In xen_init_lock_cpu(), the @name has allocated new string by kasprintf(),
if bind_ipi_to_irqhandler() fails, it should be freed, otherwise may lead
to a memory leak issue, fix it.
Fixes: 2d9e1e2f58 ("xen: implement Xen-specific spinlocks")
Signed-off-by: Xiu Jianfeng <xiujianfeng@huawei.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Link: https://lore.kernel.org/r/20221123155858.11382-3-xiujianfeng@huawei.com
Signed-off-by: Juergen Gross <jgross@suse.com>
When booting a hyperthreaded system with the kernel parameter
'mitigations=auto,nosmt', the following warning occurs:
WARNING: CPU: 0 PID: 1 at drivers/xen/events/events_base.c:1112 unbind_from_irqhandler+0x4e/0x60
...
Hardware name: Xen HVM domU, BIOS 4.2.amazon 08/24/2006
...
Call Trace:
xen_uninit_lock_cpu+0x28/0x62
xen_hvm_cpu_die+0x21/0x30
takedown_cpu+0x9c/0xe0
? trace_suspend_resume+0x60/0x60
cpuhp_invoke_callback+0x9a/0x530
_cpu_up+0x11a/0x130
cpu_up+0x7e/0xc0
bringup_nonboot_cpus+0x48/0x50
smp_init+0x26/0x79
kernel_init_freeable+0xea/0x229
? rest_init+0xaa/0xaa
kernel_init+0xa/0x106
ret_from_fork+0x35/0x40
The secondary CPUs are not activated with the nosmt mitigations and only
the primary thread on each CPU core is used. In this situation,
xen_hvm_smp_prepare_cpus(), and more importantly xen_init_lock_cpu(), is
not called, so the lock_kicker_irq is not initialized for the secondary
CPUs. Let's fix this by exiting early in xen_uninit_lock_cpu() if the
irq is not set to avoid the warning from above for each secondary CPU.
Signed-off-by: Brian Masney <bmasney@redhat.com>
Link: https://lore.kernel.org/r/20201107011119.631442-1-bmasney@redhat.com
Reviewed-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Map "xen_nopvspin" to "nopvspin", fix stale description of "xen_nopvspin"
as we use qspinlock now.
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
This reverts commit ca5d376e17.
Commit 8990cac6e5 ("x86/jump_label: Initialize static branching
early") adds jump_label_init() call in setup_arch() to make static
keys initialized early, so we could use the original simpler code
again.
Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Juergen Gross <jgross@suse.com>
arch/x86/xen/spinlock.c includes several headers which are not needed.
Remove the #includes.
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
Commit a856531951 ("xen: make xen_qlock_wait() nestable")
introduced a regression for Xen guests running fully virtualized
(HVM or PVH mode). The Xen hypervisor wouldn't return from the poll
hypercall with interrupts disabled in case of an interrupt (for PV
guests it does).
So instead of disabling interrupts in xen_qlock_wait() use a nesting
counter to avoid calling xen_clear_irq_pending() in case
xen_qlock_wait() is nested.
Fixes: a856531951 ("xen: make xen_qlock_wait() nestable")
Cc: stable@vger.kernel.org
Reported-by: Sander Eikelenboom <linux@eikelenboom.it>
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Tested-by: Sander Eikelenboom <linux@eikelenboom.it>
Signed-off-by: Juergen Gross <jgross@suse.com>
xen_qlock_wait() isn't safe for nested calls due to interrupts. A call
of xen_qlock_kick() might be ignored in case a deeper nesting level
was active right before the call of xen_poll_irq():
CPU 1: CPU 2:
spin_lock(lock1)
spin_lock(lock1)
-> xen_qlock_wait()
-> xen_clear_irq_pending()
Interrupt happens
spin_unlock(lock1)
-> xen_qlock_kick(CPU 2)
spin_lock_irqsave(lock2)
spin_lock_irqsave(lock2)
-> xen_qlock_wait()
-> xen_clear_irq_pending()
clears kick for lock1
-> xen_poll_irq()
spin_unlock_irq_restore(lock2)
-> xen_qlock_kick(CPU 2)
wakes up
spin_unlock_irq_restore(lock2)
IRET
resumes in xen_qlock_wait()
-> xen_poll_irq()
never wakes up
The solution is to disable interrupts in xen_qlock_wait() and not to
poll for the irq in case xen_qlock_wait() is called in nmi context.
