Bring in yet another series that touches KVM code, and might need to
be merged into the kvm-ppc branch to resolve conflicts.
This required some changes in pnv_power9_force_smt4_catch/release()
due to the paca array becomming an array of pointers.
PPC:
- Fix a bug causing occasional machine check exceptions on POWER8 hosts
(introduced in 4.16-rc1)
x86:
- Fix a guest crashing regression with nested VMX and restricted guest
(introduced in 4.16-rc1)
- Fix dependency check for pv tlb flush (The wrong dependency that
effectively disabled the feature was added in 4.16-rc4, the original
feature in 4.16-rc1, so it got decent testing.)
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJavUt5AAoJEED/6hsPKofo8uQH/RuijrsAIUnymkYY+6BYFXlh
Ri8qhG8VB+C3SpWEtsqcqNVkjJTepCD2Ej5BJTL4Gc9BSTWy7Ht6kqskEgwcnzu2
xRfkg0q0vTj1+GDd+UiTZfxiinoHtB9x3fiXali5UNTCd1fweLxdidETfO+GqMMq
KDhTR+S8dXE5VG7r+iJ80LZPtHQJ94f0fh9XpQk3X2ExTG5RBxag1U2nCfiKRAZk
xRv1CNAxNaBxS38CgYfHzg31NJx38fnq/qREsIdOx0Ju9WQkglBFkhLAGUb4vL0I
nn8YX/oV9cW2G8tyPWjC245AouABOLbzu0xyj5KgCY/z1leA9tdLFX/ET6Zye+E=
=++uZ
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Radim Krčmář:
"PPC:
- Fix a bug causing occasional machine check exceptions on POWER8
hosts (introduced in 4.16-rc1)
x86:
- Fix a guest crashing regression with nested VMX and restricted
guest (introduced in 4.16-rc1)
- Fix dependency check for pv tlb flush (the wrong dependency that
effectively disabled the feature was added in 4.16-rc4, the
original feature in 4.16-rc1, so it got decent testing)"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: x86: Fix pv tlb flush dependencies
KVM: nVMX: sync vmcs02 segment regs prior to vmx_set_cr0
KVM: PPC: Book3S HV: Fix duplication of host SLB entries
We no longer allocate lppacas in an array, so this patch removes the
1kB static alignment for the structure, and enforces the PAPR
alignment requirements at allocation time. We can not reduce the 1kB
allocation size however, due to existing KVM hypervisors.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Change the paca array into an array of pointers to pacas. Allocate
pacas individually.
This allows flexibility in where the PACAs are allocated. Future work
will allocate them node-local. Platforms that don't have address limits
on PACAs would be able to defer PACA allocations until later in boot
rather than allocate all possible ones up-front then freeing unused.
This is slightly more overhead (one additional indirection) for cross
CPU paca references, but those aren't too common.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The "lppaca" is a structure registered with the hypervisor. This is
unnecessary when running on non-virtualised platforms. One field from
the lppaca (pmcregs_in_use) is also used by the host, so move the host
part out into the paca (lppaca field is still updated in
guest mode).
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Fix non-pseries build with some #ifdefs]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
These are actually all fixes for pre-4.16 code, or new hardware workarounds.
Fix missing AT_BASE_PLATFORM (in auxv) when we're using a new firmware interface
for describing CPU features.
Fix lost pending interrupts due to a race in our interrupt soft-masking code.
A workaround for a nest MMU bug with TLB invalidations on Power9.
A workaround for broadcast TLB invalidations on Power9.
Fix a bug in our instruction SLB miss handler, when handling bad addresses
(eg. >= TASK_SIZE), which could corrupt non-volatile user GPRs.
Thanks to:
Aneesh Kumar K.V, Balbir Singh, Benjamin Herrenschmidt, Nicholas Piggin.
-----BEGIN PGP SIGNATURE-----
iQIwBAABCAAaBQJau3wfExxtcGVAZWxsZXJtYW4uaWQuYXUACgkQUevqPMjhpYCz
dA/+JnB5iKCXCCebnqoaX4AFTqMfxT3nr/+JkfchovZLV0PBVzKME5JtL61udmDe
j1JZU8UASLqN/8/j652s87XuuRi6xPjSPjMNXmU1LFQ7DjS9yA6FOAsbE4c1Xg4D
jSded2BSnMRtA/yw8AupvdYr4w72zKMQYzo8/Or3eUQAAge+oX3d1SQiRkD3DOUg
EdpHnOScSwz6GL9amfaQBhXwvik+4crTQ/wZ/SsTpQrfJkVzHXLn/DnHEP1qO+ky
v/Y0ix5TxpH132XsVM7UaUvy1ZcZSyEmT2qGOisGm0fj4jesVn9dQMzP+97W4QeW
ghfHj2fvzx6IsPM3PhNKITknQi/GTrukjSuzYNuj7MyvKY15HUP1MPXNeJUl5thw
kI5uYWuTvyI3daQKFXRQa7V6H0auuYeEV6/RvIlJ2YtUfqmvyECviNM/+mDC0+Jk
bgqz47qqeEz2cwIUu/vQm2phVpq+15cLPwmdA37IdyT6GvYgGmsW4HWVIsyxLR2z
fo9ghX+1oMhmMNhgVYtL2P9BfCzQenK2R+uAmUOHdNyc0LBlGKN+RPAQqQkBhKGp
BB1L2F13kpeNBNTOsPU4yH3DpPaJFtfnaeL7jd5SanwsxNnoKApFglf0nE73bvbw
AwRF/vWokbd3WzuPmOtldtluWUHQhaLECU24odVGB/r3XCI=
=qP8V
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.16-6' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
"Some more powerpc fixes for 4.16. Apologies if this is a bit big at
rc7, but they're all reasonably important fixes. None are actually for
new code, so they aren't indicative of 4.16 being in bad shape from
our point of view.
- Fix missing AT_BASE_PLATFORM (in auxv) when we're using a new
firmware interface for describing CPU features.
- Fix lost pending interrupts due to a race in our interrupt
soft-masking code.
- A workaround for a nest MMU bug with TLB invalidations on Power9.
- A workaround for broadcast TLB invalidations on Power9.
- Fix a bug in our instruction SLB miss handler, when handling bad
addresses (eg. >= TASK_SIZE), which could corrupt non-volatile user
GPRs.
Thanks to: Aneesh Kumar K.V, Balbir Singh, Benjamin Herrenschmidt,
Nicholas Piggin"
* tag 'powerpc-4.16-6' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/64s: Fix i-side SLB miss bad address handler saving nonvolatile GPRs
powerpc/mm: Fixup tlbie vs store ordering issue on POWER9
powerpc/mm/radix: Move the functions that does the actual tlbie closer
powerpc/mm/radix: Remove unused code
powerpc/mm: Workaround Nest MMU bug with TLB invalidations
powerpc/mm: Add tracking of the number of coprocessors using a context
powerpc/64s: Fix lost pending interrupt due to race causing lost update to irq_happened
powerpc/64s: Fix NULL AT_BASE_PLATFORM when using DT CPU features
Merge our fixes branch from the 4.16 cycle.
There were a number of important fixes merged, in particular some Power9
workarounds that we want in next for testing purposes. There's also been
some conflicting changes in the CPU features code which are best merged
and tested before going upstream.
This changes the hypervisor page fault handler for radix guests to use
the generic KVM __gfn_to_pfn_memslot() function instead of using
get_user_pages_fast() and then handling the case of VM_PFNMAP vmas
specially. The old code missed the case of VM_IO vmas; with this
change, VM_IO vmas will now be handled correctly by code within
__gfn_to_pfn_memslot.
Currently, __gfn_to_pfn_memslot calls hva_to_pfn, which only uses
__get_user_pages_fast for the initial lookup in the cases where
either atomic or async is set. Since we are not setting either
atomic or async, we do our own __get_user_pages_fast first, for now.
This also adds code to check for the KVM_MEM_READONLY flag on the
memslot. If it is set and this is a write access, we synthesize a
data storage interrupt for the guest.
In the case where the page is not normal RAM (i.e. page == NULL in
kvmppc_book3s_radix_page_fault(), we read the PTE from the Linux page
tables because we need the mapping attribute bits as well as the PFN.
(The mapping attribute bits indicate whether accesses have to be
non-cacheable and/or guarded.)
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
POWER9 with the DAWR disabled causes problems for partition
migration. Either we have to fail the migration (since we lose the
DAWR) or we silently drop the DAWR and allow the migration to pass.
This patch does the latter and allows the migration to pass (at the
cost of silently losing the DAWR). This is not ideal but hopefully the
best overall solution. This approach has been acked by Paulus.
With this patch kvmppc_set_one_reg() will store the DAWR in the vcpu
but won't actually set it on POWER9 hardware.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
POWER7 compat mode guests can use h_set_dabr on POWER9. POWER9 should
use the DAWR but since it's disabled there we can't.
This returns H_UNSUPPORTED on a h_set_dabr() on POWER9 where the DAWR
is disabled.
Current Linux guests ignore this error, so they will silently not get
the DAWR (sigh). The same error code is being used by POWERVM in this
case.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Return H_P2 on a h_set_mode(SET_DAWR) on POWER9 where the DAWR is
disabled.
Current Linux guests ignore this error, so they will silently not get
the DAWR (sigh). The same error code is being used by POWERVM in this
case.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This works around a hardware bug in "Nimbus" POWER9 DD2.2 processors,
where the contents of the TEXASR can get corrupted while a thread is
in fake suspend state. The workaround is for the instruction emulation
code to use the value saved at the most recent guest exit in real
suspend mode. We achieve this by simply not saving the TEXASR into
the vcpu struct on an exit in fake suspend state. We also have to
take care to set the orig_texasr field only on guest exit in real
suspend state.
This also means that on guest entry in fake suspend state, TEXASR
will be restored to the value it had on the last exit in real suspend
state, effectively counteracting any hardware-caused corruption. This
works because TEXASR may not be written in suspend state.
With this, the guest might see the wrong values in TEXASR if it reads
it while in suspend state, but will see the correct value in
non-transactional state (e.g. after a treclaim), and treclaim will
work correctly.
With this workaround, the code will actually run slightly faster, and
will operate correctly on systems without the TEXASR bug (since TEXASR
may not be written in suspend state, and is only changed by failure
recording, which will have already been done before we get into fake
suspend state). Therefore these changes are not made subject to a CPU
feature bit.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This works around a hardware bug in "Nimbus" POWER9 DD2.2 processors,
where a treclaim performed in fake suspend mode can cause subsequent
reads from the XER register to return inconsistent values for the SO
(summary overflow) bit. The inconsistent SO bit state can potentially
be observed on any thread in the core. We have to do the treclaim
because that is the only way to get the thread out of suspend state
(fake or real) and into non-transactional state.
The workaround for the bug is to force the core into SMT4 mode before
doing the treclaim. This patch adds the code to do that, conditional
on the CPU_FTR_P9_TM_XER_SO_BUG feature bit.
Signed-off-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
POWER9 has hardware bugs relating to transactional memory and thread
reconfiguration (changes to hardware SMT mode). Specifically, the core
does not have enough storage to store a complete checkpoint of all the
architected state for all four threads. The DD2.2 version of POWER9
includes hardware modifications designed to allow hypervisor software
to implement workarounds for these problems. This patch implements
those workarounds in KVM code so that KVM guests see a full, working
transactional memory implementation.
The problems center around the use of TM suspended state, where the
CPU has a checkpointed state but execution is not transactional. The
workaround is to implement a "fake suspend" state, which looks to the
guest like suspended state but the CPU does not store a checkpoint.
In this state, any instruction that would cause a transition to
transactional state (rfid, rfebb, mtmsrd, tresume) or would use the
checkpointed state (treclaim) causes a "soft patch" interrupt (vector
0x1500) to the hypervisor so that it can be emulated. The trechkpt
instruction also causes a soft patch interrupt.
On POWER9 DD2.2, we avoid returning to the guest in any state which
would require a checkpoint to be present. The trechkpt in the guest
entry path which would normally create that checkpoint is replaced by
either a transition to fake suspend state, if the guest is in suspend
state, or a rollback to the pre-transactional state if the guest is in
transactional state. Fake suspend state is indicated by a flag in the
PACA plus a new bit in the PSSCR. The new PSSCR bit is write-only and
reads back as 0.
On exit from the guest, if the guest is in fake suspend state, we still
do the treclaim instruction as we would in real suspend state, in order
to get into non-transactional state, but we do not save the resulting
register state since there was no checkpoint.
Emulation of the instructions that cause a softpatch interrupt is
handled in two paths. If the guest is in real suspend mode, we call
kvmhv_p9_tm_emulation_early() to handle the cases where the guest is
transitioning to transactional state. This is called before we do the
treclaim in the guest exit path; because we haven't done treclaim, we
can get back to the guest with the transaction still active. If the
instruction is a case that kvmhv_p9_tm_emulation_early() doesn't
handle, or if the guest is in fake suspend state, then we proceed to
do the complete guest exit path and subsequently call
kvmhv_p9_tm_emulation() in host context with the MMU on. This handles
all the cases including the cases that generate program interrupts
(illegal instruction or TM Bad Thing) and facility unavailable
interrupts.
The emulation is reasonably straightforward and is mostly concerned
with checking for exception conditions and updating the state of
registers such as MSR and CR0. The treclaim emulation takes care to
ensure that the TEXASR register gets updated as if it were the guest
treclaim instruction that had done failure recording, not the treclaim
done in hypervisor state in the guest exit path.
With this, the KVM_CAP_PPC_HTM capability returns true (1) even if
transactional memory is not available to host userspace.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On POWER9, under some circumstances, a broadcast TLB invalidation
might complete before all previous stores have drained, potentially
allowing stale stores from becoming visible after the invalidation.
This works around it by doubling up those TLB invalidations which was
verified by HW to be sufficient to close the risk window.
This will be documented in a yet-to-be-published errata.
Fixes: 1a472c9dba ("powerpc/mm/radix: Add tlbflush routines")
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
[mpe: Enable the feature in the DT CPU features code for all Power9,
rename the feature to CPU_FTR_P9_TLBIE_BUG per benh.]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Since commit 6964e6a4e4 ("KVM: PPC: Book3S HV: Do SLB load/unload
with guest LPCR value loaded", 2018-01-11), we have been seeing
occasional machine check interrupts on POWER8 systems when running
KVM guests, due to SLB multihit errors.
This turns out to be due to the guest exit code reloading the host
SLB entries from the SLB shadow buffer when the SLB was not previously
cleared in the guest entry path. This can happen because the path
which skips from the guest entry code to the guest exit code without
entering the guest now does the skip before the SLB is cleared and
loaded with guest values, but the host values are loaded after the
point in the guest exit path that we skip to.
To fix this, we move the code that reloads the host SLB values up
so that it occurs just before the point in the guest exit code (the
label guest_bypass:) where we skip to from the guest entry path.
Reported-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Fixes: 6964e6a4e4 ("KVM: PPC: Book3S HV: Do SLB load/unload with guest LPCR value loaded")
Tested-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds code to the radix hypervisor page fault handler to handle the
case where the guest memory is backed by 1GB hugepages, and put them
into the partition-scoped radix tree at the PUD level. The code is
essentially analogous to the code for 2MB pages. This also rearranges
kvmppc_create_pte() to make it easier to follow.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When using the radix MMU, we can get hypervisor page fault interrupts
with the DSISR_SET_RC bit set in DSISR/HSRR1, indicating that an
attempt to set the R (reference) or C (change) bit in a PTE atomically
failed. Previously we would find the corresponding Linux PTE and
check the permission and dirty bits there, but this is not really
necessary since we only need to do what the hardware was trying to
do, namely set R or C atomically. This removes the code that reads
the Linux PTE and just update the partition-scoped PTE, having first
checked that it is still present, and if the access is a write, that
the PTE still has write permission.
Furthermore, we now check whether any other relevant bits are set
in DSISR, and if there are, then we proceed with the rest of the
function in order to handle whatever condition they represent,
instead of returning to the guest as we did previously.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This improves the handling of transparent huge pages in the radix
hypervisor page fault handler. Previously, if a small page is faulted
in to a 2MB region of guest physical space, that means that there is
a page table pointer at the PMD level, which could never be replaced
by a leaf (2MB) PMD entry. This adds the code to clear the PMD,
invlidate the page walk cache and free the page table page in this
situation, so that the leaf PMD entry can be created.
This also adds code to check whether a PMD or PTE being inserted is
the same as is already there (because of a race with another CPU that
faulted on the same page) and if so, we don't replace the existing
entry, meaning that we don't invalidate the PTE or PMD and do a TLB
invalidation.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Since commit fb1522e099 ("KVM: update to new mmu_notifier semantic
v2", 2017-08-31), the MMU notifier code in KVM no longer calls the
kvm_unmap_hva callback. This removes the PPC implementations of
kvm_unmap_hva().
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This fixes a bug where the trap number that is returned by
__kvmppc_vcore_entry gets corrupted. The effect of the corruption
is that IPIs get ignored on POWER9 systems when the IPI is sent via
a doorbell interrupt to a CPU which is executing in a KVM guest.
The effect of the IPI being ignored is often that another CPU locks
up inside smp_call_function_many() (and if that CPU is holding a
spinlock, other CPUs then lock up inside raw_spin_lock()).
The trap number is currently held in register r12 for most of the
assembly-language part of the guest exit path. In that path, we
call kvmppc_subcore_exit_guest(), which is a C function, without
restoring r12 afterwards. Depending on the kernel config and the
compiler, it may modify r12 or it may not, so some config/compiler
combinations see the bug and others don't.
To fix this, we arrange for the trap number to be stored on the
stack from the 'guest_bypass:' label until the end of the function,
then the trap number is loaded and returned in r12 as before.
Cc: stable@vger.kernel.org # v4.8+
Fixes: fd7bacbca4 ("KVM: PPC: Book3S HV: Fix TB corruption in guest exit path on HMI interrupt")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
- Fix guest time accounting in the host
- Fix large-page backing for radix guests on POWER9
- Fix HPT guests on POWER9 backed by 2M or 1G pages
- Compile fixes for some configs and gcc versions
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJammR1AAoJEJ2a6ncsY3Gf2pQIAKf1sBKimpDj/yeBlWVbS41q
6mIJh8R+4DV7TcOSVoOdzUz1dU1cseVznqqr3kexu+unoUpcqm240ZUDsDNWy9j0
Xv0JyrGOcPor9sQmlb1s2gOsybxhic4u8Ih1eQV47bEUw1Rb84/da0JI1u5nMRTq
nm3OHPGSnK2C8UkBBVjGelLJGUx+uaLFLjJSSTd0F9+hlxjGT3yXjP3wLG/ZNajT
6Reuzpr95hGpmIaml8gh73clLk4WAjF3+5SyiLo5nlsXzvMnC0DyzaUrHocIo6i7
nZxrx9UguzEdiUbuc5NEs4klTc+GPwMCfd+7z6vmtyw87A0sVOUgGWNGcZL60ew=
=Wy2j
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-fixes-4.16-1' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
Fixes for PPC KVM:
- Fix guest time accounting in the host
- Fix large-page backing for radix guests on POWER9
- Fix HPT guests on POWER9 backed by 2M or 1G pages
- Compile fixes for some configs and gcc versions
Since commit 8b24e69fc4 ("KVM: PPC: Book3S HV: Close race with testing
for signals on guest entry"), if CONFIG_VIRT_CPU_ACCOUNTING_GEN is set, the
guest time is not accounted to guest time and user time, but instead to
system time.
This is because guest_enter()/guest_exit() are called while interrupts
are disabled and the tick counter cannot be updated between them.
To fix that, move guest_exit() after local_irq_enable(), and as
guest_enter() is called with IRQ disabled, call guest_enter_irqoff()
instead.
Fixes: 8b24e69fc4 ("KVM: PPC: Book3S HV: Close race with testing for signals on guest entry")
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The current code for initializing the VRMA (virtual real memory area)
for HPT guests requires the page size of the backing memory to be one
of 4kB, 64kB or 16MB. With a radix host we have the possibility that
the backing memory page size can be 2MB or 1GB. In these cases, if the
guest switches to HPT mode, KVM will not initialize the VRMA and the
guest will fail to run.
In fact it is not necessary that the VRMA page size is the same as the
backing memory page size; any VRMA page size less than or equal to the
backing memory page size is acceptable. Therefore we now choose the
largest page size out of the set {4k, 64k, 16M} which is not larger
than the backing memory page size.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This fixes several bugs in the radix page fault handler relating to
the way large pages in the memory backing the guest were handled.
First, the check for large pages only checked for explicit huge pages
and missed transparent huge pages. Then the check that the addresses
(host virtual vs. guest physical) had appropriate alignment was
wrong, meaning that the code never put a large page in the partition
scoped radix tree; it was always demoted to a small page.
Fixing this exposed bugs in kvmppc_create_pte(). We were never
invalidating a 2MB PTE, which meant that if a page was initially
faulted in without write permission and the guest then attempted
to store to it, we would never update the PTE to have write permission.
If we find a valid 2MB PTE in the PMD, we need to clear it and
do a TLB invalidation before installing either the new 2MB PTE or
a pointer to a page table page.
This also corrects an assumption that get_user_pages_fast would set
the _PAGE_DIRTY bit if we are writing, which is not true. Instead we
mark the page dirty explicitly with set_page_dirty_lock(). This
also means we don't need the dirty bit set on the host PTE when
providing write access on a read fault.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
On lkml suggestions were made to split up such trivial typo fixes into per subsystem
patches:
--- a/arch/x86/boot/compressed/eboot.c
+++ b/arch/x86/boot/compressed/eboot.c
@@ -439,7 +439,7 @@ setup_uga32(void **uga_handle, unsigned long size, u32 *width, u32 *height)
struct efi_uga_draw_protocol *uga = NULL, *first_uga;
efi_guid_t uga_proto = EFI_UGA_PROTOCOL_GUID;
unsigned long nr_ugas;
- u32 *handles = (u32 *)uga_handle;;
+ u32 *handles = (u32 *)uga_handle;
efi_status_t status = EFI_INVALID_PARAMETER;
int i;
This patch is the result of the following script:
$ sed -i 's/;;$/;/g' $(git grep -E ';;$' | grep "\.[ch]:" | grep -vwE 'for|ia64' | cut -d: -f1 | sort | uniq)
... followed by manual review to make sure it's all good.
Splitting this up is just crazy talk, let's get over with this and just do it.
Reported-by: Pavel Machek <pavel@ucw.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Some versions of gcc generate a warning that the variable "emulated"
may be used uninitialized in function kvmppc_handle_load128_by2x64().
It would be used uninitialized if kvmppc_handle_load128_by2x64 was
ever called with vcpu->arch.mmio_vmx_copy_nums == 0, but neither of
the callers ever do that, so there is no actual bug. When gcc
generates a warning, it causes the build to fail because arch/powerpc
is compiled with -Werror.
This silences the warning by initializing "emulated" to EMULATE_DONE.
Fixes: 09f984961c ("KVM: PPC: Book3S: Add MMIO emulation for VMX instructions")
Reported-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Commit accb757d79 ("KVM: Move vcpu_load to arch-specific
kvm_arch_vcpu_ioctl_run", 2017-12-04) added a "goto out"
statement and an "out:" label to kvm_arch_vcpu_ioctl_run().
Since the only "goto out" is inside a CONFIG_VSX block,
compiling with CONFIG_VSX=n gives a warning that label "out"
is defined but not used, and because arch/powerpc is compiled
with -Werror, that becomes a compile error that makes the kernel
build fail.
Merge commit 1ab03c072f ("Merge tag 'kvm-ppc-next-4.16-2' of
git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc",
2018-02-09) added a similar block of code inside a #ifdef
CONFIG_ALTIVEC, with a "goto out" statement.
In order to make the build succeed, this adds a #ifdef around the
"out:" label. This is a minimal, ugly fix, to be replaced later
by a refactoring of the code. Since CONFIG_VSX depends on
CONFIG_ALTIVEC, it is sufficient to use #ifdef CONFIG_ALTIVEC here.
Fixes: accb757d79 ("KVM: Move vcpu_load to arch-specific kvm_arch_vcpu_ioctl_run")
Reported-by: Christian Zigotzky <chzigotzky@xenosoft.de>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
ARM:
- Include icache invalidation optimizations, improving VM startup time
- Support for forwarded level-triggered interrupts, improving
performance for timers and passthrough platform devices
- A small fix for power-management notifiers, and some cosmetic changes
PPC:
- Add MMIO emulation for vector loads and stores
- Allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
requiring the complex thread synchronization of older CPU versions
- Improve the handling of escalation interrupts with the XIVE interrupt
controller
- Support decrement register migration
- Various cleanups and bugfixes.
s390:
- Cornelia Huck passed maintainership to Janosch Frank
- Exitless interrupts for emulated devices
- Cleanup of cpuflag handling
- kvm_stat counter improvements
- VSIE improvements
- mm cleanup
x86:
- Hypervisor part of SEV
- UMIP, RDPID, and MSR_SMI_COUNT emulation
- Paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
- Allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more AVX512
features
- Show vcpu id in its anonymous inode name
- Many fixes and cleanups
- Per-VCPU MSR bitmaps (already merged through x86/pti branch)
- Stable KVM clock when nesting on Hyper-V (merged through x86/hyperv)
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJafvMtAAoJEED/6hsPKofo6YcH/Rzf2RmshrWaC3q82yfIV0Qz
Z8N8yJHSaSdc3Jo6cmiVj0zelwAxdQcyjwlT7vxt5SL2yML+/Q0st9Hc3EgGGXPm
Il99eJEl+2MYpZgYZqV8ff3mHS5s5Jms+7BITAeh6Rgt+DyNbykEAvzt+MCHK9cP
xtsIZQlvRF7HIrpOlaRzOPp3sK2/MDZJ1RBE7wYItK3CUAmsHim/LVYKzZkRTij3
/9b4LP1yMMbziG+Yxt1o682EwJB5YIat6fmDG9uFeEVI5rWWN7WFubqs8gCjYy/p
FX+BjpOdgTRnX+1m9GIj0Jlc/HKMXryDfSZS07Zy4FbGEwSiI5SfKECub4mDhuE=
=C/uD
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"ARM:
- icache invalidation optimizations, improving VM startup time
- support for forwarded level-triggered interrupts, improving
performance for timers and passthrough platform devices
- a small fix for power-management notifiers, and some cosmetic
changes
PPC:
- add MMIO emulation for vector loads and stores
- allow HPT guests to run on a radix host on POWER9 v2.2 CPUs without
requiring the complex thread synchronization of older CPU versions
- improve the handling of escalation interrupts with the XIVE
interrupt controller
- support decrement register migration
- various cleanups and bugfixes.
s390:
- Cornelia Huck passed maintainership to Janosch Frank
- exitless interrupts for emulated devices
- cleanup of cpuflag handling
- kvm_stat counter improvements
- VSIE improvements
- mm cleanup
x86:
- hypervisor part of SEV
- UMIP, RDPID, and MSR_SMI_COUNT emulation
- paravirtualized TLB shootdown using the new KVM_VCPU_PREEMPTED bit
- allow guests to see TOPOEXT, GFNI, VAES, VPCLMULQDQ, and more
AVX512 features
- show vcpu id in its anonymous inode name
- many fixes and cleanups
- per-VCPU MSR bitmaps (already merged through x86/pti branch)
- stable KVM clock when nesting on Hyper-V (merged through
x86/hyperv)"
* tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (197 commits)
KVM: PPC: Book3S: Add MMIO emulation for VMX instructions
KVM: PPC: Book3S HV: Branch inside feature section
KVM: PPC: Book3S HV: Make HPT resizing work on POWER9
KVM: PPC: Book3S HV: Fix handling of secondary HPTEG in HPT resizing code
KVM: PPC: Book3S PR: Fix broken select due to misspelling
KVM: x86: don't forget vcpu_put() in kvm_arch_vcpu_ioctl_set_sregs()
KVM: PPC: Book3S PR: Fix svcpu copying with preemption enabled
KVM: PPC: Book3S HV: Drop locks before reading guest memory
kvm: x86: remove efer_reload entry in kvm_vcpu_stat
KVM: x86: AMD Processor Topology Information
x86/kvm/vmx: do not use vm-exit instruction length for fast MMIO when running nested
kvm: embed vcpu id to dentry of vcpu anon inode
kvm: Map PFN-type memory regions as writable (if possible)
x86/kvm: Make it compile on 32bit and with HYPYERVISOR_GUEST=n
KVM: arm/arm64: Fixup userspace irqchip static key optimization
KVM: arm/arm64: Fix userspace_irqchip_in_use counting
KVM: arm/arm64: Fix incorrect timer_is_pending logic
MAINTAINERS: update KVM/s390 maintainers
MAINTAINERS: add Halil as additional vfio-ccw maintainer
MAINTAINERS: add David as a reviewer for KVM/s390
...
Seven fixes that are either trivial or that address bugs that people
are actually hitting. The main ones are:
- Drop spinlocks before reading guest memory
- Fix a bug causing corruption of VCPU state in PR KVM with preemption
enabled
- Make HPT resizing work on POWER9
- Add MMIO emulation for vector loads and stores, because guests now
use these instructions in memcpy and similar routines.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJafWn0AAoJEJ2a6ncsY3GfaMsIANF0hQD8SS78WNKnoy0vnZ/X
PUXdjwHEsfkg5KdQ7o0oaa2BJHHqO3vozddmMiG14r2L1mNCHJpnVZCVV0GaEJcZ
eU8++OPK6yrsPNNpAjnrtQ0Vk4LwzoT0bftEjS3TtLt1s2uSo+R1+HLmxbxGhQUX
bZngo9wQ3cjUfAXLrPtAVhE5wTmgVOiufVRyfRsBRdFzRsAWqjY4hBtJAfwdff4r
AA5H0RCrXO6e1feKr5ElU8KzX6b7IjH9Xu868oJ1r16zZfE05PBl1X5n4XG7XDm7
xWvs8uLAB7iRv2o/ecFznYJ+Dz1NCBVzD0RmAUTqPCcVKDrxixaTkqMPFW97IAA=
=HOJR
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-next-4.16-2' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
Second PPC KVM update for 4.16
Seven fixes that are either trivial or that address bugs that people
are actually hitting. The main ones are:
- Drop spinlocks before reading guest memory
- Fix a bug causing corruption of VCPU state in PR KVM with preemption
enabled
- Make HPT resizing work on POWER9
- Add MMIO emulation for vector loads and stores, because guests now
use these instructions in memcpy and similar routines.
This patch provides the MMIO load/store vector indexed
X-Form emulation.
Instructions implemented:
lvx: the quadword in storage addressed by the result of EA &
0xffff_ffff_ffff_fff0 is loaded into VRT.
stvx: the contents of VRS are stored into the quadword in storage
addressed by the result of EA & 0xffff_ffff_ffff_fff0.
