This allows fetching the registers from the hsave area when setting
up the NPT shadow MMU, and is needed for KVM_SET_NESTED_STATE (which
runs long after the CR0, CR4 and EFER values in vcpu have been switched
to hold L2 guest state).
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
pic_in_kernel(), ioapic_in_kernel() and irqchip_kernel() have the
same implementation.
Signed-off-by: Peng Hao <richard.peng@oppo.com>
Message-Id: <HKAPR02MB4291D5926EA10B8BFE9EA0D3E0B70@HKAPR02MB4291.apcprd02.prod.outlook.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We can simply look at bits 52-53 to identify MMIO entries in KVM's page
tables. Therefore, there is no need to pass a mask to kvm_mmu_set_mmio_spte_mask.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Set the mmio_value to '0' instead of simply clearing the present bit to
squash a benign warning in kvm_mmu_set_mmio_spte_mask() that complains
about the mmio_value overlapping the lower GFN mask on systems with 52
bits of PA space.
Opportunistically clean up the code and comments.
Cc: stable@vger.kernel.org
Fixes: d43e2675e9 ("KVM: x86: only do L1TF workaround on affected processors")
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200527084909.23492-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
While working on the entry consolidation I stumbled over the KVM async page
fault handler and kvm_async_pf_task_wait() in particular. It took me a
while to realize that the randomly sprinkled around rcu_irq_enter()/exit()
invocations are just cargo cult programming. Several patches "fixed" RCU
splats by curing the symptoms without noticing that the code is flawed
from a design perspective.
The main problem is that this async injection is not based on a proper
handshake mechanism and only respects the minimal requirement, i.e. the
guest is not in a state where it has interrupts disabled.
Aside of that the actual code is a convoluted one fits it all swiss army
knife. It is invoked from different places with different RCU constraints:
1) Host side:
vcpu_enter_guest()
kvm_x86_ops->handle_exit()
kvm_handle_page_fault()
kvm_async_pf_task_wait()
The invocation happens from fully preemptible context.
2) Guest side:
The async page fault interrupted:
a) user space
b) preemptible kernel code which is not in a RCU read side
critical section
c) non-preemtible kernel code or a RCU read side critical section
or kernel code with CONFIG_PREEMPTION=n which allows not to
differentiate between #2b and #2c.
RCU is watching for:
#1 The vCPU exited and current is definitely not the idle task
#2a The #PF entry code on the guest went through enter_from_user_mode()
which reactivates RCU
#2b There is no preemptible, interrupts enabled code in the kernel
which can run with RCU looking away. (The idle task is always
non preemptible).
I.e. all schedulable states (#1, #2a, #2b) do not need any of this RCU
voodoo at all.
In #2c RCU is eventually not watching, but as that state cannot schedule
anyway there is no point to worry about it so it has to invoke
rcu_irq_enter() before running that code. This can be optimized, but this
will be done as an extra step in course of the entry code consolidation
work.
So the proper solution for this is to:
- Split kvm_async_pf_task_wait() into schedule and halt based waiting
interfaces which share the enqueueing code.
- Add comments (condensed form of this changelog) to spare others the
time waste and pain of reverse engineering all of this with the help of
uncomprehensible changelogs and code history.
- Invoke kvm_async_pf_task_wait_schedule() from kvm_handle_page_fault(),
user mode and schedulable kernel side async page faults (#1, #2a, #2b)
- Invoke kvm_async_pf_task_wait_halt() for the non schedulable kernel
case (#2c).
For this case also remove the rcu_irq_exit()/enter() pair around the
halt as it is just a pointless exercise:
- vCPUs can VMEXIT at any random point and can be scheduled out for
an arbitrary amount of time by the host and this is not any
different except that it voluntary triggers the exit via halt.
- The interrupted context could have RCU watching already. So the
rcu_irq_exit() before the halt is not gaining anything aside of
confusing the reader. Claiming that this might prevent RCU stalls
is just an illusion.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Peter Zijlstra <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20200505134059.262701431@linutronix.de
KVM stores the gfn in MMIO SPTEs as a caching optimization. These are split
in two parts, as in "[high 11111 low]", to thwart any attempt to use these bits
in an L1TF attack. This works as long as there are 5 free bits between
MAXPHYADDR and bit 50 (inclusive), leaving bit 51 free so that the MMIO
access triggers a reserved-bit-set page fault.