Cc: stable@vger.kernel.org
Cc: Waiman.Long@hp.com
Cc: peterz@infradead.org
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
In the following situation a vcpu waiting for a lock might not be
woken up from xen_poll_irq():
CPU 1: CPU 2: CPU 3:
takes a spinlock
tries to get lock
-> xen_qlock_wait()
frees the lock
-> xen_qlock_kick(cpu2)
-> xen_clear_irq_pending()
takes lock again
tries to get lock
-> *lock = _Q_SLOW_VAL
-> *lock == _Q_SLOW_VAL ?
-> xen_poll_irq()
frees the lock
-> xen_qlock_kick(cpu3)
And cpu 2 will sleep forever.
This can be avoided easily by modifying xen_qlock_wait() to call
xen_poll_irq() only if the related irq was not pending and to call
xen_clear_irq_pending() only if it was pending.
Cc: stable@vger.kernel.org
Cc: Waiman.Long@hp.com
Cc: peterz@infradead.org
Signed-off-by: Juergen Gross <jgross@suse.com>
Reviewed-by: Jan Beulich <jbeulich@suse.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
On a VM with only 1 vCPU, the locking fast paths will always be
successful. In this case, there is no need to use the the PV qspinlock
code which has higher overhead on the unlock side than the native
qspinlock code.
The xen_pvspin veriable is also turned off in this 1 vCPU case to
eliminate unneeded pvqspinlock initialization in xen_init_lock_cpu()
which is run after xen_init_spinlocks().
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Commit:
9043442b43 ("locking/paravirt: Use new static key for controlling call of virt_spin_lock()")
sets the static virt_spin_lock_key to a value before jump_label_init()
has been called, which will result in a WARN().
Reorder the initialization sequence:
- Move the native_pv_lock_init() into native_smp_prepare_cpus()
- set the value in xen_init_lock_cpu()
to avoid calling into the not yet initialized static keys subsystem.
Suggested-by: Juergen Gross <jgross@suse.com>
Reported-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Reviewed-by: Juergen Gross <jgross@suse.com>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: boris.ostrovsky@oracle.com
Cc: bp@suse.de
Cc: luto@kernel.org
Cc: vkuznets@redhat.com
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1509170804-3813-1-git-send-email-douly.fnst@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is a follow-up of commit:
cfd8983f03 ("x86, locking/spinlocks: Remove ticket (spin)lock implementation")
The static_key structure 'paravirt_ticketlocks_enabled' is now removed as it is
no longer used.
As a result, the init functions kvm_spinlock_init_jump() and
xen_init_spinlocks_jump() are also removed.
A simple build and boot test was done to verify it.
Signed-off-by: Waiman Long <longman@redhat.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Chris Wright <chrisw@sous-sol.org>
Cc: Jeremy Fitzhardinge <jeremy@goop.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Radim Krčmář <rkrcmar@redhat.com>
Cc: Rusty Russell <rusty@rustcorp.com.au>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kvm@vger.kernel.org
Cc: linux-arch@vger.kernel.org
Cc: virtualization@lists.linux-foundation.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1484252878-1962-1-git-send-email-longman@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The following commit:
1fb3a8b2cf ("xen/spinlock: Fix locking path engaging too soon under PVHVM.")
... moved the initalization of the kicker interrupt until after
native_cpu_up() is called.
However, when using qspinlocks, a CPU may try to kick another CPU that is
spinning (because it has not yet initialized its kicker interrupt), resulting
in the following crash during boot:
kernel BUG at /build/linux-Ay7j_C/linux-4.4.0/drivers/xen/events/events_base.c:1210!
invalid opcode: 0000 [#1] SMP
...
RIP: 0010:[<ffffffff814c97c9>] [<ffffffff814c97c9>] xen_send_IPI_one+0x59/0x60
...
