of init_extra_mapping_wb is wrong.
map_high is called only from __init functions (map_*_high)
and calls 2 __init_functions (init_extra_mapping_*)
Signed-off-by: Marcin Slusarz <marcin.slusarz@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86: fix 2.6.27rc1 cannot boot more than 8CPUs
x86: make "apic" an early_param() on 32-bit, NULL check
EFI, x86: fix function prototype
x86, pci-calgary: fix function declaration
x86: work around gcc 3.4.x bug
x86: make "apic" an early_param() on 32-bit
x86, debug: tone down arch/x86/kernel/mpparse.c debugging printk
x86_64: restore the proper NR_IRQS define so larger systems work.
x86: Restore proper vector locking during cpu hotplug
x86: Fix broken VMI in 2.6.27-rc..
x86: fdiv bug detection fix
Jeff Chua reported that booting a !bigsmp kernel on a 16-way box
hangs silently.
this is a long-standing issue, smp start AP cpu could check the
apic id >=8 etc before trying to start it.
achieve this by moving the def_to_bigsmp check later and skip the
apicid id > 8
[ mingo@elte.hu: clean up the message that is printed. ]
Reported-by: "Jeff Chua" <jeff.chua.linux@gmail.com>
Signed-off-by: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
arch/x86/kernel/setup.c | 6 ------
arch/x86/kernel/smpboot.c | 10 ++++++++++
2 files changed, 10 insertions(+), 6 deletions(-)
Cyrill Gorcunov observed:
> you turned it into early_param so now it's NULL injecting vulnerabled.
> Could you please add checking for NULL str param?
fix that.
Also, change the name of 'str' into 'arg', to make it more apparent
that this is an optional argument that can be NULL, not a string
parameter that is empty when unset.
Reported-by: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Fix function declaration:
linux-next-20080807/arch/x86/kernel/pci-calgary_64.c:1353:36: warning: non-ANSI function declaration of function 'get_tce_space_from_tar'
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Acked-by: Acked-by: Muli Ben-Yehuda <muli@il.ibm.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
On 32-bit, "apic" is a __setup() param meaning it is parsed rather
late in the game. Make it an early_param() for apic_printk() use
by arch/x86/kernel/mpparse.c.
On 64-bit, it already is an early_param().
Signed-off-by: Rene Herman <rene.herman@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
commit 11a62a0560 turns some formerly
nopped debugging printks in arch/x86/kernel/mppparse.c into regular
ones. The one at the top of smp_scan_config() in particular also
prints on !CONFIG_SMP/CONFIG_X86_LOCAL_APIC kernels and UP machines
without anything resembling MP tables which makes their lowly UP
owners wonder...
Turn the former Dprintk()s into apic_printk()s instead meaning that
their printing is dependent on passing the apic=verbose (or =debug)
command line param.
On 32-bit, "apic" is a __setup() param which isn't early enough
for this code and therefore needs a followup changing it into an
early_param(). On 64-bit, it already is.
Signed-off-by: Rene Herman <rene.herman@gmail.com>
Cc: Andrew Morton <akpm@osdl.org>
Cc: Yinghai Lu <yhlu.kernel@gmail.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Having cpu_online_map change during assign_irq_vector can result
in some really nasty and weird things happening. The one that
bit me last time was accessing non existent per cpu memory for non
existent cpus.
This locking was removed in a sloppy x86_64 and x86_32 merge patch.
Guys can we please try and avoid subtly breaking x86 when we are
merging files together?
Signed-off-by: Eric W. Biederman <ebiederm@xmission.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
The lowmem mapping table created by VMI need not depend on max_low_pfn
at all. Instead we now create an extra large mapping which covers all
possible lowmem instead of the physical ram that is actually available.
This allows the vmi initialization to be done before max_low_pfn could
be computed. We also move the vmi_init code very early in the boot process
so that nobody accidentally breaks the fixmap dependancy.
Signed-off-by: Alok N Kataria <akataria@vmware.com>
Acked-by: Zachary Amsden <zach@vmware.com>
Signed-off-by: H. Peter Anvin <hpa@zytor.com>
This patch provides support for the _PSD ACPI object in the Powernow-k8
driver. Although it looks like an invasive patch, most of it is
simply the consequence of turning the static acpi_performance_data
structure into a pointer.
AMD has tested it on several machines over the past few days without issue.
[trivial checkpatch warnings fixed up by davej]
[X86_POWERNOW_K8_ACPI=n buildfix from Randy Dunlap]
Signed-off-by: Mark Langsdorf <mark.langsdorf@amd.com>
Tested-by: Frank Arnold <frank.arnold@amd.com>
Signed-off-by: Randy Dunlap <randy.dunlap@oracle.com>
Signed-off-by: Dave Jones <davej@redhat.com>
arch/x86/kernel/cpu/cpufreq/elanfreq.c:47:26: warning: symbol 'elan_multiplier' was not declared. Should it be static?