Reported-by: Gopesh Kumar Chaudhary <gopchaud@in.ibm.com>
Reported-by: Balamuruhan S <bala24@linux.vnet.ibm.com>
Signed-off-by: Jose Ricardo Ziviani <joserz@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
We ended up with code that did a conditional branch inside a feature
section to code outside of the feature section. Depending on how the
object file gets organized, that might mean we exceed the 14bit
relocation limit for conditional branches:
arch/powerpc/kvm/built-in.o:arch/powerpc/kvm/book3s_hv_rmhandlers.S:416:(__ftr_alt_97+0x8): relocation truncated to fit: R_PPC64_REL14 against `.text'+1ca4
So instead of doing a conditional branch outside of the feature section,
let's just jump at the end of the same, making the branch very short.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds code to enable the HPT resizing code to work on POWER9,
which uses a slightly modified HPT entry format compared to POWER8.
On POWER9, we convert HPTEs read from the HPT from the new format to
the old format so that the rest of the HPT resizing code can work as
before. HPTEs written to the new HPT are converted to the new format
as the last step before writing them into the new HPT.
This takes out the checks added by commit bcd3bb63db ("KVM: PPC:
Book3S HV: Disable HPT resizing on POWER9 for now", 2017-02-18),
now that HPT resizing works on POWER9.
On POWER9, when we pivot to the new HPT, we now call
kvmppc_setup_partition_table() to update the partition table in order
to make the hardware use the new HPT.
[paulus@ozlabs.org - added kvmppc_setup_partition_table() call,
wrote commit message.]
Tested-by: Laurent Vivier <lvivier@redhat.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This fixes the computation of the HPTE index to use when the HPT
resizing code encounters a bolted HPTE which is stored in its
secondary HPTE group. The code inverts the HPTE group number, which
is correct, but doesn't then mask it with new_hash_mask. As a result,
new_pteg will be effectively negative, resulting in new_hptep
pointing before the new HPT, which will corrupt memory.
In addition, this removes two BUG_ON statements. The condition that
the BUG_ONs were testing -- that we have computed the hash value
incorrectly -- has never been observed in testing, and if it did
occur, would only affect the guest, not the host. Given that
BUG_ON should only be used in conditions where the kernel (i.e.
the host kernel, in this case) can't possibly continue execution,
it is not appropriate here.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Commit 76d837a4c0 ("KVM: PPC: Book3S PR: Don't include SPAPR TCE code
on non-pseries platforms") added a reference to the globally undefined
symbol PPC_SERIES. Looking at the rest of the commit, PPC_PSERIES was
probably intended.
Change PPC_SERIES to PPC_PSERIES.
Discovered with the
https://github.com/ulfalizer/Kconfiglib/blob/master/examples/list_undefined.py
script.
Fixes: 76d837a4c0 ("KVM: PPC: Book3S PR: Don't include SPAPR TCE code on non-pseries platforms")
Cc: stable@vger.kernel.org # v4.12+
Signed-off-by: Ulf Magnusson <ulfalizer@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Highlights:
- Enable support for memory protection keys aka "pkeys" on Power7/8/9 when
using the hash table MMU.
- Extend our interrupt soft masking to support masking PMU interrupts as well
as "normal" interrupts, and then use that to implement local_t for a ~4x
speedup vs the current atomics-based implementation.
- A new driver "ocxl" for "Open Coherent Accelerator Processor Interface
(OpenCAPI)" devices.
- Support for new device tree properties on PowerVM to describe hotpluggable
memory and devices.
- Add support for CLOCK_{REALTIME/MONOTONIC}_COARSE to the 64-bit VDSO.
- Freescale updates from Scott:
"Contains fixes for CPM GPIO and an FSL PCI erratum workaround, plus a
minor cleanup patch."
As well as quite a lot of other changes all over the place, and small fixes and
cleanups as always.
Thanks to:
Alan Modra, Alastair D'Silva, Alexey Kardashevskiy, Alistair Popple, Andreas
Schwab, Andrew Donnellan, Aneesh Kumar K.V, Anju T Sudhakar, Anshuman
Khandual, Anton Blanchard, Arnd Bergmann, Balbir Singh, Benjamin
Herrenschmidt, Bhaktipriya Shridhar, Bryant G. Ly, Cédric Le Goater,
Christophe Leroy, Christophe Lombard, Cyril Bur, David Gibson, Desnes A. Nunes
do Rosario, Dmitry Torokhov, Frederic Barrat, Geert Uytterhoeven, Guilherme G.
Piccoli, Gustavo A. R. Silva, Gustavo Romero, Ivan Mikhaylov, Joakim
Tjernlund, Joe Perches, Josh Poimboeuf, Juan J. Alvarez, Julia Cartwright,
Kamalesh Babulal, Madhavan Srinivasan, Mahesh Salgaonkar, Mathieu Malaterre,
Michael Bringmann, Michael Hanselmann, Michael Neuling, Nathan Fontenot,
Naveen N. Rao, Nicholas Piggin, Paul Mackerras, Philippe Bergheaud, Ram Pai,
Russell Currey, Santosh Sivaraj, Scott Wood, Seth Forshee, Simon Guo, Stewart
Smith, Sukadev Bhattiprolu, Thiago Jung Bauermann, Vaibhav Jain, Vasyl
Gomonovych.
-----BEGIN PGP SIGNATURE-----
iQIwBAABCAAaBQJadF6wExxtcGVAZWxsZXJtYW4uaWQuYXUACgkQUevqPMjhpYA2
nBAAnguCEyAIYpc+ffE3WU9xJEWxa6bKuVufHcUFVntGiGD+igmMS+SHp4ay3Aos
HcA4WFrpzNb2KZ++kmFWtAKWnMfCiW9xuYJNicjr7X5ZiVBEhLWN/mQCwBKs3p6L
5+HhvytcdkKVbEcyVjEGvRL40AyxXNOI02o6Co9X8vanHsmWB4q0eWe4PHstZqlg
6K6kazMp+NTvEFYwKNXDOvuHouKSL57l14SLROH7CpJkNTOQ9s+W59/LmnuCjRlu
o70b7iWOAEbF9tvMma1ksDZVNj7mSyaymLYCyOXu4CkuuleJacZYJ9oQGNddoIbC
wk7l93vPT/yze7DYg8x3uXpKcaDEvEepPuQ/ubz+UXFQWuJtl5ej6Cv+0eOmyZIs
+bjWhGHKdNttnsiPlTRCX/gWD13RE1dB6xXJlfOJ7Oz9OnXXK8ZKc1NTREbQXRWM
8tClAwf9upWpm86GHPVnyrgYbgZo5b1os4SoS8e3kESzakrQVQP7J376u2DtccRq
2AGqjJ+tl5tYPnhm8zG1cNrpqHHpgkNGqLS7DvWRg3EPmEKVQcltN1b/0aKaAjHA
aTRofjrVo+jJ4MX1uyEo59yNCEQPfjkmHRQdLwm+xjWTzEPfIMzpWyXm14tawDQf
OjcAe90W/qQ18brw4z+2BI14J76XziOSX/QcunOn1u/sqaM=
=3rYn
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.16-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Highlights:
- Enable support for memory protection keys aka "pkeys" on Power7/8/9
when using the hash table MMU.
- Extend our interrupt soft masking to support masking PMU interrupts
as well as "normal" interrupts, and then use that to implement
local_t for a ~4x speedup vs the current atomics-based
implementation.
- A new driver "ocxl" for "Open Coherent Accelerator Processor
Interface (OpenCAPI)" devices.
- Support for new device tree properties on PowerVM to describe
hotpluggable memory and devices.
- Add support for CLOCK_{REALTIME/MONOTONIC}_COARSE to the 64-bit
VDSO.
- Freescale updates from Scott: fixes for CPM GPIO and an FSL PCI
erratum workaround, plus a minor cleanup patch.
As well as quite a lot of other changes all over the place, and small
fixes and cleanups as always.
Thanks to: Alan Modra, Alastair D'Silva, Alexey Kardashevskiy,
Alistair Popple, Andreas Schwab, Andrew Donnellan, Aneesh Kumar K.V,
Anju T Sudhakar, Anshuman Khandual, Anton Blanchard, Arnd Bergmann,
Balbir Singh, Benjamin Herrenschmidt, Bhaktipriya Shridhar, Bryant G.
Ly, Cédric Le Goater, Christophe Leroy, Christophe Lombard, Cyril Bur,
David Gibson, Desnes A. Nunes do Rosario, Dmitry Torokhov, Frederic
Barrat, Geert Uytterhoeven, Guilherme G. Piccoli, Gustavo A. R. Silva,
Gustavo Romero, Ivan Mikhaylov, Joakim Tjernlund, Joe Perches, Josh
Poimboeuf, Juan J. Alvarez, Julia Cartwright, Kamalesh Babulal,
Madhavan Srinivasan, Mahesh Salgaonkar, Mathieu Malaterre, Michael
Bringmann, Michael Hanselmann, Michael Neuling, Nathan Fontenot,
Naveen N. Rao, Nicholas Piggin, Paul Mackerras, Philippe Bergheaud,
Ram Pai, Russell Currey, Santosh Sivaraj, Scott Wood, Seth Forshee,
Simon Guo, Stewart Smith, Sukadev Bhattiprolu, Thiago Jung Bauermann,
Vaibhav Jain, Vasyl Gomonovych"
* tag 'powerpc-4.16-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (199 commits)
powerpc/mm/radix: Fix build error when RADIX_MMU=n
macintosh/ams-input: Use true and false for boolean values
macintosh: change some data types from int to bool
powerpc/watchdog: Print the NIP in soft_nmi_interrupt()
powerpc/watchdog: regs can't be null in soft_nmi_interrupt()
powerpc/watchdog: Tweak watchdog printks
powerpc/cell: Remove axonram driver
rtc-opal: Fix handling of firmware error codes, prevent busy loops
powerpc/mpc52xx_gpt: make use of raw_spinlock variants
macintosh/adb: Properly mark continued kernel messages
powerpc/pseries: Fix cpu hotplug crash with memoryless nodes
powerpc/numa: Ensure nodes initialized for hotplug
powerpc/numa: Use ibm,max-associativity-domains to discover possible nodes
powerpc/kernel: Block interrupts when updating TIDR
powerpc/powernv/idoa: Remove unnecessary pcidev from pci_dn
powerpc/mm/nohash: do not flush the entire mm when range is a single page
powerpc/pseries: Add Initialization of VF Bars
powerpc/pseries/pci: Associate PEs to VFs in configure SR-IOV
powerpc/eeh: Add EEH notify resume sysfs
powerpc/eeh: Add EEH operations to notify resume
...
- Allow HPT guests to run on a radix host on POWER9 v2.2 CPUs
without requiring the complex thread synchronization that earlier
CPU versions required.
- A series from Ben Herrenschmidt to improve the handling of
escalation interrupts with the XIVE interrupt controller.
- Provide for the decrementer register to be copied across on
migration.
- Various minor cleanups and bugfixes.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJaYXViAAoJEJ2a6ncsY3GfDhgIAIDVBZH/Ftq7eJiUSxDpqyCQ
DF/x7fNKzK/J33pu+3ntOI2gZsldExAy7vH2M27I4qLIkbI5y3vu4v8l3CDlS1LK
9dKi72zg7baozoVF5mGUNm0B1sSvZiIQlC/kaami2aPTF1GcrJ561GthzfZwxENX
TSLqOA4LkeUZh2tUsvbcUrPi6v+E4Em2lgacQcx2ioMblWz56sZu79VsUbSSw/a3
P8+pIv7EbHw+TrOZMehjCbZkOdBeZ3IRLJsdlIAfe7y4vWME/5b9uVnQS/+XQj/B
6f3rQrduGvF2P6GMjsm8gDkgE5oZ1zbKlgO4i5WApnu80MMLFlfEUN+GWuGJ95Q=
=OjGs
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-next-4.16-1' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
PPC KVM update for 4.16
- Allow HPT guests to run on a radix host on POWER9 v2.2 CPUs
without requiring the complex thread synchronization that earlier
CPU versions required.
- A series from Ben Herrenschmidt to improve the handling of
escalation interrupts with the XIVE interrupt controller.
- Provide for the decrementer register to be copied across on
migration.
- Various minor cleanups and bugfixes.
Pull asm/uaccess.h whack-a-mole from Al Viro:
"It's linux/uaccess.h, damnit... Oh, well - eventually they'll stop
cropping up..."
* 'work.whack-a-mole' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
asm-prototypes.h: use linux/uaccess.h, not asm/uaccess.h
riscv: use linux/uaccess.h, not asm/uaccess.h...
ppc: for put_user() pull linux/uaccess.h, not asm/uaccess.h
When copying between the vcpu and svcpu, we may get scheduled away onto
a different host CPU which in turn means our svcpu pointer may change.
That means we need to atomically copy to and from the svcpu with preemption
disabled, so that all code around it always sees a coherent state.
Reported-by: Simon Guo <wei.guo.simon@gmail.com>
Fixes: 3d3319b45e ("KVM: PPC: Book3S: PR: Enable interrupts earlier")
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Running with CONFIG_DEBUG_ATOMIC_SLEEP reveals that HV KVM tries to
read guest memory, in order to emulate guest instructions, while
preempt is disabled and a vcore lock is held. This occurs in
kvmppc_handle_exit_hv(), called from post_guest_process(), when
emulating guest doorbell instructions on POWER9 systems, and also
when checking whether we have hit a hypervisor breakpoint.
Reading guest memory can cause a page fault and thus cause the
task to sleep, so we need to avoid reading guest memory while
holding a spinlock or when preempt is disabled.
To fix this, we move the preempt_enable() in kvmppc_run_core() to
before the loop that calls post_guest_process() for each vcore that
has just run, and we drop and re-take the vcore lock around the calls
to kvmppc_emulate_debug_inst() and kvmppc_emulate_doorbell_instr().
Dropping the lock is safe with respect to the iteration over the
runnable vcpus in post_guest_process(); for_each_runnable_thread
is actually safe to use locklessly. It is possible for a vcpu
to become runnable and add itself to the runnable_threads array
(code near the beginning of kvmppc_run_vcpu()) and then get included
in the iteration in post_guest_process despite the fact that it
has not just run. This is benign because vcpu->arch.trap and
vcpu->arch.ceded will be zero.
Cc: stable@vger.kernel.org # v4.13+
Fixes: 579006944e ("KVM: PPC: Book3S HV: Virtualize doorbell facility on POWER9")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Symbolic macros are unintuitive and hard to read, whereas octal constants
are much easier to interpret. Replace macros for the basic permission
flags (user/group/other read/write/execute) with numeric constants
instead, across the whole powerpc tree.
Introducing a significant number of changes across the tree for no runtime
benefit isn't exactly desirable, but so long as these macros are still
used in the tree people will keep sending patches that add them. Not only
are they hard to parse at a glance, there are multiple ways of coming to
the same value (as you can see with 0444 and 0644 in this patch) which
hurts readability.
Signed-off-by: Russell Currey <ruscur@russell.cc>
Reviewed-by: Cyril Bur <cyrilbur@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Merge our fixes branch from the 4.15 cycle.
Unusually the fixes branch saw some significant features merged,
notably the RFI flush patches, so we want the code in next to be
tested against that, to avoid any surprises when the two are merged.
There's also some other work on the panic handling that was reverted
in fixes and we now want to do properly in next, which would conflict.
And we also fix a few other minor merge conflicts.
Merge the topic branch we share with kvm-ppc, this brings in two xive
commits, one from Paul to rework HMI handling, and a minor cleanup to
drop an unused flag.
Rename the paca->soft_enabled to paca->irq_soft_mask as it is no
longer used as a flag for interrupt state, but a mask.
Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This adds a new ioctl, KVM_PPC_GET_CPU_CHAR, that gives userspace
information about the underlying machine's level of vulnerability
to the recently announced vulnerabilities CVE-2017-5715,
CVE-2017-5753 and CVE-2017-5754, and whether the machine provides
instructions to assist software to work around the vulnerabilities.
The ioctl returns two u64 words describing characteristics of the
CPU and required software behaviour respectively, plus two mask
words which indicate which bits have been filled in by the kernel,
for extensibility. The bit definitions are the same as for the
new H_GET_CPU_CHARACTERISTICS hypercall.
There is also a new capability, KVM_CAP_PPC_GET_CPU_CHAR, which
indicates whether the new ioctl is available.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This works on top of the single escalation support. When in single
escalation, with this change, we will keep the escalation interrupt
disabled unless the VCPU is in H_CEDE (idle). In any other case, we
know the VCPU will be rescheduled and thus there is no need to take
escalation interrupts in the host whenever a guest interrupt fires.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The prodded flag is only cleared at the beginning of H_CEDE,
so every time we have an escalation, we will cause the *next*
H_CEDE to return immediately.
Instead use a dedicated "irq_pending" flag to indicate that
a guest interrupt is pending for the VCPU. We don't reuse the
existing exception bitmap so as to avoid expensive atomic ops.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
That feature, provided by Power9 DD2.0 and later, when supported
by newer OPAL versions, allows us to sacrifice a queue (priority 7)
in favor of merging all the escalation interrupts of the queues
of a single VP into a single interrupt.
This reduces the number of host interrupts used up by KVM guests
especially when those guests use multiple priorities.
It will also enable a future change to control the masking of the
escalation interrupts more precisely to avoid spurious ones.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Add details about enabled queues and escalation interrupts.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This merges in the ppc-kvm topic branch of the powerpc tree to get
two patches which are prerequisites for the following patch series,
plus another patch which touches both powerpc and KVM code.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Hypervisor maintenance interrupts (HMIs) are generated by various
causes, signalled by bits in the hypervisor maintenance exception
register (HMER). In most cases calling OPAL to handle the interrupt
is the correct thing to do, but the "debug trigger" HMIs signalled by
PPC bit 17 (bit 46) of HMER are used to invoke software workarounds
for hardware bugs, and OPAL does not have any code to handle this
cause. The debug trigger HMI is used in POWER9 DD2.0 and DD2.1 chips
to work around a hardware bug in executing vector load instructions to
cache inhibited memory. In POWER9 DD2.2 chips, it is generated when
conditions are detected relating to threads being in TM (transactional
memory) suspended mode when the core SMT configuration needs to be
reconfigured.
The kernel currently has code to detect the vector CI load condition,
but only when the HMI occurs in the host, not when it occurs in a
guest. If a HMI occurs in the guest, it is always passed to OPAL, and
then we always re-sync the timebase, because the HMI cause might have
been a timebase error, for which OPAL would re-sync the timebase, thus
removing the timebase offset which KVM applied for the guest. Since
we don't know what OPAL did, we don't know whether to subtract the
timebase offset from the timebase, so instead we re-sync the timebase.
This adds code to determine explicitly what the cause of a debug
trigger HMI will be. This is based on a new device-tree property
under the CPU nodes called ibm,hmi-special-triggers, if it is
present, or otherwise based on the PVR (processor version register).
The handling of debug trigger HMIs is pulled out into a separate
function which can be called from the KVM guest exit code. If this
function handles and clears the HMI, and no other HMI causes remain,
then we skip calling OPAL and we proceed to subtract the guest
timebase offset from the timebase.
The overall handling for HMIs that occur in the host (i.e. not in a
KVM guest) is largely unchanged, except that we now don't set the flag
for the vector CI load workaround on DD2.2 processors.
This also removes a BUG_ON in the KVM code. BUG_ON is generally not
useful in KVM guest entry/exit code since it is difficult to handle
the resulting trap gracefully.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
POWER9 chip versions starting with "Nimbus" v2.2 can support running
with some threads of a core in HPT mode and others in radix mode.
This means that we don't have to prohibit independent-threads mode
when running a HPT guest on a radix host, and we don't have to do any
of the synchronization between threads that was introduced in commit
c01015091a ("KVM: PPC: Book3S HV: Run HPT guests on POWER9 radix
hosts", 2017-10-19).
Rather than using up another CPU feature bit, we just do an
explicit test on the PVR (processor version register) at module
startup time to determine whether we have to take steps to avoid
having some threads in HPT mode and some in radix mode (so-called
"mixed mode"). We test for "Nimbus" (indicated by 0 or 1 in the top
nibble of the lower 16 bits) v2.2 or later, or "Cumulus" (indicated by
2 or 3 in that nibble) v1.1 or later.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
There are several cases outside the normal address space management
where a CPU's entire local TLB is to be flushed:
1. Booting the kernel, in case something has left stale entries in
the TLB (e.g., kexec).
2. Machine check, to clean corrupted TLB entries.
One other place where the TLB is flushed, is waking from deep idle
states. The flush is a side-effect of calling ->cpu_restore with the
intention of re-setting various SPRs. The flush itself is unnecessary
because in the first case, the TLB should not acquire new corrupted
TLB entries as part of sleep/wake (though they may be lost).
This type of TLB flush is coded inflexibly, several times for each CPU
type, and they have a number of problems with ISA v3.0B:
- The current radix mode of the MMU is not taken into account, it is
always done as a hash flushn For IS=2 (LPID-matching flush from host)
and IS=3 with HV=0 (guest kernel flush), tlbie(l) is undefined if
the R field does not match the current radix mode.
- ISA v3.0B hash must flush the partition and process table caches as
well.
- ISA v3.0B radix must flush partition and process scoped translations,
partition and process table caches, and also the page walk cache.
So consolidate the flushing code and implement it in C and inline asm
under the mm/ directory with the rest of the flush code. Add ISA v3.0B
cases for radix and hash, and use the radix flush in radix environment.
Provide a way for IS=2 (LPID flush) to specify the radix mode of the
partition. Have KVM pass in the radix mode of the guest.
Take out the flushes from early cputable/dt_cpu_ftrs detection hooks,
and move it later in the boot process after, the MMU registers are set
up and before relocation is first turned on.
The TLB flush is no longer called when restoring from deep idle states.
This was not be done as a separate step because booting secondaries
uses the same cpu_restore as idle restore, which needs the TLB flush.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This moves the code that loads and unloads the guest SLB values so that
it is done while the guest LPCR value is loaded in the LPCR register.
The reason for doing this is that on POWER9, the behaviour of the
slbmte instruction depends on the LPCR[UPRT] bit. If UPRT is 1, as
it is for a radix host (or guest), the SLB index is truncated to
2 bits. This means that for a HPT guest on a radix host, the SLB
was not being loaded correctly, causing the guest to crash.
The SLB is now loaded much later in the guest entry path, after the
LPCR is loaded, which for a secondary thread is after it sees that
the primary thread has switched the MMU to the guest. The loop that
waits for the primary thread has a branch out to the exit code that
is taken if it sees that other threads have commenced exiting the
guest. Since we have now not loaded the SLB at this point, we make
this path branch to a new label 'guest_bypass' and we move the SLB
unload code to before this label.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This fixes a bug where it is possible to enter a guest on a POWER9
system without having the XIVE (interrupt controller) context loaded.
This can happen because we unload the XIVE context from the CPU
before doing the real-mode handling for machine checks. After the
real-mode handler runs, it is possible that we re-enter the guest
via a fast path which does not load the XIVE context.
To fix this, we move the unloading of the XIVE context to come after
the real-mode machine check handler is called.
Fixes: 5af5099385 ("KVM: PPC: Book3S HV: Native usage of the XIVE interrupt controller")
Cc: stable@vger.kernel.org # v4.11+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds a register identifier for use with the one_reg interface
to allow the decrementer expiry time to be read and written by
userspace. The decrementer expiry time is in guest timebase units
and is equal to the sum of the decrementer and the guest timebase.
(The expiry time is used rather than the decrementer value itself
because the expiry time is not constantly changing, though the
decrementer value is, while the guest vcpu is not running.)
Without this, a guest vcpu migrated to a new host will see its
decrementer set to some random value. On POWER8 and earlier, the
decrementer is 32 bits wide and counts down at 512MHz, so the
guest vcpu will potentially see no decrementer interrupts for up
to about 4 seconds, which will lead to a stall. With POWER9, the
decrementer is now 56 bits side, so the stall can be much longer
(up to 2.23 years) and more noticeable.
To help work around the problem in cases where userspace has not been
updated to migrate the decrementer expiry time, we now set the
default decrementer expiry at vcpu creation time to the current time
rather than the maximum possible value. This should mean an
immediate decrementer interrupt when a migrated vcpu starts
running. In cases where the decrementer is 32 bits wide and more
than 4 seconds elapse between the creation of the vcpu and when it
first runs, the decrementer would have wrapped around to positive
values and there may still be a stall - but this is no worse than
the current situation. In the large-decrementer case, we are sure
to get an immediate decrementer interrupt (assuming the time from
vcpu creation to first run is less than 2.23 years) and we thus
avoid a very long stall.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
One fix for an oops at boot if we take a hotplug interrupt before we are ready
to handle it.
The bulk is patches to implement mitigation for Meltdown, see the change logs
for more details.
Thanks to:
Nicholas Piggin, Michael Neuling, Oliver O'Halloran, Jon Masters, Jose Ricardo
Ziviani, David Gibson.
-----BEGIN PGP SIGNATURE-----
iQIwBAABCAAaBQJaWXZ+ExxtcGVAZWxsZXJtYW4uaWQuYXUACgkQUevqPMjhpYBe
ew/+KMp80VAIGSyFeYHLg8oClnQjKcEDMzlNoHo8WU6NwwNzk2XXBXNaGT7Osg7B
Ny69R3/VRrGmi/2uule9OzF2eZt8BUmRn3cHDcUB5OwFjMysv4M2jc+OK0STQxLU
F769rX+ZlkyAvQn4UxtNCUob+JDfVbE5Lurrx475ZGL1YHk6QqBGhlN/niXKtkBz
upeBEpu4JgwsLLD9H7c4QQha9PkhxY51jtvxL24cgwDuKJKhTdxLahPlA3QmLafu
FJxR9R0YzTj9Ivuae5yM7xRKr5wROTPtTRbG9sN7XOgFNrQ+LSgemXGrlV/fzdhV
6iPn2hHs4bu45SOIM+Hhf7OwHTtnMetXmKo6NldlKHVCw1HwBLigRohnOTPjiHfZ
P6brR4T/cglakBiE29+8T0UFqOPizEJiQRHnsoWzwIa/aTqCGEE3m3rgTxU6ovt5
3JggC51ZRDFsjGvj+JFnxGxCjYC4tDbfBI28M+GuWZZPBKLkFnEk8PlSzYyHPW2p
5uVA/UN4KHVGYUfJVUC+LMP+ZIOSEyEISKk7RuK0C0mwHSXcvxbeEefXbc18Xjai
J/pl/c9/4CRnEbdPm305xBxKKmU6gWxWRK3KbRFsoTI/wp+Ryx5TjPpgAa5GnaLv
nrtrfKs8skWfGMoDWH7+KILt0fgRR2x+91GTSxc5aaHtYBI=
=UZHv
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.15-7' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
"One fix for an oops at boot if we take a hotplug interrupt before we
are ready to handle it.
The bulk is patches to implement mitigation for Meltdown, see the
change logs for more details.
Thanks to: Nicholas Piggin, Michael Neuling, Oliver O'Halloran, Jon
Masters, Jose Ricardo Ziviani, David Gibson"
* tag 'powerpc-4.15-7' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/powernv: Check device-tree for RFI flush settings
powerpc/pseries: Query hypervisor for RFI flush settings
powerpc/64s: Support disabling RFI flush with no_rfi_flush and nopti
powerpc/64s: Add support for RFI flush of L1-D cache
powerpc/64s: Convert slb_miss_common to use RFI_TO_USER/KERNEL
powerpc/64: Convert fast_exception_return to use RFI_TO_USER/KERNEL
powerpc/64: Convert the syscall exit path to use RFI_TO_USER/KERNEL
powerpc/64s: Simple RFI macro conversions
powerpc/64: Add macros for annotating the destination of rfid/hrfid
powerpc/pseries: Add H_GET_CPU_CHARACTERISTICS flags & wrapper
powerpc/pseries: Make RAS IRQ explicitly dependent on DLPAR WQ
Four commits here, including two that were tagged but never merged.
Three of them are for the HPT resizing code; two of those fix a
user-triggerable use-after-free in the host, and one that fixes
stale TLB entries in the guest. The remaining commit fixes a bug
causing PR KVM guests under PowerVM to fail to start.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJaVfPgAAoJEJ2a6ncsY3GfA10IANZMkwtIpqxGlsAeXKr5bWdl
iXYD9ymb2/FOHBbg6v8Eh6Gb1ycjzXpXqn74/Y9TE4Ort7mdiH+W6kXYEsMqL8yg
7Uwnj8DuWFuFxX0x0V4SJQzgdCnOefVcfoo/RnLUzmLsW0Vqtr3A1djM5iHlxFvv
ntkNtGYPOoaHl6rjtfHTDfLWN/DzEJbaIU/0O1LIkBxPG4STzSXErAucLL46Pa/X
NuPO2HfpxQiacHVG62iy89eJeAcraEAXnH5e6eVPRQQqh3DSIERMU6n6jXyZeMU5
NWX8Qme3VGBpiJOiCGMvMrnJmQmMTSWTtkGljyaFy+vZWMqGZ6xJ3wIP+5t9d+Q=
=dw6K
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-fixes-4.15-3' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc into kvm-master
PPC KVM fixes for 4.15
Four commits here, including two that were tagged but never merged.
Three of them are for the HPT resizing code; two of those fix a
user-triggerable use-after-free in the host, and one that fixes
stale TLB entries in the guest. The remaining commit fixes a bug
causing PR KVM guests under PowerVM to fail to start.
A headline should be quickly put into a sequence. Thus use the
function "seq_puts" instead of "seq_printf" for this purpose.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
On Book3S in HV mode, we don't use the vcpu->arch.dec field at all.
Instead, all logic is built around vcpu->arch.dec_expires.
So let's remove the one remaining piece of code that was setting it.
Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The KVM_PPC_ALLOCATE_HTAB ioctl(), implemented by kvmppc_alloc_reset_hpt()
is supposed to completely clear and reset a guest's Hashed Page Table (HPT)
allocating or re-allocating it if necessary.
In the case where an HPT of the right size already exists and it just
zeroes it, it forces a TLB flush on all guest CPUs, to remove any stale TLB
entries loaded from the old HPT.
However, that situation can arise when the HPT is resizing as well - or
even when switching from an RPT to HPT - so those cases need a TLB flush as
well.
So, move the TLB flush to trigger in all cases except for errors.
Cc: stable@vger.kernel.org # v4.10+
Fixes: f98a8bf9ee ("KVM: PPC: Book3S HV: Allow KVM_PPC_ALLOCATE_HTAB ioctl() to change HPT size")
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Commit 96df226 ("KVM: PPC: Book3S PR: Preserve storage control bits")
added code to preserve WIMG bits but it missed 2 special cases:
- a magic page in kvmppc_mmu_book3s_64_xlate() and
- guest real mode in kvmppc_handle_pagefault().
For these ptes, WIMG was 0 and pHyp failed on these causing a guest to
stop in the very beginning at NIP=0x100 (due to bd9166ffe "KVM: PPC:
Book3S PR: Exit KVM on failed mapping").