Call Trace:
[<ffffffff8102be9e>] xen_qlock_kick+0xe/0x10
[<ffffffff810cabc2>] __pv_queued_spin_unlock+0xb2/0xf0
[<ffffffff810ca6d1>] ? __raw_callee_save___pv_queued_spin_unlock+0x11/0x20
[<ffffffff81052936>] ? check_tsc_warp+0x76/0x150
[<ffffffff81052aa6>] check_tsc_sync_source+0x96/0x160
[<ffffffff81051e28>] native_cpu_up+0x3d8/0x9f0
[<ffffffff8102b315>] xen_hvm_cpu_up+0x35/0x80
[<ffffffff8108198c>] _cpu_up+0x13c/0x180
[<ffffffff81081a4a>] cpu_up+0x7a/0xa0
[<ffffffff81f80dfc>] smp_init+0x7f/0x81
[<ffffffff81f5a121>] kernel_init_freeable+0xef/0x212
[<ffffffff81817f30>] ? rest_init+0x80/0x80
[<ffffffff81817f3e>] kernel_init+0xe/0xe0
[<ffffffff8182488f>] ret_from_fork+0x3f/0x70
[<ffffffff81817f30>] ? rest_init+0x80/0x80
To fix this, only send the kick if the target CPU's interrupt has been
initialized. This check isn't racy, because the target is waiting for
the spinlock, so it won't have initialized the interrupt in the
meantime.
Signed-off-by: Ross Lagerwall <ross.lagerwall@citrix.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Cc: xen-devel@lists.xenproject.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Valentin Rothberg reported that we use CONFIG_QUEUED_SPINLOCKS
in arch/x86/kernel/paravirt_patch_32.c, while the symbol is
called CONFIG_QUEUED_SPINLOCK. (Note the extra 'S')
But the typo was natural: the proper English term for such
a generic object would be 'queued spinlocks' - so rename
this and related symbols accordingly to the plural form.
Reported-by: Valentin Rothberg <valentinrothberg@gmail.com>
Cc: Douglas Hatch <doug.hatch@hp.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Waiman Long <Waiman.Long@hp.com>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This patch adds the necessary Xen specific code to allow Xen to
support the CPU halting and kicking operations needed by the queue
spinlock PV code.
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Signed-off-by: Waiman Long <Waiman.Long@hp.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Daniel J Blueman <daniel@numascale.com>
Cc: Douglas Hatch <doug.hatch@hp.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Paolo Bonzini <paolo.bonzini@gmail.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Scott J Norton <scott.norton@hp.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: virtualization@lists.linux-foundation.org
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/1429901803-29771-12-git-send-email-Waiman.Long@hp.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Paravirt spinlock clears slowpath flag after doing unlock.
As explained by Linus currently it does:
prev = *lock;
add_smp(&lock->tickets.head, TICKET_LOCK_INC);
/* add_smp() is a full mb() */
if (unlikely(lock->tickets.tail & TICKET_SLOWPATH_FLAG))
__ticket_unlock_slowpath(lock, prev);
which is *exactly* the kind of things you cannot do with spinlocks,
because after you've done the "add_smp()" and released the spinlock
for the fast-path, you can't access the spinlock any more. Exactly
because a fast-path lock might come in, and release the whole data
structure.
Linus suggested that we should not do any writes to lock after unlock(),
and we can move slowpath clearing to fastpath lock.
So this patch implements the fix with:
1. Moving slowpath flag to head (Oleg):
Unlocked locks don't care about the slowpath flag; therefore we can keep
it set after the last unlock, and clear it again on the first (try)lock.
-- this removes the write after unlock. note that keeping slowpath flag would
result in unnecessary kicks.
By moving the slowpath flag from the tail to the head ticket we also avoid
the need to access both the head and tail tickets on unlock.
2. use xadd to avoid read/write after unlock that checks the need for
unlock_kick (Linus):
We further avoid the need for a read-after-release by using xadd;
the prev head value will include the slowpath flag and indicate if we
need to do PV kicking of suspended spinners -- on modern chips xadd
isn't (much) more expensive than an add + load.
Result:
setup: 16core (32 cpu +ht sandy bridge 8GB 16vcpu guest)
benchmark overcommit %improve
kernbench 1x -0.13
kernbench 2x 0.02
dbench 1x -1.77
dbench 2x -0.63
[Jeremy: Hinted missing TICKET_LOCK_INC for kick]
[Oleg: Moved slowpath flag to head, ticket_equals idea]
[PeterZ: Added detailed changelog]
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Reported-by: Sasha Levin <sasha.levin@oracle.com>
Tested-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Cc: Andrew Jones <drjones@redhat.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Dave Jones <davej@redhat.com>
Cc: David Vrabel <david.vrabel@citrix.com>
Cc: Fernando Luis Vázquez Cao <fernando_b1@lab.ntt.co.jp>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ulrich Obergfell <uobergfe@redhat.com>
Cc: Waiman Long <Waiman.Long@hp.com>
Cc: a.ryabinin@samsung.com
Cc: dave@stgolabs.net
Cc: hpa@zytor.com
Cc: jasowang@redhat.com
Cc: jeremy@goop.org
Cc: paul.gortmaker@windriver.com
Cc: riel@redhat.com
Cc: tglx@linutronix.de
Cc: waiman.long@hp.com
Cc: xen-devel@lists.xenproject.org
Link: http://lkml.kernel.org/r/20150215173043.GA7471@linux.vnet.ibm.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x). This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.
