mirror of
https://mirrors.bfsu.edu.cn/git/linux.git
synced 2024-12-13 05:54:23 +08:00
8c1b787938
258 Commits
Author | SHA1 | Message | Date | |
---|---|---|---|---|
Kemeng Shi
|
4b5bbc39d7 |
writeback: support retrieving per group debug writeback stats of bdi
Add /sys/kernel/debug/bdi/xxx/wb_stats to show per group writeback stats
of bdi.
Following domain hierarchy is tested:
global domain (320G)
/ \
cgroup domain1(10G) cgroup domain2(10G)
| |
bdi wb1 wb2
/* per wb writeback info of bdi is collected */
cat wb_stats
WbCgIno: 1
WbWriteback: 0 kB
WbReclaimable: 0 kB
WbDirtyThresh: 0 kB
WbDirtied: 0 kB
WbWritten: 0 kB
WbWriteBandwidth: 102400 kBps
b_dirty: 0
b_io: 0
b_more_io: 0
b_dirty_time: 0
state: 1
WbCgIno: 4091
WbWriteback: 1792 kB
WbReclaimable: 820512 kB
WbDirtyThresh: 6004692 kB
WbDirtied:
|
||
Kemeng Shi
|
e32e27009f |
writeback: collect stats of all wb of bdi in bdi_debug_stats_show
Patch series "Improve visibility of writeback", v5. This series tries to improve visilibity of writeback. Patch 1 make /sys/kernel/debug/bdi/xxx/stats show writeback info of whole bdi instead of only writeback info in root cgroup. Patch 2 add a new debug file /sys/kernel/debug/bdi/xxx/wb_stats to show per wb writeback info. Patch 3 add wb_monitor.py to monitor basic writeback info of running system, more info could be added on demand. Patch 4 is a random cleanup. More details can be found in respective patches. Following domain hierarchy is tested: global domain (320G) / \ cgroup domain1(10G) cgroup domain2(10G) | | bdi wb1 wb2 /* all writeback info of bdi is successfully collected */ cat stats BdiWriteback: 4704 kB BdiReclaimable: 1294496 kB BdiDirtyThresh: 204208088 kB DirtyThresh: 195259944 kB BackgroundThresh: 32503588 kB BdiDirtied: 48519296 kB BdiWritten: 47225696 kB BdiWriteBandwidth: 1173892 kBps b_dirty: 1 b_io: 0 b_more_io: 1 b_dirty_time: 0 bdi_list: 1 state: 1 /* per wb writeback info of bdi is collected */ cat /sys/kernel/debug/bdi/252:16/wb_stats WbCgIno: 1 WbWriteback: 0 kB WbReclaimable: 0 kB WbDirtyThresh: 0 kB WbDirtied: 0 kB WbWritten: 0 kB WbWriteBandwidth: 102400 kBps b_dirty: 0 b_io: 0 b_more_io: 0 b_dirty_time: 0 state: 1 WbCgIno: 4208 WbWriteback: 59808 kB WbReclaimable: 676480 kB WbDirtyThresh: 6004624 kB WbDirtied: 23348192 kB WbWritten: 22614592 kB WbWriteBandwidth: 593204 kBps b_dirty: 1 b_io: 1 b_more_io: 0 b_dirty_time: 0 state: 7 WbCgIno: 4249 WbWriteback: 144256 kB WbReclaimable: 432096 kB WbDirtyThresh: 6004344 kB WbDirtied: 25727744 kB WbWritten: 25154752 kB WbWriteBandwidth: 577904 kBps b_dirty: 0 b_io: 1 b_more_io: 0 b_dirty_time: 0 state: 7 The wb_monitor.py script output is as following: ./wb_monitor.py 252:16 -c writeback reclaimable dirtied written avg_bw 252:16_1 0 0 0 0 102400 252:16_4284 672 820064 9230368 8410304 685612 252:16_4325 896 819840 10491264 9671648 652348 252:16 1568 1639904 19721632 18081952 1440360 writeback reclaimable dirtied written avg_bw 252:16_1 0 0 0 0 102400 252:16_4284 672 820064 9230368 8410304 685612 252:16_4325 896 819840 10491264 9671648 652348 252:16 1568 1639904 19721632 18081952 1440360 ... This patch (of 5): /sys/kernel/debug/bdi/xxx/stats is supposed to show writeback information of whole bdi, but only writeback information of bdi in root cgroup is collected. So writeback information in non-root cgroup are missing now. To be more specific, considering following case: /* create writeback cgroup */ cd /sys/fs/cgroup echo "+memory +io" > cgroup.subtree_control mkdir group1 cd group1 echo $$ > cgroup.procs /* do writeback in cgroup */ fio -name test -filename=/dev/vdb ... /* get writeback info of bdi */ cat /sys/kernel/debug/bdi/xxx/stats The cat result unexpectedly implies that there is no writeback on target bdi. Fix this by collecting stats of all wb in bdi instead of only wb in root cgroup. Following domain hierarchy is tested: global domain (320G) / \ cgroup domain1(10G) cgroup domain2(10G) | | bdi wb1 wb2 /* all writeback info of bdi is successfully collected */ cat stats BdiWriteback: 2912 kB BdiReclaimable: 1598464 kB BdiDirtyThresh: 167479028 kB DirtyThresh: 195038532 kB BackgroundThresh: 32466728 kB BdiDirtied: 19141696 kB BdiWritten: 17543456 kB BdiWriteBandwidth: 1136172 kBps b_dirty: 2 b_io: 0 b_more_io: 1 b_dirty_time: 0 bdi_list: 1 state: 1 Link: https://lkml.kernel.org/r/20240423034643.141219-1-shikemeng@huaweicloud.com Link: https://lkml.kernel.org/r/20240423034643.141219-2-shikemeng@huaweicloud.com Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com> Acked-by: Tejun Heo <tj@kernel.org> Cc: Brian Foster <bfoster@redhat.com> Cc: David Howells <dhowells@redhat.com> Cc: David Sterba <dsterba@suse.com> Cc: Jan Kara <jack@suse.cz> Cc: Mateusz Guzik <mjguzik@gmail.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: SeongJae Park <sj@kernel.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Kefeng Wang
|
85109a8a9a |
mm: backing-dev: use group allocation/free of per-cpu counters API
Use group allocation/free of per-cpu counters api to accelerate wb_init/exit() and simplify code. Link: https://lkml.kernel.org/r/20240325035635.49342-1-wangkefeng.wang@huawei.com Signed-off-by: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Dennis Zhou <dennis@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Linus Torvalds
|
7ea65c89d8 |
vfs-6.9.misc