The bit positions however were computed wrongly for AMD processors that have
encryption support. In this case, x86_phys_bits is reduced (for example
from 48 to 43, to account for the C bit at position 47 and four bits used
internally to store the SEV ASID and other stuff) while x86_cache_bits in
would remain set to 48, and _all_ bits between the reduced MAXPHYADDR
and bit 51 are set. Then low_phys_bits would also cover some of the
bits that are set in the shadow_mmio_value, terribly confusing the gfn
caching mechanism.
To fix this, avoid splitting gfns as long as the processor does not have
the L1TF bug (which includes all AMD processors). When there is no
splitting, low_phys_bits can be set to the reduced MAXPHYADDR removing
the overlap. This fixes "npt=0" operation on EPYC processors.
Thanks to Maxim Levitsky for bisecting this bug.
Cc: stable@vger.kernel.org
Fixes: 52918ed5fc ("KVM: SVM: Override default MMIO mask if memory encryption is enabled")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a helper, mmu_alloc_root(), to consolidate the allocation of a root
shadow page, which has the same basic mechanics for all flavors of TDP
and shadow paging.
Note, __pa(sp->spt) doesn't need to be protected by mmu_lock, sp->spt
points at a kernel page.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200428023714.31923-1-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace KVM's PT_PAGE_TABLE_LEVEL, PT_DIRECTORY_LEVEL and PT_PDPE_LEVEL
with the kernel's PG_LEVEL_4K, PG_LEVEL_2M and PG_LEVEL_1G. KVM's
enums are borderline impossible to remember and result in code that is
visually difficult to audit, e.g.
if (!enable_ept)
ept_lpage_level = 0;
else if (cpu_has_vmx_ept_1g_page())
ept_lpage_level = PT_PDPE_LEVEL;
else if (cpu_has_vmx_ept_2m_page())
ept_lpage_level = PT_DIRECTORY_LEVEL;
else
ept_lpage_level = PT_PAGE_TABLE_LEVEL;
versus
if (!enable_ept)
ept_lpage_level = 0;
else if (cpu_has_vmx_ept_1g_page())
ept_lpage_level = PG_LEVEL_1G;
else if (cpu_has_vmx_ept_2m_page())
ept_lpage_level = PG_LEVEL_2M;
else
ept_lpage_level = PG_LEVEL_4K;
No functional change intended.
Suggested-by: Barret Rhoden <brho@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200428005422.4235-4-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename PT_MAX_HUGEPAGE_LEVEL to KVM_MAX_HUGEPAGE_LEVEL and make it a
separate define in anticipation of dropping KVM's PT_*_LEVEL enums in
favor of the kernel's PG_LEVEL_* enums.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200428005422.4235-3-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Snapshot the TDP level now that it's invariant (SVM) or dependent only
on host capabilities and guest CPUID (VMX). This avoids having to call
kvm_x86_ops.get_tdp_level() when initializing a TDP MMU and/or
calculating the page role, and thus avoids the associated retpoline.
Drop the WARN in vmx_get_tdp_level() as updating CPUID while L2 is
active is legal, if dodgy.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200502043234.12481-11-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Create a new function kvm_is_visible_memslot() and use it from
kvm_is_visible_gfn(); use the new function in try_async_pf() too,
to avoid an extra memslot lookup.
Opportunistically squish a multi-line comment into a single-line comment.
Note, the end result, KVM_PFN_NOSLOT, is unchanged.
Cc: Jim Mattson <jmattson@google.com>
Cc: Rick Edgecombe <rick.p.edgecombe@intel.com>
Suggested-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly set @writable to false in try_async_pf() if the GFN->PFN
translation is short-circuited due to the requested GFN not being
visible to L2.
Leaving @writable ('map_writable' in the callers) uninitialized is ok
in that it's never actually consumed, but one has to track it all the
way through set_spte() being short-circuited by set_mmio_spte() to
understand that the uninitialized variable is benign, and relying on
@writable being ignored is an unnecessary risk. Explicitly setting
@writable also aligns try_async_pf() with __gfn_to_pfn_memslot().
Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200415214414.10194-2-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename functions and variables in kvm_mmu_new_cr3() and related code to
replace "cr3" with "pgd", i.e. continue the work started by commit
727a7e27cf ("KVM: x86: rename set_cr3 callback and related flags to
load_mmu_pgd"). kvm_mmu_new_cr3() and company are not always loading a
new CR3, e.g. when nested EPT is enabled "cr3" is actually an EPTP.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-37-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Unconditionally skip the TLB flush triggered when reusing a root for a
nested transition as nested_vmx_transition_tlb_flush() ensures the TLB
is flushed when needed, regardless of whether the MMU can reuse a cached
root (or the last root).
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-35-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Skip the MMU sync when reusing a cached root if EPT is enabled or L1
enabled VPID for L2.
If EPT is enabled, guest-physical mappings aren't flushed even if VPID
is disabled, i.e. L1 can't expect stale TLB entries to be flushed if it
has enabled EPT and L0 isn't shadowing PTEs (for L1 or L2) if L1 has
EPT disabled.
If VPID is enabled (and EPT is disabled), then L1 can't expect stale TLB
entries to be flushed (for itself or L2).
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-34-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a module param, flush_on_reuse, to override skip_tlb_flush and
skip_mmu_sync when performing a so called "fast cr3 switch", i.e. when
reusing a cached root. The primary motiviation for the control is to
provide a fallback mechanism in the event that TLB flushing and/or MMU
sync bugs are exposed/introduced by upcoming changes to stop
unconditionally flushing on nested VMX transitions.
Suggested-by: Jim Mattson <jmattson@google.com>
Suggested-by: Junaid Shahid <junaids@google.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-33-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a separate "skip" override for MMU sync, a future change to avoid
TLB flushes on nested VMX transitions may need to sync the MMU even if
the TLB flush is unnecessary.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-32-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Handle the side effects of a fast CR3 (PGD) switch up a level in
__kvm_mmu_new_cr3(), which is the only caller of fast_cr3_switch().
This consolidates handling all side effects in __kvm_mmu_new_cr3()
(where freeing the current root when KVM can't do a fast switch is
already handled), and ameliorates the pain of adding a second boolean in
a future patch to provide a separate "skip" override for the MMU sync.
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-31-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Flush only the current ASID/context when requesting a TLB flush due to a
change in the current vCPU's MMU to avoid blasting away TLB entries
associated with other ASIDs/contexts, e.g. entries cached for L1 when
a change in L2's MMU requires a flush.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-26-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename ->tlb_flush() to ->tlb_flush_all() in preparation for adding a
new hook to flush only the current ASID/context.
Opportunstically replace the comment in vmx_flush_tlb() that explains
why it flushes all EPTP/VPID contexts with a comment explaining why it
unconditionally uses INVEPT when EPT is enabled. I.e. rely on the "all"
part of the name to clarify why it does global INVEPT/INVVPID.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-23-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop @invalidate_gpa from ->tlb_flush() and kvm_vcpu_flush_tlb() now
that all callers pass %true for said param, or ignore the param (SVM has
an internal call to svm_flush_tlb() in svm_flush_tlb_guest that somewhat
arbitrarily passes %false).
Remove __vmx_flush_tlb() as it is no longer used.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200320212833.3507-17-sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
To reconstruct the kvm_mmu to be used for page fault injection, we
can simply use fault->nested_page_fault. This matches how
fault->nested_page_fault is assigned in the first place by
FNAME(walk_addr_generic).
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Wrap the combination of mmu->invlpg and kvm_x86_ops->tlb_flush_gva
into a new function. This function also lets us specify the host PGD to
invalidate and also the MMU, both of which will be useful in fixing and
simplifying kvm_inject_emulated_page_fault.
A nested guest's MMU however has g_context->invlpg == NULL. Instead of
setting it to nonpaging_invlpg, make kvm_mmu_invalidate_gva the only
entry point to mmu->invlpg and make a NULL invlpg pointer equivalent
to nonpaging_invlpg, saving a retpoline.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace the kvm_x86_ops pointer in common x86 with an instance of the
struct to save one pointer dereference when invoking functions. Copy the
struct by value to set the ops during kvm_init().
Arbitrarily use kvm_x86_ops.hardware_enable to track whether or not the
ops have been initialized, i.e. a vendor KVM module has been loaded.
Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Message-Id: <20200321202603.19355-7-sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The set_cr3 callback is not setting the guest CR3, it is setting the
root of the guest page tables, either shadow or two-dimensional.
