An invalid argument to KVM_SET_MP_STATE has no effect other than making the
vCPU fail to run at the next KVM_RUN. Since it is extremely unlikely that
any userspace is relying on it, fail with -EINVAL just like for other
architectures.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When allocating memory for mci_ctl2_banks fails, KVM doesn't release
mce_banks leading to memoryleak. Fix this issue by calling kfree()
for it when kcalloc() fails.
Fixes: 281b52780b ("KVM: x86: Add emulation for MSR_IA32_MCx_CTL2 MSRs.")
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Message-Id: <20220901122300.22298-1-linmiaohe@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM should not claim to virtualize unknown IA32_ARCH_CAPABILITIES
bits. When kvm_get_arch_capabilities() was originally written, there
were only a few bits defined in this MSR, and KVM could virtualize all
of them. However, over the years, several bits have been defined that
KVM cannot just blindly pass through to the guest without additional
work (such as virtualizing an MSR promised by the
IA32_ARCH_CAPABILITES feature bit).
Define a mask of supported IA32_ARCH_CAPABILITIES bits, and mask off
any other bits that are set in the hardware MSR.
Cc: Paolo Bonzini <pbonzini@redhat.com>
Fixes: 5b76a3cff0 ("KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentry")
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-Id: <20220830174947.2182144-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
GCC has supported asm goto since 4.5, and Clang has since version 9.0.0.
The minimum supported versions of these tools for the build according to
Documentation/process/changes.rst are 5.1 and 11.0.0 respectively.
Remove the feature detection script, Kconfig option, and clean up some
fallback code that is no longer supported.
The removed script was also testing for a GCC specific bug that was
fixed in the 4.7 release.
Also remove workarounds for bpftrace using clang older than 9.0.0, since
other BPF backend fixes are required at this point.
Link: https://lore.kernel.org/lkml/CAK7LNATSr=BXKfkdW8f-H5VT_w=xBpT2ZQcZ7rm6JfkdE+QnmA@mail.gmail.com/
Link: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=48637
Acked-by: Borislav Petkov <bp@suse.de>
Suggested-by: Masahiro Yamada <masahiroy@kernel.org>
Suggested-by: Alexei Starovoitov <alexei.starovoitov@gmail.com>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Nathan Chancellor <nathan@kernel.org>
Reviewed-by: Alexandre Belloni <alexandre.belloni@bootlin.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Regardless of the 'msr' argument passed to the VMX version of
msr_write_intercepted(), the function always checks to see if a
specific MSR (IA32_SPEC_CTRL) is intercepted for write. This behavior
seems unintentional and unexpected.
Modify the function so that it checks to see if the provided 'msr'
index is intercepted for write.
Fixes: 67f4b9969c ("KVM: nVMX: Handle dynamic MSR intercept toggling")
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220810213050.2655000-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When A/D bits are not available, KVM uses a software access tracking
mechanism, which involves making the SPTEs inaccessible. However,
the clear_young() MMU notifier does not flush TLBs. So it is possible
that there may still be stale, potentially writable, TLB entries.
This is usually fine, but can be problematic when enabling dirty
logging, because it currently only does a TLB flush if any SPTEs were
modified. But if all SPTEs are in access-tracked state, then there
won't be a TLB flush, which means that the guest could still possibly
write to memory and not have it reflected in the dirty bitmap.
So just unconditionally flush the TLBs when enabling dirty logging.
As an alternative, KVM could explicitly check the MMU-Writable bit when
write-protecting SPTEs to decide if a flush is needed (instead of
checking the Writable bit), but given that a flush almost always happens
anyway, so just making it unconditional seems simpler.
Signed-off-by: Junaid Shahid <junaids@google.com>
Message-Id: <20220810224939.2611160-1-junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This is only used by kvm_mmu_pte_write(), which no longer actually
creates the new SPTE and instead just clears the old SPTE. So we
just need to check if the old SPTE was shadow-present instead of
calling need_remote_flush(). Hence we can drop this function. It was
incomplete anyway as it didn't take access-tracking into account.
This patch should not result in any functional change.
Signed-off-by: Junaid Shahid <junaids@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220723024316.2725328-1-junaids@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The following BUG was reported:
traps: Missing ENDBR: andw_ax_dx+0x0/0x10 [kvm]
------------[ cut here ]------------
kernel BUG at arch/x86/kernel/traps.c:253!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
<TASK>
asm_exc_control_protection+0x2b/0x30
RIP: 0010:andw_ax_dx+0x0/0x10 [kvm]
Code: c3 cc cc cc cc 0f 1f 44 00 00 66 0f 1f 00 48 19 d0 c3 cc cc cc
cc 0f 1f 40 00 f3 0f 1e fa 20 d0 c3 cc cc cc cc 0f 1f 44 00 00
<66> 0f 1f 00 66 21 d0 c3 cc cc cc cc 0f 1f 40 00 66 0f 1f 00 21
d0
? andb_al_dl+0x10/0x10 [kvm]
? fastop+0x5d/0xa0 [kvm]
x86_emulate_insn+0x822/0x1060 [kvm]
x86_emulate_instruction+0x46f/0x750 [kvm]
complete_emulated_mmio+0x216/0x2c0 [kvm]
kvm_arch_vcpu_ioctl_run+0x604/0x650 [kvm]
kvm_vcpu_ioctl+0x2f4/0x6b0 [kvm]
? wake_up_q+0xa0/0xa0
The BUG occurred because the ENDBR in the andw_ax_dx() fastop function
had been incorrectly "sealed" (converted to a NOP) by apply_ibt_endbr().
Objtool marked it to be sealed because KVM has no compile-time
references to the function. Instead KVM calculates its address at
runtime.
Prevent objtool from annotating fastop functions as sealable by creating
throwaway dummy compile-time references to the functions.
Fixes: 6649fa876d ("x86/ibt,kvm: Add ENDBR to fastops")
Reported-by: Pengfei Xu <pengfei.xu@intel.com>
Debugged-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Message-Id: <0d4116f90e9d0c1b754bb90c585e6f0415a1c508.1660837839.git.jpoimboe@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
SETCC_ALIGN and FOP_ALIGN are both 16. Remove the special casing for
FOP_SETCC() and just make it a normal fastop.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Message-Id: <7c13d94d1a775156f7e36eed30509b274a229140.1660837839.git.jpoimboe@kernel.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The motivation of this renaming is to make these variables and related
helper functions less mmu_notifier bound and can also be used for non
mmu_notifier based page invalidation. mmu_invalidate_* was chosen to
better describe the purpose of 'invalidating' a page that those
variables are used for.
- mmu_notifier_seq/range_start/range_end are renamed to
mmu_invalidate_seq/range_start/range_end.
- mmu_notifier_retry{_hva} helper functions are renamed to
mmu_invalidate_retry{_hva}.
- mmu_notifier_count is renamed to mmu_invalidate_in_progress to
avoid confusion with mn_active_invalidate_count.
