The device_to_iommu() helper was originally designed to look up the DMAR
ACPI table to retrieve the iommu device and the request ID for a given
device. However, it was also being used in other places where there was
no need to lookup the ACPI table at all.
Retrieve the iommu device directly from the per-device iommu private data
in functions called after device is probed.
Rename the original device_to_iommu() function to a more meaningful name,
device_lookup_iommu(), to avoid mis-using it.
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Link: https://lore.kernel.org/r/20231116015048.29675-2-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
The pasid is passed in as a parameter through .set_dev_pasid() callback.
Thus, intel_sva_bind_mm() can directly use it instead of retrieving the
pasid value from mm->pasid.
Suggested-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Tina Zhang <tina.zhang@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Link: https://lore.kernel.org/r/20231027000525.1278806-3-tina.zhang@intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Commit 6bbd42e2df ("mmu_notifiers: call invalidate_range() when
invalidating TLBs") moved the secondary TLB invalidations into the TLB
invalidation functions to ensure that all secondary TLB invalidations
happen at the same time as the CPU invalidation and added a flush-all
type of secondary TLB invalidation for the batched mode, where a range
of [0, -1UL) is used to indicates that the range extends to the end of
the address space.
However, using an end address of -1UL caused an overflow in the Intel
IOMMU driver, where the end address was rounded up to the next page.
As a result, both the IOTLB and device ATC were not invalidated correctly.
Add a flush all helper function and call it when the invalidation range
is from 0 to -1UL, ensuring that the entire caches are invalidated
correctly.
Fixes: 6bbd42e2df ("mmu_notifiers: call invalidate_range() when invalidating TLBs")
Cc: stable@vger.kernel.org
Cc: Huang Ying <ying.huang@intel.com>
Cc: Alistair Popple <apopple@nvidia.com>
Tested-by: Luo Yuzhang <yuzhang.luo@intel.com> # QAT
Tested-by: Tony Zhu <tony.zhu@intel.com> # DSA
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Alistair Popple <apopple@nvidia.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Link: https://lore.kernel.org/r/20231117090933.75267-1-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
There are two main use cases for mmu notifiers. One is by KVM which uses
mmu_notifier_invalidate_range_start()/end() to manage a software TLB.
The other is to manage hardware TLBs which need to use the
invalidate_range() callback because HW can establish new TLB entries at
any time. Hence using start/end() can lead to memory corruption as these
callbacks happen too soon/late during page unmap.
mmu notifier users should therefore either use the start()/end() callbacks
or the invalidate_range() callbacks. To make this usage clearer rename
the invalidate_range() callback to arch_invalidate_secondary_tlbs() and
update documention.
Link: https://lkml.kernel.org/r/6f77248cd25545c8020a54b4e567e8b72be4dca1.1690292440.git-series.apopple@nvidia.com
Signed-off-by: Alistair Popple <apopple@nvidia.com>
Suggested-by: Jason Gunthorpe <jgg@nvidia.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Cc: Andrew Donnellan <ajd@linux.ibm.com>
Cc: Chaitanya Kumar Borah <chaitanya.kumar.borah@intel.com>
Cc: Frederic Barrat <fbarrat@linux.ibm.com>
Cc: Jason Gunthorpe <jgg@ziepe.ca>
Cc: John Hubbard <jhubbard@nvidia.com>
Cc: Kevin Tian <kevin.tian@intel.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Nicolin Chen <nicolinc@nvidia.com>
Cc: Robin Murphy <robin.murphy@arm.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: SeongJae Park <sj@kernel.org>
Cc: Tvrtko Ursulin <tvrtko.ursulin@linux.intel.com>
Cc: Will Deacon <will@kernel.org>
Cc: Zhi Wang <zhi.wang.linux@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently draining page requests and responses for a pasid is part of SVA
implementation. This is because the driver only supports attaching an SVA
domain to a device pasid. As we are about to support attaching other types
of domains to a device pasid, the prq draining code becomes generic.
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Link: https://lore.kernel.org/r/20230802212427.1497170-6-jacob.jun.pan@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
The pasid_mutex was used to protect the paths of set/remove_dev_pasid().
It's duplicate with iommu_sva_lock. Remove it to avoid duplicate code.