According to LoPAPR v1.1 14.5.4.1.2 H_ENTER:
The hypervisor checks that the WIMG bits within the PTE are appropriate
for the physical page number else H_Parameter return. (For System Memory
pages WIMG=0010, or, 1110 if the SAO option is enabled, and for IO pages
WIMG=01**.)
This hence initializes WIMG to non-zero value HPTE_R_M (0x10), as expected
by pHyp.
[paulus@ozlabs.org - fix compile for 32-bit]
Cc: stable@vger.kernel.org # v4.11+
Fixes: 96df226 "KVM: PPC: Book3S PR: Preserve storage control bits"
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Tested-by: Ruediger Oertel <ro@suse.de>
Reviewed-by: Greg Kurz <groug@kaod.org>
Tested-by: Greg Kurz <groug@kaod.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This commit does simple conversions of rfi/rfid to the new macros that
include the expected destination context. By simple we mean cases
where there is a single well known destination context, and it's
simply a matter of substituting the instruction for the appropriate
macro.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When we migrate a VM from a POWER8 host (XICS) to a POWER9 host
(XICS-on-XIVE), we have an error:
qemu-kvm: Unable to restore KVM interrupt controller state \
(0xff000000) for CPU 0: Invalid argument
This is because kvmppc_xics_set_icp() checks the new state
is internaly consistent, and especially:
...
1129 if (xisr == 0) {
1130 if (pending_pri != 0xff)
1131 return -EINVAL;
...
On the other side, kvmppc_xive_get_icp() doesn't set
neither the pending_pri value, nor the xisr value (set to 0)
(and kvmppc_xive_set_icp() ignores the pending_pri value)
As xisr is 0, pending_pri must be set to 0xff.
Fixes: 5af5099385 ("KVM: PPC: Book3S HV: Native usage of the XIVE interrupt controller")
Cc: stable@vger.kernel.org # v4.12+
Signed-off-by: Laurent Vivier <lvivier@redhat.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
When restoring a pending interrupt, we are setting the Q bit to force
a retrigger in xive_finish_unmask(). But we also need to force an EOI
in this case to reach the same initial state : P=1, Q=0.
This can be done by not setting 'old_p' for pending interrupts which
will inform xive_finish_unmask() that an EOI needs to be sent.
Fixes: 5af5099385 ("KVM: PPC: Book3S HV: Native usage of the XIVE interrupt controller")
Cc: stable@vger.kernel.org # v4.12+
Suggested-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Laurent Vivier <lvivier@redhat.com>
Tested-by: Laurent Vivier <lvivier@redhat.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
After the vcpu_load/vcpu_put pushdown, the handling of asynchronous VCPU
ioctl is already much clearer in that it is obvious that they bypass
vcpu_load and vcpu_put.
However, it is still not perfect in that the different state of the VCPU
mutex is still hidden in the caller. Separate those ioctls into a new
function kvm_arch_vcpu_async_ioctl that returns -ENOIOCTLCMD for more
"traditional" synchronous ioctls.
Cc: James Hogan <jhogan@kernel.org>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Suggested-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the calls to vcpu_load() and vcpu_put() in to the architecture
specific implementations of kvm_arch_vcpu_ioctl() which dispatches
further architecture-specific ioctls on to other functions.
Some architectures support asynchronous vcpu ioctls which cannot call
vcpu_load() or take the vcpu->mutex, because that would prevent
concurrent execution with a running VCPU, which is the intended purpose
of these ioctls, for example because they inject interrupts.
We repeat the separate checks for these specifics in the architecture
code for MIPS, S390 and PPC, and avoid taking the vcpu->mutex and
calling vcpu_load for these ioctls.
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_set_guest_debug().
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_translate().
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_set_sregs().
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_get_sregs().
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_set_regs().
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_get_regs().
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move vcpu_load() and vcpu_put() into the architecture specific
implementations of kvm_arch_vcpu_ioctl_run().
Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> # s390 parts
Reviewed-by: Cornelia Huck <cohuck@redhat.com>
[Rebased. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When serving multiple resize requests following could happen:
CPU0 CPU1
---- ----
kvm_vm_ioctl_resize_hpt_prepare(1);
-> schedule_work()
/* system_rq might be busy: delay */
kvm_vm_ioctl_resize_hpt_prepare(2);
mutex_lock();
if (resize) {
...
release_hpt_resize();
}
... resize_hpt_prepare_work()
-> schedule_work() {
mutex_unlock() /* resize->kvm could be wrong */
struct kvm *kvm = resize->kvm;
mutex_lock(&kvm->lock); <<<< UAF
...
}
i.e. a second resize request with different order could be started by
kvm_vm_ioctl_resize_hpt_prepare(), causing the previous request to be
free()d when there's still an active worker thread which will try to
access it. This leads to a use after free in point marked with UAF on
the diagram above.
To prevent this from happening, instead of unconditionally releasing a
pre-existing resize structure from the prepare ioctl(), we check if
the existing structure has an in-progress worker. We do that by
checking if the resize->error == -EBUSY, which is safe because the
resize->error field is protected by the kvm->lock. If there is an
active worker, instead of releasing, we mark the structure as stale by
unlinking it from kvm_struct.
In the worker thread we check for a stale structure (with kvm->lock
held), and in that case abort, releasing the stale structure ourself.
We make the check both before and the actual allocation. Strictly,
only the check afterwards is needed, the check before is an
optimization: if the structure happens to become stale before the
worker thread is dispatched, rather than during the allocation, it
means we can avoid allocating then immediately freeing a potentially
substantial amount of memory.
This fixes following or similar host kernel crash message:
[ 635.277361] Unable to handle kernel paging request for data at address 0x00000000
[ 635.277438] Faulting instruction address: 0xc00000000052f568
[ 635.277446] Oops: Kernel access of bad area, sig: 11 [#1]
[ 635.277451] SMP NR_CPUS=2048 NUMA PowerNV
[ 635.277470] Modules linked in: xt_CHECKSUM iptable_mangle ipt_MASQUERADE
nf_nat_masquerade_ipv4 iptable_nat nf_nat_ipv4 nf_nat nf_conntrack_ipv4
nf_defrag_ipv4 xt_conntrack nf_conntrack ipt_REJECT nf_reject_ipv4 tun bridge stp llc
ebtable_filter ebtables ip6table_filter ip6_tables iptable_filter nfsv3 nfs_acl nfs
lockd grace fscache kvm_hv kvm rpcrdma sunrpc ib_isert iscsi_target_mod ib_iser libiscsi
scsi_transport_iscsi ib_srpt target_core_mod ext4 ib_srp scsi_transport_srp
ib_ipoib mbcache jbd2 rdma_ucm ib_ucm ib_uverbs ib_umad rdma_cm ib_cm iw_cm ocrdma(T)
ib_core ses enclosure scsi_transport_sas sg shpchp leds_powernv ibmpowernv i2c_opal
i2c_core powernv_rng ipmi_powernv ipmi_devintf ipmi_msghandler ip_tables xfs
libcrc32c sr_mod sd_mod cdrom lpfc nvme_fc(T) nvme_fabrics nvme_core ipr nvmet_fc(T)
tg3 nvmet libata be2net crc_t10dif crct10dif_generic scsi_transport_fc ptp scsi_tgt
pps_core crct10dif_common dm_mirror dm_region_hash dm_log dm_mod
[ 635.278687] CPU: 40 PID: 749 Comm: kworker/40:1 Tainted: G
------------ T 3.10.0.bz1510771+ #1
[ 635.278782] Workqueue: events resize_hpt_prepare_work [kvm_hv]
[ 635.278851] task: c0000007e6840000 ti: c0000007e9180000 task.ti: c0000007e9180000
[ 635.278919] NIP: c00000000052f568 LR: c0000000009ea310 CTR: c0000000009ea4f0
[ 635.278988] REGS: c0000007e91837f0 TRAP: 0300 Tainted: G
------------ T (3.10.0.bz1510771+)
[ 635.279077] MSR: 9000000100009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR: 24002022 XER:
00000000
[ 635.279248] CFAR: c000000000009368 DAR: 0000000000000000 DSISR: 40000000 SOFTE: 1
GPR00: c0000000009ea310 c0000007e9183a70 c000000001250b00 c0000007e9183b10
GPR04: 0000000000000000 0000000000000000 c0000007e9183650 0000000000000000
GPR08: c0000007ffff7b80 00000000ffffffff 0000000080000028 d00000000d2529a0
GPR12: 0000000000002200 c000000007b56800 c000000000120028 c0000007f135bb40
GPR16: 0000000000000000 c000000005c1e018 c000000005c1e018 0000000000000000
GPR20: 0000000000000001 c0000000011bf778 0000000000000001 fffffffffffffef7
GPR24: 0000000000000000 c000000f1e262e50 0000000000000002 c0000007e9180000
GPR28: c000000f1e262e4c c000000f1e262e50 0000000000000000 c0000007e9183b10
[ 635.280149] NIP [c00000000052f568] __list_add+0x38/0x110
[ 635.280197] LR [c0000000009ea310] __mutex_lock_slowpath+0xe0/0x2c0
[ 635.280253] Call Trace:
[ 635.280277] [c0000007e9183af0] [c0000000009ea310] __mutex_lock_slowpath+0xe0/0x2c0
[ 635.280356] [c0000007e9183b70] [c0000000009ea554] mutex_lock+0x64/0x70
[ 635.280426] [c0000007e9183ba0] [d00000000d24da04]
resize_hpt_prepare_work+0xe4/0x1c0 [kvm_hv]
[ 635.280507] [c0000007e9183c40] [c000000000113c0c] process_one_work+0x1dc/0x680
[ 635.280587] [c0000007e9183ce0] [c000000000114250] worker_thread+0x1a0/0x520
[ 635.280655] [c0000007e9183d80] [c00000000012010c] kthread+0xec/0x100
[ 635.280724] [c0000007e9183e30] [c00000000000a4b8] ret_from_kernel_thread+0x5c/0xa4
[ 635.280814] Instruction dump:
[ 635.280880] 7c0802a6 fba1ffe8 fbc1fff0 7cbd2b78 fbe1fff8 7c9e2378 7c7f1b78
f8010010
[ 635.281099] f821ff81 e8a50008 7fa52040 40de00b8 <e8be0000> 7fbd2840 40de008c
7fbff040
[ 635.281324] ---[ end trace b628b73449719b9d ]---
Cc: stable@vger.kernel.org # v4.10+
Fixes: b5baa68773 ("KVM: PPC: Book3S HV: KVM-HV HPT resizing implementation")
Signed-off-by: Serhii Popovych <spopovyc@redhat.com>
[dwg: Replaced BUG_ON()s with WARN_ONs() and reworded commit message
for clarity]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently the kvm_resize_hpt structure has two fields relevant to the
state of an ongoing resize: 'prepare_done', which indicates whether
the worker thread has completed or not, and 'error' which indicates
whether it was successful or not.
Since the success/failure isn't known until completion, this is
confusingly redundant. This patch consolidates the information into
just the 'error' value: -EBUSY indicates the worked is still in
progress, other negative values indicate (completed) failure, 0
indicates successful completion.
As a bonus this reduces size of struct kvm_resize_hpt by
__alignof__(struct kvm_hpt_info) and saves few bytes of code.
While there correct comment in struct kvm_resize_hpt which references
a non-existent semaphore (leftover from an early draft).
Assert with WARN_ON() in case of HPT allocation thread work runs more
than once for resize request or resize_hpt_allocate() returns -EBUSY
that is treated specially.
Change comparison against zero to make checkpatch.pl happy.
Cc: stable@vger.kernel.org # v4.10+
Signed-off-by: Serhii Popovych <spopovyc@redhat.com>
[dwg: Changed BUG_ON()s to WARN_ON()s and altered commit message for
clarity]
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
* PPC bugfix: HPT guests on a POWER9 radix host
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJaICi1AAoJEL/70l94x66DjvEIAIML/e9YX1YrJZi0rsB9cbm0
Le3o5b3wKxPrlZdnpOZQ2mVWubUQdiHMPGX6BkpgyiJWUchnbj5ql1gUf5S0i3jk
TOk6nae6DU94xBuboeqZJlmx2VfPY/fqzLWsX3HFHpnzRl4XvXL5o7cWguIxVcVO
yU6bPgbAXyXSBennLWZxC3aQ2Ojikr3uxZQpUZTAPOW5hFINpCKCpqJBMxsb67wq
rwI0cJhRl92mHpbe8qeNJhavqY5eviy9iPUaZrOW9P4yw1uqjTAjgsUc1ydiaZSV
rOHeKBOgVfY/KBaNJKyKySfuL1MJ+DLcQqm9RlGpKNpFIeB0vvSf0gtmmqIAXIk=
=kh2y
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
- x86 bugfixes: APIC, nested virtualization, IOAPIC
- PPC bugfix: HPT guests on a POWER9 radix host
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (26 commits)
KVM: Let KVM_SET_SIGNAL_MASK work as advertised
KVM: VMX: Fix vmx->nested freeing when no SMI handler
KVM: VMX: Fix rflags cache during vCPU reset
KVM: X86: Fix softlockup when get the current kvmclock
KVM: lapic: Fixup LDR on load in x2apic
KVM: lapic: Split out x2apic ldr calculation
KVM: PPC: Book3S HV: Fix migration and HPT resizing of HPT guests on radix hosts
KVM: vmx: use X86_CR4_UMIP and X86_FEATURE_UMIP
KVM: x86: Fix CPUID function for word 6 (80000001_ECX)
KVM: nVMX: Fix vmx_check_nested_events() return value in case an event was reinjected to L2
KVM: x86: ioapic: Preserve read-only values in the redirection table
KVM: x86: ioapic: Clear Remote IRR when entry is switched to edge-triggered
KVM: x86: ioapic: Remove redundant check for Remote IRR in ioapic_set_irq
KVM: x86: ioapic: Don't fire level irq when Remote IRR set
KVM: x86: ioapic: Fix level-triggered EOI and IOAPIC reconfigure race
KVM: x86: inject exceptions produced by x86_decode_insn
KVM: x86: Allow suppressing prints on RDMSR/WRMSR of unhandled MSRs
KVM: x86: fix em_fxstor() sleeping while in atomic
KVM: nVMX: Fix mmu context after VMLAUNCH/VMRESUME failure
KVM: nVMX: Validate the IA32_BNDCFGS on nested VM-entry
...
One commit here, that fixes a couple of bugs relating to the patch
series that enables HPT guests to run on a radix host on POWER9
systems. This patch series went upstream in the 4.15 merge window,
so no stable backport is required.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJaGKSnAAoJEJ2a6ncsY3GfF7MIANLLhznEMrWq8jw4g95WsJU1
MkDGwp8kIdhIOM9HD6JRskoJZB5Mws2BWlQ5PSaVFxO6v6eUgNLaRb/UBxC1r7gU
1f9/8corY4BNkezSdJqTL7Xgp13KjTU726OwYAqCPEyCSPEc9ciMyeIgyZuv2dPa
Pju+u4tnA+9JJyskgNL+/ybOOZwVat91VmNUVRq29zP6+zo1tmIDxrQchy6Bqui/
7Wg298G+yjAkJ8ktQu69ACk+0oEBGUOcLUlraqGSr9auR+b0nJ1PAGCDRaONdwgE
+X+OE+t+UC6rU+coUXMwO+Id0X7HMdsLQd3066ODEtD55g8MIVZ126Wt8xDmj5o=
=GSTh
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-fixes-4.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc into kvm-master
PPC KVM fixes for 4.15
One commit here, that fixes a couple of bugs relating to the patch
series that enables HPT guests to run on a radix host on POWER9
systems. This patch series went upstream in the 4.15 merge window,
so no stable backport is required.
KVM API says for the signal mask you set via KVM_SET_SIGNAL_MASK, that
"any unblocked signal received [...] will cause KVM_RUN to return with
-EINTR" and that "the signal will only be delivered if not blocked by
the original signal mask".
This, however, is only true, when the calling task has a signal handler
registered for a signal. If not, signal evaluation is short-circuited for
SIG_IGN and SIG_DFL, and the signal is either ignored without KVM_RUN
returning or the whole process is terminated.
Make KVM_SET_SIGNAL_MASK behave as advertised by utilizing logic similar
to that in do_sigtimedwait() to avoid short-circuiting of signals.
Signed-off-by: Jan H. Schönherr <jschoenh@amazon.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In an excess of caution, commit 6f63e81bda ("KVM: PPC: Book3S: Add
MMIO emulation for FP and VSX instructions", 2017-02-21) included
checks for the case that vcpu->arch.mmio_vsx_copy_nums is less than
zero, even though its type is u8. This causes a Coverity warning,
so we remove the check for < 0. We also adjust the associated
comment to be more accurate ("4 or less" rather than "less than 4").
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This corrects the test that determines whether a vcpu that has just
become able to run in the guest (e.g. it has just finished handling
a hypercall or hypervisor page fault) and whose virtual core is
already running somewhere as a "piggybacked" vcore can start
immediately or not. (A piggybacked vcore is one which is executing
along with another vcore as a result of dynamic micro-threading.)
Previously the test tried to lock the piggybacked vcore using
spin_trylock, which would always fail because the vcore was already
locked, and so the vcpu would have to wait until its vcore exited
the guest before it could enter.
In fact the vcpu can enter if its vcore is in VCORE_PIGGYBACK state
and not already exiting (or exited) the guest, so the test in
VCORE_PIGGYBACK state is basically the same as for VCORE_RUNNING
state.
Coverity detected this as a double unlock issue, which it isn't
because the spin_trylock would always fail. This will fix the
apparent double unlock as well.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This removes a statement that has no effect. It should have been
removed in commit 898b25b202 ("KVM: PPC: Book3S HV: Simplify dynamic
micro-threading code", 2017-06-22) along with the loop over the
piggy-backed virtual cores.
This issue was reported by Coverity.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This fixes a typo where the intent was to assign to 'j' in order to
skip some number of bits in the dirty bitmap for a guest. The effect
of the typo is benign since it means we just iterate through all the
bits rather than skipping bits which we know will be zero. This issue
was found by Coverity.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This fixes two errors that prevent a guest using the HPT MMU from
successfully migrating to a POWER9 host in radix MMU mode, or resizing
its HPT when running on a radix host.
The first bug was that commit 8dc6cca556 ("KVM: PPC: Book3S HV:
Don't rely on host's page size information", 2017-09-11) missed two
uses of hpte_base_page_size(), one in the HPT rehashing code and
one in kvm_htab_write() (which is used on the destination side in
migrating a HPT guest). Instead we use kvmppc_hpte_base_page_shift().
Having the shift count means that we can use left and right shifts
instead of multiplication and division in a few places.
Along the way, this adds a check in kvm_htab_write() to ensure that the
page size encoding in the incoming HPTEs is recognized, and if not
return an EINVAL error to userspace.
The second bug was that kvm_htab_write was performing some but not all
of the functions of kvmhv_setup_mmu(), resulting in the destination VM
being left in radix mode as far as the hardware is concerned. The
simplest fix for now is make kvm_htab_write() call
kvmppc_setup_partition_table() like kvmppc_hv_setup_htab_rma() does.
In future it would be better to refactor the code more extensively
to remove the duplication.
Fixes: 8dc6cca556 ("KVM: PPC: Book3S HV: Don't rely on host's page size information")
Fixes: 7a84084c60 ("KVM: PPC: Book3S HV: Set partition table rather than SDR1 on POWER9")
Reported-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Tested-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Common:
- Python 3 support in kvm_stat
- Accounting of slabs to kmemcg
ARM:
- Optimized arch timer handling for KVM/ARM
- Improvements to the VGIC ITS code and introduction of an ITS reset
ioctl
- Unification of the 32-bit fault injection logic
- More exact external abort matching logic
PPC:
- Support for running hashed page table (HPT) MMU mode on a host that
is using the radix MMU mode; single threaded mode on POWER 9 is
added as a pre-requisite
- Resolution of merge conflicts with the last second 4.14 HPT fixes
- Fixes and cleanups
s390:
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
x86:
- Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs, and
after-reset state
- Refined dependencies for VMX features
- Fixes for nested SMI injection
- A lot of cleanups
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJaDayXAAoJEED/6hsPKofo/3UH/3HvlcHt+ADTkCU1/iiKAs+i
0zngIOXIxgHDnV0ww6bV+Znww0BzTYgKCAXX76z603jdpDwG/pzQQcbLDF5ZoJnD
sQtF10gZinWaRsHlfbLqjrHGL2pGDHO1UKBKLJ0bAIyORPZBxs7i+VmrY/blnr9c
0wsybJ8RbvwAxjsDL5jeX/z4NehPupmKUc4Lf0eZdSHwVOf9sjn+MP6jJ0r2JcIb
D+zddPBiLStzN97t4gZpQsrlj3LKrDS+6hY+1TjSvlh+yHKFVFh58VhLm4DuDeb5
bYOAlWJ/gAWEzfvr5Ld+Nd7SqWWn/14logPkQ4gcU4BI/neAOzk4c6hJfCHl1nk=
=593n
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"First batch of KVM changes for 4.15
Common:
- Python 3 support in kvm_stat
- Accounting of slabs to kmemcg
ARM:
- Optimized arch timer handling for KVM/ARM
- Improvements to the VGIC ITS code and introduction of an ITS reset
ioctl
- Unification of the 32-bit fault injection logic
- More exact external abort matching logic
PPC:
- Support for running hashed page table (HPT) MMU mode on a host that
is using the radix MMU mode; single threaded mode on POWER 9 is
added as a pre-requisite
- Resolution of merge conflicts with the last second 4.14 HPT fixes
- Fixes and cleanups
s390:
- Some initial preparation patches for exitless interrupts and crypto
- New capability for AIS migration
- Fixes
x86:
- Improved emulation of LAPIC timer mode changes, MCi_STATUS MSRs,
and after-reset state
- Refined dependencies for VMX features
- Fixes for nested SMI injection
- A lot of cleanups"
* tag 'kvm-4.15-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (89 commits)
KVM: s390: provide a capability for AIS state migration
KVM: s390: clear_io_irq() requests are not expected for adapter interrupts
KVM: s390: abstract conversion between isc and enum irq_types
KVM: s390: vsie: use common code functions for pinning
KVM: s390: SIE considerations for AP Queue virtualization
KVM: s390: document memory ordering for kvm_s390_vcpu_wakeup
KVM: PPC: Book3S HV: Cosmetic post-merge cleanups
KVM: arm/arm64: fix the incompatible matching for external abort
KVM: arm/arm64: Unify 32bit fault injection
KVM: arm/arm64: vgic-its: Implement KVM_DEV_ARM_ITS_CTRL_RESET
KVM: arm/arm64: Document KVM_DEV_ARM_ITS_CTRL_RESET
KVM: arm/arm64: vgic-its: Free caches when GITS_BASER Valid bit is cleared
KVM: arm/arm64: vgic-its: New helper functions to free the caches
KVM: arm/arm64: vgic-its: Remove kvm_its_unmap_device
arm/arm64: KVM: Load the timer state when enabling the timer
KVM: arm/arm64: Rework kvm_timer_should_fire
KVM: arm/arm64: Get rid of kvm_timer_flush_hwstate
KVM: arm/arm64: Avoid phys timer emulation in vcpu entry/exit
KVM: arm/arm64: Move phys_timer_emulate function
KVM: arm/arm64: Use kvm_arm_timer_set/get_reg for guest register traps
...
Non-highlights:
- Five fixes for the >128T address space handling, both to fix bugs in our
implementation and to bring the semantics exactly into line with x86.
Highlights:
- Support for a new OPAL call on bare metal machines which gives us a true NMI
(ie. is not masked by MSR[EE]=0) for debugging etc.
- Support for Power9 DD2 in the CXL driver.
- Improvements to machine check handling so that uncorrectable errors can be
reported into the generic memory_failure() machinery.
- Some fixes and improvements for VPHN, which is used under PowerVM to notify
the Linux partition of topology changes.
- Plumbing to enable TM (transactional memory) without suspend on some Power9
processors (PPC_FEATURE2_HTM_NO_SUSPEND).
- Support for emulating vector loads form cache-inhibited memory, on some
Power9 revisions.
- Disable the fast-endian switch "syscall" by default (behind a CONFIG), we
believe it has never had any users.
- A major rework of the API drivers use when initiating and waiting for long
running operations performed by OPAL firmware, and changes to the
powernv_flash driver to use the new API.
- Several fixes for the handling of FP/VMX/VSX while processes are using
transactional memory.
- Optimisations of TLB range flushes when using the radix MMU on Power9.
- Improvements to the VAS facility used to access coprocessors on Power9, and
related improvements to the way the NX crypto driver handles requests.
- Implementation of PMEM_API and UACCESS_FLUSHCACHE for 64-bit.
Thanks to:
Alexey Kardashevskiy, Alistair Popple, Allen Pais, Andrew Donnellan, Aneesh
Kumar K.V, Arnd Bergmann, Balbir Singh, Benjamin Herrenschmidt, Breno Leitao,
Christophe Leroy, Christophe Lombard, Cyril Bur, Frederic Barrat, Gautham R.
Shenoy, Geert Uytterhoeven, Guilherme G. Piccoli, Gustavo Romero, Haren
Myneni, Joel Stanley, Kamalesh Babulal, Kautuk Consul, Markus Elfring, Masami
Hiramatsu, Michael Bringmann, Michael Neuling, Michal Suchanek, Naveen N. Rao,
Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Pedro Miraglia Franco de
Carvalho, Philippe Bergheaud, Sandipan Das, Seth Forshee, Shriya, Stephen
Rothwell, Stewart Smith, Sukadev Bhattiprolu, Tyrel Datwyler, Vaibhav Jain,
Vaidyanathan Srinivasan, William A. Kennington III.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJaDXGuAAoJEFHr6jzI4aWAEqwP/0TA35KFAK6wqfkCf67z4q+O
I+5piI4eDV4jdCakfoIN1JfjhQRULNePSoCHTccan30mu/bm30p69xtOLL2/h5xH
Mhz/eDBAOo0lrT20nyZfYMW3FnM66wnNf++qJ0O+8L052r4WOB02J0k1uM1ST01D
5Lb5mUoxRLRzCgKRYAYWJifn+IFPUB9NMsvMTym94krAFlIjIzMEQXhDoln+jJMr
QmY5f1BTA/fLfXobn0zwoc/C1oa2PUtxd+rxbwGrLoZ6G843mMqUi90SMr5ybhXp
RzepnBTj4by3vOsnk/X1mANyaZfLsunp75FwnjHdPzKrAS/TuPp8D/iSxxE/PzEq
cLwJFBnFXSgQMefDErXxhHSDz2dAg5r14rsTpDcq2Ko8TPV4rPsuSfmbd9Txekb0
yWHsjoJUBBMl2QcWqIHl+AlV8j1RklF6solcTBcGnH1CZJMfa05VKXV7xGEvOHa0
RJ+/xPyR9KjoB/SUp++9Vmx/M6SwQYFOJlr3Zpg9LNtR8WpoPYu1E6eO+u1Hhzny
eJqaNstH+i+VdY9eqszkAsEBh8o9M/+b+7Wx7TetvU+v368CbXtgFYs9qy2oZjPF
t9sY/BHaHZ8eZ7I00an77a0fVV5B1PVASUtIz5CqkwGpMvX6Z6W2K/XUUFI61kuu
E06HS6Ht8UPJAzrAPUMl
=Rq81
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"A bit of a small release, I suspect in part due to me travelling for
KS. But my backlog of patches to review is smaller than usual, so I
think in part folks just didn't send as much this cycle.
Non-highlights:
- Five fixes for the >128T address space handling, both to fix bugs
in our implementation and to bring the semantics exactly into line
with x86.
Highlights:
- Support for a new OPAL call on bare metal machines which gives us a
true NMI (ie. is not masked by MSR[EE]=0) for debugging etc.
- Support for Power9 DD2 in the CXL driver.
- Improvements to machine check handling so that uncorrectable errors
can be reported into the generic memory_failure() machinery.
- Some fixes and improvements for VPHN, which is used under PowerVM
to notify the Linux partition of topology changes.
- Plumbing to enable TM (transactional memory) without suspend on
some Power9 processors (PPC_FEATURE2_HTM_NO_SUSPEND).
- Support for emulating vector loads form cache-inhibited memory, on
some Power9 revisions.
- Disable the fast-endian switch "syscall" by default (behind a
CONFIG), we believe it has never had any users.
- A major rework of the API drivers use when initiating and waiting
for long running operations performed by OPAL firmware, and changes
to the powernv_flash driver to use the new API.
- Several fixes for the handling of FP/VMX/VSX while processes are
using transactional memory.
- Optimisations of TLB range flushes when using the radix MMU on
Power9.
- Improvements to the VAS facility used to access coprocessors on
Power9, and related improvements to the way the NX crypto driver
handles requests.
- Implementation of PMEM_API and UACCESS_FLUSHCACHE for 64-bit.
Thanks to: Alexey Kardashevskiy, Alistair Popple, Allen Pais, Andrew
Donnellan, Aneesh Kumar K.V, Arnd Bergmann, Balbir Singh, Benjamin
Herrenschmidt, Breno Leitao, Christophe Leroy, Christophe Lombard,
Cyril Bur, Frederic Barrat, Gautham R. Shenoy, Geert Uytterhoeven,
Guilherme G. Piccoli, Gustavo Romero, Haren Myneni, Joel Stanley,
Kamalesh Babulal, Kautuk Consul, Markus Elfring, Masami Hiramatsu,
Michael Bringmann, Michael Neuling, Michal Suchanek, Naveen N. Rao,
Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Pedro Miraglia
Franco de Carvalho, Philippe Bergheaud, Sandipan Das, Seth Forshee,
Shriya, Stephen Rothwell, Stewart Smith, Sukadev Bhattiprolu, Tyrel
Datwyler, Vaibhav Jain, Vaidyanathan Srinivasan, and William A.
Kennington III"
* tag 'powerpc-4.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (151 commits)
powerpc/64s: Fix Power9 DD2.0 workarounds by adding DD2.1 feature
powerpc/64s: Fix masking of SRR1 bits on instruction fault
powerpc/64s: mm_context.addr_limit is only used on hash
powerpc/64s/radix: Fix 128TB-512TB virtual address boundary case allocation
powerpc/64s/hash: Allow MAP_FIXED allocations to cross 128TB boundary
powerpc/64s/hash: Fix fork() with 512TB process address space
powerpc/64s/hash: Fix 128TB-512TB virtual address boundary case allocation
powerpc/64s/hash: Fix 512T hint detection to use >= 128T
powerpc: Fix DABR match on hash based systems
powerpc/signal: Properly handle return value from uprobe_deny_signal()
powerpc/fadump: use kstrtoint to handle sysfs store
powerpc/lib: Implement UACCESS_FLUSHCACHE API
powerpc/lib: Implement PMEM API
powerpc/powernv/npu: Don't explicitly flush nmmu tlb
powerpc/powernv/npu: Use flush_all_mm() instead of flush_tlb_mm()
powerpc/powernv/idle: Round up latency and residency values
powerpc/kprobes: refactor kprobe_lookup_name for safer string operations
powerpc/kprobes: Blacklist emulate_update_regs() from kprobes
powerpc/kprobes: Do not disable interrupts for optprobes and kprobes_on_ftrace
powerpc/kprobes: Disable preemption before invoking probe handler for optprobes
...