- While here, also update kvm_inc/dec_notifier_count() to
kvm_mmu_invalidate_begin/end() to match the change for
mmu_notifier_count.
No functional change intended.
Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Message-Id: <20220816125322.1110439-3-chao.p.peng@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Documentation formatting fixes
* Make rseq selftest compatible with glibc-2.35
* Fix handling of illegal LEA reg, reg
* Cleanup creation of debugfs entries
* Fix steal time cache handling bug
* Fixes for MMIO caching
* Optimize computation of number of LBRs
* Fix uninitialized field in guest_maxphyaddr < host_maxphyaddr path
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmL0qwIUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroML1gf/SK6by+Gi0r7WSkrDjU94PKZ8D6Y3
fErMhratccc9IfL3p90IjCVhEngfdQf5UVHExA5TswgHHAJTpECzuHya9TweQZc5
2rrTvufup0MNALfzkSijrcI80CBvrJc6JyOCkv0BLp7yqXUrnrm0OOMV2XniS7y0
YNn2ZCy44tLqkNiQrLhJQg3EsXu9l7okGpHSVO6iZwC7KKHvYkbscVFa/AOlaAwK
WOZBB+1Ee+/pWhxsngM1GwwM3ZNU/jXOSVjew5plnrD4U7NYXIDATszbZAuNyxqV
5gi+wvTF1x9dC6Tgd3qF7ouAqtT51BdRYaI9aYHOYgvzqdNFHWJu3XauDQ==
=vI6Q
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull more kvm updates from Paolo Bonzini:
- Xen timer fixes
- Documentation formatting fixes
- Make rseq selftest compatible with glibc-2.35
- Fix handling of illegal LEA reg, reg
- Cleanup creation of debugfs entries
- Fix steal time cache handling bug
- Fixes for MMIO caching
- Optimize computation of number of LBRs
- Fix uninitialized field in guest_maxphyaddr < host_maxphyaddr path
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (26 commits)
KVM: x86/MMU: properly format KVM_CAP_VM_DISABLE_NX_HUGE_PAGES capability table
Documentation: KVM: extend KVM_CAP_VM_DISABLE_NX_HUGE_PAGES heading underline
KVM: VMX: Adjust number of LBR records for PERF_CAPABILITIES at refresh
KVM: VMX: Use proper type-safe functions for vCPU => LBRs helpers
KVM: x86: Refresh PMU after writes to MSR_IA32_PERF_CAPABILITIES
KVM: selftests: Test all possible "invalid" PERF_CAPABILITIES.LBR_FMT vals
KVM: selftests: Use getcpu() instead of sched_getcpu() in rseq_test
KVM: selftests: Make rseq compatible with glibc-2.35
KVM: Actually create debugfs in kvm_create_vm()
KVM: Pass the name of the VM fd to kvm_create_vm_debugfs()
KVM: Get an fd before creating the VM
KVM: Shove vcpu stats_id init into kvm_vcpu_init()
KVM: Shove vm stats_id init into kvm_create_vm()
KVM: x86/mmu: Add sanity check that MMIO SPTE mask doesn't overlap gen
KVM: x86/mmu: rename trace function name for asynchronous page fault
KVM: x86/xen: Stop Xen timer before changing IRQ
KVM: x86/xen: Initialize Xen timer only once
KVM: SVM: Disable SEV-ES support if MMIO caching is disable
KVM: x86/mmu: Fully re-evaluate MMIO caching when SPTE masks change
KVM: x86: Tag kvm_mmu_x86_module_init() with __init
...
Now that the PMU is refreshed when MSR_IA32_PERF_CAPABILITIES is written
by host userspace, zero out the number of LBR records for a vCPU during
PMU refresh if PMU_CAP_LBR_FMT is not set in PERF_CAPABILITIES instead of
handling the check at run-time.
guest_cpuid_has() is expensive due to the linear search of guest CPUID
entries, intel_pmu_lbr_is_enabled() is checked on every VM-Enter, _and_
simply enumerating the same "Model" as the host causes KVM to set the
number of LBR records to a non-zero value.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220727233424.2968356-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Turn vcpu_to_lbr_desc() and vcpu_to_lbr_records() into functions in order
to provide type safety, to document exactly what they return, and to
allow consuming the helpers in vmx.h. Move the definitions as necessary
(the macros "reference" to_vmx() before its definition).
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220727233424.2968356-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Refresh the PMU if userspace modifies MSR_IA32_PERF_CAPABILITIES. KVM
consumes the vCPU's PERF_CAPABILITIES when enumerating PEBS support, but
relies on CPUID updates to refresh the PMU. I.e. KVM will do the wrong
thing if userspace stuffs PERF_CAPABILITIES _after_ setting guest CPUID.
Opportunistically fix a curly-brace indentation.
Fixes: c59a1f106f ("KVM: x86/pmu: Add IA32_PEBS_ENABLE MSR emulation for extended PEBS")
Cc: Like Xu <like.xu.linux@gmail.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220727233424.2968356-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add compile-time and init-time sanity checks to ensure that the MMIO SPTE
mask doesn't overlap the MMIO SPTE generation or the MMU-present bit.
The generation currently avoids using bit 63, but that's as much
coincidence as it is strictly necessarly. That will change in the future,
as TDX support will require setting bit 63 (SUPPRESS_VE) in the mask.
Explicitly carve out the bits that are allowed in the mask so that any
future shuffling of SPTE bits doesn't silently break MMIO caching (KVM
has broken MMIO caching more than once due to overlapping the generation
with other things).
Suggested-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20220805194133.86299-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename the tracepoint function from trace_kvm_async_pf_doublefault() to
trace_kvm_async_pf_repeated_fault() to make it clear, since double fault
has nothing to do with this trace function.
Asynchronous Page Fault (APF) is an artifact generated by KVM when it
cannot find a physical page to satisfy an EPT violation. KVM uses APF to
tell the guest OS to do something else such as scheduling other guest
processes to make forward progress. However, when another guest process
also touches a previously APFed page, KVM halts the vCPU instead of
generating a repeated APF to avoid wasting cycles.
Double fault (#DF) clearly has a different meaning and a different
consequence when triggered. #DF requires two nested contributory exceptions
instead of two page faults faulting at the same address. A prevous bug on
APF indicates that it may trigger a double fault in the guest [1] and
clearly this trace function has nothing to do with it. So rename this
function should be a valid choice.
No functional change intended.
[1] https://www.spinics.net/lists/kvm/msg214957.html
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20220807052141.69186-1-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Stop Xen timer (if it's running) prior to changing the IRQ vector and
potentially (re)starting the timer. Changing the IRQ vector while the
timer is still running can result in KVM injecting a garbage event, e.g.
vm_xen_inject_timer_irqs() could see a non-zero xen.timer_pending from
a previous timer but inject the new xen.timer_virq.