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Link: https://lore.kernel.org/r/20230802212427.1497170-5-jacob.jun.pan@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
This has no use anymore, delete it all.
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Jason Gunthorpe <jgg@nvidia.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Link: https://lore.kernel.org/r/20230322200803.869130-8-jacob.jun.pan@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
INVALID_IOASID and IOMMU_PASID_INVALID are duplicated. Rename
INVALID_IOASID and consolidate since we are moving away from IOASID
infrastructure.
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Link: https://lore.kernel.org/r/20230322200803.869130-7-jacob.jun.pan@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
While enabled to count events and an event occurrence causes the counter
value to increment and roll over to or past zero, this is termed a
counter overflow. The overflow can trigger an interrupt. The IOMMU
perfmon needs to handle the case properly.
New HW IRQs are allocated for each IOMMU device for perfmon. The IRQ IDs
are after the SVM range.
In the overflow handler, the counter is not frozen. It's very unlikely
that the same counter overflows again during the period. But it's
possible that other counters overflow at the same time. Read the
overflow register at the end of the handler and check whether there are
more.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Link: https://lore.kernel.org/r/20230128200428.1459118-7-kan.liang@linux.intel.com
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
After commit be51b1d6bb ("iommu/sva: Refactoring
iommu_sva_bind/unbind_device()"), the iommu driver doesn't need to
return an iommu_sva pointer anymore. This removes the sva field
from intel_svm_dev and cleanups the code accordingly.
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Link: https://lore.kernel.org/r/20230109014955.147068-5-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
It was used as a reference counter of an existing bond between device
and user application memory address. Commit be51b1d6bb ("iommu/sva:
Refactoring iommu_sva_bind/unbind_device()") has added this in iommu
core. Remove it to avoid duplicate code.
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Link: https://lore.kernel.org/r/20230109014955.147068-4-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
There's no need to have a public header for Intel SVA implementation.
The device driver should interact with Intel SVA implementation via
the IOMMU generic APIs.
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Link: https://lore.kernel.org/r/20230109014955.147068-2-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
iommufd is the user API to control the IOMMU subsystem as it relates to
managing IO page tables that point at user space memory.
It takes over from drivers/vfio/vfio_iommu_type1.c (aka the VFIO
container) which is the VFIO specific interface for a similar idea.
We see a broad need for extended features, some being highly IOMMU device
specific:
- Binding iommu_domain's to PASID/SSID
- Userspace IO page tables, for ARM, x86 and S390
- Kernel bypassed invalidation of user page tables
- Re-use of the KVM page table in the IOMMU
- Dirty page tracking in the IOMMU
- Runtime Increase/Decrease of IOPTE size
- PRI support with faults resolved in userspace
Many of these HW features exist to support VM use cases - for instance the
combination of PASID, PRI and Userspace IO Page Tables allows an
implementation of DMA Shared Virtual Addressing (vSVA) within a
guest. Dirty tracking enables VM live migration with SRIOV devices and
PASID support allow creating "scalable IOV" devices, among other things.
As these features are fundamental to a VM platform they need to be
uniformly exposed to all the driver families that do DMA into VMs, which
is currently VFIO and VDPA.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQRRRCHOFoQz/8F5bUaFwuHvBreFYQUCY5ct7wAKCRCFwuHvBreF
YZZ5AQDciXfcgXLt0UBEmWupNb0f/asT6tk717pdsKm8kAZMNAEAsIyLiKT5HqGl
s7fAu+CQ1pr9+9NKGevD+frw8Solsw4=
=jJkd
-----END PGP SIGNATURE-----
Merge tag 'for-linus-iommufd' of git://git.kernel.org/pub/scm/linux/kernel/git/jgg/iommufd
Pull iommufd implementation from Jason Gunthorpe:
"iommufd is the user API to control the IOMMU subsystem as it relates
to managing IO page tables that point at user space memory.
It takes over from drivers/vfio/vfio_iommu_type1.c (aka the VFIO
container) which is the VFIO specific interface for a similar idea.