-----BEGIN PGP SIGNATURE----- iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZem3wQAKCRCRxhvAZXjc otRMAQDeo8qsuuIAcS2KUicKqZR5yMVvrY9r4sQzf7YRcJo5HQD+NQXkKwQuv1VO OUeScsic/+I+136AgdjWnlEYO5dp0go= =4WKU -----END PGP SIGNATURE----- Merge tag 'vfs-6.9.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs Pull misc vfs updates from Christian Brauner: "Misc features, cleanups, and fixes for vfs and individual filesystems. Features: - Support idmapped mounts for hugetlbfs. - Add RWF_NOAPPEND flag for pwritev2(). This allows us to fix a bug where the passed offset is ignored if the file is O_APPEND. The new flag allows a caller to enforce that the offset is honored to conform to posix even if the file was opened in append mode. - Move i_mmap_rwsem in struct address_space to avoid false sharing between i_mmap and i_mmap_rwsem. - Convert efs, qnx4, and coda to use the new mount api. - Add a generic is_dot_dotdot() helper that's used by various filesystems and the VFS code instead of open-coding it multiple times. - Recently we've added stable offsets which allows stable ordering when iterating directories exported through NFS on e.g., tmpfs filesystems. Originally an xarray was used for the offset map but that caused slab fragmentation issues over time. This switches the offset map to the maple tree which has a dense mode that handles this scenario a lot better. Includes tests. - Finally merge the case-insensitive improvement series Gabriel has been working on for a long time. This cleanly propagates case insensitive operations through ->s_d_op which in turn allows us to remove the quite ugly generic_set_encrypted_ci_d_ops() operations. It also improves performance by trying a case-sensitive comparison first and then fallback to case-insensitive lookup if that fails. This also fixes a bug where overlayfs would be able to be mounted over a case insensitive directory which would lead to all sort of odd behaviors. Cleanups: - Make file_dentry() a simple accessor now that ->d_real() is simplified because of the backing file work we did the last two cycles. - Use the dedicated file_mnt_idmap helper in ntfs3. - Use smp_load_acquire/store_release() in the i_size_read/write helpers and thus remove the hack to handle i_size reads in the filemap code. - The SLAB_MEM_SPREAD is a nop now. Remove it from various places in fs/ - It's no longer necessary to perform a second built-in initramfs unpack call because we retain the contents of the previous extraction. Remove it. - Now that we have removed various allocators kfree_rcu() always works with kmem caches and kmalloc(). So simplify various places that only use an rcu callback in order to handle the kmem cache case. - Convert the pipe code to use a lockdep comparison function instead of open-coding the nesting making lockdep validation easier. - Move code into fs-writeback.c that was located in a header but can be made static as it's only used in that one file. - Rewrite the alignment checking iterators for iovec and bvec to be easier to read, and also significantly more compact in terms of generated code. This saves 270 bytes of text on x86-64 (with clang-18) and 224 bytes on arm64 (with gcc-13). In profiles it also saves a bit of time for the same workload. - Switch various places to use KMEM_CACHE instead of kmem_cache_create(). - Use inode_set_ctime_to_ts() in inode_set_ctime_current() - Use kzalloc() in name_to_handle_at() to avoid kernel infoleak. - Various smaller cleanups for eventfds. Fixes: - Fix various comments and typos, and unneeded initializations. - Fix stack allocation hack for clang in the select code. - Improve dump_mapping() debug code on a best-effort basis. - Fix build errors in various selftests. - Avoid wrap-around instrumentation in various places. - Don't allow user namespaces without an idmapping to be used for idmapped mounts. - Fix sysv sb_read() call. - Fix fallback implementation of the get_name() export operation" * tag 'vfs-6.9.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (70 commits) hugetlbfs: support idmapped mounts qnx4: convert qnx4 to use the new mount api fs: use inode_set_ctime_to_ts to set inode ctime to current time libfs: Drop generic_set_encrypted_ci_d_ops ubifs: Configure dentry operations at dentry-creation time f2fs: Configure dentry operations at dentry-creation time ext4: Configure dentry operations at dentry-creation time libfs: Add helper to choose dentry operations at mount-time libfs: Merge encrypted_ci_dentry_ops and ci_dentry_ops fscrypt: Drop d_revalidate once the key is added fscrypt: Drop d_revalidate for valid dentries during lookup fscrypt: Factor out a helper to configure the lookup dentry ovl: Always reject mounting over case-insensitive directories libfs: Attempt exact-match comparison first during casefolded lookup efs: remove SLAB_MEM_SPREAD flag usage jfs: remove SLAB_MEM_SPREAD flag usage minix: remove SLAB_MEM_SPREAD flag usage openpromfs: remove SLAB_MEM_SPREAD flag usage proc: remove SLAB_MEM_SPREAD flag usage qnx6: remove SLAB_MEM_SPREAD flag usage ... |
||
Jan Kara
|
f814bdda77 |
blk-wbt: Fix detection of dirty-throttled tasks
The detection of dirty-throttled tasks in blk-wbt has been subtly broken
since its beginning in 2016. Namely if we are doing cgroup writeback and
the throttled task is not in the root cgroup, balance_dirty_pages() will
set dirty_sleep for the non-root bdi_writeback structure. However
blk-wbt checks dirty_sleep only in the root cgroup bdi_writeback
structure. Thus detection of recently throttled tasks is not working in
this case (we noticed this when we switched to cgroup v2 and suddently
writeback was slow).