Fixes: 5363952605 ("KVM: x86/xen: handle PV timers oneshot mode")
Cc: stable@vger.kernel.org
Link: https://syzkaller.appspot.com/bug?id=8234a9dfd3aafbf092cc5a7cd9842e3ebc45fc42
Reported-by: syzbot+e54f930ed78eb0f85281@syzkaller.appspotmail.com
Signed-off-by: Coleman Dietsch <dietschc@csp.edu>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Acked-by: David Woodhouse <dwmw@amazon.co.uk>
Message-Id: <20220808190607.323899-3-dietschc@csp.edu>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a check for existing xen timers before initializing a new one.
Currently kvm_xen_init_timer() is called on every
KVM_XEN_VCPU_ATTR_TYPE_TIMER, which is causing the following ODEBUG
crash when vcpu->arch.xen.timer is already set.
ODEBUG: init active (active state 0)
object type: hrtimer hint: xen_timer_callbac0
RIP: 0010:debug_print_object+0x16e/0x250 lib/debugobjects.c:502
Call Trace:
__debug_object_init
debug_hrtimer_init
debug_init
hrtimer_init
kvm_xen_init_timer
kvm_xen_vcpu_set_attr
kvm_arch_vcpu_ioctl
kvm_vcpu_ioctl
vfs_ioctl
Fixes: 5363952605 ("KVM: x86/xen: handle PV timers oneshot mode")
Cc: stable@vger.kernel.org
Link: https://syzkaller.appspot.com/bug?id=8234a9dfd3aafbf092cc5a7cd9842e3ebc45fc42
Reported-by: syzbot+e54f930ed78eb0f85281@syzkaller.appspotmail.com
Signed-off-by: Coleman Dietsch <dietschc@csp.edu>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220808190607.323899-2-dietschc@csp.edu>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disable SEV-ES if MMIO caching is disabled as SEV-ES relies on MMIO SPTEs
generating #NPF(RSVD), which are reflected by the CPU into the guest as
a #VC. With SEV-ES, the untrusted host, a.k.a. KVM, doesn't have access
to the guest instruction stream or register state and so can't directly
emulate in response to a #NPF on an emulated MMIO GPA. Disabling MMIO
caching means guest accesses to emulated MMIO ranges cause #NPF(!PRESENT),
and those flavors of #NPF cause automatic VM-Exits, not #VC.
Adjust KVM's MMIO masks to account for the C-bit location prior to doing
SEV(-ES) setup, and document that dependency between adjusting the MMIO
SPTE mask and SEV(-ES) setup.
Fixes: b09763da4d ("KVM: x86/mmu: Add module param to disable MMIO caching (for testing)")
Reported-by: Michael Roth <michael.roth@amd.com>
Tested-by: Michael Roth <michael.roth@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220803224957.1285926-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Fully re-evaluate whether or not MMIO caching can be enabled when SPTE
masks change; simply clearing enable_mmio_caching when a configuration
isn't compatible with caching fails to handle the scenario where the
masks are updated, e.g. by VMX for EPT or by SVM to account for the C-bit
location, and toggle compatibility from false=>true.
Snapshot the original module param so that re-evaluating MMIO caching
preserves userspace's desire to allow caching. Use a snapshot approach
so that enable_mmio_caching still reflects KVM's actual behavior.
Fixes: 8b9e74bfbf ("KVM: x86/mmu: Use enable_mmio_caching to track if MMIO caching is enabled")
Reported-by: Michael Roth <michael.roth@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Tested-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20220803224957.1285926-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Mark kvm_mmu_x86_module_init() with __init, the entire reason it exists
is to initialize variables when kvm.ko is loaded, i.e. it must never be
called after module initialization.
Fixes: 1d0e848060 ("KVM: x86/mmu: Resolve nx_huge_pages when kvm.ko is loaded")
Cc: stable@vger.kernel.org
Reviewed-by: Kai Huang <kai.huang@intel.com>
Tested-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220803224957.1285926-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The emulator mishandles LEA with register source operand. Even though such
LEA is illegal, it can be encoded and fed to CPU. In which case real
hardware throws #UD. The emulator, instead, returns address of
x86_emulate_ctxt._regs. This info leak hurts host's kASLR.
Tell the decoder that illegal LEA is not to be emulated.
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Message-Id: <20220729134801.1120-1-mhal@rbox.co>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
kvm_fixup_and_inject_pf_error() was introduced to fixup the error code(
e.g., to add RSVD flag) and inject the #PF to the guest, when guest
MAXPHYADDR is smaller than the host one.
When it comes to nested, L0 is expected to intercept and fix up the #PF
and then inject to L2 directly if
- L2.MAXPHYADDR < L0.MAXPHYADDR and
- L1 has no intention to intercept L2's #PF (e.g., L2 and L1 have the
same MAXPHYADDR value && L1 is using EPT for L2),
instead of constructing a #PF VM Exit to L1. Currently, with PFEC_MASK
and PFEC_MATCH both set to 0 in vmcs02, the interception and injection
may happen on all L2 #PFs.
However, failing to initialize 'fault' in kvm_fixup_and_inject_pf_error()
may cause the fault.async_page_fault being NOT zeroed, and later the #PF
being treated as a nested async page fault, and then being injected to L1.
Instead of zeroing 'fault' at the beginning of this function, we mannually
set the value of 'fault.async_page_fault', because false is the value we
really expect.
Fixes: 897861479c ("KVM: x86: Add helper functions for illegal GPA checking and page fault injection")
Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=216178
Reported-by: Yang Lixiao <lixiao.yang@intel.com>
Signed-off-by: Yu Zhang <yu.c.zhang@linux.intel.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220718074756.53788-1-yu.c.zhang@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Bug the VM if retrieving the x2APIC MSR/register while processing an
accelerated vAPIC trap VM-Exit fails. In theory it's impossible for the
lookup to fail as hardware has already validated the register, but bugs
happen, and not checking the result of kvm_lapic_msr_read() would result
in consuming the uninitialized "val" if a KVM or hardware bug occurs.
Fixes: 1bd9dfec9f ("KVM: x86: Do not block APIC write for non ICR registers")
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220804235028.1766253-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 7e2175ebd6 ("KVM: x86: Fix recording of guest steal time
/ preempted status", 2021-11-11) open coded the previous call to
kvm_map_gfn, but in doing so it dropped the comparison between the cached
guest physical address and the one in the MSR. This cause an incorrect
cache hit if the guest modifies the steal time address while the memslots
remain the same. This can happen with kexec, in which case the preempted
bit is written at the address used by the old kernel instead of
the old one.
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: stable@vger.kernel.org
Fixes: 7e2175ebd6 ("KVM: x86: Fix recording of guest steal time / preempted status")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit 7e2175ebd6 ("KVM: x86: Fix recording of guest steal time
/ preempted status", 2021-11-11) open coded the previous call to
kvm_map_gfn, but in doing so it dropped the comparison between the cached
guest physical address and the one in the MSR. This cause an incorrect
cache hit if the guest modifies the steal time address while the memslots
remain the same. This can happen with kexec, in which case the steal
time data is written at the address used by the old kernel instead of
the old one.