We see a broad need for extended features, some being highly IOMMU
device specific:
- Binding iommu_domain's to PASID/SSID
- Userspace IO page tables, for ARM, x86 and S390
- Kernel bypassed invalidation of user page tables
- Re-use of the KVM page table in the IOMMU
- Dirty page tracking in the IOMMU
- Runtime Increase/Decrease of IOPTE size
- PRI support with faults resolved in userspace
Many of these HW features exist to support VM use cases - for instance
the combination of PASID, PRI and Userspace IO Page Tables allows an
implementation of DMA Shared Virtual Addressing (vSVA) within a guest.
Dirty tracking enables VM live migration with SRIOV devices and PASID
support allow creating "scalable IOV" devices, among other things.
As these features are fundamental to a VM platform they need to be
uniformly exposed to all the driver families that do DMA into VMs,
which is currently VFIO and VDPA"
For more background, see the extended explanations in Jason's pull request:
https://lore.kernel.org/lkml/Y5dzTU8dlmXTbzoJ@nvidia.com/
* tag 'for-linus-iommufd' of git://git.kernel.org/pub/scm/linux/kernel/git/jgg/iommufd: (62 commits)
iommufd: Change the order of MSI setup
iommufd: Improve a few unclear bits of code
iommufd: Fix comment typos
vfio: Move vfio group specific code into group.c
vfio: Refactor dma APIs for emulated devices
vfio: Wrap vfio group module init/clean code into helpers
vfio: Refactor vfio_device open and close
vfio: Make vfio_device_open() truly device specific
vfio: Swap order of vfio_device_container_register() and open_device()
vfio: Set device->group in helper function
vfio: Create wrappers for group register/unregister
vfio: Move the sanity check of the group to vfio_create_group()
vfio: Simplify vfio_create_group()
iommufd: Allow iommufd to supply /dev/vfio/vfio
vfio: Make vfio_container optionally compiled
vfio: Move container related MODULE_ALIAS statements into container.c
vfio-iommufd: Support iommufd for emulated VFIO devices
vfio-iommufd: Support iommufd for physical VFIO devices
vfio-iommufd: Allow iommufd to be used in place of a container fd
vfio: Use IOMMU_CAP_ENFORCE_CACHE_COHERENCY for vfio_file_enforced_coherent()
...
As comment of pci_get_domain_bus_and_slot() says, it returns a pci device
with refcount increment, when finish using it, the caller must decrease
the reference count by calling pci_dev_put(). So call pci_dev_put() after
using the 'pdev' to avoid refcount leak.
Besides, if the 'pdev' is null or intel_svm_prq_report() returns error,
there is no need to trace this fault.
Fixes: 06f4b8d09d ("iommu/vt-d: Remove unnecessary SVA data accesses in page fault path")
Suggested-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Yang Yingliang <yangyingliang@huawei.com>
Link: https://lore.kernel.org/r/20221119144028.2452731-1-yangyingliang@huawei.com
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
QAT devices on Intel Sapphire Rapids and Emerald Rapids have a defect in
address translation service (ATS). These devices may inadvertently issue
ATS invalidation completion before posted writes initiated with
translated address that utilized translations matching the invalidation
address range, violating the invalidation completion ordering.
This patch adds an extra device TLB invalidation for the affected devices,
it is needed to ensure no more posted writes with translated address
following the invalidation completion. Therefore, the ordering is
preserved and data-corruption is prevented.
Device TLBs are invalidated under the following six conditions:
1. Device driver does DMA API unmap IOVA
2. Device driver unbind a PASID from a process, sva_unbind_device()
3. PASID is torn down, after PASID cache is flushed. e.g. process
exit_mmap() due to crash
4. Under SVA usage, called by mmu_notifier.invalidate_range() where
VM has to free pages that were unmapped
5. userspace driver unmaps a DMA buffer
6. Cache invalidation in vSVA usage (upcoming)
For #1 and #2, device drivers are responsible for stopping DMA traffic
before unmap/unbind. For #3, iommu driver gets mmu_notifier to
invalidate TLB the same way as normal user unmap which will do an extra
invalidation. The dTLB invalidation after PASID cache flush does not
need an extra invalidation.
Therefore, we only need to deal with #4 and #5 in this patch. #1 is also
covered by this patch due to common code path with #5.