Other use cases are for storing and retrieving data from the current
processors percpu area. __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.
__get_cpu_var() is defined as :
#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))
__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.
this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.
This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset. Thereby address calculations are avoided and less registers
are used when code is generated.
Transformations done to __get_cpu_var()
1. Determine the address of the percpu instance of the current processor.
DEFINE_PER_CPU(int, y);
int *x = &__get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(&y);
2. Same as #1 but this time an array structure is involved.
DEFINE_PER_CPU(int, y[20]);
int *x = __get_cpu_var(y);
Converts to
int *x = this_cpu_ptr(y);
3. Retrieve the content of the current processors instance of a per cpu
variable.
DEFINE_PER_CPU(int, y);
int x = __get_cpu_var(y)
Converts to
int x = __this_cpu_read(y);
4. Retrieve the content of a percpu struct
DEFINE_PER_CPU(struct mystruct, y);
struct mystruct x = __get_cpu_var(y);
Converts to
memcpy(&x, this_cpu_ptr(&y), sizeof(x));
5. Assignment to a per cpu variable
DEFINE_PER_CPU(int, y)
__get_cpu_var(y) = x;
Converts to
__this_cpu_write(y, x);
6. Increment/Decrement etc of a per cpu variable
DEFINE_PER_CPU(int, y);
__get_cpu_var(y)++
Converts to
__this_cpu_inc(y)
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
The git commit a945928ea2
('xen: Do not enable spinlocks before jump_label_init() has executed')
was added to deal with the jump machinery. Earlier the code
that turned on the jump label was only called by Xen specific
functions. But now that it had been moved to the initcall machinery
it gets called on Xen, KVM, and baremetal - ouch!. And the detection
machinery to only call it on Xen wasn't remembered in the heat
of merge window excitement.
This means that the slowpath is enabled on baremetal while it should
not be.
Reported-by: Waiman Long <waiman.long@hp.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
CC: stable@vger.kernel.org
CC: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Let the core do the irq_desc resolution.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: David Vrabel <david.vrabel@citrix.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Xen <xen-devel@lists.xenproject.org>
Cc: x86 <x86@kernel.org>
Link: http://lkml.kernel.org/r/20140223212737.869264085@linutronix.de
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
These functions are called from inline assembler stubs, thus
need to be global and visible.
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Gleb Natapov <gleb@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Signed-off-by: Andi Kleen <ak@linux.intel.com>
Link: http://lkml.kernel.org/r/1382458079-24450-7-git-send-email-andi@firstfloor.org
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
This patch proposes to remove the IRQF_DISABLED flag from x86/xen
code. It's a NOOP since 2.6.35 and it will be removed one day.
Signed-off-by: Michael Opdenacker <michael.opdenacker@free-electrons.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
xen_init_spinlocks() currently calls static_key_slow_inc() before
jump_label_init() is invoked. When CONFIG_JUMP_LABEL is set (which usually is
the case) the effect of this static_key_slow_inc() is deferred until after
jump_label_init(). This is different from when CONFIG_JUMP_LABEL is not set, in
which case the key is set immediately. Thus, depending on the value of config
option, we may observe different behavior.
In addition, when we come to __jump_label_transform() from jump_label_init(),
the key (paravirt_ticketlocks_enabled) is already enabled. On processors where
ideal_nop is not the same as default_nop this will cause a BUG() since it is
expected that before a key is enabled the latter is replaced by the former
during initialization.
To address this problem we need to move
static_key_slow_inc(¶virt_ticketlocks_enabled) so that it is called
after jump_label_init(). We also need to make sure that this is done before
other cpus start to boot. early_initcall appears to be a good place to do so.
(Note that we cannot move whole xen_init_spinlocks() there since pv_lock_ops
need to be set before alternative_instructions() runs.)
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[v2: Added extra comments in the code]
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: Steven Rostedt <rostedt@goodmis.org>
As we get compile warnings about .init.data being
used by non-init functions.
Reported-by: kbuild test robot <fengguang.wu@intel.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
This reverts commit 70dd4998cb.