While at it, rename the variable from gfn to gpa since it is a plain
physical address and not a right-shifted one.
Reported-by: Dave Young <ruyang@redhat.com>
Reported-by: Xiaoying Yan <yiyan@redhat.com>
Analyzed-by: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: David Woodhouse <dwmw@amazon.co.uk>
Cc: stable@vger.kernel.org
Fixes: 7e2175ebd6 ("KVM: x86: Fix recording of guest steal time / preempted status")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Intel eIBRS machines do not sufficiently mitigate against RET
mispredictions when doing a VM Exit therefore an additional RSB,
one-entry stuffing is needed.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLqsGsACgkQEsHwGGHe
VUpXGg//ZEkxhf3Ri7X9PknAWNG6eIEqigKqWcdnOw+Oq/GMVb6q7JQsqowK7KBZ
AKcY5c/KkljTJNohditnfSOePyCG5nDTPgfkjzIawnaVdyJWMRCz/L4X2cv6ykDl
2l2EvQm4Ro8XAogYhE7GzDg/osaVfx93OkLCQj278VrEMWgM/dN2RZLpn+qiIkNt
DyFlQ7cr5UASh/svtKLko268oT4JwhQSbDHVFLMJ52VaLXX36yx4rValZHUKFdox
ZDyj+kiszFHYGsI94KAD0dYx76p6mHnwRc4y/HkVcO8vTacQ2b9yFYBGTiQatITf
0Nk1RIm9m3rzoJ82r/U0xSIDwbIhZlOVNm2QtCPkXqJZZFhopYsZUnq2TXhSWk4x
GQg/2dDY6gb/5MSdyLJmvrTUtzResVyb/hYL6SevOsIRnkwe35P6vDDyp15F3TYK
YvidZSfEyjtdLISBknqYRQD964dgNZu9ewrj+WuJNJr+A2fUvBzUebXjxHREsugN
jWp5GyuagEKTtneVCvjwnii+ptCm6yfzgZYLbHmmV+zhinyE9H1xiwVDvo5T7DDS
ZJCBgoioqMhp5qR59pkWz/S5SNGui2rzEHbAh4grANy8R/X5ASRv7UHT9uAo6ve1
xpw6qnE37CLzuLhj8IOdrnzWwLiq7qZ/lYN7m+mCMVlwRWobbOo=
=a8em
-----END PGP SIGNATURE-----
Merge tag 'x86_bugs_pbrsb' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 eIBRS fixes from Borislav Petkov:
"More from the CPU vulnerability nightmares front:
Intel eIBRS machines do not sufficiently mitigate against RET
mispredictions when doing a VM Exit therefore an additional RSB,
one-entry stuffing is needed"
* tag 'x86_bugs_pbrsb' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation: Add LFENCE to RSB fill sequence
x86/speculation: Add RSB VM Exit protections
Including:
- Most intrusive patch is small and changes the default
allocation policy for DMA addresses. Before the change the
allocator tried its best to find an address in the first 4GB.
But that lead to performance problems when that space gets
exhaused, and since most devices are capable of 64-bit DMA
these days, we changed it to search in the full DMA-mask
range from the beginning. This change has the potential to
uncover bugs elsewhere, in the kernel or the hardware. There
is a Kconfig option and a command line option to restore the
old behavior, but none of them is enabled by default.
- Add Robin Murphy as reviewer of IOMMU code and maintainer for
the dma-iommu and iova code
- Chaning IOVA magazine size from 1032 to 1024 bytes to save
memory
- Some core code cleanups and dead-code removal
- Support for ACPI IORT RMR node
- Support for multiple PCI domains in the AMD-Vi driver
- ARM SMMU changes from Will Deacon:
- Add even more Qualcomm device-tree compatible strings
- Support dumping of IMP DEF Qualcomm registers on TLB sync
timeout
- Fix reference count leak on device tree node in Qualcomm
driver
- Intel VT-d driver updates from Lu Baolu:
- Make intel-iommu.h private
- Optimize the use of two locks
- Extend the driver to support large-scale platforms
- Cleanup some dead code
- MediaTek IOMMU refactoring and support for TTBR up to 35bit
- Basic support for Exynos SysMMU v7
- VirtIO IOMMU driver gets a map/unmap_pages() implementation
- Other smaller cleanups and fixes
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEr9jSbILcajRFYWYyK/BELZcBGuMFAmLs3DIACgkQK/BELZcB
GuMizhAAguAnLLOkOLlR9/MhrTZfNXCUX+bfrEIevjFXMw4iPNfCCr4ydQ7EdVK6
ZA/3Z89huYl0d0x/FELolnQi+HOeqYrfTDe4rB7TgNgwZnWa+fdHcyYkgBGyfPaV
ilgjNcx8o//9o4NasyB6kU395jVmFxb735gMTTb+tcO9fr+/qIB6hxrHuCklxrNr
C7wK6kkoDPi5n0QuXCSjXEx2Hk245pAWKPLwqxsUYzHGlLfl7ULOxw65BUBGvn/H
uCsTfJFu7u+ErwQYf0qPuOwRBnRdsx9g5EAnfab8p074SoKWvbNnftIxgIRp8ZEM
YgCbhYa1GOFI4r+XzqRzEbc0/vPSttims4Jqz0KxYs7pr5EoVifrWLJFjJdCdc2h
Tio1gTvOq8HbH63kwYNKJhg4iSC6zVd37ihEhvfFO6LcgFl4iCfd2o9zK7oY40J4
XoOxofVnJ2e3tzdhZ/n5quCXiudHixm6WuVa7QYKscF7Ud0tY1wWKuibdlMQTeNM
68MvtlteKcfs1BrWzZyrFMrFeAfIY8LI82y6jdJuoNMU5LE9+5yelXBdJhnVygZ+
Jglv1TIt6W/z1H5JgXtNVZ1wWgBm7rurOqNyfN8XCd8eP1z321CLfX8ujkhKrIWP
ApG15cwvpnh1JX630+UFiEikTGU0fb2orMdPwYmwuu8DAsoLVHE=
=hI2K
-----END PGP SIGNATURE-----
Merge tag 'iommu-updates-v5.20-or-v6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu
Pull iommu updates from Joerg Roedel:
- The most intrusive patch is small and changes the default allocation
policy for DMA addresses.
Before the change the allocator tried its best to find an address in
the first 4GB. But that lead to performance problems when that space
gets exhaused, and since most devices are capable of 64-bit DMA these
days, we changed it to search in the full DMA-mask range from the
beginning.
This change has the potential to uncover bugs elsewhere, in the
kernel or the hardware. There is a Kconfig option and a command line
option to restore the old behavior, but none of them is enabled by
default.