This rearranges the code in kvmppc_run_vcpu() and kvmppc_run_vcpu_hv()
to be neater and clearer. Deeply indented code in kvmppc_run_vcpu()
is moved out to a helper function, kvmhv_setup_mmu(). In
kvmppc_vcpu_run_hv(), make use of the existing variable 'kvm' in
place of 'vcpu->kvm'.
No functional change.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This merges in a couple of fixes from the kvm-ppc-fixes branch that
modify the same areas of code as some commits from the kvm-ppc-next
branch, in order to resolve the conflicts.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Just one fix here for a host crash that can occur with HV KVM
as a result of resizing the guest hashed page table (HPT).
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQEcBAABAgAGBQJaApLVAAoJEJ2a6ncsY3GfNfcIAJk93C9FK6k2urAORP3lDmKy
P6a4LnkMrQTuUCBGrkP4F1hGq2vpH6o/KeoEdhAgLMHHsarzMyBc5N7rHMHgZUzI
bUna0LaXtjdb5IP0kcDb8HmulmBaFiMf+sa2i3dIW3sCxtvqzzmxOluR0C29fG1I
gTdJV0XDzhQHJLixcQ3i4pi/K6b+wzXrY7fFPMpI2Wji6cKYr0ZL0fG8bQ0pV4OZ
0YgV9sR8mVN17JKU9R4GYz9fkp3+cXDG4xBVtczDlK6TJzF2XVUGgY/iJLMAyDRw
9gcEiIc+khkqyfuQt8iYBiHqRJ7HiT4yX1LMI9dM2vTZi23zsG3yTmsIc16QZLg=
=MzO/
-----END PGP SIGNATURE-----
Merge tag 'kvm-ppc-fixes-4.14-2' of git://git.kernel.org/pub/scm/linux/kernel/git/paulus/powerpc
PPC KVM fixes for 4.14
Just one fix here for a host crash that can occur with HV KVM
as a result of resizing the guest hashed page table (HPT).
Commit 5e9859699a ("KVM: PPC: Book3S HV: Outline of KVM-HV HPT resizing
implementation", 2016-12-20) added code that tries to exclude any use
or update of the hashed page table (HPT) while the HPT resizing code
is iterating through all the entries in the HPT. It does this by
taking the kvm->lock mutex, clearing the kvm->arch.hpte_setup_done
flag and then sending an IPI to all CPUs in the host. The idea is
that any VCPU task that tries to enter the guest will see that the
hpte_setup_done flag is clear and therefore call kvmppc_hv_setup_htab_rma,
which also takes the kvm->lock mutex and will therefore block until
we release kvm->lock.
However, any VCPU that is already in the guest, or is handling a
hypervisor page fault or hypercall, can re-enter the guest without
rechecking the hpte_setup_done flag. The IPI will cause a guest exit
of any VCPUs that are currently in the guest, but does not prevent
those VCPU tasks from immediately re-entering the guest.
The result is that after resize_hpt_rehash_hpte() has made a HPTE
absent, a hypervisor page fault can occur and make that HPTE present
again. This includes updating the rmap array for the guest real page,
meaning that we now have a pointer in the rmap array which connects
with pointers in the old rev array but not the new rev array. In
fact, if the HPT is being reduced in size, the pointer in the rmap
array could point outside the bounds of the new rev array. If that
happens, we can get a host crash later on such as this one:
[91652.628516] Unable to handle kernel paging request for data at address 0xd0000000157fb10c
[91652.628668] Faulting instruction address: 0xc0000000000e2640
[91652.628736] Oops: Kernel access of bad area, sig: 11 [#1]
[91652.628789] LE SMP NR_CPUS=1024 NUMA PowerNV
[91652.628847] Modules linked in: binfmt_misc vhost_net vhost tap xt_CHECKSUM ipt_MASQUERADE nf_nat_masquerade_ipv4 ip6t_rpfilter ip6t_REJECT nf_reject_ipv6 nf_conntrack_ipv6 nf_defrag_ipv6 xt_conntrack ip_set nfnetlink ebtable_nat ebtable_broute bridge stp llc ip6table_mangle ip6table_security ip6table_raw iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack libcrc32c iptable_mangle iptable_security iptable_raw ebtable_filter ebtables ip6table_filter ip6_tables ses enclosure scsi_transport_sas i2c_opal ipmi_powernv ipmi_devintf i2c_core ipmi_msghandler powernv_op_panel nfsd auth_rpcgss oid_registry nfs_acl lockd grace sunrpc kvm_hv kvm_pr kvm scsi_dh_alua dm_service_time dm_multipath tg3 ptp pps_core [last unloaded: stap_552b612747aec2da355051e464fa72a1_14259]
[91652.629566] CPU: 136 PID: 41315 Comm: CPU 21/KVM Tainted: G O 4.14.0-1.rc4.dev.gitb27fc5c.el7.centos.ppc64le #1
[91652.629684] task: c0000007a419e400 task.stack: c0000000028d8000
[91652.629750] NIP: c0000000000e2640 LR: d00000000c36e498 CTR: c0000000000e25f0
[91652.629829] REGS: c0000000028db5d0 TRAP: 0300 Tainted: G O (4.14.0-1.rc4.dev.gitb27fc5c.el7.centos.ppc64le)
[91652.629932] MSR: 900000010280b033 <SF,HV,VEC,VSX,EE,FP,ME,IR,DR,RI,LE,TM[E]> CR: 44022422 XER: 00000000
[91652.630034] CFAR: d00000000c373f84 DAR: d0000000157fb10c DSISR: 40000000 SOFTE: 1
[91652.630034] GPR00: d00000000c36e498 c0000000028db850 c000000001403900 c0000007b7960000
[91652.630034] GPR04: d0000000117fb100 d000000007ab00d8 000000000033bb10 0000000000000000
[91652.630034] GPR08: fffffffffffffe7f 801001810073bb10 d00000000e440000 d00000000c373f70
[91652.630034] GPR12: c0000000000e25f0 c00000000fdb9400 f000000003b24680 0000000000000000
[91652.630034] GPR16: 00000000000004fb 00007ff7081a0000 00000000000ec91a 000000000033bb10
[91652.630034] GPR20: 0000000000010000 00000000001b1190 0000000000000001 0000000000010000
[91652.630034] GPR24: c0000007b7ab8038 d0000000117fb100 0000000ec91a1190 c000001e6a000000
[91652.630034] GPR28: 00000000033bb100 000000000073bb10 c0000007b7960000 d0000000157fb100
[91652.630735] NIP [c0000000000e2640] kvmppc_add_revmap_chain+0x50/0x120
[91652.630806] LR [d00000000c36e498] kvmppc_book3s_hv_page_fault+0xbb8/0xc40 [kvm_hv]
[91652.630884] Call Trace:
[91652.630913] [c0000000028db850] [c0000000028db8b0] 0xc0000000028db8b0 (unreliable)
[91652.630996] [c0000000028db8b0] [d00000000c36e498] kvmppc_book3s_hv_page_fault+0xbb8/0xc40 [kvm_hv]
[91652.631091] [c0000000028db9e0] [d00000000c36a078] kvmppc_vcpu_run_hv+0xdf8/0x1300 [kvm_hv]
[91652.631179] [c0000000028dbb30] [d00000000c2248c4] kvmppc_vcpu_run+0x34/0x50 [kvm]
[91652.631266] [c0000000028dbb50] [d00000000c220d54] kvm_arch_vcpu_ioctl_run+0x114/0x2a0 [kvm]
[91652.631351] [c0000000028dbbd0] [d00000000c2139d8] kvm_vcpu_ioctl+0x598/0x7a0 [kvm]
[91652.631433] [c0000000028dbd40] [c0000000003832e0] do_vfs_ioctl+0xd0/0x8c0
[91652.631501] [c0000000028dbde0] [c000000000383ba4] SyS_ioctl+0xd4/0x130
[91652.631569] [c0000000028dbe30] [c00000000000b8e0] system_call+0x58/0x6c
[91652.631635] Instruction dump:
[91652.631676] fba1ffe8 fbc1fff0 fbe1fff8 f8010010 f821ffa1 2fa70000 793d0020 e9432110
[91652.631814] 7bbf26e4 7c7e1b78 7feafa14 409e0094 <807f000c> 786326e4 7c6a1a14 93a40008
[91652.631959] ---[ end trace ac85ba6db72e5b2e ]---
To fix this, we tighten up the way that the hpte_setup_done flag is
checked to ensure that it does provide the guarantee that the resizing
code needs. In kvmppc_run_core(), we check the hpte_setup_done flag
after disabling interrupts and refuse to enter the guest if it is
clear (for a HPT guest). The code that checks hpte_setup_done and
calls kvmppc_hv_setup_htab_rma() is moved from kvmppc_vcpu_run_hv()
to a point inside the main loop in kvmppc_run_vcpu(), ensuring that
we don't just spin endlessly calling kvmppc_run_core() while
hpte_setup_done is clear, but instead have a chance to block on the
kvm->lock mutex.
Finally we also check hpte_setup_done inside the region in
kvmppc_book3s_hv_page_fault() where the HPTE is locked and we are about
to update the HPTE, and bail out if it is clear. If another CPU is
inside kvm_vm_ioctl_resize_hpt_commit) and has cleared hpte_setup_done,
then we know that either we are looking at a HPTE
that resize_hpt_rehash_hpte() has not yet processed, which is OK,
or else we will see hpte_setup_done clear and refuse to update it,
because of the full barrier formed by the unlock of the HPTE in
resize_hpt_rehash_hpte() combined with the locking of the HPTE
in kvmppc_book3s_hv_page_fault().
Fixes: 5e9859699a ("KVM: PPC: Book3S HV: Outline of KVM-HV HPT resizing implementation")
Cc: stable@vger.kernel.org # v4.10+
Reported-by: Satheesh Rajendran <satheera@in.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
If the host takes a system reset interrupt while a guest is running,
the CPU must exit the guest before processing the host exception
handler.
After this patch, taking a sysrq+x with a CPU running in a guest
gives a trace like this:
cpu 0x27: Vector: 100 (System Reset) at [c000000fdf5776f0]
pc: c008000010158b80: kvmppc_run_core+0x16b8/0x1ad0 [kvm_hv]
lr: c008000010158b80: kvmppc_run_core+0x16b8/0x1ad0 [kvm_hv]
sp: c000000fdf577850
msr: 9000000002803033
current = 0xc000000fdf4b1e00
paca = 0xc00000000fd4d680 softe: 3 irq_happened: 0x01
pid = 6608, comm = qemu-system-ppc
Linux version 4.14.0-rc7-01489-g47e1893a404a-dirty #26 SMP
[c000000fdf577a00] c008000010159dd4 kvmppc_vcpu_run_hv+0x3dc/0x12d0 [kvm_hv]
[c000000fdf577b30] c0080000100a537c kvmppc_vcpu_run+0x44/0x60 [kvm]
[c000000fdf577b60] c0080000100a1ae0 kvm_arch_vcpu_ioctl_run+0x118/0x310 [kvm]
[c000000fdf577c00] c008000010093e98 kvm_vcpu_ioctl+0x530/0x7c0 [kvm]
[c000000fdf577d50] c000000000357bf8 do_vfs_ioctl+0xd8/0x8c0
[c000000fdf577df0] c000000000358448 SyS_ioctl+0x68/0x100
[c000000fdf577e30] c00000000000b220 system_call+0x58/0x6c
--- Exception: c01 (System Call) at 00007fff76868df0
SP (7fff7069baf0) is in userspace
Fixes: e36d0a2ed5 ("powerpc/powernv: Implement NMI IPI with OPAL_SIGNAL_SYSTEM_RESET")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWfswbQ8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ykvEwCfXU1MuYFQGgMdDmAZXEc+xFXZvqgAoKEcHDNA
6dVh26uchcEQLN/XqUDt
=x306
-----END PGP SIGNATURE-----
Merge tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull initial SPDX identifiers from Greg KH:
"License cleanup: add SPDX license identifiers to some files
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the
'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally
binding shorthand, which can be used instead of the full boiler plate
text.
This patch is based on work done by Thomas Gleixner and Kate Stewart
and Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset
of the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to
license had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied
to a file was done in a spreadsheet of side by side results from of
the output of two independent scanners (ScanCode & Windriver)
producing SPDX tag:value files created by Philippe Ombredanne.
Philippe prepared the base worksheet, and did an initial spot review
of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537
files assessed. Kate Stewart did a file by file comparison of the
scanner results in the spreadsheet to determine which SPDX license
identifier(s) to be applied to the file. She confirmed any
determination that was not immediately clear with lawyers working with
the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained
>5 lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that
was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that
became the concluded license(s).
- when there was disagreement between the two scanners (one detected
a license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply
(and which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases,
confirmation by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.
The Windriver scanner is based on an older version of FOSSology in
part, so they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot
checks in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect
the correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial
patch version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch
license was not GPL-2.0 WITH Linux-syscall-note to ensure that the
applied SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>"
* tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core:
License cleanup: add SPDX license identifier to uapi header files with a license
License cleanup: add SPDX license identifier to uapi header files with no license
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This patch removes the restriction that a radix host can only run
radix guests, allowing us to run HPT (hashed page table) guests as
well. This is useful because it provides a way to run old guest
kernels that know about POWER8 but not POWER9.
Unfortunately, POWER9 currently has a restriction that all threads
in a given code must either all be in HPT mode, or all in radix mode.
This means that when entering a HPT guest, we have to obtain control
of all 4 threads in the core and get them to switch their LPIDR and
LPCR registers, even if they are not going to run a guest. On guest
exit we also have to get all threads to switch LPIDR and LPCR back
to host values.
To make this feasible, we require that KVM not be in the "independent
threads" mode, and that the CPU cores be in single-threaded mode from
the host kernel's perspective (only thread 0 online; threads 1, 2 and
3 offline). That allows us to use the same code as on POWER8 for
obtaining control of the secondary threads.
To manage the LPCR/LPIDR changes required, we extend the kvm_split_info
struct to contain the information needed by the secondary threads.
All threads perform a barrier synchronization (where all threads wait
for every other thread to reach the synchronization point) on guest
entry, both before and after loading LPCR and LPIDR. On guest exit,
they all once again perform a barrier synchronization both before
and after loading host values into LPCR and LPIDR.
Finally, it is also currently necessary to flush the entire TLB every
time we enter a HPT guest on a radix host. We do this on thread 0
with a loop of tlbiel instructions.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This patch allows for a mode on POWER9 hosts where we control all the
threads of a core, much as we do on POWER8. The mode is controlled by
a module parameter on the kvm_hv module, called "indep_threads_mode".
The normal mode on POWER9 is the "independent threads" mode, with
indep_threads_mode=Y, where the host is in SMT4 mode (or in fact any
desired SMT mode) and each thread independently enters and exits from
KVM guests without reference to what other threads in the core are
doing.
If indep_threads_mode is set to N at the point when a VM is started,
KVM will expect every core that the guest runs on to be in single
threaded mode (that is, threads 1, 2 and 3 offline), and will set the
flag that prevents secondary threads from coming online. We can still
use all four threads; the code that implements dynamic micro-threading
on POWER8 will become active in over-commit situations and will allow
up to three other VCPUs to be run on the secondary threads of the core
whenever a VCPU is run.
The reason for wanting this mode is that this will allow us to run HPT
guests on a radix host on a POWER9 machine that does not support
"mixed mode", that is, having some threads in a core be in HPT mode
while other threads are in radix mode. It will also make it possible
to implement a "strict threads" mode in future, if desired.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This sets up the machinery for switching a guest between HPT (hashed
page table) and radix MMU modes, so that in future we can run a HPT
guest on a radix host on POWER9 machines.
* The KVM_PPC_CONFIGURE_V3_MMU ioctl can now specify either HPT or
radix mode, on a radix host.
* The KVM_CAP_PPC_MMU_HASH_V3 capability now returns 1 on POWER9
with HV KVM on a radix host.
* The KVM_PPC_GET_SMMU_INFO returns information about the HPT MMU on a
radix host.
* The KVM_PPC_ALLOCATE_HTAB ioctl on a radix host will switch the
guest to HPT mode and allocate a HPT.
* For simplicity, we now allocate the rmap array for each memslot,
even on a radix host, since it will be needed if the guest switches
to HPT mode.
* Since we cannot yet run a HPT guest on a radix host, the KVM_RUN
ioctl will return an EINVAL error in that case.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently, the HPT code in HV KVM maintains a dirty bit per guest page
in the rmap array, whether or not dirty page tracking has been enabled
for the memory slot. In contrast, the radix code maintains a dirty
bit per guest page in memslot->dirty_bitmap, and only does so when
dirty page tracking has been enabled.
This changes the HPT code to maintain the dirty bits in the memslot
dirty_bitmap like radix does. This results in slightly less code
overall, and will mean that we do not lose the dirty bits when
transitioning between HPT and radix mode in future.
There is one minor change to behaviour as a result. With HPT, when
dirty tracking was enabled for a memslot, we would previously clear
all the dirty bits at that point (both in the HPT entries and in the
rmap arrays), meaning that a KVM_GET_DIRTY_LOG ioctl immediately
following would show no pages as dirty (assuming no vcpus have run
in the meantime). With this change, the dirty bits on HPT entries
are not cleared at the point where dirty tracking is enabled, so
KVM_GET_DIRTY_LOG would show as dirty any guest pages that are
resident in the HPT and dirty. This is consistent with what happens
on radix.
This also fixes a bug in the mark_pages_dirty() function for radix
(in the sense that the function no longer exists). In the case where
a large page of 64 normal pages or more is marked dirty, the
addressing of the dirty bitmap was incorrect and could write past
the end of the bitmap. Fortunately this case was never hit in
practice because a 2MB large page is only 32 x 64kB pages, and we
don't support backing the guest with 1GB huge pages at this point.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This renames the kvm->arch.hpte_setup_done field to mmu_ready because
we will want to use it for radix guests too -- both for setting things
up before vcpu execution, and for excluding vcpus from executing while
MMU-related things get changed, such as in future switching the MMU
from radix to HPT mode or vice-versa.
This also moves the call to kvmppc_setup_partition_table() that was
done in kvmppc_hv_setup_htab_rma() for HPT guests, and the setting
of mmu_ready, into the caller in kvmppc_vcpu_run_hv().
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This removes the dependence of KVM on the mmu_psize_defs array (which
stores information about hardware support for various page sizes) and
the things derived from it, chiefly hpte_page_sizes[], hpte_page_size(),
hpte_actual_page_size() and get_sllp_encoding(). We also no longer
rely on the mmu_slb_size variable or the MMU_FTR_1T_SEGMENTS feature
bit.
The reason for doing this is so we can support a HPT guest on a radix
host. In a radix host, the mmu_psize_defs array contains information
about page sizes supported by the MMU in radix mode rather than the
page sizes supported by the MMU in HPT mode. Similarly, mmu_slb_size
and the MMU_FTR_1T_SEGMENTS bit are not set.
Instead we hard-code knowledge of the behaviour of the HPT MMU in the
POWER7, POWER8 and POWER9 processors (which are the only processors
supported by HV KVM) - specifically the encoding of the LP fields in
the HPT and SLB entries, and the fact that they have 32 SLB entries
and support 1TB segments.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This merges in the ppc-kvm topic branch of the powerpc tree to get the
commit that reverts the patch "KVM: PPC: Book3S HV: POWER9 does not
require secondary thread management". This is needed for subsequent
patches which will be applied on this branch.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This fixes the message:
arch/powerpc/kvm/book3s_segment.S: Assembler messages:
arch/powerpc/kvm/book3s_segment.S:330: Warning: invalid register expression
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Userland passes an array of 64 SLB descriptors to KVM_SET_SREGS,
some of which are valid (ie, SLB_ESID_V is set) and the rest are
likely all-zeroes (with QEMU at least).
Each of them is then passed to kvmppc_mmu_book3s_64_slbmte(), which
assumes to find the SLB index in the 3 lower bits of its rb argument.
When passed zeroed arguments, it happily overwrites the 0th SLB entry
with zeroes. This is exactly what happens while doing live migration
with QEMU when the destination pushes the incoming SLB descriptors to
KVM PR. When reloading the SLBs at the next synchronization, QEMU first
clears its SLB array and only restore valid ones, but the 0th one is
now gone and we cannot access the corresponding memory anymore:
(qemu) x/x $pc
c0000000000b742c: Cannot access memory
To avoid this, let's filter out non-valid SLB entries. While here, we
also force a full SLB flush before installing new entries. Since SLB
is for 64-bit only, we now build this path conditionally to avoid a
build break on 32-bit, which doesn't define SLB_ESID_V.
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When running a guest on a POWER9 system with the in-kernel XICS
emulation disabled (for example by running QEMU with the parameter
"-machine pseries,kernel_irqchip=off"), the kernel does not pass
the XICS-related hypercalls such as H_CPPR up to userspace for
emulation there as it should.
The reason for this is that the real-mode handlers for these
hypercalls don't check whether a XICS device has been instantiated
before calling the xics-on-xive code. That code doesn't check
either, leading to potential NULL pointer dereferences because
vcpu->arch.xive_vcpu is NULL. Those dereferences won't cause an
exception in real mode but will lead to kernel memory corruption.
This fixes it by adding kvmppc_xics_enabled() checks before calling
the XICS functions.
Cc: stable@vger.kernel.org # v4.11+
Fixes: 5af5099385 ("KVM: PPC: Book3S HV: Native usage of the XIVE interrupt controller")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Currently we use CPU_FTR_TM to decide if the CPU/kernel can support
TM (Transactional Memory), and if it's true we advertise that to
Qemu (or similar) via KVM_CAP_PPC_HTM.
PPC_FEATURE2_HTM is the user-visible feature bit, which indicates that
the CPU and kernel can support TM. Currently CPU_FTR_TM and
PPC_FEATURE2_HTM always have the same value, either true or false, so
using the former for KVM_CAP_PPC_HTM is correct.
However some Power9 CPUs can operate in a mode where TM is enabled but
TM suspended state is disabled. In this mode CPU_FTR_TM is true, but
PPC_FEATURE2_HTM is false. Instead a different PPC_FEATURE2 bit is
set, to indicate that this different mode of TM is available.
It is not safe to let guests use TM as-is, when the CPU is in this
mode. So to prevent that from happening, use PPC_FEATURE2_HTM to
determine the value of KVM_CAP_PPC_HTM.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
This reverts commit 94a04bc25a.
In order to run HPT guests on a radix POWER9 host, we will have to run
the host in single-threaded mode, because POWER9 processors do not
currently support running some threads of a core in HPT mode while
others are in radix mode ("mixed mode").
That means that we will need the same mechanisms that are used on
POWER8 to make the secondary threads available to KVM, which were
disabled on POWER9 by commit 94a04bc25a.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On POWER9 systems, we push the VCPU context onto the XIVE (eXternal
Interrupt Virtualization Engine) hardware when entering a guest,
and pull the context off the XIVE when exiting the guest. The push
is done with cache-inhibited stores, and the pull with cache-inhibited
loads.
Testing has revealed that it is possible (though very rare) for
the stores to get reordered with the loads so that we end up with the
guest VCPU context still loaded on the XIVE after we have exited the
guest. When that happens, it is possible for the same VCPU context
to then get loaded on another CPU, which causes the machine to
checkstop.
To fix this, we add I/O barrier instructions (eieio) before and
after the push and pull operations. As partial compensation for the
potential slowdown caused by the extra barriers, we remove the eieio
instructions between the two stores in the push operation, and between
the two loads in the pull operation. (The architecture requires
loads to cache-inhibited, guarded storage to be kept in order, and
requires stores to cache-inhibited, guarded storage likewise to be
kept in order, but allows such loads and stores to be reordered with
respect to each other.)
Reported-by: Carol L Soto <clsoto@us.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds code to make sure that we don't try to access the
non-existent HPT for a radix guest using the htab file for the VM
in debugfs, a file descriptor obtained using the KVM_PPC_GET_HTAB_FD
ioctl, or via the KVM_PPC_RESIZE_HPT_{PREPARE,COMMIT} ioctls.
At present nothing bad happens if userspace does access these
interfaces on a radix guest, mostly because kvmppc_hpt_npte()
gives 0 for a radix guest, which in turn is because 1 << -4
comes out as 0 on POWER processors. However, that relies on
undefined behaviour, so it is better to be explicit about not
accessing the HPT for a radix guest.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The handlers support PR KVM from the day one; however the PR KVM's
enable/disable hcalls handler missed these ones.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Omit an extra message for a memory allocation failure in this function.
This issue was detected by using the Coccinelle software.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Use vma_pages function on vma object instead of explicit computation.
Found by coccinelle spatch "api/vma_pages.cocci"
Signed-off-by: Thomas Meyer <thomas@m3y3r.de>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Use ARRAY_SIZE macro, rather than explicitly coding some variant of it
yourself.
Found with: find -type f -name "*.c" -o -name "*.h" | xargs perl -p -i -e
's/\bsizeof\s*\(\s*(\w+)\s*\)\s*\ /\s*sizeof\s*\(\s*\1\s*\[\s*0\s*\]\s*\)
/ARRAY_SIZE(\1)/g' and manual check/verification.
Signed-off-by: Thomas Meyer <thomas@m3y3r.de>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
At present, if an interrupt (i.e. an exception or trap) occurs in the
code where KVM is switching the MMU to or from guest context, we jump
to kvmppc_bad_host_intr, where we simply spin with interrupts disabled.
In this situation, it is hard to debug what happened because we get no
indication as to which interrupt occurred or where. Typically we get
a cascade of stall and soft lockup warnings from other CPUs.
In order to get more information for debugging, this adds code to
create a stack frame on the emergency stack and save register values
to it. We start half-way down the emergency stack in order to give
ourselves some chance of being able to do a stack trace on secondary
threads that are already on the emergency stack.
On POWER7 or POWER8, we then just spin, as before, because we don't
know what state the MMU context is in or what other threads are doing,
and we can't switch back to host context without coordinating with
other threads. On POWER9 we can do better; there we load up the host
MMU context and jump to C code, which prints an oops message to the
console and panics.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
kvmppc_gpa_to_ua() accesses KVM memory slot array via
srcu_dereference_check() and this produces warnings from RCU like below.
This extends the existing srcu_read_lock/unlock to cover that
kvmppc_gpa_to_ua() as well.
We did not hit this before as this lock is not needed for the realmode
handlers and hash guests would use the realmode path all the time;
however the radix guests are always redirected to the virtual mode
handlers and hence the warning.
[ 68.253798] ./include/linux/kvm_host.h:575 suspicious rcu_dereference_check() usage!
[ 68.253799]
other info that might help us debug this:
[ 68.253802]
rcu_scheduler_active = 2, debug_locks = 1
[ 68.253804] 1 lock held by qemu-system-ppc/6413:
[ 68.253806] #0: (&vcpu->mutex){+.+.}, at: [<c00800000e3c22f4>] vcpu_load+0x3c/0xc0 [kvm]
[ 68.253826]
stack backtrace:
[ 68.253830] CPU: 92 PID: 6413 Comm: qemu-system-ppc Tainted: G W 4.14.0-rc3-00553-g432dcba58e9c-dirty #72
[ 68.253833] Call Trace:
[ 68.253839] [c000000fd3d9f790] [c000000000b7fcc8] dump_stack+0xe8/0x160 (unreliable)
[ 68.253845] [c000000fd3d9f7d0] [c0000000001924c0] lockdep_rcu_suspicious+0x110/0x180
[ 68.253851] [c000000fd3d9f850] [c0000000000e825c] kvmppc_gpa_to_ua+0x26c/0x2b0
[ 68.253858] [c000000fd3d9f8b0] [c00800000e3e1984] kvmppc_h_put_tce+0x12c/0x2a0 [kvm]
Fixes: 121f80ba68 ("KVM: PPC: VFIO: Add in-kernel acceleration for VFIO")
Cc: stable@vger.kernel.org # v4.12+
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
- Add another case where msgsync is required.
- Required barrier sequence for global doorbells is msgsync ; lwsync
When msgsnd is used for IPIs to other cores, msgsync must be executed by
the target to order stores performed on the source before its msgsnd
(provided the source executes the appropriate sync).
Fixes: 1704a81cce ("KVM: PPC: Book3S HV: Use msgsnd for IPIs to other cores on POWER9")
Cc: stable@vger.kernel.org # v4.10+
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The following program causes a kernel oops:
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/kvm.h>
main()
{
int fd = open("/dev/kvm", O_RDWR);
ioctl(fd, KVM_CHECK_EXTENSION, KVM_CAP_PPC_HTM);
}
This happens because when using the global KVM fd with
KVM_CHECK_EXTENSION, kvm_vm_ioctl_check_extension() gets
called with a NULL kvm argument, which gets dereferenced
in is_kvmppc_hv_enabled(). Spotted while reading the code.
Let's use the hv_enabled fallback variable, like everywhere
else in this function.
Fixes: 23528bb21e ("KVM: PPC: Introduce KVM_CAP_PPC_HTM")
Cc: stable@vger.kernel.org # v4.7+
Signed-off-by: Greg Kurz <groug@kaod.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Reviewed-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
In KVM's XICS-on-XIVE emulation, kvmppc_xive_get_xive() returns the
value of state->guest_server as "server". However, this value is not
set by it's counterpart kvmppc_xive_set_xive(). When the guest uses
this interface to migrate interrupts away from a CPU that is going
offline, it sees all interrupts as belonging to CPU 0, so they are
left assigned to (now) offline CPUs.
This patch removes the guest_server field from the state, and returns
act_server in it's place (that is, the CPU actually handling the
interrupt, which may differ from the one requested).
Fixes: 5af5099385 ("KVM: PPC: Book3S HV: Native usage of the XIVE interrupt controller")
Cc: stable@vger.kernel.org
Signed-off-by: Sam Bobroff <sam.bobroff@au1.ibm.com>
Acked-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
On POWER9 DD2.1 and below, sometimes on a Hypervisor Data Storage
Interrupt (HDSI) the HDSISR is not be updated at all.
To work around this we put a canary value into the HDSISR before
returning to a guest and then check for this canary when we take a
HDSI. If we find the canary on a HDSI, we know the hardware didn't
update the HDSISR. In this case we return to the guest to retake the
HDSI which should correctly update the HDSISR the second time HDSI
entry.
After talking to Paulus we've applied this workaround to all POWER9
CPUs. The workaround of returning to the guest shouldn't ever be
triggered on well behaving CPU. The extra instructions should have
negligible performance impact.
Signed-off-by: Michael Neuling <mikey@neuling.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Particularly because kvmppc_fast_vcpu_kick_hv() is a callback,
ensure that we properly serialize wq active checks in order to
avoid potentially missing a wakeup due to racing with the waiter
side.