Since blk-wbt has no easy way to get to proper bdi_writeback and
furthermore its intention has always been to work on the whole device
rather than on individual cgroups, just move the dirty_sleep timestamp
from bdi_writeback to backing_dev_info. That fixes the checking for
recently throttled task and saves memory for everybody as a bonus.
CC: stable@vger.kernel.org
Fixes:
|
||
Kemeng Shi
|
12f7900c57 |
writeback: move wb_wakeup_delayed defination to fs-writeback.c
The wb_wakeup_delayed is only used in fs-writeback.c. Move it to fs-writeback.c after defination of wb_wakeup and make it static. Signed-off-by: Kemeng Shi <shikemeng@huaweicloud.com> Link: https://lore.kernel.org/r/20240118203339.764093-1-shikemeng@huaweicloud.com Reviewed-by: Jan Kara <jack@suse.cz> Signed-off-by: Christian Brauner <brauner@kernel.org> |
||
Jinliang Zheng
|
9af7c7426c |
writeback: remove redundant checks for root memcg
The check for root memcg will be done in wb_get_lookup(), so remove the redundant one to simplify the code. Link: https://lkml.kernel.org/r/20230808084431.1632934-1-alexjlzheng@tencent.com Signed-off-by: Jinliang Zheng <alexjlzheng@tencent.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
ZhangPeng
|
61f2973801 |
mm: remove redundant K() macro definition
Patch series "cleanup with helper macro K()".
Use helper macro K() to improve code readability. No functional
modification involved. Remove redundant K() macro definition.
This patch (of 7):
Since commit
|
||
Ivan Orlov
|
b5665cf936 |
mm: backing-dev: make bdi_class a static const structure
Now that the driver core allows for struct class to be in read-only memory, move the bdi_class structure to be declared at build time placing it into read-only memory, instead of having to be dynamically allocated at load time. Link: https://lkml.kernel.org/r/20230620183314.682822-2-gregkh@linuxfoundation.org Signed-off-by: Ivan Orlov <ivan.orlov0322@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Suggested-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Linus Torvalds
|
7fa8a8ee94 |
- Nick Piggin's "shoot lazy tlbs" series, to improve the peformance of
switching from a user process to a kernel thread. - More folio conversions from Kefeng Wang, Zhang Peng and Pankaj Raghav. - zsmalloc performance improvements from Sergey Senozhatsky. - Yue Zhao has found and fixed some data race issues around the alteration of memcg userspace tunables. - VFS rationalizations from Christoph Hellwig: - removal of most of the callers of write_one_page(). - make __filemap_get_folio()'s return value more useful - Luis Chamberlain has changed tmpfs so it no longer requires swap backing. Use `mount -o noswap'. - Qi Zheng has made the slab shrinkers operate locklessly, providing some scalability benefits. - Keith Busch has improved dmapool's performance, making part of its operations O(1) rather than O(n). - Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd, permitting userspace to wr-protect anon memory unpopulated ptes. - Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive rather than exclusive, and has fixed a bunch of errors which were caused by its unintuitive meaning. - Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature, which causes minor faults to install a write-protected pte. - Vlastimil Babka has done some maintenance work on vma_merge(): cleanups to the kernel code and improvements to our userspace test harness. - Cleanups to do_fault_around() by Lorenzo Stoakes. - Mike Rapoport has moved a lot of initialization code out of various mm/ files and into mm/mm_init.c. - Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for DRM, but DRM doesn't use it any more. - Lorenzo has also coverted read_kcore() and vread() to use iterators and has thereby removed the use of bounce buffers in some cases. - Lorenzo has also contributed further cleanups of vma_merge(). - Chaitanya Prakash provides some fixes to the mmap selftesting code. - Matthew Wilcox changes xfs and afs so they no longer take sleeping locks in ->map_page(), a step towards RCUification of pagefaults. - Suren Baghdasaryan has improved mmap_lock scalability by switching to per-VMA locking. - Frederic Weisbecker has reworked the percpu cache draining so that it no longer causes latency glitches on cpu isolated workloads. - Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig logic. - Liu Shixin has changed zswap's initialization so we no longer waste a chunk of memory if zswap is not being used. - Yosry Ahmed has improved the performance of memcg statistics flushing. - David Stevens has fixed several issues involving khugepaged, userfaultfd and shmem. - Christoph Hellwig has provided some cleanup work to zram's IO-related code paths. - David Hildenbrand has fixed up some issues in the selftest code's testing of our pte state changing. - Pankaj Raghav has made page_endio() unneeded and has removed it. - Peter Xu contributed some rationalizations of the userfaultfd selftests. - Yosry Ahmed has fixed an issue around memcg's page recalim accounting. - Chaitanya Prakash has fixed some arm-related issues in the selftests/mm code. - Longlong Xia has improved the way in which KSM handles hwpoisoned pages. - Peter Xu fixes a few issues with uffd-wp at fork() time. - Stefan Roesch has changed KSM so that it may now be used on a per-process and