- Add Robin Murphy as reviewer of IOMMU code and maintainer for the
dma-iommu and iova code
- Chaning IOVA magazine size from 1032 to 1024 bytes to save memory
- Some core code cleanups and dead-code removal
- Support for ACPI IORT RMR node
- Support for multiple PCI domains in the AMD-Vi driver
- ARM SMMU changes from Will Deacon:
- Add even more Qualcomm device-tree compatible strings
- Support dumping of IMP DEF Qualcomm registers on TLB sync
timeout
- Fix reference count leak on device tree node in Qualcomm driver
- Intel VT-d driver updates from Lu Baolu:
- Make intel-iommu.h private
- Optimize the use of two locks
- Extend the driver to support large-scale platforms
- Cleanup some dead code
- MediaTek IOMMU refactoring and support for TTBR up to 35bit
- Basic support for Exynos SysMMU v7
- VirtIO IOMMU driver gets a map/unmap_pages() implementation
- Other smaller cleanups and fixes
* tag 'iommu-updates-v5.20-or-v6.0' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (116 commits)
iommu/amd: Fix compile warning in init code
iommu/amd: Add support for AVIC when SNP is enabled
iommu/amd: Simplify and Consolidate Virtual APIC (AVIC) Enablement
ACPI/IORT: Fix build error implicit-function-declaration
drivers: iommu: fix clang -wformat warning
iommu/arm-smmu: qcom_iommu: Add of_node_put() when breaking out of loop
iommu/arm-smmu-qcom: Add SM6375 SMMU compatible
dt-bindings: arm-smmu: Add compatible for Qualcomm SM6375
MAINTAINERS: Add Robin Murphy as IOMMU SUBSYTEM reviewer
iommu/amd: Do not support IOMMUv2 APIs when SNP is enabled
iommu/amd: Do not support IOMMU_DOMAIN_IDENTITY after SNP is enabled
iommu/amd: Set translation valid bit only when IO page tables are in use
iommu/amd: Introduce function to check and enable SNP
iommu/amd: Globally detect SNP support
iommu/amd: Process all IVHDs before enabling IOMMU features
iommu/amd: Introduce global variable for storing common EFR and EFR2
iommu/amd: Introduce Support for Extended Feature 2 Register
iommu/amd: Change macro for IOMMU control register bit shift to decimal value
iommu/exynos: Enable default VM instance on SysMMU v7
iommu/exynos: Add SysMMU v7 register set
...
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
- Some kmemleak fixes from Patrick Wang and Waiman Long
- DAMON updates from SeongJae Park
- memcg debug/visibility work from Roman Gushchin
- vmalloc speedup from Uladzislau Rezki
- more folio conversion work from Matthew Wilcox
- enhancements for coherent device memory mapping from Alex Sierra
- addition of shared pages tracking and CoW support for fsdax, from
Shiyang Ruan
- hugetlb optimizations from Mike Kravetz
- Mel Gorman has contributed some pagealloc changes to improve latency
and realtime behaviour.
- mprotect soft-dirty checking has been improved by Peter Xu
- Many other singleton patches all over the place
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYuravgAKCRDdBJ7gKXxA
jpqSAQDrXSdII+ht9kSHlaCVYjqRFQz/rRvURQrWQV74f6aeiAD+NHHeDPwZn11/
SPktqEUrF1pxnGQxqLh1kUFUhsVZQgE=
=w/UH
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Most of the MM queue. A few things are still pending.
Liam's maple tree rework didn't make it. This has resulted in a few
other minor patch series being held over for next time.
Multi-gen LRU still isn't merged as we were waiting for mapletree to
stabilize. The current plan is to merge MGLRU into -mm soon and to
later reintroduce mapletree, with a view to hopefully getting both
into 6.1-rc1.
Summary:
- The usual batches of cleanups from Baoquan He, Muchun Song, Miaohe
Lin, Yang Shi, Anshuman Khandual and Mike Rapoport
- Some kmemleak fixes from Patrick Wang and Waiman Long
- DAMON updates from SeongJae Park
- memcg debug/visibility work from Roman Gushchin
- vmalloc speedup from Uladzislau Rezki
- more folio conversion work from Matthew Wilcox
- enhancements for coherent device memory mapping from Alex Sierra
- addition of shared pages tracking and CoW support for fsdax, from
Shiyang Ruan
- hugetlb optimizations from Mike Kravetz
- Mel Gorman has contributed some pagealloc changes to improve
latency and realtime behaviour.
- mprotect soft-dirty checking has been improved by Peter Xu
- Many other singleton patches all over the place"
[ XFS merge from hell as per Darrick Wong in
https://lore.kernel.org/all/YshKnxb4VwXycPO8@magnolia/ ]
* tag 'mm-stable-2022-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (282 commits)
tools/testing/selftests/vm/hmm-tests.c: fix build
mm: Kconfig: fix typo
mm: memory-failure: convert to pr_fmt()
mm: use is_zone_movable_page() helper
hugetlbfs: fix inaccurate comment in hugetlbfs_statfs()
hugetlbfs: cleanup some comments in inode.c
hugetlbfs: remove unneeded header file
hugetlbfs: remove unneeded hugetlbfs_ops forward declaration
hugetlbfs: use helper macro SZ_1{K,M}
mm: cleanup is_highmem()
mm/hmm: add a test for cross device private faults
selftests: add soft-dirty into run_vmtests.sh
selftests: soft-dirty: add test for mprotect
mm/mprotect: fix soft-dirty check in can_change_pte_writable()
mm: memcontrol: fix potential oom_lock recursion deadlock
mm/gup.c: fix formatting in check_and_migrate_movable_page()
xfs: fail dax mount if reflink is enabled on a partition
mm/memcontrol.c: remove the redundant updating of stats_flush_threshold
userfaultfd: don't fail on unrecognized features
hugetlb_cgroup: fix wrong hugetlb cgroup numa stat
...
tl;dr: The Enhanced IBRS mitigation for Spectre v2 does not work as
documented for RET instructions after VM exits. Mitigate it with a new
one-entry RSB stuffing mechanism and a new LFENCE.
== Background ==
Indirect Branch Restricted Speculation (IBRS) was designed to help
mitigate Branch Target Injection and Speculative Store Bypass, i.e.
Spectre, attacks. IBRS prevents software run in less privileged modes
from affecting branch prediction in more privileged modes. IBRS requires
the MSR to be written on every privilege level change.
To overcome some of the performance issues of IBRS, Enhanced IBRS was
introduced. eIBRS is an "always on" IBRS, in other words, just turn
it on once instead of writing the MSR on every privilege level change.
When eIBRS is enabled, more privileged modes should be protected from
less privileged modes, including protecting VMMs from guests.
== Problem ==
Here's a simplification of how guests are run on Linux' KVM:
void run_kvm_guest(void)
{
// Prepare to run guest
VMRESUME();
// Clean up after guest runs
}
The execution flow for that would look something like this to the
processor:
1. Host-side: call run_kvm_guest()
2. Host-side: VMRESUME
3. Guest runs, does "CALL guest_function"
4. VM exit, host runs again
5. Host might make some "cleanup" function calls
6. Host-side: RET from run_kvm_guest()
Now, when back on the host, there are a couple of possible scenarios of
post-guest activity the host needs to do before executing host code:
* on pre-eIBRS hardware (legacy IBRS, or nothing at all), the RSB is not
touched and Linux has to do a 32-entry stuffing.