Now that the bugs have been resolved we can re-enable the
PV ticketlock implementation under PVHVM Xen guests.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: David Vrabel <david.vrabel@citrix.com>
There is no need to setup this kicker IPI if we are never going
to use the paravirtualized ticketlock mechanism.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: David Vrabel <david.vrabel@citrix.com>
As we are using the generic ticketlock structs and these
old structures are not needed anymore.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Reviewed-by: David Vrabel <david.vrabel@citrix.com>
If interrupts were enabled when taking the spinlock, we can leave them
enabled while blocking to get the lock.
If we can enable interrupts while waiting for the lock to become
available, and we take an interrupt before entering the poll,
and the handler takes a spinlock which ends up going into
the slow state (invalidating the per-cpu "lock" and "want" values),
then when the interrupt handler returns the event channel will
remain pending so the poll will return immediately, causing it to
return out to the main spinlock loop.
Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org>
Link: http://lkml.kernel.org/r/1376058122-8248-12-git-send-email-raghavendra.kt@linux.vnet.ibm.com
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Maintain a flag in the LSB of the ticket lock tail which indicates
whether anyone is in the lock slowpath and may need kicking when
the current holder unlocks. The flags are set when the first locker
enters the slowpath, and cleared when unlocking to an empty queue (ie,
no contention).
In the specific implementation of lock_spinning(), make sure to set
the slowpath flags on the lock just before blocking. We must do
this before the last-chance pickup test to prevent a deadlock
with the unlocker:
Unlocker Locker
test for lock pickup
-> fail
unlock
test slowpath
-> false
set slowpath flags
block
Whereas this works in any ordering:
Unlocker Locker
set slowpath flags
test for lock pickup
-> fail
block
unlock
test slowpath
-> true, kick
If the unlocker finds that the lock has the slowpath flag set but it is
actually uncontended (ie, head == tail, so nobody is waiting), then it
clears the slowpath flag.
The unlock code uses a locked add to update the head counter. This also
acts as a full memory barrier so that its safe to subsequently
read back the slowflag state, knowing that the updated lock is visible
to the other CPUs. If it were an unlocked add, then the flag read may
just be forwarded from the store buffer before it was visible to the other
CPUs, which could result in a deadlock.
Unfortunately this means we need to do a locked instruction when
unlocking with PV ticketlocks. However, if PV ticketlocks are not
enabled, then the old non-locked "add" is the only unlocking code.
Note: this code relies on gcc making sure that unlikely() code is out of
line of the fastpath, which only happens when OPTIMIZE_SIZE=n. If it
doesn't the generated code isn't too bad, but its definitely suboptimal.
Thanks to Srivatsa Vaddagiri for providing a bugfix to the original
version of this change, which has been folded in.
Thanks to Stephan Diestelhorst for commenting on some code which relied
on an inaccurate reading of the x86 memory ordering rules.
Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org>
Link: http://lkml.kernel.org/r/1376058122-8248-11-git-send-email-raghavendra.kt@linux.vnet.ibm.com
Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Stephan Diestelhorst <stephan.diestelhorst@amd.com>
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Although the lock_spinning calls in the spinlock code are on the
uncommon path, their presence can cause the compiler to generate many
more register save/restores in the function pre/postamble, which is in
the fast path. To avoid this, convert it to using the pvops callee-save
calling convention, which defers all the save/restores until the actual
function is called, keeping the fastpath clean.
Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org>
Link: http://lkml.kernel.org/r/1376058122-8248-8-git-send-email-raghavendra.kt@linux.vnet.ibm.com
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Tested-by: Attilio Rao <attilio.rao@citrix.com>
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org>
Link: http://lkml.kernel.org/r/1376058122-8248-7-git-send-email-raghavendra.kt@linux.vnet.ibm.com
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Replace the old Xen implementation of PV spinlocks with and implementation
of xen_lock_spinning and xen_unlock_kick.
xen_lock_spinning simply registers the cpu in its entry in lock_waiting,
adds itself to the waiting_cpus set, and blocks on an event channel
until the channel becomes pending.
xen_unlock_kick searches the cpus in waiting_cpus looking for the one
which next wants this lock with the next ticket, if any. If found,
it kicks it by making its event channel pending, which wakes it up.
We need to make sure interrupts are disabled while we're relying on the
contents of the per-cpu lock_waiting values, otherwise an interrupt
handler could come in, try to take some other lock, block, and overwrite
our values.
Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org>
Link: http://lkml.kernel.org/r/1376058122-8248-6-git-send-email-raghavendra.kt@linux.vnet.ibm.com
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
[ Raghavendra: use function + enum instead of macro, cmpxchg for zero status reset
Reintroduce break since we know the exact vCPU to send IPI as suggested by Konrad.]
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
Rather than outright replacing the entire spinlock implementation in
order to paravirtualize it, keep the ticket lock implementation but add
a couple of pvops hooks on the slow patch (long spin on lock, unlocking
a contended lock).
Ticket locks have a number of nice properties, but they also have some
surprising behaviours in virtual environments. They enforce a strict
FIFO ordering on cpus trying to take a lock; however, if the hypervisor
scheduler does not schedule the cpus in the correct order, the system can
waste a huge amount of time spinning until the next cpu can take the lock.
(See Thomas Friebel's talk "Prevent Guests from Spinning Around"
http://www.xen.org/files/xensummitboston08/LHP.pdf for more details.)
To address this, we add two hooks:
- __ticket_spin_lock which is called after the cpu has been
spinning on the lock for a significant number of iterations but has
failed to take the lock (presumably because the cpu holding the lock
has been descheduled). The lock_spinning pvop is expected to block
the cpu until it has been kicked by the current lock holder.
- __ticket_spin_unlock, which on releasing a contended lock
(there are more cpus with tail tickets), it looks to see if the next
cpu is blocked and wakes it if so.
When compiled with CONFIG_PARAVIRT_SPINLOCKS disabled, a set of stub
functions causes all the extra code to go away.
Results:
=======
setup: 32 core machine with 32 vcpu KVM guest (HT off) with 8GB RAM
base = 3.11-rc
patched = base + pvspinlock V12
+-----------------+----------------+--------+
dbench (Throughput in MB/sec. Higher is better)
+-----------------+----------------+--------+
| base (stdev %)|patched(stdev%) | %gain |
+-----------------+----------------+--------+
| 15035.3 (0.3) |15150.0 (0.6) | 0.8 |
| 1470.0 (2.2) | 1713.7 (1.9) | 16.6 |
| 848.6 (4.3) | 967.8 (4.3) | 14.0 |
| 652.9 (3.5) | 685.3 (3.7) | 5.0 |
+-----------------+----------------+--------+
pvspinlock shows benefits for overcommit ratio > 1 for PLE enabled cases,
and undercommits results are flat
Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org>
Link: http://lkml.kernel.org/r/1376058122-8248-2-git-send-email-raghavendra.kt@linux.vnet.ibm.com
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Tested-by: Attilio Rao <attilio.rao@citrix.com>
[ Raghavendra: Changed SPIN_THRESHOLD, fixed redefinition of arch_spinlock_t]
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: H. Peter Anvin <hpa@linux.intel.com>
The __cpuinit type of throwaway sections might have made sense
some time ago when RAM was more constrained, but now the savings
do not offset the cost and complications. For example, the fix in
commit 5e427ec2d0 ("x86: Fix bit corruption at CPU resume time")
is a good example of the nasty type of bugs that can be created
with improper use of the various __init prefixes.
After a discussion on LKML[1] it was decided that cpuinit should go
the way of devinit and be phased out. Once all the users are gone,
we can then finally remove the macros themselves from linux/init.h.
Note that some harmless section mismatch warnings may result, since
notify_cpu_starting() and cpu_up() are arch independent (kernel/cpu.c)
are flagged as __cpuinit -- so if we remove the __cpuinit from
arch specific callers, we will also get section mismatch warnings.
As an intermediate step, we intend to turn the linux/init.h cpuinit
content into no-ops as early as possible, since that will get rid
of these warnings. In any case, they are temporary and harmless.
This removes all the arch/x86 uses of the __cpuinit macros from
all C files. x86 only had the one __CPUINIT used in assembly files,
and it wasn't paired off with a .previous or a __FINIT, so we can
delete it directly w/o any corresponding additional change there.
[1] https://lkml.org/lkml/2013/5/20/589
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Acked-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
When the user does:
echo 0 > /sys/devices/system/cpu/cpu1/online
echo 1 > /sys/devices/system/cpu/cpu1/online
kmemleak reports:
kmemleak: 7 new suspected memory leaks (see /sys/kernel/debug/kmemleak)
unreferenced object 0xffff88003fa51260 (size 32):
comm "swapper/0", pid 1, jiffies 4294667339 (age 1027.789s)
hex dump (first 32 bytes):
73 70 69 6e 6c 6f 63 6b 31 00 00 00 00 00 00 00 spinlock1.......