Tested-by: Yuzhang Luo <yuzhang.luo@intel.com>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Link: https://lore.kernel.org/r/20221130062449.1360063-1-jacob.jun.pan@linux.intel.com
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Rename iommu-sva-lib.c[h] to iommu-sva.c[h] as it contains all code
for SVA implementation in iommu core.
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Tested-by: Zhangfei Gao <zhangfei.gao@linaro.org>
Tested-by: Tony Zhu <tony.zhu@intel.com>
Link: https://lore.kernel.org/r/20221031005917.45690-14-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
These ops'es have been deprecated. There's no need for them anymore.
Remove them to avoid dead code.
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Yi Liu <yi.l.liu@intel.com>
Tested-by: Zhangfei Gao <zhangfei.gao@linaro.org>
Tested-by: Tony Zhu <tony.zhu@intel.com>
Link: https://lore.kernel.org/r/20221031005917.45690-11-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Add support for SVA domain allocation and provide an SVA-specific
iommu_domain_ops. This implementation is based on the existing SVA
code. Possible cleanup and refactoring are left for incremental
changes later.
The VT-d driver will also need to support setting a DMA domain to a
PASID of device. Current SVA implementation uses different data
structures to track the domain and device PASID relationship. That's
the reason why we need to check the domain type in remove_dev_pasid
callback. Eventually we'll consolidate the data structures and remove
the need of domain type check.
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Yi Liu <yi.l.liu@intel.com>
Tested-by: Tony Zhu <tony.zhu@intel.com>
Link: https://lore.kernel.org/r/20221031005917.45690-8-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
The current kernel DMA with PASID support is based on the SVA with a flag
SVM_FLAG_SUPERVISOR_MODE. The IOMMU driver binds the kernel memory address
space to a PASID of the device. The device driver programs the device with
kernel virtual address (KVA) for DMA access. There have been security and
functional issues with this approach:
- The lack of IOTLB synchronization upon kernel page table updates.
(vmalloc, module/BPF loading, CONFIG_DEBUG_PAGEALLOC etc.)
- Other than slight more protection, using kernel virtual address (KVA)
has little advantage over physical address. There are also no use
cases yet where DMA engines need kernel virtual addresses for in-kernel
DMA.
This removes SVM_FLAG_SUPERVISOR_MODE support from the IOMMU interface.
The device drivers are suggested to handle kernel DMA with PASID through
the kernel DMA APIs.
The drvdata parameter in iommu_sva_bind_device() and all callbacks is not
needed anymore. Cleanup them as well.
Link: https://lore.kernel.org/linux-iommu/20210511194726.GP1002214@nvidia.com/
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Jean-Philippe Brucker <jean-philippe@linaro.org>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Fenghua Yu <fenghua.yu@intel.com>
Tested-by: Zhangfei Gao <zhangfei.gao@linaro.org>
Tested-by: Tony Zhu <tony.zhu@intel.com>
Link: https://lore.kernel.org/r/20221031005917.45690-4-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
This renaming better describes it is for first level page table (a.k.a
first stage page table since VT-d spec 3.4).
Signed-off-by: Yi Liu <yi.l.liu@intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Link: https://lore.kernel.org/r/20220916071326.2223901-1-yi.l.liu@intel.com
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
The existing I/O page fault handling code accesses the per-PASID SVA data
structures. This is unnecessary and makes the fault handling code only
suitable for SVA scenarios. This removes the SVA data accesses from the
I/O page fault reporting and responding code, so that the fault handling
code could be generic.
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Link: https://lore.kernel.org/r/20220914011821.400986-1-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
When a DMA domain is attached to a device, it needs to allocate a domain
ID from its IOMMU. Currently, the domain ID information is stored in two
static arrays embedded in the domain structure. This can lead to memory
waste when the driver is running on a small platform.
This optimizes these static arrays by replacing them with an xarray and
consuming memory on demand.
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Steve Wahl <steve.wahl@hpe.com>
Link: https://lore.kernel.org/r/20220702015610.2849494-4-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
The iommu->lock is used to protect the per-IOMMU pasid directory table
and pasid table. Move the spinlock acquisition/release into the helpers
to make the code self-contained.
