This patch is for bugzilla bug 283162, which uncovered a number of
bugs pertaining to writing to files that have the journaled bit on.
These bugs happen most often when writing to the meta_fs because
the files are always journaled. So operations like gfs2_grow were
particularly vulnerable, although many of the problems could be
recreated with normal files after setting the journaled bit on.
The problems fixed are:
-GFS2 wasn't ever writing unstuffed journaled data blocks to their
in-place location on disk. Now it does.
-If you unmounted too quickly after doing IO to a journaled file,
GFS2 was crashing because you would discard a buffer whose bufdata
was still on the active items list. GFS2 now deals with this
gracefully.
-GFS2 was losing track of the bufdata for journaled data blocks,
and it wasn't getting freed, causing an error when you tried to
unmount the module. GFS2 now frees all the bufdata structures.
-There was a memory corruption occurring because GFS2 wrote
twice as many log entries for journaled buffers.
-It was occasionally trying to write journal headers in buffers
that weren't currently mapped.
Signed-off-by: Bob Peterson <rpeterso@redhat.com>
Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This is a patch for the first three issues of RHBZ #238162
The first issue is that when you allocate a new page for a file, it will not
start off uptodate. This makes sense, since you haven't written anything to that
part of the file yet. Unfortunately, gfs2_pin() checks to make sure that the
buffers are uptodate. The solution to this is to mark the buffers uptodate in
gfs2_commit_write(), after they have been zeroed out and have the data written
into them. I'm pretty confident with this fix, although it's not completely
obvious that there is no problem with marking the buffers uptodate here.
The second issue is simply that you can try to pin a data buffer that is already
on the incore log, and thus, already pinned. This patch checks to see if this
buffer is already on the log, and exits databuf_lo_add() if it is, just like
buf_lo_add() does.
The third issue is that gfs2_log_flush() doesn't do it's block accounting
correctly. Both metadata and journaled data are logged, but gfs2_log_flush()
only compares the number of metadata blocks with the number of blocks to commit
to the ondisk journal. This patch also counts the journaled data blocks.
Signed-off-by: Benjamin Marzinski <bmarzins@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
The number of blocks which we reserve in the log at the start of each
transaction needs to depends upon the block size since the overhead is
related to the number of "pointers" which can be fitted into a single
block.
This relates to Red Hat bz #240435
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Fix a printk format warning in fs/gfs2/log.c:
fs/gfs2/log.c:322: warning: format '%llu' expects type 'long long unsigned int', but argument 3 has type 'sector_t'
Signed-off-by: Ryusuke Konishi <ryusuke@osrg.net>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This fixes a bug which resulted in poor performance due to flushing
the journal too often. The code path in question was via the inode_go_sync()
function in glops.c. The solution is not to flush the journal immediately
when inodes are ejected from memory, but batch up the work for glockd to
deal with later on. This means that glocks may now live on beyond the end of
the lifetime of their inodes (but not very much longer in the normal case).
Also fixed in this patch is a bug (which was hidden by the bug mentioned above) in
calculation of the number of free journal blocks.
The gfs2_logd process has been altered to be more responsive to the journal
filling up. We now wake it up when the number of uncommitted journal blocks
has reached the threshold level rather than trying to flush directly at the
end of each transaction. This again means doing fewer, but larger, log
flushes in general.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This fix means that bmap will map extents of the length requested
by the VFS rather than guessing at it, or just mapping one block
at a time. The other callers of gfs2_block_map are audited to ensure
they send the correct max extent lengths (i.e. set bh->b_size correctly).
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
The log lock needs to be held when manipulating the counter
for the number of free journal blocks.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This moves the logging code from meta_io.c into log.c and glops.c. As a
result the routines can now be static and all the logging code is together
in log.c, leaving meta_io.c with just metadata i/o code in it.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This is an attempt to fix Red Hat bz 204364. I don't hit it all
the time, but with these changes, running postmark which used to
trigger it on a regular basis no longer appears to. So I'm not
saying that its 100% certain that its fixed, but it does look
promising at the moment.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
lm_interface.h has a few out of the tree clients such as GFS1
and userland tools.
Right now, these clients keeps a copy of the file in their build tree
that can go out of sync.
Move lm_interface.h to include/linux, export it to userland and
clean up fs/gfs2 to use the new location.
Signed-off-by: Fabio M. Di Nitto <fabbione@ubuntu.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This is a tidy up of the GFS2 bmap code. The main change is that the
bh is passed to gfs2_block_map allowing the flags to be set directly
rather than having to repeat that code several times in ops_address.c.
At the same time, the extent mapping code from gfs2_extent_map has
been moved into gfs2_block_map. This allows all calls to gfs2_block_map
to map extents in the case that no allocation is taking place. As a
result reads and non-allocating writes should be faster. A quick test
with postmark appears to support this.