Signed-off-by: Davidlohr Bueso <dbueso@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Aneesh Kumar reported seeing host crashes when running recent kernels
on POWER8. The symptom was an oops like this:
Unable to handle kernel paging request for data at address 0xf00000000786c620
Faulting instruction address: 0xc00000000030e1e4
Oops: Kernel access of bad area, sig: 11 [#1]
LE SMP NR_CPUS=2048 NUMA PowerNV
Modules linked in: powernv_op_panel
CPU: 24 PID: 6663 Comm: qemu-system-ppc Tainted: G W 4.13.0-rc7-43932-gfc36c59 #2
task: c000000fdeadfe80 task.stack: c000000fdeb68000
NIP: c00000000030e1e4 LR: c00000000030de6c CTR: c000000000103620
REGS: c000000fdeb6b450 TRAP: 0300 Tainted: G W (4.13.0-rc7-43932-gfc36c59)
MSR: 9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR: 24044428 XER: 20000000
CFAR: c00000000030e134 DAR: f00000000786c620 DSISR: 40000000 SOFTE: 0
GPR00: 0000000000000000 c000000fdeb6b6d0 c0000000010bd000 000000000000e1b0
GPR04: c00000000115e168 c000001fffa6e4b0 c00000000115d000 c000001e1b180386
GPR08: f000000000000000 c000000f9a8913e0 f00000000786c600 00007fff587d0000
GPR12: c000000fdeb68000 c00000000fb0f000 0000000000000001 00007fff587cffff
GPR16: 0000000000000000 c000000000000000 00000000003fffff c000000fdebfe1f8
GPR20: 0000000000000004 c000000fdeb6b8a8 0000000000000001 0008000000000040
GPR24: 07000000000000c0 00007fff587cffff c000000fdec20bf8 00007fff587d0000
GPR28: c000000fdeca9ac0 00007fff587d0000 00007fff587c0000 00007fff587d0000
NIP [c00000000030e1e4] __get_user_pages_fast+0x434/0x1070
LR [c00000000030de6c] __get_user_pages_fast+0xbc/0x1070
Call Trace:
[c000000fdeb6b6d0] [c00000000139dab8] lock_classes+0x0/0x35fe50 (unreliable)
[c000000fdeb6b7e0] [c00000000030ef38] get_user_pages_fast+0xf8/0x120
[c000000fdeb6b830] [c000000000112318] kvmppc_book3s_hv_page_fault+0x308/0xf30
[c000000fdeb6b960] [c00000000010e10c] kvmppc_vcpu_run_hv+0xfdc/0x1f00
[c000000fdeb6bb20] [c0000000000e915c] kvmppc_vcpu_run+0x2c/0x40
[c000000fdeb6bb40] [c0000000000e5650] kvm_arch_vcpu_ioctl_run+0x110/0x300
[c000000fdeb6bbe0] [c0000000000d6468] kvm_vcpu_ioctl+0x528/0x900
[c000000fdeb6bd40] [c0000000003bc04c] do_vfs_ioctl+0xcc/0x950
[c000000fdeb6bde0] [c0000000003bc930] SyS_ioctl+0x60/0x100
[c000000fdeb6be30] [c00000000000b96c] system_call+0x58/0x6c
Instruction dump:
7ca81a14 2fa50000 41de0010 7cc8182a 68c60002 78c6ffe2 0b060000 3cc2000a
794a3664 390610d8 e9080000 7d485214 <e90a0020> 7d435378 790507e1 408202f0
---[ end trace fad4a342d0414aa2 ]---
It turns out that what has happened is that the SLB entry for the
vmmemap region hasn't been reloaded on exit from a guest, and it has
the wrong page size. Then, when the host next accesses the vmemmap
region, it gets a page fault.
Commit a25bd72bad ("powerpc/mm/radix: Workaround prefetch issue with
KVM", 2017-07-24) modified the guest exit code so that it now only clears
out the SLB for hash guest. The code tests the radix flag and puts the
result in a non-volatile CR field, CR2, and later branches based on CR2.
Unfortunately, the kvmppc_save_tm function, which gets called between
those two points, modifies all the user-visible registers in the case
where the guest was in transactional or suspended state, except for a
few which it restores (namely r1, r2, r9 and r13). Thus the hash/radix indication in CR2 gets corrupted.
This fixes the problem by re-doing the comparison just before the
result is needed. For good measure, this also adds comments next to
the call sites of kvmppc_save_tm and kvmppc_restore_tm pointing out
that non-volatile register state will be lost.
Cc: stable@vger.kernel.org # v4.13
Fixes: a25bd72bad ("powerpc/mm/radix: Workaround prefetch issue with KVM")
Tested-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Commit 468808bd35 ("KVM: PPC: Book3S HV: Set process table for HPT
guests on POWER9", 2017-01-30) added a call to kvmppc_update_lpcr()
which doesn't hold the kvm->lock mutex around the call, as required.
This adds the lock/unlock pair, and for good measure, includes
the kvmppc_setup_partition_table() call in the locked region, since
it is altering global state of the VM.
This error appears not to have any fatal consequences for the host;
the consequences would be that the VCPUs could end up running with
different LPCR values, or an update to the LPCR value by userspace
using the one_reg interface could get overwritten, or the update
done by kvmhv_configure_mmu() could get overwritten.
Cc: stable@vger.kernel.org # v4.10+
Fixes: 468808bd35 ("KVM: PPC: Book3S HV: Set process table for HPT guests on POWER9")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The XIVE interrupt controller on POWER9 machines doesn't support byte
accesses to any register in the thread management area other than the
CPPR (current processor priority register). In particular, when
reading the PIPR (pending interrupt priority register), we need to
do a 32-bit or 64-bit load.
Cc: stable@vger.kernel.org # v4.13
Fixes: 2c4fb78f78 ("KVM: PPC: Book3S HV: Workaround POWER9 DD1.0 bug causing IPB bit loss")
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Common:
- improve heuristic for boosting preempted spinlocks by ignoring VCPUs
in user mode
ARM:
- fix for decoding external abort types from guests
- added support for migrating the active priority of interrupts when
running a GICv2 guest on a GICv3 host
- minor cleanup
PPC:
- expose storage keys to userspace
- merge powerpc/topic/ppc-kvm branch that contains
find_linux_pte_or_hugepte and POWER9 thread management cleanup
- merge kvm-ppc-fixes with a fix that missed 4.13 because of vacations
- fixes
s390:
- merge of topic branch tlb-flushing from the s390 tree to get the
no-dat base features
- merge of kvm/master to avoid conflicts with additional sthyi fixes
- wire up the no-dat enhancements in KVM
- multiple epoch facility (z14 feature)
- Configuration z/Architecture Mode
- more sthyi fixes
- gdb server range checking fix
- small code cleanups
x86:
- emulate Hyper-V TSC frequency MSRs
- add nested INVPCID
- emulate EPTP switching VMFUNC
- support Virtual GIF
- support 5 level page tables
- speedup nested VM exits by packing byte operations
- speedup MMIO by using hardware provided physical address
- a lot of fixes and cleanups, especially nested
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJZspE1AAoJEED/6hsPKofoDcMIALT11n+LKV50QGwQdg2W1GOt
aChbgnj/Kegit3hQlDhVNb8kmdZEOZzSL81Lh0VPEr7zXU8QiWn2snbizDPv8sde
MpHhcZYZZ0YrpoiZKjl8yiwcu88OWGn2qtJ7OpuTS5hvEGAfxMncp0AMZho6fnz/
ySTwJ9GK2MTgBw39OAzCeDOeoYn4NKYMwjJGqBXRhNX8PG/1wmfqv0vPrd6wfg31
KJ58BumavwJjr8YbQ1xELm9rpQrAmaayIsG0R1dEUqCbt5a1+t2gt4h2uY7tWcIv
ACt2bIze7eF3xA+OpRs+eT+yemiH3t9btIVmhCfzUpnQ+V5Z55VMSwASLtTuJRQ=
=R8Ry
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.14-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Radim Krčmář:
"First batch of KVM changes for 4.14
Common:
- improve heuristic for boosting preempted spinlocks by ignoring
VCPUs in user mode
ARM:
- fix for decoding external abort types from guests
- added support for migrating the active priority of interrupts when
running a GICv2 guest on a GICv3 host
- minor cleanup
PPC:
- expose storage keys to userspace
- merge kvm-ppc-fixes with a fix that missed 4.13 because of
vacations
- fixes
s390:
- merge of kvm/master to avoid conflicts with additional sthyi fixes
- wire up the no-dat enhancements in KVM
- multiple epoch facility (z14 feature)
- Configuration z/Architecture Mode
- more sthyi fixes
- gdb server range checking fix
- small code cleanups
x86:
- emulate Hyper-V TSC frequency MSRs
- add nested INVPCID
- emulate EPTP switching VMFUNC
- support Virtual GIF
- support 5 level page tables
- speedup nested VM exits by packing byte operations
- speedup MMIO by using hardware provided physical address
- a lot of fixes and cleanups, especially nested"
* tag 'kvm-4.14-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (67 commits)
KVM: arm/arm64: Support uaccess of GICC_APRn
KVM: arm/arm64: Extract GICv3 max APRn index calculation
KVM: arm/arm64: vITS: Drop its_ite->lpi field
KVM: arm/arm64: vgic: constify seq_operations and file_operations
KVM: arm/arm64: Fix guest external abort matching
KVM: PPC: Book3S HV: Fix memory leak in kvm_vm_ioctl_get_htab_fd
KVM: s390: vsie: cleanup mcck reinjection
KVM: s390: use WARN_ON_ONCE only for checking
KVM: s390: guestdbg: fix range check
KVM: PPC: Book3S HV: Report storage key support to userspace
KVM: PPC: Book3S HV: Fix case where HDEC is treated as 32-bit on POWER9
KVM: PPC: Book3S HV: Fix invalid use of register expression
KVM: PPC: Book3S HV: Fix H_REGISTER_VPA VPA size validation
KVM: PPC: Book3S HV: Fix setting of storage key in H_ENTER
KVM: PPC: e500mc: Fix a NULL dereference
KVM: PPC: e500: Fix some NULL dereferences on error
KVM: PPC: Book3S HV: Protect updates to spapr_tce_tables list
KVM: s390: we are always in czam mode
KVM: s390: expose no-DAT to guest and migration support
KVM: s390: sthyi: remove invalid guest write access
...
This fix was intended for 4.13, but didn't get in because both
maintainers were on vacation.
Paul Mackerras:
"It adds mutual exclusion between list_add_rcu and list_del_rcu calls
on the kvm->arch.spapr_tce_tables list. Without this, userspace could
potentially trigger corruption of the list and cause a host crash or
worse."
Nothing really major this release, despite quite a lot of activity. Just lots of
things all over the place.
Some things of note include:
- Access via perf to a new type of PMU (IMC) on Power9, which can count both
core events as well as nest unit events (Memory controller etc).
- Optimisations to the radix MMU TLB flushing, mostly to avoid unnecessary Page
Walk Cache (PWC) flushes when the structure of the tree is not changing.
- Reworks/cleanups of do_page_fault() to modernise it and bring it closer to
other architectures where possible.
- Rework of our page table walking so that THP updates only need to send IPIs
to CPUs where the affected mm has run, rather than all CPUs.
- The size of our vmalloc area is increased to 56T on 64-bit hash MMU systems.
This avoids problems with the percpu allocator on systems with very sparse
NUMA layouts.
- STRICT_KERNEL_RWX support on PPC32.
- A new sched domain topology for Power9, to capture the fact that pairs of
cores may share an L2 cache.
- Power9 support for VAS, which is a new mechanism for accessing coprocessors,
and initial support for using it with the NX compression accelerator.
- Major work on the instruction emulation support, adding support for many new
instructions, and reworking it so it can be used to implement the emulation
needed to fixup alignment faults.
- Support for guests under PowerVM to use the Power9 XIVE interrupt controller.
And probably that many things again that are almost as interesting, but I had to
keep the list short. Plus the usual fixes and cleanups as always.
Thanks to:
Alexey Kardashevskiy, Alistair Popple, Andreas Schwab, Aneesh Kumar K.V, Anju
T Sudhakar, Arvind Yadav, Balbir Singh, Benjamin Herrenschmidt, Bhumika Goyal,
Breno Leitao, Bryant G. Ly, Christophe Leroy, Cédric Le Goater, Dan Carpenter,
Dou Liyang, Frederic Barrat, Gautham R. Shenoy, Geliang Tang, Geoff Levand,
Hannes Reinecke, Haren Myneni, Ivan Mikhaylov, John Allen, Julia Lawall, LABBE
Corentin, Laurentiu Tudor, Madhavan Srinivasan, Markus Elfring, Masahiro
Yamada, Matt Brown, Michael Neuling, Murilo Opsfelder Araujo, Nathan Fontenot,
Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Rashmica
Gupta, Rob Herring, Rui Teng, Sam Bobroff, Santosh Sivaraj, Scott Wood,
Shilpasri G Bhat, Sukadev Bhattiprolu, Suraj Jitindar Singh, Tobin C. Harding,
Victor Aoqui.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZr83SAAoJEFHr6jzI4aWA6pUP/3CEaj2bSxNzWIwidqyYjuoS
O1moEsP0oYH7eBEWVHalYxvo0QPIIAhbFPaFyrOrgtfDH01Szwu9LcCALGb8orC5
Hg3IY8mpNG3Q1T8wEtTa56Ik4b5ZFty35S5+X9qLNSFoDUqSvGlSsLzhPNN7f2tl
XFm2hWqd8wXCwDsuVSFBCF61M3SAm+g6NMVNJ+VL2KIDCwBrOZLhKDPRoxLTAuMa
jjSdjVIozWyXjUrBFi8HVcoOWLxcT1HsNF0tRs51LwY/+Mlj2jAtFtsx+a06HZa6
f2p/Kcp/MEispSTk064Ap9cC1seXWI18zwZKpCUFqu0Ec2yTAiGdjOWDyYQldIp+
ttVPSHQ01YrVKwDFTtM9CiA0EET6fVPhWgAPkPfvH5TvtKwGkNdy0b+nQLuWrYip
BUmOXmjdIG3nujCzA9sv6/uNNhjhj2y+HWwuV7Qo002VFkhgZFL67u2SSUQLpYPj
PxdkY8pPVq+O+in94oDV3c36dYFF6+g6A6505Vn6eKUm/TLpszRFGkS3bKKA5vtn
74FR+guV/5RwYJcdZbfm04DgAocl7AfUDxpwRxibt6KtAK2VZKQuw4ugUTgYEd7W
mL2+AMmPKuajWXAMTHjCZPbUp9gFNyYyBQTFfGVX/XLiM8erKBnGfoa1/KzUJkhr
fVZLYIO/gzl34PiTIfgD
=UJtt
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.14-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Nothing really major this release, despite quite a lot of activity.
Just lots of things all over the place.
Some things of note include:
- Access via perf to a new type of PMU (IMC) on Power9, which can
count both core events as well as nest unit events (Memory
controller etc).
- Optimisations to the radix MMU TLB flushing, mostly to avoid
unnecessary Page Walk Cache (PWC) flushes when the structure of the
tree is not changing.
- Reworks/cleanups of do_page_fault() to modernise it and bring it
closer to other architectures where possible.
- Rework of our page table walking so that THP updates only need to
send IPIs to CPUs where the affected mm has run, rather than all
CPUs.
- The size of our vmalloc area is increased to 56T on 64-bit hash MMU
systems. This avoids problems with the percpu allocator on systems
with very sparse NUMA layouts.
- STRICT_KERNEL_RWX support on PPC32.
- A new sched domain topology for Power9, to capture the fact that
pairs of cores may share an L2 cache.
- Power9 support for VAS, which is a new mechanism for accessing
coprocessors, and initial support for using it with the NX
compression accelerator.
- Major work on the instruction emulation support, adding support for
many new instructions, and reworking it so it can be used to
implement the emulation needed to fixup alignment faults.
- Support for guests under PowerVM to use the Power9 XIVE interrupt
controller.
And probably that many things again that are almost as interesting,
but I had to keep the list short. Plus the usual fixes and cleanups as
always.
Thanks to: Alexey Kardashevskiy, Alistair Popple, Andreas Schwab,
Aneesh Kumar K.V, Anju T Sudhakar, Arvind Yadav, Balbir Singh,
Benjamin Herrenschmidt, Bhumika Goyal, Breno Leitao, Bryant G. Ly,
Christophe Leroy, Cédric Le Goater, Dan Carpenter, Dou Liyang,
Frederic Barrat, Gautham R. Shenoy, Geliang Tang, Geoff Levand, Hannes
Reinecke, Haren Myneni, Ivan Mikhaylov, John Allen, Julia Lawall,
LABBE Corentin, Laurentiu Tudor, Madhavan Srinivasan, Markus Elfring,
Masahiro Yamada, Matt Brown, Michael Neuling, Murilo Opsfelder Araujo,
Nathan Fontenot, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran,
Paul Mackerras, Rashmica Gupta, Rob Herring, Rui Teng, Sam Bobroff,
Santosh Sivaraj, Scott Wood, Shilpasri G Bhat, Sukadev Bhattiprolu,
Suraj Jitindar Singh, Tobin C. Harding, Victor Aoqui"
* tag 'powerpc-4.14-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (321 commits)
powerpc/xive: Fix section __init warning
powerpc: Fix kernel crash in emulation of vector loads and stores
powerpc/xive: improve debugging macros
powerpc/xive: add XIVE Exploitation Mode to CAS
powerpc/xive: introduce H_INT_ESB hcall
powerpc/xive: add the HW IRQ number under xive_irq_data
powerpc/xive: introduce xive_esb_write()
powerpc/xive: rename xive_poke_esb() in xive_esb_read()
powerpc/xive: guest exploitation of the XIVE interrupt controller
powerpc/xive: introduce a common routine xive_queue_page_alloc()
powerpc/sstep: Avoid used uninitialized error
axonram: Return directly after a failed kzalloc() in axon_ram_probe()
axonram: Improve a size determination in axon_ram_probe()
axonram: Delete an error message for a failed memory allocation in axon_ram_probe()
powerpc/powernv/npu: Move tlb flush before launching ATSD
powerpc/macintosh: constify wf_sensor_ops structures
powerpc/iommu: Use permission-specific DEVICE_ATTR variants
powerpc/eeh: Delete an error out of memory message at init time
powerpc/mm: Use seq_putc() in two functions
macintosh: Convert to using %pOF instead of full_name
...
We do ctx = kzalloc(sizeof(*ctx), GFP_KERNEL) and then later on call
anon_inode_getfd(), but if that fails we don't free ctx, so that
memory gets leaked. To fix it, this adds kfree(ctx) in the failure
path.
Signed-off-by: nixiaoming <nixiaoming@huawei.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This merges in the 'ppc-kvm' topic branch from the powerpc tree in
order to bring in some fixes which touch both powerpc and KVM code.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds information about storage keys to the struct returned by
the KVM_PPC_GET_SMMU_INFO ioctl. The new fields replace a pad field,
which was zeroed by previous kernel versions. Thus userspace that
knows about the new fields will see zeroes when running on an older
kernel, indicating that storage keys are not supported. The size of
the structure has not changed.
The number of keys is hard-coded for the CPUs supported by HV KVM,
which is just POWER7, POWER8 and POWER9.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Commit 2f2724630f ("KVM: PPC: Book3S HV: Cope with host using large
decrementer mode", 2017-05-22) added code to treat the hypervisor
decrementer (HDEC) as a 64-bit value on POWER9 rather than 32-bit.
Unfortunately, that commit missed one place where HDEC is treated
as a 32-bit value. This fixes it.
This bug should not have any user-visible consequences that I can
think of, beyond an occasional unnecessary exit to the host kernel.
If the hypervisor decrementer has gone negative, then the bottom
32 bits will be negative for about 4 seconds after that, so as
long as we get out of the guest within those 4 seconds we won't
conclude that the HDEC interrupt is spurious.
Reported-by: Suraj Jitindar Singh <sjitindarsingh@gmail.com>
Fixes: 2f2724630f ("KVM: PPC: Book3S HV: Cope with host using large decrementer mode")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
binutils >= 2.26 now warns about misuse of register expressions in
assembler operands that are actually literals. In this instance r0 is
being used where a literal 0 should be used.
Signed-off-by: Andreas Schwab <schwab@linux-m68k.org>
[mpe: Split into separate KVM patch, tweak change log]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
KVM currently validates the size of the VPA registered by the client
against sizeof(struct lppaca), however we align (and therefore size)
that struct to 1kB to avoid crossing a 4kB boundary in the client.
PAPR calls for sizes >= 640 bytes to be accepted. Hard code this with
a comment.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
In handling a H_ENTER hypercall, the code in kvmppc_do_h_enter
clobbers the high-order two bits of the storage key, which is stored
in a split field in the second doubleword of the HPTE. Any storage
key number above 7 hence fails to operate correctly.
This makes sure we preserve all the bits of the storage key.
Acked-by: Balbir Singh <bsingharora@gmail.com>
Signed-off-by: Ram Pai <linuxram@us.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
We should set "err = -ENOMEM;", otherwise it means we're returning
ERR_PTR(0) which is NULL. It results in a NULL pointer dereference in
the caller.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
There are some error paths in kvmppc_core_vcpu_create_e500() where we
forget to set the error code. It means that we return ERR_PTR(0) which
is NULL and it results in a NULL pointer dereference in the caller.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Al Viro pointed out that while one thread of a process is executing
in kvm_vm_ioctl_create_spapr_tce(), another thread could guess the
file descriptor returned by anon_inode_getfd() and close() it before
the first thread has added it to the kvm->arch.spapr_tce_tables list.
That highlights a more general problem: there is no mutual exclusion
between writers to the spapr_tce_tables list, leading to the
possibility of the list becoming corrupted, which could cause a
host kernel crash.
To fix the mutual exclusion problem, we add a mutex_lock/unlock
pair around the list_del_rce in kvm_spapr_tce_release(). Also,
this moves the call to anon_inode_getfd() inside the region
protected by the kvm->lock mutex, after we have done the check for
a duplicate LIOBN. This means that if another thread does guess the
file descriptor and closes it, its call to kvm_spapr_tce_release()
will not do any harm because it will have to wait until the first
thread has released kvm->lock. With this, there are no failure
points in kvm_vm_ioctl_create_spapr_tce() after the call to
anon_inode_getfd().
The other things that the second thread could do with the guessed
file descriptor are to mmap it or to pass it as a parameter to a
KVM_DEV_VFIO_GROUP_SET_SPAPR_TCE ioctl on a KVM device fd. An mmap
call won't cause any harm because kvm_spapr_tce_mmap() and
kvm_spapr_tce_fault() don't access the spapr_tce_tables list or
the kvmppc_spapr_tce_table.list field, and the fields that they do use
have been properly initialized by the time of the anon_inode_getfd()
call.
The KVM_DEV_VFIO_GROUP_SET_SPAPR_TCE ioctl calls
kvm_spapr_tce_attach_iommu_group(), which scans the spapr_tce_tables
list looking for the kvmppc_spapr_tce_table struct corresponding to
the fd given as the parameter. Either it will find the new entry
or it won't; if it doesn't, it just returns an error, and if it
does, it will function normally. So, in each case there is no
harmful effect.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
POWER9 CPUs have independent MMU contexts per thread, so KVM does not
need to quiesce secondary threads, so the hwthread_req/hwthread_state
protocol does not have to be used. So patch it away on POWER9, and patch
away the branch from the Linux idle wakeup to kvm_start_guest that is
never used.
Add a warning and error out of kvmppc_grab_hwthread in case it is ever
called on POWER9.
This avoids a hwsync in the idle wakeup path on POWER9.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Acked-by: Paul Mackerras <paulus@ozlabs.org>
[mpe: Use WARN(...) instead of WARN_ON()/pr_err(...)]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Nixiaoming pointed out that there is a memory leak in
kvm_vm_ioctl_create_spapr_tce() if the call to anon_inode_getfd()
fails; the memory allocated for the kvmppc_spapr_tce_table struct
is not freed, and nor are the pages allocated for the iommu
tables. In addition, we have already incremented the process's
count of locked memory pages, and this doesn't get restored on
error.
David Hildenbrand pointed out that there is a race in that the
function checks early on that there is not already an entry in the
stt->iommu_tables list with the same LIOBN, but an entry with the
same LIOBN could get added between then and when the new entry is
added to the list.
This fixes all three problems. To simplify things, we now call
anon_inode_getfd() before placing the new entry in the list. The
check for an existing entry is done while holding the kvm->lock
mutex, immediately before adding the new entry to the list.
Finally, on failure we now call kvmppc_account_memlimit to
decrement the process's count of locked memory pages.
Reported-by: Nixiaoming <nixiaoming@huawei.com>
Reported-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This adds missing memory barriers to order updates/tests of
the virtual CPPR and MFRR, thus fixing a lost IPI problem.
While at it also document all barriers in this file.
This fixes a bug causing guest IPIs to occasionally get lost. The
symptom then is hangs or stalls in the guest.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Tested-by: Guilherme G. Piccoli <gpiccoli@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds a workaround for a bug in POWER9 DD1 chips where changing
the CPPR (Current Processor Priority Register) can cause bits in the
IPB (Interrupt Pending Buffer) to get lost. Thankfully it only
happens when manually manipulating CPPR which is quite rare. When it
does happen it can cause interrupts to be delayed or lost.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
When msgsnd is used for IPIs to other cores, msgsync must be executed by
the target to order stores performed on the source before its msgsnd
(provided the source executes the appropriate sync).
Fixes: 1704a81cce ("KVM: PPC: Book3S HV: Use msgsnd for IPIs to other cores on POWER9")
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
There's a non-trivial dependency between some commits we want to put in
next and the KVM prefetch work around that went into fixes. So merge
fixes into next.
Bring in the commit to rename find_linux_pte_or_hugepte() which touches
arch and KVM code, and might need to be merged with the kvmppc tree to
avoid conflicts.
Add newer helpers to make the function usage simpler. It is always
recommended to use find_current_mm_pte() for walking the page table.
If we cannot use find_current_mm_pte(), it should be documented why
the said usage of __find_linux_pte() is safe against a parallel THP
split.
For now we have KVM code using __find_linux_pte(). This is because kvm
code ends up calling __find_linux_pte() in real mode with MSR_EE=0 but
with PACA soft_enabled = 1. We may want to fix that later and make
sure we keep the MSR_EE and PACA soft_enabled in sync. When we do that
we can switch kvm to use find_linux_pte().
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
If a vcpu exits due to request a user mode spinlock, then
the spinlock-holder may be preempted in user mode or kernel mode.
(Note that not all architectures trap spin loops in user mode,
only AMD x86 and ARM/ARM64 currently do).
But if a vcpu exits in kernel mode, then the holder must be
preempted in kernel mode, so we should choose a vcpu in kernel mode
as a more likely candidate for the lock holder.
This introduces kvm_arch_vcpu_in_kernel() to decide whether the
vcpu is in kernel-mode when it's preempted. kvm_vcpu_on_spin's
new argument says the same of the spinning VCPU.
Signed-off-by: Longpeng(Mike) <longpeng2@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This updates the definitions for the various DSISR bits to
match both some historical stuff and to match new bits on
POWER9.
In addition, we define some masks corresponding to the "bad"
faults on Book3S, and some masks corresponding to the bits
that match between DSISR and SRR1 for a DSI and an ISI.
This comes with a small code update to change the definition
of DSISR_PGDIRFAULT which becomes DSISR_PRTABLE_FAULT to
match architecture 3.0B
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
-----BEGIN PGP SIGNATURE-----
iQEcBAABAgAGBQJZapWhAAoJEHm+PkMAQRiGKb0IAJM6b7SbWaw69Og7+qiFB+zZ
xp29iXqbE9fPISC6a5BRQV1ONjeDM6opGixGHqGC8Hla6k2IYz25VDNoF8wd0MXN
cz/Ih20vd3C5afxXGe5cTT8lsPAlV0mWXxForlu6j8jPeL62FPfq6RhEkw7AcrYL
yfYy3k3qSdOrrvBdII0WAAUi46UfIs+we9BQgbsMbkHOiqV2K0MOrzKE84Xbgepq
RAy2xg6P4b4+hTx8xTrYc1MXwpnqjRc0oJ08gdmiwW3AOOU7LxYFn7zDkLPWi9Rr
g4x6r4YhBTGxT4wNvovLIiqd9QFs//dMCuPWYwEtTICG48umIqqq24beQ0mvCdg=
=08Ic
-----END PGP SIGNATURE-----
Merge tag 'v4.13-rc1' into fixes
The fixes branch is based off a random pre-rc1 commit, because we had
some fixes that needed to go in before rc1 was released.
However we now need to fix some code that went in after that point, but
before rc1, so merge rc1 to get that code into fixes so we can fix it!
PPC: host crash fixes.
x86: bugfixes, including making nested posted interrupts really work.
Generic: tweaks to kvm_stat and to uevents
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJZe2EYAAoJEL/70l94x66D4JYH/AnvioKWTsplhUKt4Y4JlpJX
EXYjQd/CIZ+MHNNUH+U+XEj6tKQymKrz4TeZSs1o0nyxCeyparR3gK27OYVpPspN
GkPSit3hyRgW9r5uXp6pZCJuFCAMpMZ6z4sKbT1FxDhnWnpWayV9w8KA+yQT/UUX
dNQ9JJPUxApcM4NCaj2OCQ8K1koNIDCc52+jATf0iK/Heiaf6UGqCcHXUIy5I5wM
OWk05Qm32VBAYb6P6FfoyGdLMNAAkJtr1fyOJDkxX730CYgwpjIP0zifnJ1bt8V2
YRnjvPO5QciDHbZ8VynwAkKi0ZAd8psjwXh0KbyahPL/2/sA2xCztMH25qweriI=
=fsfr
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM fixes from Paolo Bonzini:
"s390:
- SRCU fix
PPC:
- host crash fixes
x86:
- bugfixes, including making nested posted interrupts really work
Generic:
- tweaks to kvm_stat and to uevents"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: LAPIC: Fix reentrancy issues with preempt notifiers
tools/kvm_stat: add '-f help' to get the available event list
tools/kvm_stat: use variables instead of hard paths in help output
KVM: nVMX: Fix loss of L2's NMI blocking state
KVM: nVMX: Fix posted intr delivery when vcpu is in guest mode
x86: irq: Define a global vector for nested posted interrupts
KVM: x86: do mask out upper bits of PAE CR3
KVM: make pid available for uevents without debugfs
KVM: s390: take srcu lock when getting/setting storage keys
KVM: VMX: remove unused field
KVM: PPC: Book3S HV: Fix host crash on changing HPT size
KVM: PPC: Book3S HV: Enable TM before accessing TM registers
The highlight is Ben's patch to work around a host killing bug when running KVM
guests with the Radix MMU on Power9. See the long change log of that commit for
more detail.
And then three fairly minor fixes:
- Fix of_node_put() underflow during reconfig remove, using old DLPAR tools.