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Link: https://lore.kernel.org/r/20220706025524.2904370-8-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
The iommu->lock is used to protect changes in root/context/pasid tables
and domain ID allocation. There's no use case to change these resources
in any interrupt context. Therefore, it is unnecessary to disable the
interrupts when the spinlock is held. The same thing happens on the
device_domain_lock side, which protects the device domain attachment
information. This replaces spin_lock/unlock_irqsave/irqrestore() calls
with the normal spin_lock/unlock().
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Link: https://lore.kernel.org/r/20220706025524.2904370-6-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
This header file is private to the Intel IOMMU driver. Move it to the
driver folder.
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Steve Wahl <steve.wahl@hpe.com>
Link: https://lore.kernel.org/r/20220514014322.2927339-8-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
This header file is private to the Intel IOMMU driver. Move it to the
driver folder.
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Steve Wahl <steve.wahl@hpe.com>
Link: https://lore.kernel.org/r/20220514014322.2927339-2-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
The page fault handling framework in the IOMMU core explicitly states
that it doesn't handle PCI PASID Stop Marker and the IOMMU drivers must
discard them before reporting faults. This handles Stop Marker messages
in prq_event_thread() before reporting events to the core.
The VT-d driver explicitly drains the pending page requests when a CPU
page table (represented by a mm struct) is unbound from a PASID according
to the procedures defined in the VT-d spec. The Stop Marker messages do
not need a response. Hence, it is safe to drop the Stop Marker messages
silently if any of them is found in the page request queue.
Fixes: d5b9e4bfe0 ("iommu/vt-d: Report prq to io-pgfault framework")
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Link: https://lore.kernel.org/r/20220421113558.3504874-1-baolu.lu@linux.intel.com
Link: https://lore.kernel.org/r/20220423082330.3897867-2-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Including:
- IOMMU Core changes:
- Removal of aux domain related code as it is basically dead
and will be replaced by iommu-fd framework
- Split of iommu_ops to carry domain-specific call-backs
separatly
- Cleanup to remove useless ops->capable implementations
- Improve 32-bit free space estimate in iova allocator
- Intel VT-d updates:
- Various cleanups of the driver
- Support for ATS of SoC-integrated devices listed in
ACPI/SATC table
- ARM SMMU updates:
- Fix SMMUv3 soft lockup during continuous stream of events
- Fix error path for Qualcomm SMMU probe()
- Rework SMMU IRQ setup to prepare the ground for PMU support
- Minor cleanups and refactoring
- AMD IOMMU driver:
- Some minor cleanups and error-handling fixes
- Rockchip IOMMU driver:
- Use standard driver registration
- MSM IOMMU driver:
- Minor cleanup and change to standard driver registration
- Mediatek IOMMU driver:
- Fixes for IOTLB flushing logic
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEr9jSbILcajRFYWYyK/BELZcBGuMFAmI8OUkACgkQK/BELZcB
GuNz9xAAvlgEg3byMx1y6LY9IctVGyLsegweVGM4+m6XR7qvT5Llc1E2Yw4Gooe4
EAceOihDKW2T9VnMlz9g/cG7Modrx60chcB22KKfxDXPl6yF3R89EMd7DE43T6n/
KPrP9+EsBnI8QSXyYu9ZowioX4CYwWhWD0dKHKAwDvw0BWHHUJ4hTaoHqEoIqLdP
vubeHziIok/g1sylSpJjTzV7r/Na8Q3TGcb/Mi5qC8uiyiyx40vtaduMGNW+/ToN
EqOKszxPmHfHv/xf0IHo0eUZ2L/JAe0mAlZzOb09f5F2sXJrbC05jlmRaDmSjT+u
iEc1r2By/0xo6iOuQC3wD6kTvwwO/ecpNYGhXYXdTbtLquYfL5PSXjRHEU9gf2BO
i/llPDsnytPvm/hnmbi26ChNR6yrDPz5bkoCUl5mnB1jZcaZtIURN7cRlEPPZUWo
62VDNdqWDB6AvALc1/SwYdJX/i5eaBf+niS7/BJ/IkLp2oJxFzrGsU8SRJFHNYsa
zdFIUUoTw647Ul6derSpGzHow169/RwVKYPiXMsaA8/viPNjpBOtfg56abn1WLW6
N4CtwNu6tt+sPfftFdFx2cDEMW2zpWg5doMddBfEx9FAk0HJ4WLZiTpaO2PxcLyd
kCAsGHj+ViAZHINVKFV4nQN/V9yQtcIc4UPmSGJBtKCK3KUYujw=
=bcqr
-----END PGP SIGNATURE-----