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff81660721>] kmemleak_alloc+0x21/0x50
[<ffffffff81190aac>] __kmalloc_track_caller+0xec/0x2a0
[<ffffffff812fe1bb>] kvasprintf+0x5b/0x90
[<ffffffff812fe228>] kasprintf+0x38/0x40
[<ffffffff81663789>] xen_init_lock_cpu+0x61/0xbe
[<ffffffff816633a6>] xen_cpu_up+0x66/0x3e8
[<ffffffff8166bbf5>] _cpu_up+0xd1/0x14b
[<ffffffff8166bd48>] cpu_up+0xd9/0xec
[<ffffffff81ae6e4a>] smp_init+0x4b/0xa3
[<ffffffff81ac4981>] kernel_init_freeable+0xdb/0x1e6
[<ffffffff8165ce39>] kernel_init+0x9/0xf0
[<ffffffff8167edfc>] ret_from_fork+0x7c/0xb0
[<ffffffffffffffff>] 0xffffffffffffffff
Instead of doing it like the "xen/smp: Don't leak interrupt name when offlining"
patch did (which has a per-cpu structure which contains both the
IRQ number and char*) we use a per-cpu pointers to a *char.
The reason is that the "__this_cpu_read(lock_kicker_irq);" macro
blows up with "__bad_size_call_parameter()" as the size of the
returned structure is not within the parameters of what it expects
and optimizes for.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
During review of git commit cb9c6f15f3
("xen/spinlock: Check against default value of -1 for IRQ line.")
Stefano pointed out a bug in the patch. Unfortunatly due to vacation
timing the fix was not applied and this patch fixes it up.
Acked-by: Stefano Stabellini <stefano.stabellini@eu.citrix.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
See git commit f10cd522c5
(xen: disable PV spinlocks on HVM) for details.
But we did not disable it everywhere - which means that when
we boot as PVHVM we end up allocating per-CPU irq line for
spinlock. This fixes that.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
The default (uninitialized) value of the IRQ line is -1.
Check if we already have allocated an spinlock interrupt line
and if somebody is trying to do it again. Also set it to -1
when we offline the CPU.
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
There is a loophole between Xen's current implementation of
pv-spinlocks and the scheduler. This was triggerable through
a testcase until v3.6 changed the TLB flushing code. The
problem potentially is still there just not observable in the
same way.
What could happen was (is):
1. CPU n tries to schedule task x away and goes into a slow
wait for the runq lock of CPU n-# (must be one with a lower
number).
2. CPU n-#, while processing softirqs, tries to balance domains
and goes into a slow wait for its own runq lock (for updating
some records). Since this is a spin_lock_irqsave in softirq
context, interrupts will be re-enabled for the duration of
the poll_irq hypercall used by Xen.
3. Before the runq lock of CPU n-# is unlocked, CPU n-1 receives
an interrupt (e.g. endio) and when processing the interrupt,
tries to wake up task x. But that is in schedule and still
on_cpu, so try_to_wake_up goes into a tight loop.
4. The runq lock of CPU n-# gets unlocked, but the message only
gets sent to the first waiter, which is CPU n-# and that is
busily stuck.
5. CPU n-# never returns from the nested interruption to take and
release the lock because the scheduler uses a busy wait.
And CPU n never finishes the task migration because the unlock
notification only went to CPU n-#.
To avoid this and since the unlocking code has no real sense of
which waiter is best suited to grab the lock, just send the IPI
to all of them. This causes the waiters to return from the hyper-
call (those not interrupted at least) and do active spinlocking.
BugLink: http://bugs.launchpad.net/bugs/1011792
Acked-by: Jan Beulich <JBeulich@suse.com>
Signed-off-by: Stefan Bader <stefan.bader@canonical.com>
Cc: stable@vger.kernel.org
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Move the code from Xen to debugfs to make the code common
for other users as well.
Accked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
Signed-off-by: Suzuki Poulose <suzuki@in.ibm.com>
[v1: Fixed rebase issues]
[v2: Fixed PPC compile issues]
Signed-off-by: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
If NR_CPUS < 256 then arch_spinlock_t is only 16 bits wide but struct
xen_spinlock is 32 bits. When a spin lock is contended and
xl->spinners is modified the two bytes immediately after the spin lock
would be corrupted.
This is a regression caused by 84eb950db1
(x86, ticketlock: Clean up types and accessors) which reduced the size
of arch_spinlock_t.