- Fix recently introduced ld version check with 64-bit LE-only toolchain.
- Free the subpage_prot_table correctly, avoiding a memory leak.
Thanks to:
Aneesh Kumar K.V, Benjamin Herrenschmidt, Laurent Vivier.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZezIGAAoJEFHr6jzI4aWAyukP/3mxlQ3WdQlYPByZ18cj6YL5
L0kbRxDgAosD9HzcOPqku1um1l7D6Gk5KZFZfsol7SasSmCZEwV4MbdTrAiRxS6K
tF0V14hP/BDQeIKfxlnUepzfL8PY7CkO6sDAa6BjHXvBk4+POI+37uw9+2GEV8DY
tA45fHjA/Zq3eUXsK0WTHIcd09lJXXarf9Tlx+YNZ+3yJ1OMfOji3CXgTkjtwYM9
XTtsKzsagY1zLwr5gXJu1P05+OGna2VmY6+Tn2lnf7scTFW3qYGF3eWRx71diiKS
PpZCjqfzWF4+TDIGPoYIrkTE+ZKR0lyo6F38GYwae0cYZMs9pGPEpeNahd8Nun+v
MLU6TnhNfOI40GEYgmOMNKHPJJLSx59Qr/GnrAi/h2nUEocuN76jzNbaeFBtj3jD
/vrRTmVUtt1wGqORX7BK4YZFHqcHmZBCM7bQnxibJtLv7fMue0sk58fs2jAaZ1iD
NacpzsXG7CWYgj6ApclVCYuF99dXTpjrw/WPxilXDg84Pxb7Dv1SpIvLb2T5Guq+
iqqavViRHP1ng+5/giIsOvF9CnsCzbRYLb0zZTP91nckMmYI6wX2zc56lofjcI5j
Qc5o/aJvBk4vSM9sibBGEdrZJ1Vt16gGorQ5NZUurZund/cVqvQFhm/4Tvnc0cVN
yvLNZI8am35pI9CCJ2im
=Z6uF
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.13-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
"The highlight is Ben's patch to work around a host killing bug when
running KVM guests with the Radix MMU on Power9. See the long change
log of that commit for more detail.
And then three fairly minor fixes:
- fix of_node_put() underflow during reconfig remove, using old DLPAR
tools.
- fix recently introduced ld version check with 64-bit LE-only
toolchain.
- free the subpage_prot_table correctly, avoiding a memory leak.
Thanks to: Aneesh Kumar K.V, Benjamin Herrenschmidt, Laurent Vivier"
* tag 'powerpc-4.13-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/mm/hash: Free the subpage_prot_table correctly
powerpc/Makefile: Fix ld version check with 64-bit LE-only toolchain
powerpc/pseries: Fix of_node_put() underflow during reconfig remove
powerpc/mm/radix: Workaround prefetch issue with KVM
There's a somewhat architectural issue with Radix MMU and KVM.
When coming out of a guest with AIL (Alternate Interrupt Location, ie,
MMU enabled), we start executing hypervisor code with the PID register
still containing whatever the guest has been using.
The problem is that the CPU can (and will) then start prefetching or
speculatively load from whatever host context has that same PID (if
any), thus bringing translations for that context into the TLB, which
Linux doesn't know about.
This can cause stale translations and subsequent crashes.
Fixing this in a way that is neither racy nor a huge performance
impact is difficult. We could just make the host invalidations always
use broadcast forms but that would hurt single threaded programs for
example.
We chose to fix it instead by partitioning the PID space between guest
and host. This is possible because today Linux only use 19 out of the
20 bits of PID space, so existing guests will work if we make the host
use the top half of the 20 bits space.
We additionally add support for a property to indicate to Linux the
size of the PID register which will be useful if we eventually have
processors with a larger PID space available.
There is still an issue with malicious guests purposefully setting the
PID register to a value in the hosts PID range. Hopefully future HW
can prevent that, but in the meantime, we handle it with a pair of
kludges:
- On the way out of a guest, before we clear the current VCPU in the
PACA, we check the PID and if it's outside of the permitted range
we flush the TLB for that PID.
- When context switching, if the mm is "new" on that CPU (the
corresponding bit was set for the first time in the mm cpumask), we
check if any sibling thread is in KVM (has a non-NULL VCPU pointer
in the PACA). If that is the case, we also flush the PID for that
CPU (core).
This second part is needed to handle the case where a process is
migrated (or starts a new pthread) on a sibling thread of the CPU
coming out of KVM, as there's a window where stale translations can
exist before we detect it and flush them out.
A future optimization could be added by keeping track of whether the
PID has ever been used and avoid doing that for completely fresh PIDs.
We could similarily mark PIDs that have been the subject of a global
invalidation as "fresh". But for now this will do.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[mpe: Rework the asm to build with CONFIG_PPC_RADIX_MMU=n, drop
unneeded include of kvm_book3s_asm.h]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Commit f98a8bf9ee ("KVM: PPC: Book3S HV: Allow KVM_PPC_ALLOCATE_HTAB
ioctl() to change HPT size", 2016-12-20) changed the behaviour of
the KVM_PPC_ALLOCATE_HTAB ioctl so that it now allocates a new HPT
and new revmap array if there was a previously-allocated HPT of a
different size from the size being requested. In this case, we need
to reset the rmap arrays of the memslots, because the rmap arrays
will contain references to HPTEs which are no longer valid. Worse,
these references are also references to slots in the new revmap
array (which parallels the HPT), and the new revmap array contains
random contents, since it doesn't get zeroed on allocation.
The effect of having these stale references to slots in the revmap
array that contain random contents is that subsequent calls to
functions such as kvmppc_add_revmap_chain will crash because they
will interpret the non-zero contents of the revmap array as HPTE
indexes and thus index outside of the revmap array. This leads to
host crashes such as the following.
[ 7072.862122] Unable to handle kernel paging request for data at address 0xd000000c250c00f8
[ 7072.862218] Faulting instruction address: 0xc0000000000e1c78
[ 7072.862233] Oops: Kernel access of bad area, sig: 11 [#1]
[ 7072.862286] SMP NR_CPUS=1024
[ 7072.862286] NUMA
[ 7072.862325] PowerNV
[ 7072.862378] Modules linked in: kvm_hv vhost_net vhost tap xt_CHECKSUM ipt_MASQUERADE nf_nat_masquerade_ipv4 ip6t_rpfilter ip6t_REJECT nf_reject_ipv6 nf_conntrack_ipv6 nf_defrag_ipv6 xt_conntrack ip_set nfnetlink ebtable_nat ebtable_broute bridge stp llc ip6table_mangle ip6table_security ip6table_raw iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack iptable_mangle iptable_security iptable_raw ebtable_filter ebtables ip6table_filter ip6_tables rpcrdma ib_isert iscsi_target_mod ib_iser libiscsi scsi_transport_iscsi ib_srpt target_core_mod ib_srp scsi_transport_srp ib_ipoib rdma_ucm ib_ucm ib_uverbs ib_umad rdma_cm ib_cm iw_cm iw_cxgb3 mlx5_ib ib_core ses enclosure scsi_transport_sas ipmi_powernv ipmi_devintf ipmi_msghandler powernv_op_panel i2c_opal nfsd auth_rpcgss oid_registry
[ 7072.863085] nfs_acl lockd grace sunrpc kvm_pr kvm xfs libcrc32c scsi_dh_alua dm_service_time radeon lpfc nvme_fc nvme_fabrics nvme_core scsi_transport_fc i2c_algo_bit tg3 drm_kms_helper ptp pps_core syscopyarea sysfillrect sysimgblt fb_sys_fops ttm drm dm_multipath i2c_core cxgb3 mlx5_core mdio [last unloaded: kvm_hv]
[ 7072.863381] CPU: 72 PID: 56929 Comm: qemu-system-ppc Not tainted 4.12.0-kvm+ #59
[ 7072.863457] task: c000000fe29e7600 task.stack: c000001e3ffec000
[ 7072.863520] NIP: c0000000000e1c78 LR: c0000000000e2e3c CTR: c0000000000e25f0
[ 7072.863596] REGS: c000001e3ffef560 TRAP: 0300 Not tainted (4.12.0-kvm+)
[ 7072.863658] MSR: 9000000100009033 <SF,HV,EE,ME,IR,DR,RI,LE,TM[E]>
[ 7072.863667] CR: 44082882 XER: 20000000
[ 7072.863767] CFAR: c0000000000e2e38 DAR: d000000c250c00f8 DSISR: 42000000 SOFTE: 1
GPR00: c0000000000e2e3c c000001e3ffef7e0 c000000001407d00 d000000c250c00f0
GPR04: d00000006509fb70 d00000000b3d2048 0000000003ffdfb7 0000000000000000
GPR08: 00000001007fdfb7 00000000c000000f d0000000250c0000 000000000070f7bf
GPR12: 0000000000000008 c00000000fdad000 0000000010879478 00000000105a0d78
GPR16: 00007ffaf4080000 0000000000001190 0000000000000000 0000000000010000
GPR20: 4001ffffff000415 d00000006509fb70 0000000004091190 0000000ee1881190
GPR24: 0000000003ffdfb7 0000000003ffdfb7 00000000007fdfb7 c000000f5c958000
GPR28: d00000002d09fb70 0000000003ffdfb7 d00000006509fb70 d00000000b3d2048
[ 7072.864439] NIP [c0000000000e1c78] kvmppc_add_revmap_chain+0x88/0x130
[ 7072.864503] LR [c0000000000e2e3c] kvmppc_do_h_enter+0x84c/0x9e0
[ 7072.864566] Call Trace:
[ 7072.864594] [c000001e3ffef7e0] [c000001e3ffef830] 0xc000001e3ffef830 (unreliable)
[ 7072.864671] [c000001e3ffef830] [c0000000000e2e3c] kvmppc_do_h_enter+0x84c/0x9e0
[ 7072.864751] [c000001e3ffef920] [d00000000b38d878] kvmppc_map_vrma+0x168/0x200 [kvm_hv]
[ 7072.864831] [c000001e3ffef9e0] [d00000000b38a684] kvmppc_vcpu_run_hv+0x1284/0x1300 [kvm_hv]
[ 7072.864914] [c000001e3ffefb30] [d00000000f465664] kvmppc_vcpu_run+0x44/0x60 [kvm]
[ 7072.865008] [c000001e3ffefb60] [d00000000f461864] kvm_arch_vcpu_ioctl_run+0x114/0x290 [kvm]
[ 7072.865152] [c000001e3ffefbe0] [d00000000f453c98] kvm_vcpu_ioctl+0x598/0x7a0 [kvm]
[ 7072.865292] [c000001e3ffefd40] [c000000000389328] do_vfs_ioctl+0xd8/0x8c0
[ 7072.865410] [c000001e3ffefde0] [c000000000389be4] SyS_ioctl+0xd4/0x130
[ 7072.865526] [c000001e3ffefe30] [c00000000000b760] system_call+0x58/0x6c
[ 7072.865644] Instruction dump:
[ 7072.865715] e95b2110 793a0020 7b4926e4 7f8a4a14 409e0098 807c000c 786326e4 7c6a1a14
[ 7072.865857] 935e0008 7bbd0020 813c000c 913e000c <93a30008> 93bc000c 48000038 60000000
[ 7072.866001] ---[ end trace 627b6e4bf8080edc ]---
Note that to trigger this, it is necessary to use a recent upstream
QEMU (or other userspace that resizes the HPT at CAS time), specify
a maximum memory size substantially larger than the current memory
size, and boot a guest kernel that does not support HPT resizing.
This fixes the problem by resetting the rmap arrays when the old HPT
is freed.
Fixes: f98a8bf9ee ("KVM: PPC: Book3S HV: Allow KVM_PPC_ALLOCATE_HTAB ioctl() to change HPT size")
Cc: stable@vger.kernel.org # v4.11+
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
__GFP_REPEAT was designed to allow retry-but-eventually-fail semantic to
the page allocator. This has been true but only for allocations
requests larger than PAGE_ALLOC_COSTLY_ORDER. It has been always
ignored for smaller sizes. This is a bit unfortunate because there is
no way to express the same semantic for those requests and they are
considered too important to fail so they might end up looping in the
page allocator for ever, similarly to GFP_NOFAIL requests.
Now that the whole tree has been cleaned up and accidental or misled
usage of __GFP_REPEAT flag has been removed for !costly requests we can
give the original flag a better name and more importantly a more useful
semantic. Let's rename it to __GFP_RETRY_MAYFAIL which tells the user
that the allocator would try really hard but there is no promise of a
success. This will work independent of the order and overrides the
default allocator behavior. Page allocator users have several levels of
guarantee vs. cost options (take GFP_KERNEL as an example)
- GFP_KERNEL & ~__GFP_RECLAIM - optimistic allocation without _any_
attempt to free memory at all. The most light weight mode which even
doesn't kick the background reclaim. Should be used carefully because
it might deplete the memory and the next user might hit the more
aggressive reclaim
- GFP_KERNEL & ~__GFP_DIRECT_RECLAIM (or GFP_NOWAIT)- optimistic
allocation without any attempt to free memory from the current
context but can wake kswapd to reclaim memory if the zone is below
the low watermark. Can be used from either atomic contexts or when
the request is a performance optimization and there is another
fallback for a slow path.
- (GFP_KERNEL|__GFP_HIGH) & ~__GFP_DIRECT_RECLAIM (aka GFP_ATOMIC) -
non sleeping allocation with an expensive fallback so it can access
some portion of memory reserves. Usually used from interrupt/bh
context with an expensive slow path fallback.
- GFP_KERNEL - both background and direct reclaim are allowed and the
_default_ page allocator behavior is used. That means that !costly
allocation requests are basically nofail but there is no guarantee of
that behavior so failures have to be checked properly by callers
(e.g. OOM killer victim is allowed to fail currently).
- GFP_KERNEL | __GFP_NORETRY - overrides the default allocator behavior
and all allocation requests fail early rather than cause disruptive
reclaim (one round of reclaim in this implementation). The OOM killer
is not invoked.
- GFP_KERNEL | __GFP_RETRY_MAYFAIL - overrides the default allocator
behavior and all allocation requests try really hard. The request
will fail if the reclaim cannot make any progress. The OOM killer
won't be triggered.
- GFP_KERNEL | __GFP_NOFAIL - overrides the default allocator behavior
and all allocation requests will loop endlessly until they succeed.
This might be really dangerous especially for larger orders.
Existing users of __GFP_REPEAT are changed to __GFP_RETRY_MAYFAIL
because they already had their semantic. No new users are added.
__alloc_pages_slowpath is changed to bail out for __GFP_RETRY_MAYFAIL if
there is no progress and we have already passed the OOM point.
This means that all the reclaim opportunities have been exhausted except
the most disruptive one (the OOM killer) and a user defined fallback
behavior is more sensible than keep retrying in the page allocator.
[akpm@linux-foundation.org: fix arch/sparc/kernel/mdesc.c]
[mhocko@suse.com: semantic fix]
Link: http://lkml.kernel.org/r/20170626123847.GM11534@dhcp22.suse.cz
[mhocko@kernel.org: address other thing spotted by Vlastimil]
Link: http://lkml.kernel.org/r/20170626124233.GN11534@dhcp22.suse.cz
Link: http://lkml.kernel.org/r/20170623085345.11304-3-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Alex Belits <alex.belits@cavium.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Christoph Hellwig <hch@infradead.org>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: David Daney <david.daney@cavium.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Mel Gorman <mgorman@suse.de>
Cc: NeilBrown <neilb@suse.com>
Cc: Ralf Baechle <ralf@linux-mips.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Highlights include:
- Support for STRICT_KERNEL_RWX on 64-bit server CPUs.
- Platform support for FSP2 (476fpe) board
- Enable ZONE_DEVICE on 64-bit server CPUs.
- Generic & powerpc spin loop primitives to optimise busy waiting
- Convert VDSO update function to use new update_vsyscall() interface
- Optimisations to hypercall/syscall/context-switch paths
- Improvements to the CPU idle code on Power8 and Power9.
As well as many other fixes and improvements.
Thanks to:
Akshay Adiga, Andrew Donnellan, Andrew Jeffery, Anshuman Khandual, Anton
Blanchard, Balbir Singh, Benjamin Herrenschmidt, Christophe Leroy, Christophe
Lombard, Colin Ian King, Dan Carpenter, Gautham R. Shenoy, Hari Bathini, Ian
Munsie, Ivan Mikhaylov, Javier Martinez Canillas, Madhavan Srinivasan,
Masahiro Yamada, Matt Brown, Michael Neuling, Michal Suchanek, Murilo
Opsfelder Araujo, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran, Paul
Mackerras, Pavel Machek, Russell Currey, Santosh Sivaraj, Stephen Rothwell,
Thiago Jung Bauermann, Yang Li.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZXyPCAAoJEFHr6jzI4aWAI9QQAISf2x5y//cqCi4ISyQB5pTq
KLS/yQajNkQOw7c0fzBZOaH5Xd/SJ6AcKWDg8yDlpDR3+sRRsr98iIRECgKS5I7/
DxD9ywcbSoMXFQQo1ZMCp5CeuMUIJRtugBnUQM+JXCSUCPbznCY5DchDTLyTBTpO
MeMVhI//JxthhoOMA9MudiEGaYCU9ho442Z4OJUSiLUv8WRbvQX9pTqoc4vx1fxA
BWf2mflztBVcIfKIyxIIIlDLukkMzix6gSYPMCbC7lzkbnU7JSqKiheJXjo1gJS2
ePHKDxeNR2/QP0g/j3aT/MR1uTt9MaNBSX3gANE1xQ9OoJ8m1sOtCO4gNbSdLWae
eXhDnoiEp930DRZOeEioOItuWWoxFaMyYk3BMmRKV4QNdYL3y3TRVeL2/XmRGqYL
Lxz4IY/x5TteFEJNGcRX90uizNSi8AaEXPF16pUk8Ctt6eH3ZSwPMv2fHeYVCMr0
KFlKHyaPEKEoztyzLcUR6u9QB56yxDN58bvLpd32AeHvKhqyxFoySy59x9bZbatn
B2y8mmDItg860e0tIG6jrtplpOVvL8i5jla5RWFVoQDuxxrLAds3vG9JZQs+eRzx
Fiic93bqeUAS6RzhXbJ6QQJYIyhE7yqpcgv7ME1W87SPef3HPBk9xlp3yIDwdA2z
bBDvrRnvupusz8qCWrxe
=w8rj
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Highlights include:
- Support for STRICT_KERNEL_RWX on 64-bit server CPUs.
- Platform support for FSP2 (476fpe) board
- Enable ZONE_DEVICE on 64-bit server CPUs.
- Generic & powerpc spin loop primitives to optimise busy waiting
- Convert VDSO update function to use new update_vsyscall() interface
- Optimisations to hypercall/syscall/context-switch paths
- Improvements to the CPU idle code on Power8 and Power9.
As well as many other fixes and improvements.
Thanks to: Akshay Adiga, Andrew Donnellan, Andrew Jeffery, Anshuman
Khandual, Anton Blanchard, Balbir Singh, Benjamin Herrenschmidt,
Christophe Leroy, Christophe Lombard, Colin Ian King, Dan Carpenter,
Gautham R. Shenoy, Hari Bathini, Ian Munsie, Ivan Mikhaylov, Javier
Martinez Canillas, Madhavan Srinivasan, Masahiro Yamada, Matt Brown,
Michael Neuling, Michal Suchanek, Murilo Opsfelder Araujo, Naveen N.
Rao, Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Pavel Machek,
Russell Currey, Santosh Sivaraj, Stephen Rothwell, Thiago Jung
Bauermann, Yang Li"
* tag 'powerpc-4.13-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (158 commits)
powerpc/Kconfig: Enable STRICT_KERNEL_RWX for some configs
powerpc/mm/radix: Implement STRICT_RWX/mark_rodata_ro() for Radix
powerpc/mm/hash: Implement mark_rodata_ro() for hash
powerpc/vmlinux.lds: Align __init_begin to 16M
powerpc/lib/code-patching: Use alternate map for patch_instruction()
powerpc/xmon: Add patch_instruction() support for xmon
powerpc/kprobes/optprobes: Use patch_instruction()
powerpc/kprobes: Move kprobes over to patch_instruction()
powerpc/mm/radix: Fix execute permissions for interrupt_vectors
powerpc/pseries: Fix passing of pp0 in updatepp() and updateboltedpp()
powerpc/64s: Blacklist rtas entry/exit from kprobes
powerpc/64s: Blacklist functions invoked on a trap
powerpc/64s: Un-blacklist system_call() from kprobes
powerpc/64s: Move system_call() symbol to just after setting MSR_EE
powerpc/64s: Blacklist system_call() and system_call_common() from kprobes
powerpc/64s: Convert .L__replay_interrupt_return to a local label
powerpc64/elfv1: Only dereference function descriptor for non-text symbols
cxl: Export library to support IBM XSL
powerpc/dts: Use #include "..." to include local DT
powerpc/perf/hv-24x7: Aggregate result elements on POWER9 SMT8
...
- Better machine check handling for HV KVM
- Ability to support guests with threads=2, 4 or 8 on POWER9
- Fix for a race that could cause delayed recognition of signals
- Fix for a bug where POWER9 guests could sleep with interrupts pending.
ARM:
- VCPU request overhaul
- allow timer and PMU to have their interrupt number selected from userspace
- workaround for Cavium erratum 30115
- handling of memory poisonning
- the usual crop of fixes and cleanups
s390:
- initial machine check forwarding
- migration support for the CMMA page hinting information
- cleanups and fixes
x86:
- nested VMX bugfixes and improvements
- more reliable NMI window detection on AMD
- APIC timer optimizations
Generic:
- VCPU request overhaul + documentation of common code patterns
- kvm_stat improvements
There is a small conflict in arch/s390 due to an arch-wide field rename.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJZW4XTAAoJEL/70l94x66DkhMH/izpk54KI17PtyQ9VYI2sYeZ
BWK6Kl886g3ij4pFi3pECqjDJzWaa3ai+vFfzzpJJ8OkCJT5Rv4LxC5ERltVVmR8
A3T1I/MRktSC0VJLv34daPC2z4Lco/6SPipUpPnL4bE2HATKed4vzoOjQ3tOeGTy
dwi7TFjKwoVDiM7kPPDRnTHqCe5G5n13sZ49dBe9WeJ7ttJauWqoxhlYosCGNPEj
g8ZX8+cvcAhVnz5uFL8roqZ8ygNEQq2mgkU18W8ZZKuiuwR0gdsG0gSBFNTdwIMK
NoreRKMrw0+oLXTIB8SZsoieU6Qi7w3xMAMabe8AJsvYtoersugbOmdxGCr1lsA=
=OD7H
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"PPC:
- Better machine check handling for HV KVM
- Ability to support guests with threads=2, 4 or 8 on POWER9
- Fix for a race that could cause delayed recognition of signals
- Fix for a bug where POWER9 guests could sleep with interrupts pending.
ARM:
- VCPU request overhaul
- allow timer and PMU to have their interrupt number selected from userspace
- workaround for Cavium erratum 30115
- handling of memory poisonning
- the usual crop of fixes and cleanups
s390:
- initial machine check forwarding
- migration support for the CMMA page hinting information
- cleanups and fixes
x86:
- nested VMX bugfixes and improvements
- more reliable NMI window detection on AMD
- APIC timer optimizations
Generic:
- VCPU request overhaul + documentation of common code patterns
- kvm_stat improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (124 commits)
Update my email address
kvm: vmx: allow host to access guest MSR_IA32_BNDCFGS
x86: kvm: mmu: use ept a/d in vmcs02 iff used in vmcs12
kvm: x86: mmu: allow A/D bits to be disabled in an mmu
x86: kvm: mmu: make spte mmio mask more explicit
x86: kvm: mmu: dead code thanks to access tracking
KVM: PPC: Book3S: Fix typo in XICS-on-XIVE state saving code
KVM: PPC: Book3S HV: Close race with testing for signals on guest entry
KVM: PPC: Book3S HV: Simplify dynamic micro-threading code
KVM: x86: remove ignored type attribute
KVM: LAPIC: Fix lapic timer injection delay
KVM: lapic: reorganize restart_apic_timer
KVM: lapic: reorganize start_hv_timer
kvm: nVMX: Check memory operand to INVVPID
KVM: s390: Inject machine check into the nested guest
KVM: s390: Inject machine check into the guest
tools/kvm_stat: add new interactive command 'b'
tools/kvm_stat: add new command line switch '-i'
tools/kvm_stat: fix error on interactive command 'g'
KVM: SVM: suppress unnecessary NMI singlestep on GIF=0 and nested exit
...
Pull SMP hotplug updates from Thomas Gleixner:
"This update is primarily a cleanup of the CPU hotplug locking code.
The hotplug locking mechanism is an open coded RWSEM, which allows
recursive locking. The main problem with that is the recursive nature
as it evades the full lockdep coverage and hides potential deadlocks.
The rework replaces the open coded RWSEM with a percpu RWSEM and
establishes full lockdep coverage that way.
The bulk of the changes fix up recursive locking issues and address
the now fully reported potential deadlocks all over the place. Some of
these deadlocks have been observed in the RT tree, but on mainline the
probability was low enough to hide them away."
* 'smp-hotplug-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (37 commits)
cpu/hotplug: Constify attribute_group structures
powerpc: Only obtain cpu_hotplug_lock if called by rtasd
ARM/hw_breakpoint: Fix possible recursive locking for arch_hw_breakpoint_init
cpu/hotplug: Remove unused check_for_tasks() function
perf/core: Don't release cred_guard_mutex if not taken
cpuhotplug: Link lock stacks for hotplug callbacks
acpi/processor: Prevent cpu hotplug deadlock
sched: Provide is_percpu_thread() helper
cpu/hotplug: Convert hotplug locking to percpu rwsem
s390: Prevent hotplug rwsem recursion
arm: Prevent hotplug rwsem recursion
arm64: Prevent cpu hotplug rwsem recursion
kprobes: Cure hotplug lock ordering issues
jump_label: Reorder hotplug lock and jump_label_lock
perf/tracing/cpuhotplug: Fix locking order
ACPI/processor: Use cpu_hotplug_disable() instead of get_online_cpus()
PCI: Replace the racy recursion prevention
PCI: Use cpu_hotplug_disable() instead of get_online_cpus()
perf/x86/intel: Drop get_online_cpus() in intel_snb_check_microcode()
x86/perf: Drop EXPORT of perf_check_microcode
...
Merge our fixes branch, a few of them are tripping people up while
working on top of next, and we also have a dependency between the CXL
fixes and new CXL code we want to merge into next.
- Better machine check handling for HV KVM
- Ability to support guests with threads=2, 4 or 8 on POWER9
- Fix for a race that could cause delayed recognition of signals
- Fix for a bug where POWER9 guests could sleep with interrupts
pending.
At present, interrupts are hard-disabled fairly late in the guest
entry path, in the assembly code. Since we check for pending signals
for the vCPU(s) task(s) earlier in the guest entry path, it is
possible for a signal to be delivered before we enter the guest but
not be noticed until after we exit the guest for some other reason.
Similarly, it is possible for the scheduler to request a reschedule
while we are in the guest entry path, and we won't notice until after
we have run the guest, potentially for a whole timeslice.
Furthermore, with a radix guest on POWER9, we can take the interrupt
with the MMU on. In this case we end up leaving interrupts
hard-disabled after the guest exit, and they are likely to stay
hard-disabled until we exit to userspace or context-switch to
another process. This was masking the fact that we were also not
setting the RI (recoverable interrupt) bit in the MSR, meaning
that if we had taken an interrupt, it would have crashed the host
kernel with an unrecoverable interrupt message.
To close these races, we need to check for signals and reschedule
requests after hard-disabling interrupts, and then keep interrupts
hard-disabled until we enter the guest. If there is a signal or a
reschedule request from another CPU, it will send an IPI, which will
cause a guest exit.
This puts the interrupt disabling before we call kvmppc_start_thread()
for all the secondary threads of this core that are going to run vCPUs.
The reason for that is that once we have started the secondary threads
there is no easy way to back out without going through at least part
of the guest entry path. However, kvmppc_start_thread() includes some
code for radix guests which needs to call smp_call_function(), which
must be called with interrupts enabled. To solve this problem, this
patch moves that code into a separate function that is called earlier.
When the guest exit is caused by an external interrupt, a hypervisor
doorbell or a hypervisor maintenance interrupt, we now handle these
using the replay facility. __kvmppc_vcore_entry() now returns the
trap number that caused the exit on this thread, and instead of the
assembly code jumping to the handler entry, we return to C code with
interrupts still hard-disabled and set the irq_happened flag in the
PACA, so that when we do local_irq_enable() the appropriate handler
gets called.
With all this, we now have the interrupt soft-enable flag clear while
we are in the guest. This is useful because code in the real-mode
hypercall handlers that checks whether interrupts are enabled will
now see that they are disabled, which is correct, since interrupts
are hard-disabled in the real-mode code.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Since commit b009031f74 ("KVM: PPC: Book3S HV: Take out virtual
core piggybacking code", 2016-09-15), we only have at most one
vcore per subcore. Previously, the fact that there might be more
than one vcore per subcore meant that we had the notion of a
"master vcore", which was the vcore that controlled thread 0 of
the subcore. We also needed a list per subcore in the core_info
struct to record which vcores belonged to each subcore. Now that
there can only be one vcore in the subcore, we can replace the
list with a simple pointer and get rid of the notion of the
master vcore (and in fact treat every vcore as a master vcore).
We can also get rid of the subcore_vm[] field in the core_info
struct since it is never read.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
- vcpu request overhaul
- allow timer and PMU to have their interrupt number
selected from userspace
- workaround for Cavium erratum 30115
- handling of memory poisonning
- the usual crop of fixes and cleanups
-----BEGIN PGP SIGNATURE-----
iQJJBAABCAAzFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAllWCM0VHG1hcmMuenlu
Z2llckBhcm0uY29tAAoJECPQ0LrRPXpDjJ0QAI16x6+trKhH31lTSYekYfqm4hZ2
Fp7IbALW9KNCaY35tZov2Zuh99qGRduxTh7ewqhKpON8kkU+UKj0F7zH22+vfN4m
yas/+uNr8R9VLyvea4ysPsgx8Q8v1Ix9setohHYNZIL9/klVqtaHpYvArHVF/mzq
p2j/NxRS2dlp9r2TtoMRMhA05u6r0wolhUuh+z9v2ipib0gfOBIG24jsqCTEcD9n
5A/cVd+ztYshkrV95h3y9peahwt3zOA4QBGzrQ2K25jp0s54nqhmC7JTNSa8dtar
YGW2MuAMoIFTwCFAlpwCzrwpOJFzF3Q6A8bOxei2fjclzjPMgT1xQxuhOoe4ntFa
lTPxSHalm5W6dFTW90YSo2DBcPe+N7sQkhjR0cCeY3GYsOFhXMLTlOl5Pt1YK1or
+3FAI74tFRKvVmb9mhZeGTvuzhDgRvtf3Qq5rjwlGzKc2BBOEgtMyj/Wgwo4N6Dz
IjOnoRaUGELoBCWoTorMxLpsPBdPVSUxNyJTdAhqZ/ZtT1xqjhFNLZcrVWmOTzDM
1cav+jZkla4sLmJSNDD54aCSvvtPHis0nZn9PRlh12xgOyYiAVx4K++MNuWP0P37
hbh1gbPT+FcoVxPurUsX/pjNlTucPZcBwFytZDQlpwtPBpEFzJiImLYe/PldRb0f
9WQOH1Y1+q14MF+N
=6hNK
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-for-4.13' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/ARM updates for 4.13
- vcpu request overhaul
- allow timer and PMU to have their interrupt number
selected from userspace
- workaround for Cavium erratum 30115
- handling of memory poisonning
- the usual crop of fixes and cleanups
Conflicts:
arch/s390/include/asm/kvm_host.h
Add a trace point for tlbie(l) (Translation Lookaside Buffer Invalidate
Entry (Local)) instructions.