per-cgroup basis. -----BEGIN PGP SIGNATURE----- iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZEr3zQAKCRDdBJ7gKXxA jlLoAP0fpQBipwFxED0Us4SKQfupV6z4caXNJGPeay7Aj11/kQD/aMRC2uPfgr96 eMG3kwn2pqkB9ST2QpkaRbxA//eMbQY= =J+Dj -----END PGP SIGNATURE----- Merge tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm Pull MM updates from Andrew Morton: - Nick Piggin's "shoot lazy tlbs" series, to improve the peformance of switching from a user process to a kernel thread. - More folio conversions from Kefeng Wang, Zhang Peng and Pankaj Raghav. - zsmalloc performance improvements from Sergey Senozhatsky. - Yue Zhao has found and fixed some data race issues around the alteration of memcg userspace tunables. - VFS rationalizations from Christoph Hellwig: - removal of most of the callers of write_one_page() - make __filemap_get_folio()'s return value more useful - Luis Chamberlain has changed tmpfs so it no longer requires swap backing. Use `mount -o noswap'. - Qi Zheng has made the slab shrinkers operate locklessly, providing some scalability benefits. - Keith Busch has improved dmapool's performance, making part of its operations O(1) rather than O(n). - Peter Xu adds the UFFD_FEATURE_WP_UNPOPULATED feature to userfaultd, permitting userspace to wr-protect anon memory unpopulated ptes. - Kirill Shutemov has changed MAX_ORDER's meaning to be inclusive rather than exclusive, and has fixed a bunch of errors which were caused by its unintuitive meaning. - Axel Rasmussen give userfaultfd the UFFDIO_CONTINUE_MODE_WP feature, which causes minor faults to install a write-protected pte. - Vlastimil Babka has done some maintenance work on vma_merge(): cleanups to the kernel code and improvements to our userspace test harness. - Cleanups to do_fault_around() by Lorenzo Stoakes. - Mike Rapoport has moved a lot of initialization code out of various mm/ files and into mm/mm_init.c. - Lorenzo Stoakes removd vmf_insert_mixed_prot(), which was added for DRM, but DRM doesn't use it any more. - Lorenzo has also coverted read_kcore() and vread() to use iterators and has thereby removed the use of bounce buffers in some cases. - Lorenzo has also contributed further cleanups of vma_merge(). - Chaitanya Prakash provides some fixes to the mmap selftesting code. - Matthew Wilcox changes xfs and afs so they no longer take sleeping locks in ->map_page(), a step towards RCUification of pagefaults. - Suren Baghdasaryan has improved mmap_lock scalability by switching to per-VMA locking. - Frederic Weisbecker has reworked the percpu cache draining so that it no longer causes latency glitches on cpu isolated workloads. - Mike Rapoport cleans up and corrects the ARCH_FORCE_MAX_ORDER Kconfig logic. - Liu Shixin has changed zswap's initialization so we no longer waste a chunk of memory if zswap is not being used. - Yosry Ahmed has improved the performance of memcg statistics flushing. - David Stevens has fixed several issues involving khugepaged, userfaultfd and shmem. - Christoph Hellwig has provided some cleanup work to zram's IO-related code paths. - David Hildenbrand has fixed up some issues in the selftest code's testing of our pte state changing. - Pankaj Raghav has made page_endio() unneeded and has removed it. - Peter Xu contributed some rationalizations of the userfaultfd selftests. - Yosry Ahmed has fixed an issue around memcg's page recalim accounting. - Chaitanya Prakash has fixed some arm-related issues in the selftests/mm code. - Longlong Xia has improved the way in which KSM handles hwpoisoned pages. - Peter Xu fixes a few issues with uffd-wp at fork() time. - Stefan Roesch has changed KSM so that it may now be used on a per-process and per-cgroup basis. * tag 'mm-stable-2023-04-27-15-30' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (369 commits) mm,unmap: avoid flushing TLB in batch if PTE is inaccessible shmem: restrict noswap option to initial user namespace mm/khugepaged: fix conflicting mods to collapse_file() sparse: remove unnecessary 0 values from rc mm: move 'mmap_min_addr' logic from callers into vm_unmapped_area() hugetlb: pte_alloc_huge() to replace huge pte_alloc_map() maple_tree: fix allocation in mas_sparse_area() mm: do not increment pgfault stats when page fault handler retries zsmalloc: allow only one active pool compaction context selftests/mm: add new selftests for KSM mm: add new KSM process and sysfs knobs mm: add new api to enable ksm per process mm: shrinkers: fix debugfs file permissions mm: don't check VMA write permissions if the PTE/PMD indicates write permissions migrate_pages_batch: fix statistics for longterm pin retry userfaultfd: use helper function range_in_vma() lib/show_mem.c: use for_each_populated_zone() simplify code mm: correct arg in reclaim_pages()/reclaim_clean_pages_from_list() fs/buffer: convert create_page_buffers to folio_create_buffers fs/buffer: add folio_create_empty_buffers helper ... |
||
Linus Torvalds
|
556eb8b791 |
Driver core changes for 6.4-rc1