Yes, yes it should.
Signed-off-by: Dave Jones <davej@redhat.com>
The fdiv detection code writes s32 integer into
the boot_cpu_data.fdiv_bug.
However, the boot_cpu_data.fdiv_bug is only char (s8)
field so the detection overwrites already set fields for
other bugs, e.g. the f00f bug field.
Use local s32 variable to receive result.
This is a partial fix to Bugzilla #9928 - fixes wrong
information about the f00f bug (tested) and probably
for coma bug (I have no cpu to test this).
Signed-off-by: Krzysztof Helt <krzysztof.h1@wp.pl>
Cc: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Exports needed by the GRU driver.
Signed-off-by: Jack Steiner <steiner@sgi.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This IOMMU helper function doesn't work for some architectures:
http://marc.info/?l=linux-kernel&m=121699304403202&w=2
It also breaks POWER and SPARC builds:
http://marc.info/?l=linux-kernel&m=121730388001890&w=2
Currently, only x86 IOMMUs use this so let's move it to x86 for
now.
Reported-by: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jbarnes/pci-2.6: (21 commits)
x86/PCI: use dev_printk when possible
PCI: add D3 power state avoidance quirk
PCI: fix bogus "'device' may be used uninitialized" warning in pci_slot
PCI: add an option to allow ASPM enabled forcibly
PCI: disable ASPM on pre-1.1 PCIe devices
PCI: disable ASPM per ACPI FADT setting
PCI MSI: Don't disable MSIs if the mask bit isn't supported
PCI: handle 64-bit resources better on 32-bit machines
PCI: rewrite PCI BAR reading code
PCI: document pci_target_state
PCI hotplug: fix typo in pcie hotplug output
x86 gart: replace to_pages macro with iommu_num_pages
x86, AMD IOMMU: replace to_pages macro with iommu_num_pages
iommu: add iommu_num_pages helper function
dma-coherent: add documentation to new interfaces
Cris: convert to using generic dma-coherent mem allocator
Sh: use generic per-device coherent dma allocator
ARM: support generic per-device coherent dma mem
Generic dma-coherent: fix DMA_MEMORY_EXCLUSIVE
x86: use generic per-device dma coherent allocator
...
Clean up and optimize cpumask_of_cpu(), by sharing all the zero words.
Instead of stupidly generating all possible i=0...NR_CPUS 2^i patterns
creating a huge array of constant bitmasks, realize that the zero words
can be shared.
In other words, on a 64-bit architecture, we only ever need 64 of these
arrays - with a different bit set in one single world (with enough zero
words around it so that we can create any bitmask by just offsetting in
that big array). And then we just put enough zeroes around it that we
can point every single cpumask to be one of those things.
So when we have 4k CPU's, instead of having 4k arrays (of 4k bits each,
with one bit set in each array - 2MB memory total), we have exactly 64
arrays instead, each 8k bits in size (64kB total).
And then we just point cpumask(n) to the right position (which we can
calculate dynamically). Once we have the right arrays, getting
"cpumask(n)" ends up being:
static inline const cpumask_t *get_cpu_mask(unsigned int cpu)
{
const unsigned long *p = cpu_bit_bitmap[1 + cpu % BITS_PER_LONG];
p -= cpu / BITS_PER_LONG;
return (const cpumask_t *)p;
}
This brings other advantages and simplifications as well:
- we are not wasting memory that is just filled with a single bit in
various different places
- we don't need all those games to re-create the arrays in some dense
format, because they're already going to be dense enough.
if we compile a kernel for up to 4k CPU's, "wasting" that 64kB of memory
is a non-issue (especially since by doing this "overlapping" trick we
probably get better cache behaviour anyway).
[ mingo@elte.hu:
Converted Linus's mails into a commit. See:
http://lkml.org/lkml/2008/7/27/156http://lkml.org/lkml/2008/7/28/320
Also applied a family filter - which also has the side-effect of leaving
out the bits where Linus calls me an idio... Oh, never mind ;-)
]
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Cc: Mike Travis <travis@sgi.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
commit 3e9704739d ("x86: boot secondary
cpus through initial_code") causes the kernel to crash when a CPU is
brought online after the read only sections have been write
protected. The write to initial_code in do_boot_cpu() fails.
Move inital_code to .cpuinit.data section.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: H. Peter Anvin <hpa@zytor.com>
* 'x86-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/linux-2.6-tip:
x86, AMD IOMMU: include amd_iommu_last_bdf in device initialization
x86: fix IBM Summit based systems' phys_cpu_present_map on 32-bit kernels
x86, RDC321x: remove gpio.h complications
x86, RDC321x: add to mach-default
crashdump: fix undefined reference to `elfcorehdr_addr'
flag parameters: fix compile error of sys_epoll_create1
This patch implements devices state save/restore before after kexec.