The tlbie instruction has changed over the years, so not all versions
accept the same operands. Use the ISA v3 field operands because they are
the most verbose, we may change them in future.
Example output:
qemu-system-ppc-5371 [016] 1412.369519: tlbie:
tlbie with lpid 0, local 1, rb=67bd8900174c11c1, rs=0, ric=0 prs=0 r=0
Signed-off-by: Balbir Singh <bsingharora@gmail.com>
[mpe: Add some missing trace_tlbie()s, reword change log]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Now that userspace can set the virtual SMT mode by enabling the
KVM_CAP_PPC_SMT capability, it is useful for userspace to be able
to query the set of possible virtual SMT modes. This provides a
new capability, KVM_CAP_PPC_SMT_POSSIBLE, to provide this
information. The return value is a bitmap of possible modes, with
bit N set if virtual SMT mode 2^N is available. That is, 1 indicates
SMT1 is available, 2 indicates that SMT2 is available, 3 indicates
that both SMT1 and SMT2 are available, and so on.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Enhance KVM to cause a guest exit with KVM_EXIT_NMI
exit reason upon a machine check exception (MCE) in
the guest address space if the KVM_CAP_PPC_FWNMI
capability is enabled (instead of delivering a 0x200
interrupt to guest). This enables QEMU to build error
log and deliver machine check exception to guest via
guest registered machine check handler.
This approach simplifies the delivery of machine
check exception to guest OS compared to the earlier
approach of KVM directly invoking 0x200 guest interrupt
vector.
This design/approach is based on the feedback for the
QEMU patches to handle machine check exception. Details
of earlier approach of handling machine check exception
in QEMU and related discussions can be found at:
https://lists.nongnu.org/archive/html/qemu-devel/2014-11/msg00813.html
Note:
This patch now directly invokes machine_check_print_event_info()
from kvmppc_handle_exit_hv() to print the event to host console
at the time of guest exit before the exception is passed on to the
guest. Hence, the host-side handling which was performed earlier
via machine_check_fwnmi is removed.
The reasons for this approach is (i) it is not possible
to distinguish whether the exception occurred in the
guest or the host from the pt_regs passed on the
machine_check_exception(). Hence machine_check_exception()
calls panic, instead of passing on the exception to
the guest, if the machine check exception is not
recoverable. (ii) the approach introduced in this
patch gives opportunity to the host kernel to perform
actions in virtual mode before passing on the exception
to the guest. This approach does not require complex
tweaks to machine_check_fwnmi and friends.
Signed-off-by: Aravinda Prasad <aravinda@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This introduces a new KVM capability to control how KVM behaves
on machine check exception (MCE) in HV KVM guests.
If this capability has not been enabled, KVM redirects machine check
exceptions to guest's 0x200 vector, if the address in error belongs to
the guest. With this capability enabled, KVM will cause a guest exit
with the exit reason indicating an NMI.
The new capability is required to avoid problems if a new kernel/KVM
is used with an old QEMU, running a guest that doesn't issue
"ibm,nmi-register". As old QEMU does not understand the NMI exit
type, it treats it as a fatal error. However, the guest could have
handled the machine check error if the exception was delivered to
guest's 0x200 interrupt vector instead of NMI exit in case of old
QEMU.
[paulus@ozlabs.org - Reworded the commit message to be clearer,
enable only on HV KVM.]
Signed-off-by: Aravinda Prasad <aravinda@linux.vnet.ibm.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
* fix problems that could cause hangs or crashes in the host on POWER9
* fix problems that could allow guests to potentially affect or disrupt
the execution of the controlling userspace
On a POWER9 system, it is possible for an interrupt to become pending
for a VCPU when that VCPU is about to cede (execute a H_CEDE hypercall)
and has already disabled interrupts, or in the H_CEDE processing up
to the point where the XIVE context is pulled from the hardware. In
such a case, the H_CEDE should not sleep, but should return immediately
to the guest. However, the conditions tested in kvmppc_vcpu_woken()
don't include the condition that a XIVE interrupt is pending, so the
VCPU could sleep until the next decrementer interrupt.
To fix this, we add a new xive_interrupt_pending() helper which looks
in the XIVE context that was pulled from the hardware to see if the
priority of any pending interrupt is higher (numerically lower than)
the CPU priority. If so then kvmppc_vcpu_woken() will return true.
If the XIVE context has never been used, then both the pipr and the
cppr fields will be zero and the test will indicate that no interrupt
is pending.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Idle code now always runs at the 0xc... effective address whether
in real or virtual mode. This means rfid can be ditched, along
with a lot of SRR manipulations.
In the wakeup path, carry SRR1 around in r12. Use mtmsrd to change
MSR states as required.
This also balances the return prediction for the idle call, by
doing blr rather than rfid to return to the idle caller.
On POWER9, 2-process context switch on different cores, with snooze
disabled, increases performance by 2%.
Signed-off-by: Nicholas Piggin <npiggin@gmail.com>
[mpe: Incorporate v2 fixes from Nick]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
On POWER9, we no longer have the restriction that we had on POWER8
where all threads in a core have to be in the same partition, so
the CPU threads are now independent. However, we still want to be
able to run guests with a virtual SMT topology, if only to allow
migration of guests from POWER8 systems to POWER9.
A guest that has a virtual SMT mode greater than 1 will expect to
be able to use the doorbell facility; it will expect the msgsndp
and msgclrp instructions to work appropriately and to be able to read
sensible values from the TIR (thread identification register) and
DPDES (directed privileged doorbell exception status) special-purpose
registers. However, since each CPU thread is a separate sub-processor
in POWER9, these instructions and registers can only be used within
a single CPU thread.
In order for these instructions to appear to act correctly according
to the guest's virtual SMT mode, we have to trap and emulate them.
We cause them to trap by clearing the HFSCR_MSGP bit in the HFSCR
register. The emulation is triggered by the hypervisor facility
unavailable interrupt that occurs when the guest uses them.
To cause a doorbell interrupt to occur within the guest, we set the
DPDES register to 1. If the guest has interrupts enabled, the CPU
will generate a doorbell interrupt and clear the DPDES register in
hardware. The DPDES hardware register for the guest is saved in the
vcpu->arch.vcore->dpdes field. Since this gets written by the guest
exit code, other VCPUs wishing to cause a doorbell interrupt don't
write that field directly, but instead set a vcpu->arch.doorbell_request
flag. This is consumed and set to 0 by the guest entry code, which
then sets DPDES to 1.
Emulating reads of the DPDES register is somewhat involved, because
it requires reading the doorbell pending interrupt status of all of the
VCPU threads in the virtual core, and if any of those VCPUs are
running, their doorbell status is only up-to-date in the hardware
DPDES registers of the CPUs where they are running. In order to get
a reasonable approximation of the current doorbell status, we send
those CPUs an IPI, causing an exit from the guest which will update
the vcpu->arch.vcore->dpdes field. We then use that value in
constructing the emulated DPDES register value.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This allows userspace to set the desired virtual SMT (simultaneous
multithreading) mode for a VM, that is, the number of VCPUs that
get assigned to each virtual core. Previously, the virtual SMT mode
was fixed to the number of threads per subcore, and if userspace
wanted to have fewer vcpus per vcore, then it would achieve that by
using a sparse CPU numbering. This had the disadvantage that the
vcpu numbers can get quite large, particularly for SMT1 guests on
a POWER8 with 8 threads per core. With this patch, userspace can
set its desired virtual SMT mode and then use contiguous vcpu
numbering.
On POWER8, where the threading mode is "strict", the virtual SMT mode
must be less than or equal to the number of threads per subcore. On
POWER9, which implements a "loose" threading mode, the virtual SMT
mode can be any power of 2 between 1 and 8, even though there is
effectively one thread per subcore, since the threads are independent
and can all be in different partitions.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds code to allow us to use a different value for the HFSCR
(Hypervisor Facilities Status and Control Register) when running the
guest from that which applies in the host. The reason for doing this
is to allow us to trap the msgsndp instruction and related operations
in future so that they can be virtualized. We also save the value of
HFSCR when a hypervisor facility unavailable interrupt occurs, because
the high byte of HFSCR indicates which facility the guest attempted to
access.
We save and restore the host value on guest entry/exit because some
bits of it affect host userspace execution.
We only do all this on POWER9, not on POWER8, because we are not
intending to virtualize any of the facilities controlled by HFSCR on
POWER8. In particular, the HFSCR bit that controls execution of
msgsndp and related operations does not exist on POWER8. The HFSCR
doesn't exist at all on POWER7.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
It is possible, through a narrow race condition, for a VCPU to exit
the guest with a H_CEDE hypercall while it has a doorbell interrupt
pending. In this case, the H_CEDE should return immediately, but in
fact it puts the VCPU to sleep until some other interrupt becomes
pending or a prod is received (via another VCPU doing H_PROD).
This fixes it by checking the DPDES (Directed Privileged Doorbell
Exception Status) bit for the thread along with the other interrupt
pending bits.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This allows userspace (e.g. QEMU) to enable large decrementer mode for
the guest when running on a POWER9 host, by setting the LPCR_LD bit in
the guest LPCR value. With this, the guest exit code saves 64 bits of
the guest DEC value on exit. Other places that use the guest DEC
value check the LPCR_LD bit in the guest LPCR value, and if it is set,
omit the 32-bit sign extension that would otherwise be done.
This doesn't change the DEC emulation used by PR KVM because PR KVM
is not supported on POWER9 yet.
This is partly based on an earlier patch by Oliver O'Halloran.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Three small fixes for recently merged code:
- remove a spurious WARN_ON when a PCI device has no of_node, it's allowed in
some circumstances for there to be no of_node.
- fix the offset for store EOI MMIOs in the XIVE interrupt controller.
- fix non-const WARN_ONs which were becoming BUGs due to them losing
BUGFLAG_WARNING in a recent cleanup patch.
Thanks to:
Alexey Kardashevskiy, Alistair Popple, Benjamin Herrenschmidt.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZQ7XeAAoJEFHr6jzI4aWA2bgP/R++c9YehNdDKbZyLqumY+6q
7ns8NoxgEW/Gc8JuSTE4MW51q2HimBJu6ntyHfMUwgpGQpGzOGDn6g8OxVfjOySa
kFc7cytgOOhEpTHENDZ3xxZtcSd9iafyX9ga/0dz6UycfEHcZayiXDRuXffRzJwa
RNqbwDxOtkgn6w4bW02SRlfDSTra+zQZQd6NsPXSJJgF+tb3MflMj1A9WoJp/mj/
tXc9fpKQsZkIG/AvAHziizHqeAKJxUrmoVb8qy1SYTKVUDZoxTYgiO1G1nebZX/s
Zzsdd/fcHcd0DIEJkjf2V3cegmIGTLzw7mUOodU7IF3mZ1LPgCMVF5lTTZzjcXDQ
d1gugVojHnGr7KB3lNNijyHxsmHG7LdTQmRHcyZ2L8KYpa3/+Ca3ZuFnTwjvgRNx
dJEFX5JdAhCrkg1B73rvcjKCFg0ysVIrkdf27SaameaQdQQuZU4+5+s1LB2EqJQr
II3+pnZr/RF3OWu4yJE5KAHX5ZBQQ+unzVPpW4pqvwYMoVKhO7dhCPPISeRCtzJE
+po5Ys4ncheSRhwf5dQhf+H04kXmL6ekpl1GJOBB3BskJcsIr8hiLp3/mF238et1
80o6yTAJLADKUIl75ISiePz+KFZNamgke1/XWZolfHYZ9dNRF0c//E0qvpopz8jE
F90hxEAtJ9ws/VUlo40Q
=Mnxp
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.12-6' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc fixes from Michael Ellerman:
"Three small fixes for recently merged code:
- remove a spurious WARN_ON when a PCI device has no of_node, it's
allowed in some circumstances for there to be no of_node.
- fix the offset for store EOI MMIOs in the XIVE interrupt
controller.
- fix non-const WARN_ONs which were becoming BUGs due to them losing
BUGFLAG_WARNING in a recent cleanup patch.
Thanks to: Alexey Kardashevskiy, Alistair Popple, Benjamin
Herrenschmidt"
* tag 'powerpc-4.12-6' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux:
powerpc/debug: Add missing warn flag to WARN_ON's non-builtin path
powerpc/xive: Fix offset for store EOI MMIOs
powerpc/npu-dma: Remove spurious WARN_ON when a PCI device has no of_node
POWER9 DD1 has an erratum where writing to the TBU40 register, which
is used to apply an offset to the timebase, can cause the timebase to
lose counts. This results in the timebase on some CPUs getting out of
sync with other CPUs, which then results in misbehaviour of the
timekeeping code.
To work around the problem, we make KVM ignore the timebase offset for
all guests on POWER9 DD1 machines. This means that live migration
cannot be supported on POWER9 DD1 machines.
Cc: stable@vger.kernel.org # v4.10+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
At present, HV KVM on POWER8 and POWER9 machines loses any instruction
or data breakpoint set in the host whenever a guest is run.
Instruction breakpoints are currently only used by xmon, but ptrace
and the perf_event subsystem can set data breakpoints as well as xmon.
To fix this, we save the host values of the debug registers (CIABR,
DAWR and DAWRX) before entering the guest and restore them on exit.
To provide space to save them in the stack frame, we expand the stack
frame allocated by kvmppc_hv_entry() from 112 to 144 bytes.
Fixes: b005255e12 ("KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs", 2014-01-08)
Cc: stable@vger.kernel.org # v3.14+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Architecturally we should apply a 0x400 offset for these. Not doing
it will break future HW implementations.
The offset of 0 is supposed to remain for "triggers" though not all
sources support both trigger and store EOI, and in P9 specifically,
some sources will treat 0 as a store EOI. But future chips will not.
So this makes us use the properly architected offset which should work
always.
Fixes: 243e25112d ("powerpc/xive: Native exploitation of the XIVE interrupt controller")
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
If userspace attempts to call the KVM_RUN ioctl when it has hardware
transactional memory (HTM) enabled, the values that it has put in the
HTM-related SPRs TFHAR, TFIAR and TEXASR will get overwritten by
guest values. To fix this, we detect this condition and save those
SPR values in the thread struct, and disable HTM for the task. If
userspace goes to access those SPRs or the HTM facility in future,
a TM-unavailable interrupt will occur and the handler will reload
those SPRs and re-enable HTM.
If userspace has started a transaction and suspended it, we would
currently lose the transactional state in the guest entry path and
would almost certainly get a "TM Bad Thing" interrupt, which would
cause the host to crash. To avoid this, we detect this case and
return from the KVM_RUN ioctl with an EINVAL error, with the KVM
exit reason set to KVM_EXIT_FAIL_ENTRY.
Fixes: b005255e12 ("KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs", 2014-01-08)
Cc: stable@vger.kernel.org # v3.14+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This restores several special-purpose registers (SPRs) to sane values
on guest exit that were missed before.
TAR and VRSAVE are readable and writable by userspace, and we need to
save and restore them to prevent the guest from potentially affecting
userspace execution (not that TAR or VRSAVE are used by any known
program that run uses the KVM_RUN ioctl). We save/restore these
in kvmppc_vcpu_run_hv() rather than on every guest entry/exit.
FSCR affects userspace execution in that it can prohibit access to
certain facilities by userspace. We restore it to the normal value
for the task on exit from the KVM_RUN ioctl.
IAMR is normally 0, and is restored to 0 on guest exit. However,
with a radix host on POWER9, it is set to a value that prevents the
kernel from executing user-accessible memory. On POWER9, we save
IAMR on guest entry and restore it on guest exit to the saved value
rather than 0. On POWER8 we continue to set it to 0 on guest exit.
PSPB is normally 0. We restore it to 0 on guest exit to prevent
userspace taking advantage of the guest having set it non-zero
(which would allow userspace to set its SMT priority to high).
UAMOR is normally 0. We restore it to 0 on guest exit to prevent
the AMR from being used as a covert channel between userspace
processes, since the AMR is not context-switched at present.
Fixes: b005255e12 ("KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs", 2014-01-08)
Cc: stable@vger.kernel.org # v3.14+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds code to save the values of three SPRs (special-purpose
registers) used by userspace to control event-based branches (EBBs),
which are essentially interrupts that get delivered directly to
userspace. These registers are loaded up with guest values when
entering the guest, and their values are saved when exiting the
guest, but we were not saving the host values and restoring them
before going back to userspace.
On POWER8 this would only affect userspace programs which explicitly
request the use of EBBs and also use the KVM_RUN ioctl, since the
only source of EBBs on POWER8 is the PMU, and there is an explicit
enable bit in the PMU registers (and those PMU registers do get
properly context-switched between host and guest). On POWER9 there
is provision for externally-generated EBBs, and these are not subject
to the control in the PMU registers.
Since these registers only affect userspace, we can save them when
we first come in from userspace and restore them before returning to
userspace, rather than saving/restoring the host values on every
guest entry/exit. Similarly, we don't need to worry about their
values on offline secondary threads since they execute in the context
of the idle task, which never executes in userspace.
Fixes: b005255e12 ("KVM: PPC: Book3S HV: Context-switch new POWER8 SPRs", 2014-01-08)
Cc: stable@vger.kernel.org # v3.14+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
A first step in vcpu->requests encapsulation. Additionally, we now
use READ_ONCE() when accessing vcpu->requests, which ensures we
always load vcpu->requests when it's accessed. This is important as
other threads can change it any time. Also, READ_ONCE() documents
that vcpu->requests is used with other threads, likely requiring
memory barriers, which it does.
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
[ Documented the new use of READ_ONCE() and converted another check
in arch/mips/kvm/vz.c ]
Signed-off-by: Andrew Jones <drjones@redhat.com>
Acked-by: Christoffer Dall <cdall@linaro.org>
Signed-off-by: Christoffer Dall <cdall@linaro.org>
POWER9 introduces a new mode for the decrementer register, called
large decrementer mode, in which the decrementer counter is 56 bits
wide rather than 32, and reads are sign-extended rather than
zero-extended. For the decrementer, this new mode is optional and
controlled by a bit in the LPCR. The hypervisor decrementer (HDEC)
is 56 bits wide on POWER9 and has no mode control.
Since KVM code reads and writes the decrementer and hypervisor
decrementer registers in a few places, it needs to be aware of the
need to treat the decrementer value as a 64-bit quantity, and only do
a 32-bit sign extension when large decrementer mode is not in effect.
Similarly, the HDEC should always be treated as a 64-bit quantity on
POWER9. We define a new EXTEND_HDEC macro to encapsulate the feature
test for POWER9 and the sign extension.
To enable the sign extension to be removed in large decrementer mode,
we test the LPCR_LD bit in the host LPCR image stored in the struct
kvm for the guest. If is set then large decrementer mode is enabled
and the sign extension should be skipped.
This is partly based on an earlier patch by Oliver O'Halloran.
Cc: stable@vger.kernel.org # v4.10+
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
kvmppc_alloc_host_rm_ops() holds get_online_cpus() while invoking
cpuhp_setup_state_nocalls().
cpuhp_setup_state_nocalls() invokes get_online_cpus() as well. This is
correct, but prevents the conversion of the hotplug locking to a percpu
rwsem.
Use cpuhp_setup_state_nocalls_cpuslocked() to avoid the nested
call. Convert *_online_cpus() to the new interfaces while at it.
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: kvm@vger.kernel.org
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: kvm-ppc@vger.kernel.org
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: linuxppc-dev@lists.ozlabs.org
Cc: Alexander Graf <agraf@suse.com>
Link: http://lkml.kernel.org/r/20170524081547.809616236@linutronix.de
Commit e91aa8e6ec ("KVM: PPC: Enable IOMMU_API for KVM_BOOK3S_64
permanently", 2017-03-22) enabled the SPAPR TCE code for all 64-bit
Book 3S kernel configurations in order to simplify the code and
reduce #ifdefs. However, 64-bit Book 3S PPC platforms other than
pseries and powernv don't implement the necessary IOMMU callbacks,
leading to build failures like the following (for a pasemi config):
scripts/kconfig/conf --silentoldconfig Kconfig
warning: (KVM_BOOK3S_64) selects SPAPR_TCE_IOMMU which has unmet direct dependencies (IOMMU_SUPPORT && (PPC_POWERNV || PPC_PSERIES))
...
CC [M] arch/powerpc/kvm/book3s_64_vio.o
/home/paulus/kernel/kvm/arch/powerpc/kvm/book3s_64_vio.c: In function ‘kvmppc_clear_tce’:
/home/paulus/kernel/kvm/arch/powerpc/kvm/book3s_64_vio.c:363:2: error: implicit declaration of function ‘iommu_tce_xchg’ [-Werror=implicit-function-declaration]
iommu_tce_xchg(tbl, entry, &hpa, &dir);
^
To fix this, we make the inclusion of the SPAPR TCE support, and the
code that uses it in book3s_vio.c and book3s_vio_hv.c, depend on
the inclusion of support for the pseries and/or powernv platforms.
This means that when running a 'pseries' guest on those platforms,
the guest won't have in-kernel acceleration of the PAPR TCE hypercalls,
but at least now they compile.
Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The PR KVM implementation of the PAPR HPT hypercalls (H_ENTER etc.)
access an image of the HPT in userspace memory using copy_from_user
and copy_to_user. Recently, the declarations of those functions were
annotated to indicate that the return value must be checked. Since
this code doesn't currently check the return value, this causes
compile warnings like the ones shown below, and since on PPC the
default is to compile arch/powerpc with -Werror, this causes the
build to fail.
To fix this, we check the return values, and if non-zero, fail the
hypercall being processed with a H_FUNCTION error return value.
There is really no good error return value to use since PAPR didn't
envisage the possibility that the hypervisor may not be able to access
the guest's HPT, and H_FUNCTION (function not supported) seems as
good as any.
The typical compile warnings look like this:
CC arch/powerpc/kvm/book3s_pr_papr.o
/home/paulus/kernel/kvm/arch/powerpc/kvm/book3s_pr_papr.c: In function ‘kvmppc_h_pr_enter’:
/home/paulus/kernel/kvm/arch/powerpc/kvm/book3s_pr_papr.c:53:2: error: ignoring return value of ‘copy_from_user’, declared with attribute warn_unused_result [-Werror=unused-result]
copy_from_user(pteg, (void __user *)pteg_addr, sizeof(pteg));
^
/home/paulus/kernel/kvm/arch/powerpc/kvm/book3s_pr_papr.c:74:2: error: ignoring return value of ‘copy_to_user’, declared with attribute warn_unused_result [-Werror=unused-result]
copy_to_user((void __user *)pteg_addr, hpte, HPTE_SIZE);
^
... etc.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
POWER9 running a radix guest will take some hypervisor interrupts
without going to real mode (turning off the MMU). This means that
early hypercall handlers may now be called in virtual mode. Most of
the handlers work just fine in both modes, but there are some that
can crash the host if called in virtual mode, notably the TCE (IOMMU)
hypercalls H_PUT_TCE, H_STUFF_TCE and H_PUT_TCE_INDIRECT. These
already have both a real-mode and a virtual-mode version, so we
arrange for the real-mode version to return H_TOO_HARD for radix
guests, which will result in the virtual-mode version being called.
The other hypercall which is sensitive to the MMU mode is H_RANDOM.
It doesn't have a virtual-mode version, so this adds code to enable
it to be called in either mode.
An alternative solution was considered which would refuse to call any
of the early hypercall handlers when doing a virtual-mode exit from a
radix guest. However, the XICS-on-XIVE code depends on the XICS
hypercalls being handled early even for virtual-mode exits, because
the handlers need to be called before the XIVE vCPU state has been
pulled off the hardware. Therefore that solution would have become
quite invasive and complicated, and was rejected in favour of the
simpler, though less elegant, solution presented here.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Tested-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The main thing here is a new implementation of the in-kernel
XICS interrupt controller emulation for POWER9 machines, from Ben
Herrenschmidt.
POWER9 has a new interrupt controller called XIVE (eXternal Interrupt
Virtualization Engine) which is able to deliver interrupts directly
to guest virtual CPUs in hardware without hypervisor intervention.
With this new code, the guest still sees the old XICS interface but
performance is better because the XICS emulation in the host uses the
XIVE directly rather than going through a XICS emulation in firmware.
Conflicts:
arch/powerpc/kernel/cpu_setup_power.S [cherry-picked fix]
arch/powerpc/kvm/book3s_xive.c [include asm/debugfs.h]
support; virtual interrupt controller performance improvements; support
for userspace virtual interrupt controller (slower, but necessary for
KVM on the weird Broadcom SoCs used by the Raspberry Pi 3)
* MIPS: basic support for hardware virtualization (ImgTec
P5600/P6600/I6400 and Cavium Octeon III)
* PPC: in-kernel acceleration for VFIO
* s390: support for guests without storage keys; adapter interruption
suppression
* x86: usual range of nVMX improvements, notably nested EPT support for
accessed and dirty bits; emulation of CPL3 CPUID faulting
* generic: first part of VCPU thread request API; kvm_stat improvements
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJZEHUkAAoJEL/70l94x66DBeYH/09wrpJ2FjU4Rqv7FxmqgWfH
9WGi4wvn/Z+XzQSyfMJiu2SfZVzU69/Y67OMHudy7vBT6knB+ziM7Ntoiu/hUfbG
0g5KsDX79FW15HuvuuGh9kSjUsj7qsQdyPZwP4FW/6ZoDArV9mibSvdjSmiUSMV/
2wxaoLzjoShdOuCe9EABaPhKK0XCrOYkygT6Paz1pItDxaSn8iW3ulaCuWMprUfG
Niq+dFemK464E4yn6HVD88xg5j2eUM6bfuXB3qR3eTR76mHLgtwejBzZdDjLG9fk
32PNYKhJNomBxHVqtksJ9/7cSR6iNPs7neQ1XHemKWTuYqwYQMlPj1NDy0aslQU=
=IsiZ
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"ARM:
- HYP mode stub supports kexec/kdump on 32-bit
- improved PMU support
- virtual interrupt controller performance improvements
- support for userspace virtual interrupt controller (slower, but
necessary for KVM on the weird Broadcom SoCs used by the Raspberry
Pi 3)
MIPS:
- basic support for hardware virtualization (ImgTec P5600/P6600/I6400
and Cavium Octeon III)
PPC:
- in-kernel acceleration for VFIO
s390:
- support for guests without storage keys
- adapter interruption suppression
x86:
- usual range of nVMX improvements, notably nested EPT support for
accessed and dirty bits
- emulation of CPL3 CPUID faulting
generic:
- first part of VCPU thread request API
- kvm_stat improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
kvm: nVMX: Don't validate disabled secondary controls
KVM: put back #ifndef CONFIG_S390 around kvm_vcpu_kick
Revert "KVM: Support vCPU-based gfn->hva cache"
tools/kvm: fix top level makefile
KVM: x86: don't hold kvm->lock in KVM_SET_GSI_ROUTING
KVM: Documentation: remove VM mmap documentation
kvm: nVMX: Remove superfluous VMX instruction fault checks
KVM: x86: fix emulation of RSM and IRET instructions
KVM: mark requests that need synchronization
KVM: return if kvm_vcpu_wake_up() did wake up the VCPU
KVM: add explicit barrier to kvm_vcpu_kick
KVM: perform a wake_up in kvm_make_all_cpus_request
KVM: mark requests that do not need a wakeup
KVM: remove #ifndef CONFIG_S390 around kvm_vcpu_wake_up
KVM: x86: always use kvm_make_request instead of set_bit
KVM: add kvm_{test,clear}_request to replace {test,clear}_bit
s390: kvm: Cpu model support for msa6, msa7 and msa8
KVM: x86: remove irq disablement around KVM_SET_CLOCK/KVM_GET_CLOCK
kvm: better MWAIT emulation for guests
KVM: x86: virtualize cpuid faulting
...
Here is the big staging tree update for 4.12-rc1. And it's a big one,
adding about 350k new lines of crap^Wcode, mostly all in a big dump of
media drivers from Intel. But there's other new drivers in here as
well, yet-another-wifi driver, new IIO drivers, and a new crypto
accelerator. We also deleted a bunch of stuff, mostly in patch
cleanups, but also the Android ION code has shrunk a lot, and the
Android low memory killer driver was finally deleted, much to the
celebration of the -mm developers.
All of these have been in linux-next with a few build issues that will
show up when you merge to your tree, I'll follow up with fixes for those
after this gets merged.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCWQzzlQ8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ylNMgCcD+GoaF/Ml7YnULRl2GG/526II78AnitZ8qjd
rPqeowMIewYu9fgckLUc
=7rzO
-----END PGP SIGNATURE-----
Merge tag 'staging-4.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging
Pull staging/IIO updates from Greg KH:
"Here is the big staging tree update for 4.12-rc1.
It's a big one, adding about 350k new lines of crap^Wcode, mostly all
in a big dump of media drivers from Intel. But there's other new
drivers in here as well, yet-another-wifi driver, new IIO drivers, and
a new crypto accelerator.
We also deleted a bunch of stuff, mostly in patch cleanups, but also
the Android ION code has shrunk a lot, and the Android low memory
killer driver was finally deleted, much to the celebration of the -mm
developers.
All of these have been in linux-next with a few build issues that will
show up when you merge to your tree"
Merge conflicts in the new rtl8723bs driver (due to the wifi changes
this merge window) handled as per linux-next, courtesy of Stephen
Rothwell.
* tag 'staging-4.12-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/staging: (1182 commits)
staging: fsl-mc/dpio: add cpu <--> LE conversion for dpaa2_fd
staging: ks7010: remove line continuations in quoted strings
staging: vt6656: use tabs instead of spaces
staging: android: ion: Fix unnecessary initialization of static variable
staging: media: atomisp: fix range checking on clk_num
staging: media: atomisp: fix misspelled word in comment
staging: media: atomisp: kmap() can't fail
staging: atomisp: remove #ifdef for runtime PM functions
staging: atomisp: satm include directory is gone
atomisp: remove some more unused files
atomisp: remove hmm_load/store/clear indirections
atomisp: kill off mmgr_free
atomisp: clean up the hmm init/cleanup indirections
atomisp: handle allocation calls before init in the hmm layer
staging: fsl-dpaa2/eth: Add maintainer for Ethernet driver
staging: fsl-dpaa2/eth: Add TODO file
staging: fsl-dpaa2/eth: Add trace points
staging: fsl-dpaa2/eth: Add driver specific stats
staging: fsl-dpaa2/eth: Add ethtool support
staging: fsl-dpaa2/eth: Add Freescale DPAA2 Ethernet driver
...