Here is the large set of driver core changes for 6.4-rc1. Once again, a busy development cycle, with lots of changes happening in the driver core in the quest to be able to move "struct bus" and "struct class" into read-only memory, a task now complete with these changes. This will make the future rust interactions with the driver core more "provably correct" as well as providing more obvious lifetime rules for all busses and classes in the kernel. The changes required for this did touch many individual classes and busses as many callbacks were changed to take const * parameters instead. All of these changes have been submitted to the various subsystem maintainers, giving them plenty of time to review, and most of them actually did so. Other than those changes, included in here are a small set of other things: - kobject logging improvements - cacheinfo improvements and updates - obligatory fw_devlink updates and fixes - documentation updates - device property cleanups and const * changes - firwmare loader dependency fixes. All of these have been in linux-next for a while with no reported problems. Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> -----BEGIN PGP SIGNATURE----- iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCZEp7Sw8cZ3JlZ0Brcm9h aC5jb20ACgkQMUfUDdst+ykitQCfamUHpxGcKOAGuLXMotXNakTEsxgAoIquENm5 LEGadNS38k5fs+73UaxV =7K4B -----END PGP SIGNATURE----- Merge tag 'driver-core-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core Pull driver core updates from Greg KH: "Here is the large set of driver core changes for 6.4-rc1. Once again, a busy development cycle, with lots of changes happening in the driver core in the quest to be able to move "struct bus" and "struct class" into read-only memory, a task now complete with these changes. This will make the future rust interactions with the driver core more "provably correct" as well as providing more obvious lifetime rules for all busses and classes in the kernel. The changes required for this did touch many individual classes and busses as many callbacks were changed to take const * parameters instead. All of these changes have been submitted to the various subsystem maintainers, giving them plenty of time to review, and most of them actually did so. Other than those changes, included in here are a small set of other things: - kobject logging improvements - cacheinfo improvements and updates - obligatory fw_devlink updates and fixes - documentation updates - device property cleanups and const * changes - firwmare loader dependency fixes. All of these have been in linux-next for a while with no reported problems" * tag 'driver-core-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (120 commits) device property: make device_property functions take const device * driver core: update comments in device_rename() driver core: Don't require dynamic_debug for initcall_debug probe timing firmware_loader: rework crypto dependencies firmware_loader: Strip off \n from customized path zram: fix up permission for the hot_add sysfs file cacheinfo: Add use_arch[|_cache]_info field/function arch_topology: Remove early cacheinfo error message if -ENOENT cacheinfo: Check cache properties are present in DT cacheinfo: Check sib_leaf in cache_leaves_are_shared() cacheinfo: Allow early level detection when DT/ACPI info is missing/broken cacheinfo: Add arm64 early level initializer implementation cacheinfo: Add arch specific early level initializer tty: make tty_class a static const structure driver core: class: remove struct class_interface * from callbacks driver core: class: mark the struct class in struct class_interface constant driver core: class: make class_register() take a const * driver core: class: mark class_release() as taking a const * driver core: remove incorrect comment for device_create* MIPS: vpe-cmp: remove module owner pointer from struct class usage. ... |
||
Tom Rix
|
f6365881bf |
mm: backing-dev: set variables dev_attr_min,max_bytes storage-class-specifier to static
smatch reports mm/backing-dev.c:266:1: warning: symbol 'dev_attr_min_bytes' was not declared. Should it be static? mm/backing-dev.c:294:1: warning: symbol 'dev_attr_max_bytes' was not declared. Should it be static? These variables are only used in one file so should be static. Link: https://lkml.kernel.org/r/20230408141609.2703647-1-trix@redhat.com Signed-off-by: Tom Rix <trix@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Baokun Li
|
1ba1199ec5 |
writeback, cgroup: fix null-ptr-deref write in bdi_split_work_to_wbs
KASAN report null-ptr-deref: ================================================================== BUG: KASAN: null-ptr-deref in bdi_split_work_to_wbs+0x5c5/0x7b0 Write of size 8 at addr 0000000000000000 by task sync/943 CPU: 5 PID: 943 Comm: sync Tainted: 6.3.0-rc5-next-20230406-dirty #461 Call Trace: <TASK> dump_stack_lvl+0x7f/0xc0 print_report+0x2ba/0x340 kasan_report+0xc4/0x120 kasan_check_range+0x1b7/0x2e0 __kasan_check_write+0x24/0x40 bdi_split_work_to_wbs+0x5c5/0x7b0 sync_inodes_sb+0x195/0x630 sync_inodes_one_sb+0x3a/0x50 iterate_supers+0x106/0x1b0 ksys_sync+0x98/0x160 [...] ================================================================== The race that causes the above issue is as follows: cpu1 cpu2 -------------------------|------------------------- inode_switch_wbs INIT_WORK(&isw->work, inode_switch_wbs_work_fn) queue_rcu_work(isw_wq, &isw->work) // queue_work async inode_switch_wbs_work_fn wb_put_many(old_wb, nr_switched) percpu_ref_put_many ref->data->release(ref) cgwb_release queue_work(cgwb_release_wq, &wb->release_work) // queue_work async &wb->release_work cgwb_release_workfn ksys_sync iterate_supers sync_inodes_one_sb