There is a limit on the number of blocks mapped in a single bmap
call in that it will only ever map blocks which are pointed to
from a single pointer block. So in other words, it will never try
to do additional i/o in order to satisfy read-ahead. The maximum
number of blocks is thus somewhat less than 512 (the GFS2 4k block
size minus the header divided by sizeof(u64)). I've further limited
the mapping of "normal" blocks to 32 blocks (to avoid extra work)
since readpages() will currently read a maximum of 32 blocks ahead (128k).
Some further work will probably be needed to set a suitable value
for DIO as well, but for now thats left at the maximum 512 (see
ops_address.c:gfs2_get_block_direct).
There is probably a lot more that can be done to improve bmap for GFS2,
but this is a good first step.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Based upon previous feedback from lkml and also removing some
commented out debugging which is no longer needed.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
As per Jan Engelhardt's comments, removed some unused code and
removed some brackets which were not required.
Cc: Jan Engelhardt <jengelh@linux01.gwdg.de>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This makes all fixed size types have consistent names.
Cc: Jan Engelhardt <jengelh@linux01.gwdg.de>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
As per comments from Jan Engelhardt <jengelh@linux01.gwdg.de> this
updates the copyright message to say "version" in full rather than
"v.2". Also incore.h has been updated to remove forward structure
declarations which are not required.
The gfs2_quota_lvb structure has now had endianess annotations added
to it. Also quota.c has been updated so that we now store the
lvb data locally in endian independant format to avoid needing
a structure in host endianess too. As a result the endianess
conversions are done as required at various points and thus the
conversion routines in lvb.[ch] are no longer required. I've
moved the one remaining constant in lvb.h thats used into lm.h
and removed the unused lvb.[ch].
I have not changed the HIF_ constants. That is left to a later patch
which I hope will unify the gh_flags and gh_iflags fields of the
struct gfs2_holder.
Cc: Jan Engelhardt <jengelh@linux01.gwdg.de>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
log_refund() incorrectly assumed that if a transaction had been touched, it
always committed buffers to the incore log. Thus, when you got around to
flushing the log, you would need one more block than you committed, to account
for the header. So it automatically set reserved to 1, which had the effect of
making sdp->sd_log_blks_reserved one greater when you got to gfs2_log_flush().
However, if you don't actually commit anything to the incore log between
flushes, you don't need the header, because you aren't writing anything out.
With this patch, log_refund() only increments reservered to account for the
header if something has been committed since the last flush.
Signed-off-by: Benjamin E. Marzinski <bmarzins@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Mmapped files were able to trigger a lock ordering bug. Private
maps do not need to take the glock so early on. Shared maps do
unfortunately, however we can get around that by adding a flag
into the flags for the struct gfs2_file. This only works because
we are taking an exclusive lock at this point, so we know that
nobody else can be racing with us.
Fixes Red Hat bugzilla: #201196
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Fix an endian coversion bug in log.c spotted by Kevin Anderson.
Cc: Kevin Anderson <kanderso@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This patch fixes the way we have been dealing with unlinked,
but still open files. It removes all limits (other than memory
for inodes, as per every other filesystem) on numbers of these
which we can support on GFS2. It also means that (like other
fs) its the responsibility of the last process to close the file
to deallocate the storage, rather than the person who did the
unlinking. Note that with GFS2, those two events might take place
on different nodes.
Also there are a number of other changes:
o We use the Linux inode subsystem as it was intended to be
used, wrt allocating GFS2 inodes
o The Linux inode cache is now the point which we use for
local enforcement of only holding one copy of the inode in
core at once (previous to this we used the glock layer).
o We no longer use the unlinked "special" file. We just ignore it
completely. This makes unlinking more efficient.
o We now use the 4th block allocation state. The previously unused
state is used to track unlinked but still open inodes.
o gfs2_inoded is no longer needed
o Several fields are now no longer needed (and removed) from the in
core struct gfs2_inode
o Several fields are no longer needed (and removed) from the in core
superblock
There are a number of future possible optimisations and clean ups
which have been made possible by this patch.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
We no longer use semaphores, everything has been converted to
mutex or rwsem, so we don't need to include this header any more.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This adds readpages support (and also corrects a small bug in
the readpage error path at the same time). Hopefully this will
improve performance by allowing GFS to submit larger lumps of
I/O at a time.
In order to simplify the setting of BH_Boundary, it currently gets
set when we hit the end of a indirect pointer block. There is
always a boundary at this point with the current allocation code.
It doesn't get all the boundaries right though, so there is still
room for improvement in this.
See comments in fs/gfs2/ops_address.c for further information about
readpages with GFS2.