Fix this by making xl->spinners a u8 if NR_CPUS < 256. A
BUILD_BUG_ON() is also added to check the sizes of the two structures
are compatible.
In many cases this was not noticable as there would often be padding
bytes after the lock (e.g., if any of CONFIG_GENERIC_LOCKBREAK,
CONFIG_DEBUG_SPINLOCK, or CONFIG_DEBUG_LOCK_ALLOC were enabled).
The bnx2 driver is affected. In struct bnx2, phy_lock and
indirect_lock may have no padding after them. Contention on phy_lock
would corrupt indirect_lock making it appear locked and the driver
would deadlock.
Signed-off-by: David Vrabel <david.vrabel@citrix.com>
Signed-off-by: Jeremy Fitzhardinge <jeremy@goop.org>
Acked-by: Ian Campbell <ian.campbell@citrix.com>
CC: stable@kernel.org #only 3.2
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Use this_cpu_ops to reduce code size and simplify things in various places.
V3->V4:
Move instance of this_cpu_inc_return to a later patchset so that
this patch can be applied without infrastructure changes.
Cc: Jeremy Fitzhardinge <jeremy.fitzhardinge@citrix.com>
Acked-by: H. Peter Anvin <hpa@zytor.com>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Fix the IRQ flag handling naming. In linux/irqflags.h under one configuration,
it maps:
local_irq_enable() -> raw_local_irq_enable()
local_irq_disable() -> raw_local_irq_disable()
local_irq_save() -> raw_local_irq_save()
...
and under the other configuration, it maps:
raw_local_irq_enable() -> local_irq_enable()
raw_local_irq_disable() -> local_irq_disable()
raw_local_irq_save() -> local_irq_save()
...
This is quite confusing. There should be one set of names expected of the
arch, and this should be wrapped to give another set of names that are expected
by users of this facility.
Change this to have the arch provide:
flags = arch_local_save_flags()
flags = arch_local_irq_save()
arch_local_irq_restore(flags)
arch_local_irq_disable()
arch_local_irq_enable()
arch_irqs_disabled_flags(flags)
arch_irqs_disabled()
arch_safe_halt()
Then linux/irqflags.h wraps these to provide:
raw_local_save_flags(flags)
raw_local_irq_save(flags)
raw_local_irq_restore(flags)
raw_local_irq_disable()
raw_local_irq_enable()
raw_irqs_disabled_flags(flags)
raw_irqs_disabled()
raw_safe_halt()
with type checking on the flags 'arguments', and then wraps those to provide:
local_save_flags(flags)
local_irq_save(flags)
local_irq_restore(flags)
local_irq_disable()
local_irq_enable()
irqs_disabled_flags(flags)
irqs_disabled()
safe_halt()
with tracing included if enabled.
The arch functions can now all be inline functions rather than some of them
having to be macros.
Signed-off-by: David Howells <dhowells@redhat.com> [X86, FRV, MN10300]
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com> [Tile]
Signed-off-by: Michal Simek <monstr@monstr.eu> [Microblaze]
Tested-by: Catalin Marinas <catalin.marinas@arm.com> [ARM]
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Haavard Skinnemoen <haavard.skinnemoen@atmel.com> [AVR]
Acked-by: Tony Luck <tony.luck@intel.com> [IA-64]
Acked-by: Hirokazu Takata <takata@linux-m32r.org> [M32R]
Acked-by: Greg Ungerer <gerg@uclinux.org> [M68K/M68KNOMMU]
Acked-by: Ralf Baechle <ralf@linux-mips.org> [MIPS]
Acked-by: Kyle McMartin <kyle@mcmartin.ca> [PA-RISC]
Acked-by: Paul Mackerras <paulus@samba.org> [PowerPC]
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> [S390]
Acked-by: Chen Liqin <liqin.chen@sunplusct.com> [Score]
Acked-by: Matt Fleming <matt@console-pimps.org> [SH]
Acked-by: David S. Miller <davem@davemloft.net> [Sparc]
Acked-by: Chris Zankel <chris@zankel.net> [Xtensa]
Reviewed-by: Richard Henderson <rth@twiddle.net> [Alpha]
Reviewed-by: Yoshinori Sato <ysato@users.sourceforge.jp> [H8300]
Cc: starvik@axis.com [CRIS]
Cc: jesper.nilsson@axis.com [CRIS]
Cc: linux-cris-kernel@axis.com
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>