* on eIBRS hardware, VM exit with IBRS enabled, or restoring the host
IBRS=1 shortly after VM exit, has a documented side effect of flushing
the RSB except in this PBRSB situation where the software needs to stuff
the last RSB entry "by hand".
IOW, with eIBRS supported, host RET instructions should no longer be
influenced by guest behavior after the host retires a single CALL
instruction.
However, if the RET instructions are "unbalanced" with CALLs after a VM
exit as is the RET in #6, it might speculatively use the address for the
instruction after the CALL in #3 as an RSB prediction. This is a problem
since the (untrusted) guest controls this address.
Balanced CALL/RET instruction pairs such as in step #5 are not affected.
== Solution ==
The PBRSB issue affects a wide variety of Intel processors which
support eIBRS. But not all of them need mitigation. Today,
X86_FEATURE_RSB_VMEXIT triggers an RSB filling sequence that mitigates
PBRSB. Systems setting RSB_VMEXIT need no further mitigation - i.e.,
eIBRS systems which enable legacy IBRS explicitly.
However, such systems (X86_FEATURE_IBRS_ENHANCED) do not set RSB_VMEXIT
and most of them need a new mitigation.
Therefore, introduce a new feature flag X86_FEATURE_RSB_VMEXIT_LITE
which triggers a lighter-weight PBRSB mitigation versus RSB_VMEXIT.
The lighter-weight mitigation performs a CALL instruction which is
immediately followed by a speculative execution barrier (INT3). This
steers speculative execution to the barrier -- just like a retpoline
-- which ensures that speculation can never reach an unbalanced RET.
Then, ensure this CALL is retired before continuing execution with an
LFENCE.
In other words, the window of exposure is opened at VM exit where RET
behavior is troublesome. While the window is open, force RSB predictions
sampling for RET targets to a dead end at the INT3. Close the window
with the LFENCE.
There is a subset of eIBRS systems which are not vulnerable to PBRSB.
Add these systems to the cpu_vuln_whitelist[] as NO_EIBRS_PBRSB.
Future systems that aren't vulnerable will set ARCH_CAP_PBRSB_NO.
[ bp: Massage, incorporate review comments from Andy Cooper. ]
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Co-developed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
The last use of 'pfn' went away with the same-named argument to
host_pfn_mapping_level; now that the hugepage level is obtained
exclusively from the host page tables, kvm_mmu_zap_collapsible_spte
does not need to know host pfns at all.
Fixes: a8ac499bb6 ("KVM: x86/mmu: Don't require refcounted "struct page" to create huge SPTEs")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
KVM/s390, KVM/x86 and common infrastructure changes for 5.20
x86:
* Permit guests to ignore single-bit ECC errors
* Fix races in gfn->pfn cache refresh; do not pin pages tracked by the cache
* Intel IPI virtualization
* Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS
* PEBS virtualization
* Simplify PMU emulation by just using PERF_TYPE_RAW events
* More accurate event reinjection on SVM (avoid retrying instructions)
* Allow getting/setting the state of the speaker port data bit
* Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls are inconsistent
* "Notify" VM exit (detect microarchitectural hangs) for Intel
* Cleanups for MCE MSR emulation
s390:
* add an interface to provide a hypervisor dump for secure guests
* improve selftests to use TAP interface
* enable interpretive execution of zPCI instructions (for PCI passthrough)
* First part of deferred teardown
* CPU Topology
* PV attestation
* Minor fixes
Generic:
* new selftests API using struct kvm_vcpu instead of a (vm, id) tuple
x86:
* Use try_cmpxchg64 instead of cmpxchg64
* Bugfixes
* Ignore benign host accesses to PMU MSRs when PMU is disabled
* Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior
* x86/MMU: Allow NX huge pages to be disabled on a per-vm basis
* Port eager page splitting to shadow MMU as well
* Enable CMCI capability by default and handle injected UCNA errors
* Expose pid of vcpu threads in debugfs
* x2AVIC support for AMD
* cleanup PIO emulation
* Fixes for LLDT/LTR emulation
* Don't require refcounted "struct page" to create huge SPTEs
x86 cleanups:
* Use separate namespaces for guest PTEs and shadow PTEs bitmasks
* PIO emulation
* Reorganize rmap API, mostly around rmap destruction
* Do not workaround very old KVM bugs for L0 that runs with nesting enabled
* new selftests API for CPUID
Now kvm_tdp_mmu_zap_leafs() only zaps leaf SPTEs but not any non-root
pages within that GFN range anymore, so the comment around it isn't
right.
Fix it by shifting the comment from tdp_mmu_zap_leafs() instead of
duplicating it, as tdp_mmu_zap_leafs() is static and is only called by
kvm_tdp_mmu_zap_leafs().
Opportunistically tweak the blurb about SPTEs being cleared to (a) say
"zapped" instead of "cleared" because "cleared" will be wrong if/when
KVM allows a non-zero value for non-present SPTE (i.e. for Intel TDX),
and (b) to clarify that a flush is needed if and only if a SPTE has been
zapped since MMU lock was last acquired.
Fixes: f47e5bbbc9 ("KVM: x86/mmu: Zap only TDP MMU leafs in zap range and mmu_notifier unmap")
Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Message-Id: <20220728030452.484261-1-kai.huang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
As Virtual Machine Save Area (VMSA) is essential in troubleshooting
attestation, dump it to the klog with the KERN_DEBUG level of priority.
Cc: Jarkko Sakkinen <jarkko@kernel.org>
Suggested-by: Harald Hoyer <harald@profian.com>
Signed-off-by: Jarkko Sakkinen <jarkko@profian.com>
Message-Id: <20220728050919.24113-1-jarkko@profian.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Treat the NX bit as valid when using NPT, as KVM will set the NX bit when
the NX huge page mitigation is enabled (mindblowing) and trigger the WARN
that fires on reserved SPTE bits being set.
KVM has required NX support for SVM since commit b26a71a1a5 ("KVM: SVM:
Refuse to load kvm_amd if NX support is not available") for exactly this
reason, but apparently it never occurred to anyone to actually test NPT
with the mitigation enabled.