This patch together with features in kexec_jump patch can be used for
following:
- A simple hibernation implementation without ACPI support. You can kexec a
hibernating kernel, save the memory image of original system and shutdown
the system. When resuming, you restore the memory image of original system
via ordinary kexec load then jump back.
- Kernel/system debug through making system snapshot. You can make system
snapshot, jump back, do some thing and make another system snapshot.
- Cooperative multi-kernel/system. With kexec jump, you can switch between
several kernels/systems quickly without boot process except the first time.
This appears like swap a whole kernel/system out/in.
- A general method to call program in physical mode (paging turning
off). This can be used to invoke BIOS code under Linux.
The following user-space tools can be used with kexec jump:
- kexec-tools needs to be patched to support kexec jump. The patches
and the precompiled kexec can be download from the following URL:
source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2
patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2
binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10
- makedumpfile with patches are used as memory image saving tool, it
can exclude free pages from original kernel memory image file. The
patches and the precompiled makedumpfile can be download from the
following URL:
source: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-src_cvs_kh10.tar.bz2
patches: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile-patches_cvs_kh10.tar.bz2
binary: http://khibernation.sourceforge.net/download/release_v10/makedumpfile/makedumpfile_cvs_kh10
- An initramfs image can be used as the root file system of kexeced
kernel. An initramfs image built with "BuildRoot" can be downloaded
from the following URL:
initramfs image: http://khibernation.sourceforge.net/download/release_v10/initramfs/rootfs_cvs_kh10.gz
All user space tools above are included in the initramfs image.
Usage example of simple hibernation:
1. Compile and install patched kernel with following options selected:
CONFIG_X86_32=y
CONFIG_RELOCATABLE=y
CONFIG_KEXEC=y
CONFIG_CRASH_DUMP=y
CONFIG_PM=y
CONFIG_HIBERNATION=y
CONFIG_KEXEC_JUMP=y
2. Build an initramfs image contains kexec-tool and makedumpfile, or
download the pre-built initramfs image, called rootfs.gz in
following text.
3. Prepare a partition to save memory image of original kernel, called
hibernating partition in following text.
4. Boot kernel compiled in step 1 (kernel A).
5. In the kernel A, load kernel compiled in step 1 (kernel B) with
/sbin/kexec. The shell command line can be as follow:
/sbin/kexec --load-preserve-context /boot/bzImage --mem-min=0x100000
--mem-max=0xffffff --initrd=rootfs.gz
6. Boot the kernel B with following shell command line:
/sbin/kexec -e
7. The kernel B will boot as normal kexec. In kernel B the memory
image of kernel A can be saved into hibernating partition as
follow:
jump_back_entry=`cat /proc/cmdline | tr ' ' '\n' | grep kexec_jump_back_entry | cut -d '='`
echo $jump_back_entry > kexec_jump_back_entry
cp /proc/vmcore dump.elf
Then you can shutdown the machine as normal.
8. Boot kernel compiled in step 1 (kernel C). Use the rootfs.gz as
root file system.
9. In kernel C, load the memory image of kernel A as follow:
/sbin/kexec -l --args-none --entry=`cat kexec_jump_back_entry` dump.elf
10. Jump back to the kernel A as follow:
/sbin/kexec -e
Then, kernel A is resumed.
Implementation point:
To support jumping between two kernels, before jumping to (executing)
the new kernel and jumping back to the original kernel, the devices
are put into quiescent state, and the state of devices and CPU is
saved. After jumping back from kexeced kernel and jumping to the new
kernel, the state of devices and CPU are restored accordingly. The
devices/CPU state save/restore code of software suspend is called to
implement corresponding function.
Known issues:
- Because the segment number supported by sys_kexec_load is limited,
hibernation image with many segments may not be load. This is
planned to be eliminated by adding a new flag to sys_kexec_load to
make a image can be loaded with multiple sys_kexec_load invoking.
Now, only the i386 architecture is supported.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Nigel Cunningham <nigel@nigel.suspend2.net>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This patch provides an enhancement to kexec/kdump. It implements the
following features:
- Backup/restore memory used by the original kernel before/after
kexec.
- Save/restore CPU state before/after kexec.