sync_inodes_sb bdi_split_work_to_wbs kmalloc(sizeof(*work), GFP_ATOMIC) // alloc memory failed percpu_ref_exit ref->data = NULL kfree(data) wb_get(wb) percpu_ref_get(&wb->refcnt) percpu_ref_get_many(ref, 1) atomic_long_add(nr, &ref->data->count) atomic64_add(i, v) // trigger null-ptr-deref bdi_split_work_to_wbs() traverses &bdi->wb_list to split work into all wbs. If the allocation of new work fails, the on-stack fallback will be used and the reference count of the current wb is increased afterwards. If cgroup writeback membership switches occur before getting the reference count and the current wb is released as old_wd, then calling wb_get() or wb_put() will trigger the null pointer dereference above. This issue was introduced in v4.3-rc7 (see fix tag1). Both sync_inodes_sb() and __writeback_inodes_sb_nr() calls to bdi_split_work_to_wbs() can trigger this issue. For scenarios called via sync_inodes_sb(), originally commit |
||
Greg Kroah-Hartman
|
1aaba11da9 |
driver core: class: remove module * from class_create()
The module pointer in class_create() never actually did anything, and it shouldn't have been requred to be set as a parameter even if it did something. So just remove it and fix up all callers of the function in the kernel tree at the same time. Cc: "Rafael J. Wysocki" <rafael@kernel.org> Acked-by: Benjamin Tissoires <benjamin.tissoires@redhat.com> Link: https://lore.kernel.org/r/20230313181843.1207845-4-gregkh@linuxfoundation.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> |
||
Stefan Roesch
|
ad3e6dabf6 |
mm: add /sys/class/bdi/<bdi>/min_ratio_fine knob
This adds the min_ratio_fine knob. The knob specifies the values not based on 1 of 100, but instead 1 per million. Link: https://lkml.kernel.org/r/20221119005215.3052436-20-shr@devkernel.io Signed-off-by: Stefan Roesch <shr@devkernel.io> Cc: Chris Mason <clm@meta.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Stefan Roesch
|
bca52dcbad |
mm: add /sys/class/bdi/<bdi>/max_ratio_fine knob
This adds the max_ratio_fine knob. The knob specifies the values not based on 1 of 100, but instead 1 per million. Link: https://lkml.kernel.org/r/20221119005215.3052436-17-shr@devkernel.io Signed-off-by: Stefan Roesch <shr@devkernel.io> Cc: Chris Mason <clm@meta.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Stefan Roesch
|
9c84819bd6 |
mm: add /sys/class/bdi/<bdi>/min_bytes knob
bdi has two existing knobs to limit the amount of dirty memory: min_ratio and max_ratio. However the granularity of the knobs is limited and often it is more convenient to specify limits in terms of bytes. This change adds the min_bytes knob. It does not store the min_bytes value, instead it converts the max_bytes value to a ratio. The value is therefore more an approximation than an absolute value. It also maintains the sum over all the bdi min_ratio values stored in the variable bdi_min_ratio. Link: https://lkml.kernel.org/r/20221119005215.3052436-14-shr@devkernel.io Signed-off-by: Stefan Roesch <shr@devkernel.io> Cc: Chris Mason <clm@meta.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Stefan Roesch
|
c56e049a5e |
mm: add knob /sys/class/bdi/<bdi>/max_bytes
This adds the new knob max_bytes to specify a dirty memory limit for the corresponding bdi. The specified bytes value is converted to a ratio. Link: https://lkml.kernel.org/r/20221119005215.3052436-9-shr@devkernel.io Signed-off-by: Stefan Roesch <shr@devkernel.io> Cc: Chris Mason <clm@meta.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Stefan Roesch
|
ae82291e9c |
mm: use part per 1000000 for bdi ratios
To get finer granularity for ratio calculations use part per million instead of percentiles. This is especially important if we want to automatically convert byte values to ratios. Otherwise the values that are actually used can be quite different. This is also important for machines with more main memory (1% of 256GB is already 2.5GB). Link: https://lkml.kernel.org/r/20221119005215.3052436-5-shr@devkernel.io Signed-off-by: Stefan Roesch <shr@devkernel.io> Cc: Chris Mason <clm@meta.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Stefan Roesch
|
27bbe9d48d |
mm: add knob /sys/class/bdi/<bdi>/strict_limit
Add a new knob to /sys/class/bdi/<bdi>/strict_limit. This new knob allows to set/unset the flag BDI_CAP_STRICTLIMIT in the bdi capabilities. Link: https://lkml.kernel.org/r/20221119005215.3052436-3-shr@devkernel.io Signed-off-by: Stefan Roesch <shr@devkernel.io> Cc: Chris Mason <clm@meta.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
ye xingchen
|
3083da7bcf |
mm: backing-dev: Remove the unneeded result variable
Return the value cgwb_bdi_init() directly instead of storing it in another redundant variable. Link: https://lkml.kernel.org/r/20220826071906.252419-1-ye.xingchen@zte.com.cn Signed-off-by: ye xingchen <ye.xingchen@zte.com.cn> Reported-by: Zeal Robot <zealci@zte.com.cn> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> |
||
Khazhismel Kumykov
|
f87904c075 |
writeback: avoid use-after-free after removing device
When a disk is removed, bdi_unregister gets called to stop further
writeback and wait for associated delayed work to complete. However,
wb_inode_writeback_end() may schedule bandwidth estimation dwork after
this has completed, which can result in the timer attempting to access the
just freed bdi_writeback.