Highlights include:
- Larger virtual address space on 64-bit server CPUs. By default we use a 128TB
virtual address space, but a process can request access to the full 512TB by
passing a hint to mmap().
- Support for the new Power9 "XIVE" interrupt controller.
- TLB flushing optimisations for the radix MMU on Power9.
- Support for CAPI cards on Power9, using the "Coherent Accelerator Interface
Architecture 2.0".
- The ability to configure the mmap randomisation limits at build and runtime.
- Several small fixes and cleanups to the kprobes code, as well as support for
KPROBES_ON_FTRACE.
- Major improvements to handling of system reset interrupts, correctly treating
them as NMIs, giving them a dedicated stack and using a new hypervisor call
to trigger them, all of which should aid debugging and robustness.
Many fixes and other minor enhancements.
Thanks to:
Alastair D'Silva, Alexey Kardashevskiy, Alistair Popple, Andrew Donnellan,
Aneesh Kumar K.V, Anshuman Khandual, Anton Blanchard, Balbir Singh, Ben
Hutchings, Benjamin Herrenschmidt, Bhupesh Sharma, Chris Packham, Christian
Zigotzky, Christophe Leroy, Christophe Lombard, Daniel Axtens, David Gibson,
Gautham R. Shenoy, Gavin Shan, Geert Uytterhoeven, Guilherme G. Piccoli,
Hamish Martin, Hari Bathini, Kees Cook, Laurent Dufour, Madhavan Srinivasan,
Mahesh J Salgaonkar, Mahesh Salgaonkar, Masami Hiramatsu, Matt Brown, Matthew
R. Ochs, Michael Neuling, Naveen N. Rao, Nicholas Piggin, Oliver O'Halloran,
Pan Xinhui, Paul Mackerras, Rashmica Gupta, Russell Currey, Sukadev
Bhattiprolu, Thadeu Lima de Souza Cascardo, Tobin C. Harding, Tyrel Datwyler,
Uma Krishnan, Vaibhav Jain, Vipin K Parashar, Yang Shi.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1
iQIcBAABAgAGBQJZDHUMAAoJEFHr6jzI4aWAT7oQALkE2Nj3gjcn1z0SkFhq/1iO
Py9Elmqm4E+L6NKYtBY5dS8xVAJ088ffzERyqJ1FY1LHkB8tn8bWRcMQmbjAFzTI
V4TAzDNI890BN/F4ptrYRwNFxRBHAvZ4NDunTzagwYnwmTzW9PYHmOi4pvWTo3Tw
KFUQ0joLSEgHzyfXxYB3fyj41u8N0FZvhfazdNSqia2Y5Vwwv/ION5jKplDM+09Y
EtVEXFvaKAS1sjbM/d/Jo5rblHfR0D9/lYV10+jjyIokjzslIpyTbnj3izeYoM5V
I4h99372zfsEjBGPPXyM3khL3zizGMSDYRmJHQSaKxjtecS9SPywPTZ8ufO/aSzV
Ngq6nlND+f1zep29VQ0cxd3Jh40skWOXzxJaFjfDT25xa6FbfsWP2NCtk8PGylZ7
EyqTuCWkMgIP02KlX3oHvEB2LRRPCDmRU2zECecRGNJrIQwYC2xjoiVi7Q8Qe8rY
gr7Ib5Jj/a+uiTcCIy37+5nXq2s14/JBOKqxuYZIxeuZFvKYuRUipbKWO05WDOAz
m/pSzeC3J8AAoYiqR0gcSOuJTOnJpGhs7zrQFqnEISbXIwLW+ICumzOmTAiBqOEY
Rt8uW2gYkPwKLrE05445RfVUoERaAjaE06eRMOWS6slnngHmmnRJbf3PcoALiJkT
ediqGEj0/N1HMB31V5tS
=vSF3
-----END PGP SIGNATURE-----
Merge tag 'powerpc-4.12-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"Highlights include:
- Larger virtual address space on 64-bit server CPUs. By default we
use a 128TB virtual address space, but a process can request access
to the full 512TB by passing a hint to mmap().
- Support for the new Power9 "XIVE" interrupt controller.
- TLB flushing optimisations for the radix MMU on Power9.
- Support for CAPI cards on Power9, using the "Coherent Accelerator
Interface Architecture 2.0".
- The ability to configure the mmap randomisation limits at build and
runtime.
- Several small fixes and cleanups to the kprobes code, as well as
support for KPROBES_ON_FTRACE.
- Major improvements to handling of system reset interrupts,
correctly treating them as NMIs, giving them a dedicated stack and
using a new hypervisor call to trigger them, all of which should
aid debugging and robustness.
- Many fixes and other minor enhancements.
Thanks to: Alastair D'Silva, Alexey Kardashevskiy, Alistair Popple,
Andrew Donnellan, Aneesh Kumar K.V, Anshuman Khandual, Anton
Blanchard, Balbir Singh, Ben Hutchings, Benjamin Herrenschmidt,
Bhupesh Sharma, Chris Packham, Christian Zigotzky, Christophe Leroy,
Christophe Lombard, Daniel Axtens, David Gibson, Gautham R. Shenoy,
Gavin Shan, Geert Uytterhoeven, Guilherme G. Piccoli, Hamish Martin,
Hari Bathini, Kees Cook, Laurent Dufour, Madhavan Srinivasan, Mahesh J
Salgaonkar, Mahesh Salgaonkar, Masami Hiramatsu, Matt Brown, Matthew
R. Ochs, Michael Neuling, Naveen N. Rao, Nicholas Piggin, Oliver
O'Halloran, Pan Xinhui, Paul Mackerras, Rashmica Gupta, Russell
Currey, Sukadev Bhattiprolu, Thadeu Lima de Souza Cascardo, Tobin C.
Harding, Tyrel Datwyler, Uma Krishnan, Vaibhav Jain, Vipin K Parashar,
Yang Shi"
* tag 'powerpc-4.12-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (214 commits)
powerpc/64s: Power9 has no LPCR[VRMASD] field so don't set it
powerpc/powernv: Fix TCE kill on NVLink2
powerpc/mm/radix: Drop support for CPUs without lockless tlbie
powerpc/book3s/mce: Move add_taint() later in virtual mode
powerpc/sysfs: Move #ifdef CONFIG_HOTPLUG_CPU out of the function body
powerpc/smp: Document irq enable/disable after migrating IRQs
powerpc/mpc52xx: Don't select user-visible RTAS_PROC
powerpc/powernv: Document cxl dependency on special case in pnv_eeh_reset()
powerpc/eeh: Clean up and document event handling functions
powerpc/eeh: Avoid use after free in eeh_handle_special_event()
cxl: Mask slice error interrupts after first occurrence
cxl: Route eeh events to all drivers in cxl_pci_error_detected()
cxl: Force context lock during EEH flow
powerpc/64: Allow CONFIG_RELOCATABLE if COMPILE_TEST
powerpc/xmon: Teach xmon oops about radix vectors
powerpc/mm/hash: Fix off-by-one in comment about kernel contexts ids
powerpc/pseries: Enable VFIO
powerpc/powernv: Fix iommu table size calculation hook for small tables
powerpc/powernv: Check kzalloc() return value in pnv_pci_table_alloc
powerpc: Add arch/powerpc/tools directory
...
This merges in the powerpc topic/xive branch to bring in the code for
the in-kernel XICS interrupt controller emulation to use the new XIVE
(eXternal Interrupt Virtualization Engine) hardware in the POWER9 chip
directly, rather than via a XICS emulation in firmware.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
With CONFIG_DEBUG_PREEMPT, get_paca() produces the following warning
in kvmppc_book3s_init_hv() since it calls debug_smp_processor_id().
There is no real issue with the xics_phys field.
If paca->kvm_hstate.xics_phys is non-zero on one cpu, it will be
non-zero on them all. Therefore this is not fixing any actual
problem, just the warning.
[ 138.521188] BUG: using smp_processor_id() in preemptible [00000000] code: modprobe/5596
[ 138.521308] caller is .kvmppc_book3s_init_hv+0x184/0x350 [kvm_hv]
[ 138.521404] CPU: 5 PID: 5596 Comm: modprobe Not tainted 4.11.0-rc3-00022-gc7e790c #1
[ 138.521509] Call Trace:
[ 138.521563] [c0000007d018b810] [c0000000023eef10] .dump_stack+0xe4/0x150 (unreliable)
[ 138.521694] [c0000007d018b8a0] [c000000001f6ec04] .check_preemption_disabled+0x134/0x150
[ 138.521829] [c0000007d018b940] [d00000000a010274] .kvmppc_book3s_init_hv+0x184/0x350 [kvm_hv]
[ 138.521963] [c0000007d018ba00] [c00000000191d5cc] .do_one_initcall+0x5c/0x1c0
[ 138.522082] [c0000007d018bad0] [c0000000023e9494] .do_init_module+0x84/0x240
[ 138.522201] [c0000007d018bb70] [c000000001aade18] .load_module+0x1f68/0x2a10
[ 138.522319] [c0000007d018bd20] [c000000001aaeb30] .SyS_finit_module+0xc0/0xf0
[ 138.522439] [c0000007d018be30] [c00000000191baec] system_call+0x38/0xfc
Signed-off-by: Denis Kirjanov <kda@linux-powerpc.org>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Users were expected to use kvm_check_request() for testing and clearing,
but request have expanded their use since then and some users want to
only test or do a faster clear.
Make sure that requests are not directly accessed with bit operations.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This patch makes KVM capable of using the XIVE interrupt controller
to provide the standard PAPR "XICS" style hypercalls. It is necessary
for proper operations when the host uses XIVE natively.
This has been lightly tested on an actual system, including PCI
pass-through with a TG3 device.
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[mpe: Cleanup pr_xxx(), unsplit pr_xxx() strings, etc., fix build
failures by adding KVM_XIVE which depends on KVM_XICS and XIVE, and
adding empty stubs for the kvm_xive_xxx() routines, fixup subject,
integrate fixes from Paul for building PR=y HV=n]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
According to the PowerISA 2.07, mtspr and mfspr should not always
generate an illegal instruction exception when being used with an
undefined SPR, but rather treat the instruction as a NOP or inject a
privilege exception in some cases, too - depending on the SPR number.
Also turn the printk here into a ratelimited print statement, so that
the guest can not flood the dmesg log of the host by issueing lots of
illegal mtspr/mfspr instruction here.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This allows the host kernel to handle H_PUT_TCE, H_PUT_TCE_INDIRECT
and H_STUFF_TCE requests targeted an IOMMU TCE table used for VFIO
without passing them to user space which saves time on switching
to user space and back.
This adds H_PUT_TCE/H_PUT_TCE_INDIRECT/H_STUFF_TCE handlers to KVM.
KVM tries to handle a TCE request in the real mode, if failed
it passes the request to the virtual mode to complete the operation.
If it a virtual mode handler fails, the request is passed to
the user space; this is not expected to happen though.
To avoid dealing with page use counters (which is tricky in real mode),
this only accelerates SPAPR TCE IOMMU v2 clients which are required
to pre-register the userspace memory. The very first TCE request will
be handled in the VFIO SPAPR TCE driver anyway as the userspace view
of the TCE table (iommu_table::it_userspace) is not allocated till
the very first mapping happens and we cannot call vmalloc in real mode.
If we fail to update a hardware IOMMU table unexpected reason, we just
clear it and move on as there is nothing really we can do about it -
for example, if we hot plug a VFIO device to a guest, existing TCE tables
will be mirrored automatically to the hardware and there is no interface
to report to the guest about possible failures.
This adds new attribute - KVM_DEV_VFIO_GROUP_SET_SPAPR_TCE - to
the VFIO KVM device. It takes a VFIO group fd and SPAPR TCE table fd
and associates a physical IOMMU table with the SPAPR TCE table (which
is a guest view of the hardware IOMMU table). The iommu_table object
is cached and referenced so we do not have to look up for it in real mode.
This does not implement the UNSET counterpart as there is no use for it -
once the acceleration is enabled, the existing userspace won't
disable it unless a VFIO container is destroyed; this adds necessary
cleanup to the KVM_DEV_VFIO_GROUP_DEL handler.
This advertises the new KVM_CAP_SPAPR_TCE_VFIO capability to the user
space.
This adds real mode version of WARN_ON_ONCE() as the generic version
causes problems with rcu_sched. Since we testing what vmalloc_to_phys()
returns in the code, this also adds a check for already existing
vmalloc_to_phys() call in kvmppc_rm_h_put_tce_indirect().
This finally makes use of vfio_external_user_iommu_id() which was
introduced quite some time ago and was considered for removal.
Tests show that this patch increases transmission speed from 220MB/s
to 750..1020MB/s on 10Gb network (Chelsea CXGB3 10Gb ethernet card).
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Acked-by: Alex Williamson <alex.williamson@redhat.com>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This reworks helpers for checking TCE update parameters in way they
can be used in KVM.
This should cause no behavioral change.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
VFIO on sPAPR already implements guest memory pre-registration
when the entire guest RAM gets pinned. This can be used to translate
the physical address of a guest page containing the TCE list
from H_PUT_TCE_INDIRECT.
This makes use of the pre-registrered memory API to access TCE list
pages in order to avoid unnecessary locking on the KVM memory
reverse map as we know that all of guest memory is pinned and
we have a flat array mapping GPA to HPA which makes it simpler and
quicker to index into that array (even with looking up the
kernel page tables in vmalloc_to_phys) than it is to find the memslot,
lock the rmap entry, look up the user page tables, and unlock the rmap
entry. Note that the rmap pointer is initialized to NULL
where declared (not in this patch).
If a requested chunk of memory has not been preregistered, this will
fall back to non-preregistered case and lock rmap.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The guest view TCE tables are per KVM anyway (not per VCPU) so pass kvm*
there. This will be used in the following patches where we will be
attaching VFIO containers to LIOBNs via ioctl() to KVM (rather than
to VCPU).
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
It does not make much sense to have KVM in book3s-64 and
not to have IOMMU bits for PCI pass through support as it costs little
and allows VFIO to function on book3s KVM.
Having IOMMU_API always enabled makes it unnecessary to have a lot of
"#ifdef IOMMU_API" in arch/powerpc/kvm/book3s_64_vio*. With those
ifdef's we could have only user space emulated devices accelerated
(but not VFIO) which do not seem to be very useful.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
At the moment the userspace can request a table smaller than a page size
and this value will be stored as kvmppc_spapr_tce_table::size.
However the actual allocated size will still be aligned to the system
page size as alloc_page() is used there.
This aligns the table size up to the system page size. It should not
change the existing behaviour but when in-kernel TCE acceleration patchset
reaches the upstream kernel, this will allow small TCE tables be
accelerated as well: PCI IODA iommu_table allocator already aligns
the size and, without this patch, an IOMMU group won't attach to LIOBN
due to the mismatching table size.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
PR KVM page fault handler performs eaddr to pte translation for a guest,
however kvmppc_mmu_book3s_64_xlate() does not preserve WIMG bits
(storage control) in the kvmppc_pte struct. If PR KVM is running as
a second level guest under HV KVM, and PR KVM tries inserting HPT entry,
this fails in HV KVM if it already has this mapping.
This preserves WIMG bits between kvmppc_mmu_book3s_64_xlate() and
kvmppc_mmu_map_page().
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
At the moment kvmppc_mmu_map_page() returns -1 if
mmu_hash_ops.hpte_insert() fails for any reason so the page fault handler
resumes the guest and it faults on the same address again.
This adds distinction to kvmppc_mmu_map_page() to return -EIO if
mmu_hash_ops.hpte_insert() failed for a reason other than full pteg.
At the moment only pSeries_lpar_hpte_insert() returns -2 if
plpar_pte_enter() failed with a code other than H_PTEG_FULL.
Other mmu_hash_ops.hpte_insert() instances can only fail with
-1 "full pteg".
With this change, if PR KVM fails to update HPT, it can signal
the userspace about this instead of returning to guest and having
the very same page fault over and over again.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
@is_mmio has never been used since introduction in
commit 2f4cf5e42d ("Add book3s.c") from 2009.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
* A multiplication for the size determination of a memory allocation
indicated that an array data structure should be processed.
Thus use the corresponding function "kcalloc".
This issue was detected by using the Coccinelle software.
* Replace the specification of a data type by a pointer dereference
to make the corresponding size determination a bit safer according to
the Linux coding style convention.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Add a jump target so that a bit of exception handling can be better reused
at the end of this function.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
For completeness, this adds emulation of the lfiwax and lfiwzx
instructions. With this, all floating-point load and store instructions
as of Power ISA V2.07 are emulated.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds emulation for the following integer loads and stores,
thus enabling them to be used in a guest for accessing emulated
MMIO locations.
- lhaux
- lwaux
- lwzux
- ldu
- lwa
- stdux
- stwux
- stdu
- ldbrx
- stdbrx
Previously, most of these would cause an emulation failure exit to
userspace, though ldu and lwa got treated incorrectly as ld, and
stdu got treated incorrectly as std.
This also tidies up some of the formatting and updates the comment
listing instructions that still need to be implemented.
With this, all integer loads and stores that are defined in the Power
ISA v2.07 are emulated, except for those that are permitted to trap
when used on cache-inhibited or write-through mappings (and which do
in fact trap on POWER8), that is, lmw/stmw, lswi/stswi, lswx/stswx,
lq/stq, and l[bhwdq]arx/st[bhwdq]cx.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This adds missing stdx emulation for emulated MMIO accesses by KVM
guests. This allows the Mellanox mlx5_core driver from recent kernels
to work when MMIO emulation is enforced by userspace.
Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This patch provides the MMIO load/store emulation for instructions
of 'double & vector unsigned char & vector signed char & vector
unsigned short & vector signed short & vector unsigned int & vector
signed int & vector double '.
The instructions that this adds emulation for are:
- ldx, ldux, lwax,
- lfs, lfsx, lfsu, lfsux, lfd, lfdx, lfdu, lfdux,
- stfs, stfsx, stfsu, stfsux, stfd, stfdx, stfdu, stfdux, stfiwx,
- lxsdx, lxsspx, lxsiwax, lxsiwzx, lxvd2x, lxvw4x, lxvdsx,
- stxsdx, stxsspx, stxsiwx, stxvd2x, stxvw4x
[paulus@ozlabs.org - some cleanups, fixes and rework, make it
compile for Book E, fix build when PR KVM is built in]
Signed-off-by: Bin Lu <lblulb@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This provides functions that can be used for generating interrupts
indicating that a given functional unit (floating point, vector, or
VSX) is unavailable. These functions will be used in instruction
emulation code.
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Frameworks that may want to enumerate CMA heaps (e.g. Ion) will find it
useful to have an explicit name attached to each region. Store the name
in each CMA structure.
Signed-off-by: Laura Abbott <labbott@redhat.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This merges the arch part of the XIVE support, leaving the final commit
with the KVM specific pieces dangling on the branch for Paul to merge
via the kvm-ppc tree.
These files don't seem to have any need for asm/debug.h, now that all it
includes are the debugger hooks and breakpoint definitions.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
powerpc_debugfs_root is the dentry representing the root of the
"powerpc" directory tree in debugfs.
Currently it sits in asm/debug.h, a long with some other things that
have "debug" in the name, but are otherwise unrelated.
Pull it out into a separate header, which also includes linux/debugfs.h,
and convert all the users to include debugfs.h instead of debug.h.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We have all sort of variants of MMIO accessors for the real mode
instructions. This creates a clean set of accessors based on
Linux normal naming conventions, replacing all occurrences of
the old ones in the tree.
I have purposefully removed the "out/in" variants in favor of
only including __raw variants. Any code using these is already
pretty much hand tuned to operate in a very specific environment.
I've fixed up the 2 users (only one of them actually needed
a barrier in the first place).
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
It's only used within the same file it's defined
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We traditionally have linux/ before asm/
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
The XIVE interrupt controller is the new interrupt controller
found in POWER9. It supports advanced virtualization capabilities
among other things.
Currently we use a set of firmware calls that simulate the old
"XICS" interrupt controller but this is fairly inefficient.
This adds the framework for using XIVE along with a native
backend which OPAL for configuration. Later, a backend allowing
the use in a KVM or PowerVM guest will also be provided.
This disables some fast path for interrupts in KVM when XIVE is
enabled as these rely on the firmware emulation code which is no
longer available when the XIVE is used natively by Linux.
A latter patch will make KVM also directly exploit the XIVE, thus
recovering the lost performance (and more).
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
[mpe: Fixup pr_xxx("XIVE:"...), don't split pr_xxx() strings,
tweak Kconfig so XIVE_NATIVE selects XIVE and depends on POWERNV,
fix build errors when SMP=n, fold in fixes from Ben:
Don't call cpu_online() on an invalid CPU number
Fix irq target selection returning out of bounds cpu#
Extra sanity checks on cpu numbers
]
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Remove code from architecture files that can be moved to virt/kvm, since there
is already common code for coalesced MMIO.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
[Removed a pointless 'break' after 'return'.]
Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
kzalloc() won't actually fail because sizeof(*resize) is small, but
static checkers complain.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Inorder to support large effective address range (512TB), we want to
increase the virtual address bits to 68. But we do have platforms like
p4 and p5 that can only do 65 bit VA. We support those platforms by
limiting context bits on them to 16.
The protovsid -> vsid conversion is verified to work with both 65 and 68
bit va values. I also documented the restrictions in a table format as
part of code comments.
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
KVM wants to be able to allocate an MMU context id, which it does
currently by calling __init_new_context().
We're about to rework that code, so provide a wrapper for KVM so it
can not worry about the details.
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
We use pte_write() to check whethwer the pte entry is writable. This is
mostly used to later mark the pte read only if it is writable. The other
use of pte_write() is to check whether the pte_entry is writable so that
hardware page table entry can be marked accordingly. This is used in kvm
where we look at qemu page table entry and update hardware hash page table
for the guest with correct write enable bit.
With the above, for the first usage we should also check the savedwrite
bit so that we can correctly clear the savedwite bit. For the later, we
add a new variant __pte_write().
With this we can revert write_protect_page part of 595cd8f256 ("mm/ksm:
handle protnone saved writes when making page write protect"). But I left
it as it is as an example code for savedwrite check.
Fixes: c137a2757b ("powerpc/mm/autonuma: switch ppc64 to its own implementation of saved write")
Link: http://lkml.kernel.org/r/1488203787-17849-2-git-send-email-aneesh.kumar@linux.vnet.ibm.com
Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Paul Mackerras <paulus@ozlabs.org>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
PPC:
* correct assumption about ASDR on POWER9
* fix MMIO emulation on POWER9
x86:
* add a simple test for ioperm
* cleanup TSS
(going through KVM tree as the whole undertaking was caused by VMX's
use of TSS)
* fix nVMX interrupt delivery
* fix some performance counters in the guest
And two cleanup patches.
-----BEGIN PGP SIGNATURE-----
iQEcBAABCAAGBQJYuu5qAAoJEED/6hsPKofoRAUH/jkx/KFDcw3FggixysWVgRai
iLSbbAZemnSLFSOkOU/t7Bz0fXCUgB0tAcMJd9ow01Dg1zObiTpuUIo6qEPaYHdX
gqtUzlHuyECZEcgK0RXS9kDYLrvw7EFocxnDWQfV91qCZSS6nBSSLF3ST1rNV69W
mUvcZG+MciDcZUe1lTexoswVTh1m7avvozEnQ5OHnZR9yicoXiadBQjzL6yqWoqf
Ml/29zRk5+MvloTudxjkAKm3mh7psW88jNMh37TXbAA7i+Xwl9cU6GLR9mFWstoP
7Ot7ecq9mNAUO3lTIQh7lqvB60LMFznS4IlYK7MbplC3kvJLkfzhTWaN1aGvh90=
=cqHo
-----END PGP SIGNATURE-----
Merge tag 'kvm-4.11-2' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull more KVM updates from Radim Krčmář:
"Second batch of KVM changes for the 4.11 merge window:
PPC:
- correct assumption about ASDR on POWER9
- fix MMIO emulation on POWER9
x86:
- add a simple test for ioperm
- cleanup TSS (going through KVM tree as the whole undertaking was
caused by VMX's use of TSS)
- fix nVMX interrupt delivery
- fix some performance counters in the guest
... and two cleanup patches"
* tag 'kvm-4.11-2' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
KVM: nVMX: Fix pending events injection
x86/kvm/vmx: remove unused variable in segment_base()
selftests/x86: Add a basic selftest for ioperm
x86/asm: Tidy up TSS limit code
kvm: convert kvm.users_count from atomic_t to refcount_t
KVM: x86: never specify a sample period for virtualized in_tx_cp counters
KVM: PPC: Book3S HV: Don't use ASDR for real-mode HPT faults on POWER9
KVM: PPC: Book3S HV: Fix software walk of guest process page tables
We don't actually need the full rculist.h header in sched.h anymore,
we will be able to include the smaller rcupdate.h header instead.
But first update code that relied on the implicit header inclusion.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Update code that relied on sched.h including various MM types for them.
This will allow us to remove the <linux/mm_types.h> include from <linux/sched.h>.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/stat.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/stat.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Fix up affected files that include this signal functionality via sched.h.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
We are going to split <linux/sched/signal.h> out of <linux/sched.h>, which
will have to be picked up from other headers and a couple of .c files.
Create a trivial placeholder <linux/sched/signal.h> file that just
maps to <linux/sched.h> to make this patch obviously correct and
bisectable.
Include the new header in the files that are going to need it.
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
In HPT mode on POWER9, the ASDR register is supposed to record
segment information for hypervisor page faults. It turns out that
POWER9 DD1 does not record the page size information in the ASDR
for faults in guest real mode. We have the necessary information
in memory already, so by moving the checks for real mode that already
existed, we can use the in-memory copy. Since a load is likely to
be faster than reading an SPR, we do this unconditionally (not just
for POWER9 DD1).
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
This fixes some bugs in the code that walks the guest's page tables.
These bugs cause MMIO emulation to fail whenever the guest is in
virtial mode (MMU on), leading to the guest hanging if it tried to
access a virtio device.
The first bug was that when reading the guest's process table, we were
using the whole of arch->process_table, not just the field that contains
the process table base address. The second bug was that the mask used
when reading the process table entry to get the radix tree base address,
RPDB_MASK, had the wrong value.
Fixes: 9e04ba69be ("KVM: PPC: Book3S HV: Add basic infrastructure for radix guests")
Fixes: e99833448c ("powerpc/mm/radix: Add partition table format & callback")
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
Most users of this interface just want to use it with the default
GFP_KERNEL flags, but for cases where DMA memory is allocated it may be
called from a different context.
No functional change yet, just passing through the flag to the
underlying alloc_contig_range function.
Link: http://lkml.kernel.org/r/20170127172328.18574-2-l.stach@pengutronix.de
Signed-off-by: Lucas Stach <l.stach@pengutronix.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Radim Krcmar <rkrcmar@redhat.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: Ralf Baechle <ralf@linux-mips.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Alexander Graf <agraf@suse.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
->fault(), ->page_mkwrite(), and ->pfn_mkwrite() calls do not need to
take a vma and vmf parameter when the vma already resides in vmf.
Remove the vma parameter to simplify things.
[arnd@arndb.de: fix ARM build]
Link: http://lkml.kernel.org/r/20170125223558.1451224-1-arnd@arndb.de
Link: http://lkml.kernel.org/r/148521301778.19116.10840599906674778980.stgit@djiang5-desk3.ch.intel.com
Signed-off-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Cc: Darrick J. Wong <darrick.wong@oracle.com>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Jan Kara <jack@suse.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Paul Mackerras writes:
"Please do a pull from my kvm-ppc-next branch to get some fixes which I
would like to have in 4.11. There are four small commits there; two
are fixes for potential host crashes in the new HPT resizing code, and
the other two are changes to printks to make KVM on PPC a little less
noisy."
The new HPT resizing code added in commit b5baa68773 ("KVM: PPC:
Book3S HV: KVM-HV HPT resizing implementation", 2016-12-20) doesn't
have code to handle the new HPTE format which POWER9 uses. Thus it
would be best not to advertise it to userspace on POWER9 systems
until it works properly.
Also, since resize_hpt_rehash_hpte() contains BUG_ON() calls that
could be hit on POWER9, let's prevent it from being called on POWER9
for now.
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
The purpose of the KVM_SET_SIGNAL_MASK API is to let userspace "kick"
a VCPU out of KVM_RUN through a POSIX signal. A signal is attached
to a dummy signal handler; by blocking the signal outside KVM_RUN and
unblocking it inside, this possible race is closed:
VCPU thread service thread
--------------------------------------------------------------
check flag
set flag
raise signal
(signal handler does nothing)
KVM_RUN
However, one issue with KVM_SET_SIGNAL_MASK is that it has to take
tsk->sighand->siglock on every KVM_RUN. This lock is often on a
remote NUMA node, because it is on the node of a thread's creator.
Taking this lock can be very expensive if there are many userspace
exits (as is the case for SMP Windows VMs without Hyper-V reference
time counter).
As an alternative, we can put the flag directly in kvm_run so that
KVM can see it:
VCPU thread service thread
--------------------------------------------------------------
raise signal
signal handler
set run->immediate_exit
KVM_RUN
check run->immediate_exit
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The average user likely does not know what a "htab" or "LPID" is,
and it's annoying that these messages are quickly filling the dmesg
log when you're doing boot cycle tests, so let's turn it into a debug
message instead.
Signed-off-by: Thomas Huth <thuth@redhat.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
kvm_ppc_mmu_book3s_32/64 xlat() logs "KVM can't copy data" error
upon failing to copy user data to kernel space. This floods kernel
log once such fails occur in short time period. Ratelimit this
error to avoid flooding kernel logs upon copy data failures.
Signed-off-by: Vipin K Parashar <vipin@linux.vnet.ibm.com>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>
resize_hpt_release(), called once the HPT resize of a KVM guest is
completed (successfully or unsuccessfully) frees the state structure for
the resize. It is currently not safe to call with a NULL pointer.
However, one of the error paths in kvm_vm_ioctl_resize_hpt_commit() can
invoke it with a NULL pointer. This will occur if userspace improperly
invokes KVM_PPC_RESIZE_HPT_COMMIT without previously calling
KVM_PPC_RESIZE_HPT_PREPARE, or if it calls COMMIT twice without an
intervening PREPARE.
To fix this potential crash bug - and maybe others like it, make it safe
(and a no-op) to call resize_hpt_release() with a NULL resize pointer.
Found by Dan Carpenter with a static checker.
Reported-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Paul Mackerras <paulus@ozlabs.org>