The features of this patch can be used as a general method to call program in
physical mode (paging turning off). This can be used to call BIOS code under
Linux.
kexec-tools needs to be patched to support kexec jump. The patches and
the precompiled kexec can be download from the following URL:
source: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-src_git_kh10.tar.bz2
patches: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec-tools-patches_git_kh10.tar.bz2
binary: http://khibernation.sourceforge.net/download/release_v10/kexec-tools/kexec_git_kh10
Usage example of calling some physical mode code and return:
1. Compile and install patched kernel with following options selected:
CONFIG_X86_32=y
CONFIG_KEXEC=y
CONFIG_PM=y
CONFIG_KEXEC_JUMP=y
2. Build patched kexec-tool or download the pre-built one.
3. Build some physical mode executable named such as "phy_mode"
4. Boot kernel compiled in step 1.
5. Load physical mode executable with /sbin/kexec. The shell command
line can be as follow:
/sbin/kexec --load-preserve-context --args-none phy_mode
6. Call physical mode executable with following shell command line:
/sbin/kexec -e
Implementation point:
To support jumping without reserving memory. One shadow backup page (source
page) is allocated for each page used by kexeced code image (destination
page). When do kexec_load, the image of kexeced code is loaded into source
pages, and before executing, the destination pages and the source pages are
swapped, so the contents of destination pages are backupped. Before jumping
to the kexeced code image and after jumping back to the original kernel, the
destination pages and the source pages are swapped too.
C ABI (calling convention) is used as communication protocol between
kernel and called code.
A flag named KEXEC_PRESERVE_CONTEXT for sys_kexec_load is added to
indicate that the loaded kernel image is used for jumping back.
Now, only the i386 architecture is supported.
Signed-off-by: Huang Ying <ying.huang@intel.com>
Acked-by: Vivek Goyal <vgoyal@redhat.com>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: Nigel Cunningham <nigel@nigel.suspend2.net>
Cc: "Rafael J. Wysocki" <rjw@sisk.pl>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
The calgary code can give drivers addresses above 4GB which is very bad
for hardware that is only 32bit DMA addressable.
With this patch, the calgary code sets the global dma_ops to swiotlb or
nommu properly, and the dma_ops of devices behind the Calgary/CalIOC2
to calgary_dma_ops. So the calgary code can handle devices safely that
aren't behind the Calgary/CalIOC2.
[akpm@linux-foundation.org: coding-style fixes]
Signed-off-by: Alexis Bruemmer <alexisb@us.ibm.com>
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: Muli Ben-Yehuda <muli@il.ibm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Add per-device dma_mapping_ops support for CONFIG_X86_64 as POWER
architecture does:
This enables us to cleanly fix the Calgary IOMMU issue that some devices
are not behind the IOMMU (http://lkml.org/lkml/2008/5/8/423).
I think that per-device dma_mapping_ops support would be also helpful for
KVM people to support PCI passthrough but Andi thinks that this makes it
difficult to support the PCI passthrough (see the above thread). So I
CC'ed this to KVM camp. Comments are appreciated.
A pointer to dma_mapping_ops to struct dev_archdata is added. If the
pointer is non NULL, DMA operations in asm/dma-mapping.h use it. If it's
NULL, the system-wide dma_ops pointer is used as before.
If it's useful for KVM people, I plan to implement a mechanism to register
a hook called when a new pci (or dma capable) device is created (it works
with hot plugging). It enables IOMMUs to set up an appropriate
dma_mapping_ops per device.
The major obstacle is that dma_mapping_error doesn't take a pointer to the
device unlike other DMA operations. So x86 can't have dma_mapping_ops per
device. Note all the POWER IOMMUs use the same dma_mapping_error function
so this is not a problem for POWER but x86 IOMMUs use different
dma_mapping_error functions.
The first patch adds the device argument to dma_mapping_error. The patch
is trivial but large since it touches lots of drivers and dma-mapping.h in
all the architecture.
This patch:
dma_mapping_error() doesn't take a pointer to the device unlike other DMA
operations. So we can't have dma_mapping_ops per device.
Note that POWER already has dma_mapping_ops per device but all the POWER
IOMMUs use the same dma_mapping_error function. x86 IOMMUs use device
argument.
[akpm@linux-foundation.org: fix sge]
[akpm@linux-foundation.org: fix svc_rdma]
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: fix bnx2x]
[akpm@linux-foundation.org: fix s2io]
[akpm@linux-foundation.org: fix pasemi_mac]
[akpm@linux-foundation.org: fix sdhci]
[akpm@linux-foundation.org: build fix]
[akpm@linux-foundation.org: fix sparc]
[akpm@linux-foundation.org: fix ibmvscsi]
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Cc: Muli Ben-Yehuda <muli@il.ibm.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Avi Kivity <avi@qumranet.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
* Replace previous instances of the cpumask_of_cpu_ptr* macros
with a the new (lvalue capable) generic cpumask_of_cpu().
Signed-off-by: Mike Travis <travis@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
* Create the cpumask_of_cpu_map statically in the init data section
using NR_CPUS but replace it during boot up with one sized by
nr_cpu_ids (num possible cpus).
Signed-off-by: Mike Travis <travis@sgi.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Jack Steiner <steiner@sgi.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Signed-off-by: Ingo Molnar <mingo@elte.hu>