Merge tag 'iommu-updates-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu
Pull iommu updates from Joerg Roedel:
- IOMMU Core changes:
- Removal of aux domain related code as it is basically dead and
will be replaced by iommu-fd framework
- Split of iommu_ops to carry domain-specific call-backs separatly
- Cleanup to remove useless ops->capable implementations
- Improve 32-bit free space estimate in iova allocator
- Intel VT-d updates:
- Various cleanups of the driver
- Support for ATS of SoC-integrated devices listed in ACPI/SATC
table
- ARM SMMU updates:
- Fix SMMUv3 soft lockup during continuous stream of events
- Fix error path for Qualcomm SMMU probe()
- Rework SMMU IRQ setup to prepare the ground for PMU support
- Minor cleanups and refactoring
- AMD IOMMU driver:
- Some minor cleanups and error-handling fixes
- Rockchip IOMMU driver:
- Use standard driver registration
- MSM IOMMU driver:
- Minor cleanup and change to standard driver registration
- Mediatek IOMMU driver:
- Fixes for IOTLB flushing logic
* tag 'iommu-updates-v5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (47 commits)
iommu/amd: Improve amd_iommu_v2_exit()
iommu/amd: Remove unused struct fault.devid
iommu/amd: Clean up function declarations
iommu/amd: Call memunmap in error path
iommu/arm-smmu: Account for PMU interrupts
iommu/vt-d: Enable ATS for the devices in SATC table
iommu/vt-d: Remove unused function intel_svm_capable()
iommu/vt-d: Add missing "__init" for rmrr_sanity_check()
iommu/vt-d: Move intel_iommu_ops to header file
iommu/vt-d: Fix indentation of goto labels
iommu/vt-d: Remove unnecessary prototypes
iommu/vt-d: Remove unnecessary includes
iommu/vt-d: Remove DEFER_DEVICE_DOMAIN_INFO
iommu/vt-d: Remove domain and devinfo mempool
iommu/vt-d: Remove iova_cache_get/put()
iommu/vt-d: Remove finding domain in dmar_insert_one_dev_info()
iommu/vt-d: Remove intel_iommu::domains
iommu/mediatek: Always tlb_flush_all when each PM resume
iommu/mediatek: Add tlb_lock in tlb_flush_all
iommu/mediatek: Remove the power status checking in tlb flush all
...
Allocate and set the per-device iommu private data during iommu device
probe. This makes the per-device iommu private data always available
during iommu_probe_device() and iommu_release_device(). With this changed,
the dummy DEFER_DEVICE_DOMAIN_INFO pointer could be removed. The wrappers
for getting the private data and domain are also cleaned.
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Link: https://lore.kernel.org/r/20220214025704.3184654-1-baolu.lu@linux.intel.com
Link: https://lore.kernel.org/r/20220301020159.633356-6-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
The guest pasid related callbacks are not called in the tree. Remove them
to avoid dead code.
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Link: https://lore.kernel.org/r/20220216025249.3459465-2-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
PASIDs are process-wide. It was attempted to use refcounted PASIDs to
free them when the last thread drops the refcount. This turned out to
be complex and error prone. Given the fact that the PASID space is 20
bits, which allows up to 1M processes to have a PASID associated
concurrently, PASID resource exhaustion is not a realistic concern.
Therefore, it was decided to simplify the approach and stick with lazy
on demand PASID allocation, but drop the eager free approach and make an
allocated PASID's lifetime bound to the lifetime of the process.
Get rid of the refcounting mechanisms and replace/rename the interfaces
to reflect this new approach.
[ bp: Massage commit message. ]
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Joerg Roedel <jroedel@suse.de>
Link: https://lore.kernel.org/r/20220207230254.3342514-6-fenghua.yu@intel.com
update_pasid() and its call chain are currently unused in the tree because
Thomas disabled the ENQCMD feature. The feature will be re-enabled shortly
using a different approach and update_pasid() and its call chain will not
be used in the new approach.