------------[ cut here ]------------
spte = 0x800000018a600ee7, level = 2, rsvd bits = 0x800f0000001fe000
WARNING: CPU: 152 PID: 15966 at arch/x86/kvm/mmu/spte.c:215 make_spte+0x327/0x340 [kvm]
Hardware name: Google, Inc. Arcadia_IT_80/Arcadia_IT_80, BIOS 10.48.0 01/27/2022
RIP: 0010:make_spte+0x327/0x340 [kvm]
Call Trace:
<TASK>
tdp_mmu_map_handle_target_level+0xc3/0x230 [kvm]
kvm_tdp_mmu_map+0x343/0x3b0 [kvm]
direct_page_fault+0x1ae/0x2a0 [kvm]
kvm_tdp_page_fault+0x7d/0x90 [kvm]
kvm_mmu_page_fault+0xfb/0x2e0 [kvm]
npf_interception+0x55/0x90 [kvm_amd]
svm_invoke_exit_handler+0x31/0xf0 [kvm_amd]
svm_handle_exit+0xf6/0x1d0 [kvm_amd]
vcpu_enter_guest+0xb6d/0xee0 [kvm]
? kvm_pmu_trigger_event+0x6d/0x230 [kvm]
vcpu_run+0x65/0x2c0 [kvm]
kvm_arch_vcpu_ioctl_run+0x355/0x610 [kvm]
kvm_vcpu_ioctl+0x551/0x610 [kvm]
__se_sys_ioctl+0x77/0xc0
__x64_sys_ioctl+0x1d/0x20
do_syscall_64+0x44/0xa0
entry_SYSCALL_64_after_hwframe+0x46/0xb0
</TASK>
---[ end trace 0000000000000000 ]---
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220723013029.1753623-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The commit 5413bcba7e ("KVM: x86: Add support for vICR APIC-write
VM-Exits in x2APIC mode") introduces logic to prevent APIC write
for offset other than ICR in kvm_apic_write_nodecode() function.
This breaks x2AVIC support, which requires KVM to trap and emulate
x2APIC MSR writes.
Therefore, removes the warning and modify to logic to allow MSR write.
Fixes: 5413bcba7e ("KVM: x86: Add support for vICR APIC-write VM-Exits in x2APIC mode")
Cc: Zeng Guang <guang.zeng@intel.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20220725053356.4275-1-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
AMD does not support APIC TSC-deadline timer mode. AVIC hardware
will generate GP fault when guest kernel writes 1 to bits [18]
of the APIC LVTT register (offset 0x32) to set the timer mode.
(Note: bit 18 is reserved on AMD system).
Therefore, always intercept and let KVM emulate the MSR accesses.
Fixes: f3d7c8aa6882 ("KVM: SVM: Fix x2APIC MSRs interception")
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20220725033428.3699-1-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Make UMIP an "allowed-1" bit CR4_FIXED1 MSR when KVM is emulating UMIP.
KVM emulates UMIP for both L1 and L2, and so should enumerate that L2 is
allowed to have CR4.UMIP=1. Not setting the bit doesn't immediately
break nVMX, as KVM does set/clear the bit in CR4_FIXED1 in response to a
guest CPUID update, i.e. KVM will correctly (dis)allow nested VM-Entry
based on whether or not UMIP is exposed to L1. That said, KVM should
enumerate the bit as being allowed from time zero, e.g. userspace will
see the wrong value if the MSR is read before CPUID is written.
Fixes: 0367f205a3 ("KVM: vmx: add support for emulating UMIP")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220607213604.3346000-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit 03a8871add.
Since commit 03a8871add ("KVM: nVMX: Expose load IA32_PERF_GLOBAL_CTRL
VM-{Entry,Exit} control"), KVM has taken ownership of the "load
IA32_PERF_GLOBAL_CTRL" VMX entry/exit control bits, trying to set these
bits in the IA32_VMX_TRUE_{ENTRY,EXIT}_CTLS MSRs if the guest's CPUID
supports the architectural PMU (CPUID[EAX=0Ah].EAX[7:0]=1), and clear
otherwise.
This was a misguided attempt at mimicking what commit 5f76f6f5ff
("KVM: nVMX: Do not expose MPX VMX controls when guest MPX disabled",
2018-10-01) did for MPX. However, that commit was a workaround for
another KVM bug and not something that should be imitated. Mucking with
the VMX MSRs creates a subtle, difficult to maintain ABI as KVM must
ensure that any internal changes, e.g. to how KVM handles _any_ guest
CPUID changes, yield the same functional result. Therefore, KVM's policy
is to let userspace have full control of the guest vCPU model so long
as the host kernel is not at risk.
Now that KVM really truly ensures kvm_set_msr() will succeed by loading
PERF_GLOBAL_CTRL if and only if it exists, revert KVM's misguided and
roundabout behavior.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
[sean: make it a pure revert]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220722224409.1336532-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Attempt to load PERF_GLOBAL_CTRL during nested VM-Enter/VM-Exit if and
only if the MSR exists (according to the guest vCPU model). KVM has very
misguided handling of VM_{ENTRY,EXIT}_LOAD_IA32_PERF_GLOBAL_CTRL and
attempts to force the nVMX MSR settings to match the vPMU model, i.e. to
hide/expose the control based on whether or not the MSR exists from the
guest's perspective.
KVM's modifications fail to handle the scenario where the vPMU is hidden
from the guest _after_ being exposed to the guest, e.g. by userspace
doing multiple KVM_SET_CPUID2 calls, which is allowed if done before any
KVM_RUN. nested_vmx_pmu_refresh() is called if and only if there's a
recognized vPMU, i.e. KVM will leave the bits in the allow state and then
ultimately reject the MSR load and WARN.
KVM should not force the VMX MSRs in the first place. KVM taking control
of the MSRs was a misguided attempt at mimicking what commit 5f76f6f5ff
("KVM: nVMX: Do not expose MPX VMX controls when guest MPX disabled",
2018-10-01) did for MPX. However, the MPX commit was a workaround for
another KVM bug and not something that should be imitated (and it should
never been done in the first place).
In other words, KVM's ABI _should_ be that userspace has full control
over the MSRs, at which point triggering the WARN that loading the MSR
must not fail is trivial.
The intent of the WARN is still valid; KVM has consistency checks to
ensure that vmcs12->{guest,host}_ia32_perf_global_ctrl is valid. The
problem is that '0' must be considered a valid value at all times, and so
the simple/obvious solution is to just not actually load the MSR when it
does not exist. It is userspace's responsibility to provide a sane vCPU
model, i.e. KVM is well within its ABI and Intel's VMX architecture to
skip the loads if the MSR does not exist.
Fixes: 03a8871add ("KVM: nVMX: Expose load IA32_PERF_GLOBAL_CTRL VM-{Entry,Exit} control")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220722224409.1336532-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a helper to check of the guest PMU has PERF_GLOBAL_CTRL, which is
unintuitive _and_ diverges from Intel's architecturally defined behavior.
Even worse, KVM currently implements the check using two different (but
equivalent) checks, _and_ there has been at least one attempt to add a
_third_ flavor.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220722224409.1336532-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Mark all MSR_CORE_PERF_GLOBAL_CTRL and MSR_CORE_PERF_GLOBAL_OVF_CTRL bits
as reserved if there is no guest vPMU. The nVMX VM-Entry consistency
checks do not check for a valid vPMU prior to consuming the masks via
kvm_valid_perf_global_ctrl(), i.e. may incorrectly allow a non-zero mask
to be loaded via VM-Enter or VM-Exit (well, attempted to be loaded, the
actual MSR load will be rejected by intel_is_valid_msr()).