Fix this by checking if the bdi_writeback is alive, similar to when
scheduling writeback work.
Since this requires wb->work_lock, and wb_inode_writeback_end() may get
called from interrupt, switch wb->work_lock to an irqsafe lock.
Link: https://lkml.kernel.org/r/20220801155034.3772543-1-khazhy@google.com
Fixes:
|
||
Jan Kara
|
4bca7e80b6 |
init: Initialize noop_backing_dev_info early
noop_backing_dev_info is used by superblocks of various pseudofilesystems such as kdevtmpfs. After commit |
||
Christoph Hellwig
|
c97ab27157 |
blk-cgroup: remove unneeded includes from <linux/blk-cgroup.h>
Remove all the includes that aren't actually needed from <linux/blk-cgroup.h> and push them to the actual source files where needed. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Tejun Heo <tj@kernel.org> Link: https://lore.kernel.org/r/20220420042723.1010598-12-hch@lst.de Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
Christoph Hellwig
|
dec223c92a |
blk-cgroup: move struct blkcg to block/blk-cgroup.h
There is no real need to expose the blkcg structure to the whole kernel. Move it to the private header an expose a helper to let the writeback code access the cgwb_list member. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Tejun Heo <tj@kernel.org> Link: https://lore.kernel.org/r/20220420042723.1010598-8-hch@lst.de Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
Christoph Hellwig
|
397c9f46ee |
blk-cgroup: move blkcg_{pin,unpin}_online out of line
Move these two functions out of line as there is no good reason to inline them. Also switch to passing a cgroup_subsys_state instead of doing the conversion in the caller to prepare for making the blkcg structure private to blk-cgroup. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Tejun Heo <tj@kernel.org> Link: https://lore.kernel.org/r/20220420042723.1010598-7-hch@lst.de Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
NeilBrown
|
a88f2096d5 |
remove congestion tracking framework
This framework is no longer used - so discard it. Link: https://lkml.kernel.org/r/164549983747.9187.6171768583526866601.stgit@noble.brown Signed-off-by: NeilBrown <neilb@suse.de> Cc: Anna Schumaker <Anna.Schumaker@Netapp.com> Cc: Chao Yu <chao@kernel.org> Cc: Darrick J. Wong <djwong@kernel.org> Cc: Ilya Dryomov <idryomov@gmail.com> Cc: Jaegeuk Kim <jaegeuk@kernel.org> Cc: Jan Kara <jack@suse.cz> Cc: Jeff Layton <jlayton@kernel.org> Cc: Jens Axboe <axboe@kernel.dk> Cc: Lars Ellenberg <lars.ellenberg@linbit.com> Cc: Miklos Szeredi <miklos@szeredi.hu> Cc: Paolo Valente <paolo.valente@linaro.org> Cc: Philipp Reisner <philipp.reisner@linbit.com> Cc: Ryusuke Konishi <konishi.ryusuke@gmail.com> Cc: Trond Myklebust <trond.myklebust@hammerspace.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Manjong Lee
|
3c376dfafb |
mm: bdi: initialize bdi_min_ratio when bdi is unregistered
Initialize min_ratio if it is set during bdi unregistration. This can prevent problems that may occur a when bdi is removed without resetting min_ratio. For example. 1) insert external sdcard 2) set external sdcard's min_ratio 70 3) remove external sdcard without setting min_ratio 0 4) insert external sdcard 5) set external sdcard's min_ratio 70 << error occur(can't set) Because when an sdcard is removed, the present bdi_min_ratio value will remain. Currently, the only way to reset bdi_min_ratio is to reboot. [akpm@linux-foundation.org: tweak comment and coding style] Link: https://lkml.kernel.org/r/20211021161942.5983-1-mj0123.lee@samsung.com Signed-off-by: Manjong Lee <mj0123.lee@samsung.com> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Changheun Lee <nanich.lee@samsung.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Christoph Hellwig <hch@infradead.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: <seunghwan.hyun@samsung.com> Cc: <sookwan7.kim@samsung.com> Cc: <yt0928.kim@samsung.com> Cc: <junho89.kim@samsung.com> Cc: <jisoo2146.oh@samsung.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Linus Torvalds
|
512b7931ad |
Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton: "257 patches. Subsystems affected by this patch series: scripts, ocfs2, vfs, and mm (slab-generic, slab, slub, kconfig, dax, kasan, debug, pagecache, gup, swap, memcg, pagemap, mprotect, mremap, iomap, tracing, vmalloc, pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, tools, memblock, oom-kill, hugetlbfs, migration, thp, readahead, nommu, ksm, vmstat, madvise, memory-hotplug, rmap, zsmalloc, highmem, zram, cleanups, kfence, and damon)" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (257 commits) mm/damon: remove return value from before_terminate callback mm/damon: fix a few spelling mistakes in comments and a pr_debug message mm/damon: simplify stop mechanism Docs/admin-guide/mm/pagemap: wordsmith page flags descriptions Docs/admin-guide/mm/damon/start: simplify the content Docs/admin-guide/mm/damon/start: fix a wrong link Docs/admin-guide/mm/damon/start: fix wrong example commands mm/damon/dbgfs: add adaptive_targets list check before enable monitor_on mm/damon: remove unnecessary variable initialization Documentation/admin-guide/mm/damon: add a document for DAMON_RECLAIM mm/damon: introduce DAMON-based Reclamation (DAMON_RECLAIM) selftests/damon: support watermarks mm/damon/dbgfs: support watermarks mm/damon/schemes: activate schemes based on a watermarks mechanism tools/selftests/damon: update for regions prioritization of schemes mm/damon/dbgfs: support prioritization weights mm/damon/vaddr,paddr: support pageout prioritization mm/damon/schemes: prioritize regions within the quotas mm/damon/selftests: support schemes quotas mm/damon/dbgfs: support quotas of schemes ... |