Remove the useless functions.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/r/20210920192349.2602141-1-fenghua.yu@intel.com
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Link: https://lore.kernel.org/r/20211014053839.727419-8-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
pasid_mutex and dev->iommu->param->lock are held while unbinding mm is
flushing IO page fault workqueue and waiting for all page fault works to
finish. But an in-flight page fault work also need to hold the two locks
while unbinding mm are holding them and waiting for the work to finish.
This may cause an ABBA deadlock issue as shown below:
idxd 0000:00:0a.0: unbind PASID 2
======================================================
WARNING: possible circular locking dependency detected
5.14.0-rc7+ #549 Not tainted [ 186.615245] ----------
dsa_test/898 is trying to acquire lock:
ffff888100d854e8 (¶m->lock){+.+.}-{3:3}, at:
iopf_queue_flush_dev+0x29/0x60
but task is already holding lock:
ffffffff82b2f7c8 (pasid_mutex){+.+.}-{3:3}, at:
intel_svm_unbind+0x34/0x1e0
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #2 (pasid_mutex){+.+.}-{3:3}:
__mutex_lock+0x75/0x730
mutex_lock_nested+0x1b/0x20
intel_svm_page_response+0x8e/0x260
iommu_page_response+0x122/0x200
iopf_handle_group+0x1c2/0x240
process_one_work+0x2a5/0x5a0
worker_thread+0x55/0x400
kthread+0x13b/0x160
ret_from_fork+0x22/0x30
-> #1 (¶m->fault_param->lock){+.+.}-{3:3}:
__mutex_lock+0x75/0x730
mutex_lock_nested+0x1b/0x20
iommu_report_device_fault+0xc2/0x170
prq_event_thread+0x28a/0x580
irq_thread_fn+0x28/0x60
irq_thread+0xcf/0x180
kthread+0x13b/0x160
ret_from_fork+0x22/0x30
-> #0 (¶m->lock){+.+.}-{3:3}:
__lock_acquire+0x1134/0x1d60
lock_acquire+0xc6/0x2e0
__mutex_lock+0x75/0x730
mutex_lock_nested+0x1b/0x20
iopf_queue_flush_dev+0x29/0x60
intel_svm_drain_prq+0x127/0x210
intel_svm_unbind+0xc5/0x1e0
iommu_sva_unbind_device+0x62/0x80
idxd_cdev_release+0x15a/0x200 [idxd]
__fput+0x9c/0x250
____fput+0xe/0x10
task_work_run+0x64/0xa0
exit_to_user_mode_prepare+0x227/0x230
syscall_exit_to_user_mode+0x2c/0x60
do_syscall_64+0x48/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
other info that might help us debug this:
Chain exists of:
¶m->lock --> ¶m->fault_param->lock --> pasid_mutex
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(pasid_mutex);
lock(¶m->fault_param->lock);
lock(pasid_mutex);
lock(¶m->lock);
*** DEADLOCK ***
2 locks held by dsa_test/898:
#0: ffff888100cc1cc0 (&group->mutex){+.+.}-{3:3}, at:
iommu_sva_unbind_device+0x53/0x80
#1: ffffffff82b2f7c8 (pasid_mutex){+.+.}-{3:3}, at:
intel_svm_unbind+0x34/0x1e0
stack backtrace:
CPU: 2 PID: 898 Comm: dsa_test Not tainted 5.14.0-rc7+ #549
Hardware name: Intel Corporation Kabylake Client platform/KBL S
DDR4 UD IMM CRB, BIOS KBLSE2R1.R00.X050.P01.1608011715 08/01/2016
Call Trace:
dump_stack_lvl+0x5b/0x74
dump_stack+0x10/0x12
print_circular_bug.cold+0x13d/0x142
check_noncircular+0xf1/0x110
__lock_acquire+0x1134/0x1d60
lock_acquire+0xc6/0x2e0
? iopf_queue_flush_dev+0x29/0x60
? pci_mmcfg_read+0xde/0x240
__mutex_lock+0x75/0x730
? iopf_queue_flush_dev+0x29/0x60
? pci_mmcfg_read+0xfd/0x240
? iopf_queue_flush_dev+0x29/0x60
mutex_lock_nested+0x1b/0x20
iopf_queue_flush_dev+0x29/0x60
intel_svm_drain_prq+0x127/0x210
? intel_pasid_tear_down_entry+0x22e/0x240
intel_svm_unbind+0xc5/0x1e0
iommu_sva_unbind_device+0x62/0x80
idxd_cdev_release+0x15a/0x200
pasid_mutex protects pasid and svm data mapping data. It's unnecessary
to hold pasid_mutex while flushing the workqueue. To fix the deadlock
issue, unlock pasid_pasid during flushing the workqueue to allow the works
to be handled.