Fixes: f5132b0138 ("KVM: Expose a version 2 architectural PMU to a guests")
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220722224409.1336532-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since commit 5f76f6f5ff ("KVM: nVMX: Do not expose MPX VMX controls
when guest MPX disabled"), KVM has taken ownership of the "load
IA32_BNDCFGS" and "clear IA32_BNDCFGS" VMX entry/exit controls,
trying to set these bits in the IA32_VMX_TRUE_{ENTRY,EXIT}_CTLS
MSRs if the guest's CPUID supports MPX, and clear otherwise.
The intent of the patch was to apply it to L0 in order to work around
L1 kernels that lack the fix in commit 691bd4340b ("kvm: vmx: allow
host to access guest MSR_IA32_BNDCFGS", 2017-07-04): by hiding the
control bits from L0, L1 hides BNDCFGS from KVM_GET_MSR_INDEX_LIST,
and the L1 bug is neutralized even in the lack of commit 691bd4340b.
This was perhaps a sensible kludge at the time, but a horrible
idea in the long term and in fact it has not been extended to
other CPUID bits like these:
X86_FEATURE_LM => VM_EXIT_HOST_ADDR_SPACE_SIZE, VM_ENTRY_IA32E_MODE,
VMX_MISC_SAVE_EFER_LMA
X86_FEATURE_TSC => CPU_BASED_RDTSC_EXITING, CPU_BASED_USE_TSC_OFFSETTING,
SECONDARY_EXEC_TSC_SCALING
X86_FEATURE_INVPCID_SINGLE => SECONDARY_EXEC_ENABLE_INVPCID
X86_FEATURE_MWAIT => CPU_BASED_MONITOR_EXITING, CPU_BASED_MWAIT_EXITING
X86_FEATURE_INTEL_PT => SECONDARY_EXEC_PT_CONCEAL_VMX, SECONDARY_EXEC_PT_USE_GPA,
VM_EXIT_CLEAR_IA32_RTIT_CTL, VM_ENTRY_LOAD_IA32_RTIT_CTL
X86_FEATURE_XSAVES => SECONDARY_EXEC_XSAVES
These days it's sort of common knowledge that any MSR in
KVM_GET_MSR_INDEX_LIST must allow *at least* setting it with KVM_SET_MSR
to a default value, so it is unlikely that something like commit
5f76f6f5ff will be needed again. So revert it, at the potential cost
of breaking L1s with a 6 year old kernel. While in principle the L0 owner
doesn't control what runs on L1, such an old hypervisor would probably
have many other bugs.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Restrict the nVMX MSRs based on KVM's config, not based on the guest's
current config. Using the guest's config to audit the new config
prevents userspace from restoring the original config (KVM's config) if
at any point in the past the guest's config was restricted in any way.
Fixes: 62cc6b9dc6 ("KVM: nVMX: support restore of VMX capability MSRs")
Cc: stable@vger.kernel.org
Cc: David Matlack <dmatlack@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220607213604.3346000-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename the exit handlers for VMXON and VMXOFF to match the instruction
names, the terms "vmon" and "vmoff" are not used anywhere in Intel's
documentation, nor are they used elsehwere in KVM.
Sadly, the exit reasons are exposed to userspace and so cannot be renamed
without breaking userspace. :-(
Fixes: ec378aeef9 ("KVM: nVMX: Implement VMXON and VMXOFF")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220607213604.3346000-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Inject a #UD if L1 attempts VMXON with a CR0 or CR4 that is disallowed
per the associated nested VMX MSRs' fixed0/1 settings. KVM cannot rely
on hardware to perform the checks, even for the few checks that have
higher priority than VM-Exit, as (a) KVM may have forced CR0/CR4 bits in
hardware while running the guest, (b) there may incompatible CR0/CR4 bits
that have lower priority than VM-Exit, e.g. CR0.NE, and (c) userspace may
have further restricted the allowed CR0/CR4 values by manipulating the
guest's nested VMX MSRs.
Note, despite a very strong desire to throw shade at Jim, commit
70f3aac964 ("kvm: nVMX: Remove superfluous VMX instruction fault checks")
is not to blame for the buggy behavior (though the comment...). That
commit only removed the CR0.PE, EFLAGS.VM, and COMPATIBILITY mode checks
(though it did erroneously drop the CPL check, but that has already been
remedied). KVM may force CR0.PE=1, but will do so only when also
forcing EFLAGS.VM=1 to emulate Real Mode, i.e. hardware will still #UD.
Link: https://bugzilla.kernel.org/show_bug.cgi?id=216033
Fixes: ec378aeef9 ("KVM: nVMX: Implement VMXON and VMXOFF")
Reported-by: Eric Li <ercli@ucdavis.edu>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220607213604.3346000-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Check that the guest (L2) and host (L1) CR4 values that would be loaded
by nested VM-Enter and VM-Exit respectively are valid with respect to
KVM's (L0 host) allowed CR4 bits. Failure to check KVM reserved bits
would allow L1 to load an illegal CR4 (or trigger hardware VM-Fail or
failed VM-Entry) by massaging guest CPUID to allow features that are not
supported by KVM. Amusingly, KVM itself is an accomplice in its doom, as
KVM adjusts L1's MSR_IA32_VMX_CR4_FIXED1 to allow L1 to enable bits for
L2 based on L1's CPUID model.
Note, although nested_{guest,host}_cr4_valid() are _currently_ used if
and only if the vCPU is post-VMXON (nested.vmxon == true), that may not
be true in the future, e.g. emulating VMXON has a bug where it doesn't
check the allowed/required CR0/CR4 bits.
Cc: stable@vger.kernel.org
Fixes: 3899152ccb ("KVM: nVMX: fix checks on CR{0,4} during virtual VMX operation")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220607213604.3346000-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Split the common x86 parts of kvm_is_valid_cr4(), i.e. the reserved bits
checks, into a separate helper, __kvm_is_valid_cr4(), and export only the
inner helper to vendor code in order to prevent nested VMX from calling
back into vmx_is_valid_cr4() via kvm_is_valid_cr4().
On SVM, this is a nop as SVM doesn't place any additional restrictions on
CR4.
On VMX, this is also currently a nop, but only because nested VMX is
missing checks on reserved CR4 bits for nested VM-Enter. That bug will
be fixed in a future patch, and could simply use kvm_is_valid_cr4() as-is,
but nVMX has _another_ bug where VMXON emulation doesn't enforce VMX's
restrictions on CR0/CR4. The cleanest and most intuitive way to fix the
VMXON bug is to use nested_host_cr{0,4}_valid(). If the CR4 variant
routes through kvm_is_valid_cr4(), using nested_host_cr4_valid() won't do
the right thing for the VMXON case as vmx_is_valid_cr4() enforces VMX's
restrictions if and only if the vCPU is post-VMXON.
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220607213604.3346000-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>