To make this clearer as well as to indicate that the MMU calls it
via kvm_mmu_load_cr3, rename it to load_mmu_pgd.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Similar to what kvm-intel.ko is doing, provide a single callback that
merges svm_set_cr3, set_tdp_cr3 and nested_svm_set_tdp_cr3.
This lets us unify the set_cr3 and set_tdp_cr3 entries in kvm_x86_ops.
I'm doing that in this same patch because splitting it adds quite a bit
of churn due to the need for forward declarations. For the same reason
the assignment to vcpu->arch.mmu->set_cr3 is moved to kvm_init_shadow_mmu
from init_kvm_softmmu and nested_svm_init_mmu_context.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Extend guest_cpuid_is_amd() to cover Hygon virtual CPUs and rename it
accordingly. Hygon CPUs use an AMD-based core and so have the same
basic behavior as AMD CPUs.
Fixes: b8f4abb652 ("x86/kvm: Add Hygon Dhyana support to KVM")
Cc: Pu Wen <puwen@hygon.cn>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Configure the max page level during hardware setup to avoid a retpoline
in the page fault handler. Drop ->get_lpage_level() as the page fault
handler was the last user.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Combine kvm_enable_tdp() and kvm_disable_tdp() into a single function,
kvm_configure_mmu(), in preparation for doing additional configuration
during hardware setup. And because having separate helpers is silly.
No functional change intended.
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Now that the emulation context is dynamically allocated and not embedded
in struct kvm_vcpu, move its header, kvm_emulate.h, out of the public
asm directory and into KVM's private x86 directory.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Rename kvm_mmu->get_cr3() to call out that it is retrieving a guest
value, as opposed to kvm_mmu->set_cr3(), which sets a host value, and to
note that it will return something other than CR3 when nested EPT is in
use. Hopefully the new name will also make it more obvious that L1's
nested_cr3 is returned in SVM's nested NPT case.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add support for 5-level nested EPT, and advertise said support in the
EPT capabilities MSR. KVM's MMU can already handle 5-level legacy page
tables, there's no reason to force an L1 VMM to use shadow paging if it
wants to employ 5-level page tables.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Drop kvm_mmu_extended_role.cr4_la57 now that mmu_role doesn't mask off
level, which already incorporates the guest's CR4.LA57 for a shadow MMU
by querying is_la57_mode().
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the calculated role as-is when propagating it to kvm_mmu.mmu_role,
i.e. stop masking off meaningful fields. The concept of masking off
fields came from kvm_mmu_pte_write(), which (correctly) ignores certain
fields when comparing kvm_mmu_page.role against kvm_mmu.mmu_role, e.g.
the current mmu's access and level have no relation to a shadow page's
access and level.
Masking off the level causes problems for 5-level paging, e.g. CR4.LA57
has its own redundant flag in the extended role, and nested EPT would
need a similar hack to support 5-level paging for L2.
Opportunistically rework the mask for kvm_mmu_pte_write() to define the
fields that should be ignored as opposed to the fields that should be
checked, i.e. make it opt-out instead of opt-in so that new fields are
automatically picked up. While doing so, stop ignoring "direct". The
field is effectively ignored anyways because kvm_mmu_pte_write() is only
reached with an indirect mmu and the loop only walks indirect shadow
pages, but double checking "direct" literally costs nothing.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It could take kvm->mmu_lock for an extended period of time when
enabling dirty log for the first time. The main cost is to clear
all the D-bits of last level SPTEs. This situation can benefit from
manual dirty log protect as well, which can reduce the mmu_lock
time taken. The sequence is like this:
1. Initialize all the bits of the dirty bitmap to 1 when enabling
dirty log for the first time
2. Only write protect the huge pages
3. KVM_GET_DIRTY_LOG returns the dirty bitmap info
4. KVM_CLEAR_DIRTY_LOG will clear D-bit for each of the leaf level
SPTEs gradually in small chunks
Under the Intel(R) Xeon(R) Gold 6152 CPU @ 2.10GHz environment,
I did some tests with a 128G windows VM and counted the time taken
of memory_global_dirty_log_start, here is the numbers:
VM Size Before After optimization
128G 460ms 10ms
Signed-off-by: Jay Zhou <jianjay.zhou@huawei.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reuse the current root when possible instead of grabbing a different
root from the array of cached roots. Doing so avoids unnecessary MMU
switches and also fixes a quirk where KVM can't reuse roots without
creating multiple roots since the cache is a victim cache, i.e. roots
are added to the cache when they're "evicted", not when they are
created. The quirk could be fixed by adding roots to the cache on
creation, but that would reduce the effective size of the cache as one
of its entries would be burned to track the current root.