Signed-off-by: Steven Whitehouse
At some stage, a mutex was added to gfs2_glock_put() without
checking all its call sites. Two of them were called from
under a spinlock causing random delays at various points and
crashes.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
A small update to the journaling code to change the way that
the "extra" blocks are accounted for in the journal. These are
used at a rate of one per 503 metadata blocks or one per 251
journaled data blocks (or just one if the total number of journaled
blocks in the transaction is smaller). Since we are using them at
two different rates the old method of accounting for them no longer
works and we count them up as required.
Since the "per transaction" accounting can't handle this (there is no
fixed number of header blocks per transaction) we have to account for
it in the general journal code. We now require that each transaction
reserves more blocks than it actually needs to take account of the
possible extra blocks.
Also a final fix to dir.c to ensure that all ref counts are handled
correctly.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
The last patch missed some other instances of incorrect ref counting,
this fixes all of those too.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This fixes a ref count bug that sometimes showed up a umount time
(causing it to hang) but it otherwise mostly harmless. At the same
time there are some clean ups including making the log operations
structures const, moving a memory allocation so that its not done
in the fast path of checking to see if there is an outstanding
transaction related to a particular glock.
Removes the sd_log_wrap varaible which was updated, but never actually
used anywhere. Updates the gfs2 ioctl() to run without the kernel lock
(which it never needed anyway). Removes the "invalidate inodes" loop
from GFS2's put_super routine. This is done in kill super anyway so
we don't need to do it here. The loop was also bogus in that if there
are any inodes "stuck" at this point its a bug and we need to know
about it rather than hide it by hanging forever.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Replace the lock_for_trans()/lock_for_flush() functions with an rwsem.
In fact the sd_log_flush_lock becomes an rwsem (the write part of it)
and is extended slightly to cover everything that the lock_for_flush()
used to cover. The read part of the lock is instead of lock_for_trans().
This corrects the races in the original code and reduces the code size.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This reduces the size of the directory code by about 3k and gets
readdir() to use the functions which were introduced in the previous
directory code update.
Two memory allocations are merged into one. Eliminates zeroing of some
buffers which were never used before they were initialised by
other data.
There is still scope for further improvement in the directory code.
On the logging side, a hand created mutex has been replaced by a
standard Linux mutex in the log allocation code.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Fix a bug I introduced earlier with a kfree() and usage of
a structure in the wrong order. Also try and get the counts
of the journaled data buffers "more correct". Still some work
to do in this area though.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
As suggested by Pekka Enberg <penberg@cs.helsinki.fi>.
The DIV_RU macro is renamed DIV_ROUND_UP and and moved to kernel.h
The other macros are gone from gfs2.h as (although not requested
by Pekka Enberg) are a number of included header file which are now
included individually. The inode number comparison function is
now an inline function.
The DT2IF and IF2DT may be addressed in a future patch.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
As well as a number of minor bug fixes, this patch changes GFS
to use mutices rather than semaphores. This results in better
information in case there are any locking problems.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
Umount is now working correctly again. The bug was due to
not getting an extra ref count when mounting the fs. We
should have bumped it by two (once for the internal pointer
to the root inode from the super block and once for the
inode hanging off the dcache entry for root).
Also this patch tidys up the code dealing with looking up
and creating inodes. We now pass Linux inodes (with gfs2_inodes
attached) rather than the other way around and this reduces code
duplication in various places.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This is a very large patch, with a few still to be resolved issues
so you might want to check out the previous head of the tree since
this is known to be unstable. Fixes for the various bugs will be
forthcoming shortly.
This patch removes the special data format which has been used
up till now for journaled data files. Directories still retain the
old format so that they will remain on disk compatible with earlier
releases. As a result you can now do the following with journaled
data files:
1) mmap them
2) export them over NFS
3) convert to/from normal files whenever you want to (the zero length
restriction is gone)
In addition the level at which GFS' locking is done has changed for all
files (since they all now use the page cache) such that the locking is
done at the page cache level rather than the level of the fs operations.
This should mean that things like loopback mounts and other things which
touch the page cache directly should now work.
Current known issues:
1. There is a lock mode inversion problem related to the resource
group hold function which needs to be resolved.
2. Any significant amount of I/O causes an oops with an offset of hex 320
(NULL pointer dereference) which appears to be related to a journaled data
buffer appearing on a list where it shouldn't be.
3. Direct I/O writes are disabled for the time being (will reappear later)
4. There is probably a deadlock between the page lock and GFS' locks under
certain combinations of mmap and fs operation I/O.
5. Issue relating to ref counting on internally used inodes causes a hang
on umount (discovered before this patch, and not fixed by it)
6. One part of the directory metadata is different from GFS1 and will need
to be resolved before next release.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
I'd like to be rid of these memory allocations entirely so far as is
possible. For the moment though, mark them GFP_NOFS to make them less
harmful.
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>
This patch contains all the core files for GFS2.
Signed-off-by: David Teigland <teigland@redhat.com>
Signed-off-by: Steven Whitehouse <swhiteho@redhat.com>