Fixes: d5b9e4bfe0 ("iommu/vt-d: Report prq to io-pgfault framework")
Reported-and-tested-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Link: https://lore.kernel.org/r/20210826215918.4073446-1-fenghua.yu@intel.com
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Link: https://lore.kernel.org/r/20210828070622.2437559-3-baolu.lu@linux.intel.com
[joro: Removed timing information from kernel log messages]
Signed-off-by: Joerg Roedel <jroedel@suse.de>
The mm->pasid will be used in intel_svm_free_pasid() after load_pasid()
during unbinding mm. Clearing it in load_pasid() will cause PASID cannot
be freed in intel_svm_free_pasid().
Additionally mm->pasid was updated already before load_pasid() during pasid
allocation. No need to update it again in load_pasid() during binding mm.
Don't update mm->pasid to avoid the issues in both binding mm and unbinding
mm.
Fixes: 4048377414 ("iommu/vt-d: Use iommu_sva_alloc(free)_pasid() helpers")
Reported-and-tested-by: Dave Jiang <dave.jiang@intel.com>
Co-developed-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Link: https://lore.kernel.org/r/20210826215918.4073446-1-fenghua.yu@intel.com
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Link: https://lore.kernel.org/r/20210828070622.2437559-2-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
The minimum per-IOMMU PRQ queue size is one 4K page, this is more entries
than the hardcoded limit of 32 in the current VT-d code. Some devices can
support up to 512 outstanding PRQs but underutilized by this limit of 32.
Although, 32 gives some rough fairness when multiple devices share the same
IOMMU PRQ queue, but far from optimal for customized use case. This extends
the per-IOMMU PRQ queue size to four 4K pages and let the devices have as
many outstanding page requests as they can.
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Link: https://lore.kernel.org/r/20210720013856.4143880-1-baolu.lu@linux.intel.com
Link: https://lore.kernel.org/r/20210818134852.1847070-7-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
A PASID reference is increased whenever a device is bound to an mm (and
its PASID) successfully (i.e. the device's sdev user count is increased).
But the reference is not dropped every time the device is unbound
successfully from the mm (i.e. the device's sdev user count is decreased).
The reference is dropped only once by calling intel_svm_free_pasid() when
there isn't any device bound to the mm. intel_svm_free_pasid() drops the
reference and only frees the PASID on zero reference.
Fix the issue by dropping the PASID reference and freeing the PASID when
no reference on successful unbinding the device by calling
intel_svm_free_pasid() .
Fixes: 4048377414 ("iommu/vt-d: Use iommu_sva_alloc(free)_pasid() helpers")
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Link: https://lore.kernel.org/r/20210813181345.1870742-1-fenghua.yu@intel.com
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Link: https://lore.kernel.org/r/20210817124321.1517985-2-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Replace a couple of calls to memcpy() with simple assignments in order
to fix the following out-of-bounds warning:
drivers/iommu/intel/svm.c:1198:4: warning: 'memcpy' offset [25, 32] from
the object at 'desc' is out of the bounds of referenced subobject
'qw2' with type 'long long unsigned int' at offset 16 [-Warray-bounds]
The problem is that the original code is trying to copy data into a
couple of struct members adjacent to each other in a single call to
memcpy(). This causes a legitimate compiler warning because memcpy()
overruns the length of &desc.qw2 and &resp.qw2, respectively.
This helps with the ongoing efforts to globally enable -Warray-bounds
and get us closer to being able to tighten the FORTIFY_SOURCE routines
on memcpy().
Link: https://github.com/KSPP/linux/issues/109
Signed-off-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Link: https://lore.kernel.org/r/20210414201403.GA392764@embeddedor
Link: https://lore.kernel.org/r/20210610020115.1637656-18-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>