Reusing the current root is especially helpful for nested virt as the
current root is almost always usable for the "new" MMU on nested
VM-entry/VM-exit.
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Ignore the guest's CR3 when looking for a cached root for a direct MMU,
the guest's CR3 has no impact on the direct MMU's shadow pages (the
role check ensures compatibility with CR0.WP, etc...).
Zero out root_cr3 when allocating the direct roots to make it clear that
it's ignored.
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Replace open coded instances of kvm_arch_flush_remote_tlbs_memslot()'s
functionality with calls to the aforementioned function. Update the
comment in kvm_arch_flush_remote_tlbs_memslot() to elaborate on how it
is used and why it asserts that slots_lock is held.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use the with_address() variant when performing a TLB flush for a
specific memslot via kvm_arch_flush_remote_tlbs_memslot(), i.e. when
flushing after clearing dirty bits during KVM_{GET,CLEAR}_DIRTY_LOG.
This aligns all dirty log memslot-specific TLB flushes to use the
with_address() variant and paves the way for consolidating the relevant
code.
Note, moving to the with_address() variant only affects functionality
when running as a HyperV guest.
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move kvm_arch_flush_remote_tlbs_memslot() from x86.c to mmu.c in
preparation for calling kvm_flush_remote_tlbs_with_address() instead of
kvm_flush_remote_tlbs(). The with_address() variant is statically
defined in mmu.c, arguably kvm_arch_flush_remote_tlbs_memslot() belongs
in mmu.c anyways, and defining kvm_arch_flush_remote_tlbs_memslot() in
mmu.c will allow the compiler to inline said function when a future
patch consolidates open coded variants of the function.
No functional change intended.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a new emulation type flag to explicitly mark emulation related to a
page fault. Move the propation of the GPA into the emulator from the
page fault handler into x86_emulate_instruction, using EMULTYPE_PF as an
indicator that cr2 is valid. Similarly, don't propagate cr2 into the
exception.address when it's *not* valid.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use %u to print u32 var and correct some coding style.
Signed-off-by: Miaohe Lin <linmiaohe@huawei.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Wrap calls to ->page_fault() with a small shim to directly invoke the
TDP fault handler when the kernel is using retpolines and TDP is being
used. Single out the TDP fault handler and annotate the TDP path as
likely to coerce the compiler into preferring it over the indirect
function call.
Rename tdp_page_fault() to kvm_tdp_page_fault(), as it's exposed outside
of mmu.c to allow inlining the shim.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Separate the functions for generating MMIO page table entries from the
function that inserts them into the paging structure. This refactoring
will facilitate changes to the MMU sychronization model to use atomic
compare / exchanges (which are not guaranteed to succeed) instead of a
monolithic MMU lock.
No functional change expected.
Tested by running kvm-unit-tests on an Intel Haswell machine. This
commit introduced no new failures.
Signed-off-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Reviewed-by: Peter Shier <pshier@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
There are several functions which pass an access permission mask for
SPTEs as an unsigned. This works, but checkpatch complains about it.
Switch the occurrences of unsigned to unsigned int to satisfy checkpatch.
No functional change expected.
Tested by running kvm-unit-tests on an Intel Haswell machine. This
commit introduced no new failures.
Signed-off-by: Ben Gardon <bgardon@google.com>
Reviewed-by: Oliver Upton <oupton@google.com>
Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
PPC: Bugfixes
x86:
* Support for mapping DAX areas with large nested page table entries.
* Cleanups and bugfixes here too. A particularly important one is
a fix for FPU load when the thread has TIF_NEED_FPU_LOAD. There is
also a race condition which could be used in guest userspace to exploit
the guest kernel, for which the embargo expired today.
* Fast path for IPI delivery vmexits, shaving about 200 clock cycles
from IPI latency.
* Protect against "Spectre-v1/L1TF" (bring data in the cache via
speculative out of bound accesses, use L1TF on the sibling hyperthread
to read it), which unfortunately is an even bigger whack-a-mole game
than SpectreV1.
Sean continues his mission to rewrite KVM. In addition to a sizable
number of x86 patches, this time he contributed a pretty large refactoring
of vCPU creation that affects all architectures but should not have any
visible effect.
s390 will come next week together with some more x86 patches.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJeMxtCAAoJEL/70l94x66DQxIIAJv9hMmXLQHGFnUMskjGErR6
DCLSC0YRdRMwE50CerblyJtGsMwGsPyHZwvZxoAceKJ9w0Yay9cyaoJ87ItBgHoY
ce0HrqIUYqRSJ/F8WH2lSzkzMBr839rcmqw8p1tt4D5DIsYnxHGWwRaaP+5M/1KQ
YKFu3Hea4L00U339iIuDkuA+xgz92LIbsn38svv5fxHhPAyWza0rDEYHNgzMKuoF
IakLf5+RrBFAh6ZuhYWQQ44uxjb+uQa9pVmcqYzzTd5t1g4PV5uXtlJKesHoAvik
Eba8IEUJn+HgQJjhp3YxQYuLeWOwRF3bwOiZ578MlJ4OPfYXMtbdlqCQANHOcGk=
=H/q1
-----END PGP SIGNATURE-----
Merge tag 'kvm-5.6-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"This is the first batch of KVM changes.
ARM:
- cleanups and corner case fixes.
PPC:
- Bugfixes
x86:
- Support for mapping DAX areas with large nested page table entries.
- Cleanups and bugfixes here too. A particularly important one is a
fix for FPU load when the thread has TIF_NEED_FPU_LOAD. There is
also a race condition which could be used in guest userspace to
exploit the guest kernel, for which the embargo expired today.
- Fast path for IPI delivery vmexits, shaving about 200 clock cycles
from IPI latency.
- Protect against "Spectre-v1/L1TF" (bring data in the cache via
speculative out of bound accesses, use L1TF on the sibling
hyperthread to read it), which unfortunately is an even bigger
whack-a-mole game than SpectreV1.
Sean continues his mission to rewrite KVM. In addition to a sizable
number of x86 patches, this time he contributed a pretty large
refactoring of vCPU creation that affects all architectures but should
not have any visible effect.
s390 will come next week together with some more x86 patches"
* tag 'kvm-5.6-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (204 commits)
x86/KVM: Clean up host's steal time structure
x86/KVM: Make sure KVM_VCPU_FLUSH_TLB flag is not missed
x86/kvm: Cache gfn to pfn translation
x86/kvm: Introduce kvm_(un)map_gfn()
x86/kvm: Be careful not to clear KVM_VCPU_FLUSH_TLB bit
KVM: PPC: Book3S PR: Fix -Werror=return-type build failure
KVM: PPC: Book3S HV: Release lock on page-out failure path
KVM: arm64: Treat emulated TVAL TimerValue as a signed 32-bit integer
KVM: arm64: pmu: Only handle supported event counters
KVM: arm64: pmu: Fix chained SW_INCR counters
KVM: arm64: pmu: Don't mark a counter as chained if the odd one is disabled
KVM: arm64: pmu: Don't increment SW_INCR if PMCR.E is unset
KVM: x86: Use a typedef for fastop functions
KVM: X86: Add 'else' to unify fastop and execute call path
KVM: x86: inline memslot_valid_for_gpte
KVM: x86/mmu: Use huge pages for DAX-backed files
KVM: x86/mmu: Remove lpage_is_disallowed() check from set_spte()
KVM: x86/mmu: Fold max_mapping_level() into kvm_mmu_hugepage_adjust()
KVM: x86/mmu: Zap any compound page when collapsing sptes
KVM: x86/mmu: Remove obsolete gfn restoration in FNAME(fetch)
...
Walk the host page tables to identify hugepage mappings for ZONE_DEVICE
pfns, i.e. DAX pages. Explicitly query kvm_is_zone_device_pfn() when
deciding whether or not to bother walking the host page tables, as DAX
pages do not set up the head/tail infrastructure, i.e. will return false
for PageCompound() even when using huge pages.
Zap ZONE_DEVICE sptes when disabling dirty logging, e.g. if live
migration fails, to allow KVM to rebuild large pages for DAX-based
mappings. Presumably DAX favors large pages, and worst case scenario is
a minor performance hit as KVM will need to re-fault all DAX-based
pages.
Suggested-by: Barret Rhoden <brho@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Jason Zeng <jason.zeng@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Liran Alon <liran.alon@oracle.com>
Cc: linux-nvdimm <linux-nvdimm@lists.01.org>
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>