||
Mel Gorman
|
8cd7c588de |
mm/vmscan: throttle reclaim until some writeback completes if congested
Patch series "Remove dependency on congestion_wait in mm/", v5. This series that removes all calls to congestion_wait in mm/ and deletes wait_iff_congested. It's not a clever implementation but congestion_wait has been broken for a long time [1]. Even if congestion throttling worked, it was never a great idea. While excessive dirty/writeback pages at the tail of the LRU is one possibility that reclaim may be slow, there is also the problem of too many pages being isolated and reclaim failing for other reasons (elevated references, too many pages isolated, excessive LRU contention etc). This series replaces the "congestion" throttling with 3 different types. - If there are too many dirty/writeback pages, sleep until a timeout or enough pages get cleaned - If too many pages are isolated, sleep until enough isolated pages are either reclaimed or put back on the LRU - If no progress is being made, direct reclaim tasks sleep until another task makes progress with acceptable efficiency. This was initially tested with a mix of workloads that used to trigger corner cases that no longer work. A new test case was created called "stutterp" (pagereclaim-stutterp-noreaders in mmtests) using a freshly created XFS filesystem. Note that it may be necessary to increase the timeout of ssh if executing remotely as ssh itself can get throttled and the connection may timeout. stutterp varies the number of "worker" processes from 4 up to NR_CPUS*4 to check the impact as the number of direct reclaimers increase. It has four types of worker. - One "anon latency" worker creates small mappings with mmap() and times how long it takes to fault the mapping reading it 4K at a time - X file writers which is fio randomly writing X files where the total size of the files add up to the allowed dirty_ratio. fio is allowed to run for a warmup period to allow some file-backed pages to accumulate. The duration of the warmup is based on the best-case linear write speed of the storage. - Y file readers which is fio randomly reading small files - Z anon memory hogs which continually map (100-dirty_ratio)% of memory - Total estimated WSS = (100+dirty_ration) percentage of memory X+Y+Z+1 == NR_WORKERS varying from 4 up to NR_CPUS*4 The intent is to maximise the total WSS with a mix of file and anon memory where some anonymous memory must be swapped and there is a high likelihood of dirty/writeback pages reaching the end of the LRU. The test can be configured to have no background readers to stress dirty/writeback pages. The results below are based on having zero readers. The short summary of the results is that the series works and stalls until some event occurs but the timeouts may need adjustment. The test results are not broken down by patch as the series should be treated as one block that replaces a broken throttling mechanism with a working one. Finally, three machines were tested but I'm reporting the worst set of results. The other two machines had much better latencies for example. First the results of the "anon latency" latency stutterp 5.15.0-rc1 5.15.0-rc1 vanilla mm-reclaimcongest-v5r4 Amean mmap-4 31.4003 ( 0.00%) 2661.0198 (-8374.52%) Amean mmap-7 38.1641 ( 0.00%) 149.2891 (-291.18%) Amean mmap-12 60.0981 ( 0.00%) 187.8105 (-212.51%) Amean mmap-21 161.2699 ( 0.00%) 213.9107 ( -32.64%) Amean mmap-30 174.5589 ( 0.00%) 377.7548 (-116.41%) Amean mmap-48 8106.8160 ( 0.00%) 1070.5616 ( 86.79%) Stddev mmap-4 41.3455 ( 0.00%) 27573.9676 (-66591.66%) Stddev mmap-7 53.5556 ( 0.00%) 4608.5860 (-8505.23%) Stddev mmap-12 171.3897 ( 0.00%) 5559.4542 (-3143.75%) Stddev mmap-21 1506.6752 ( 0.00%) 5746.2507 (-281.39%) Stddev mmap-30 557.5806 ( 0.00%) 7678.1624 (-1277.05%) Stddev mmap-48 61681.5718 ( 0.00%) 14507.2830 ( 76.48%) Max-90 mmap-4 31.4243 ( 0.00%) 83.1457 (-164.59%) Max-90 mmap-7 41.0410 ( 0.00%) 41.0720 ( -0.08%) Max-90 mmap-12 66.5255 ( 0.00%) 53.9073 ( 18.97%) Max-90 mmap-21 146.7479 ( 0.00%) 105.9540 ( 27.80%) Max-90 mmap-30 193.9513 ( 0.00%) 64.3067 ( 66.84%) Max-90 mmap-48 277.9137 ( 0.00%) 591.0594 (-112.68%) Max mmap-4 1913.8009 ( 0.00%) 299623.9695 (-15555.96%) Max mmap-7 2423.9665 ( 0.00%) 204453.1708 (-8334.65%) Max mmap-12 6845.6573 ( 0.00%) 221090.3366 (-3129.64%) Max mmap-21 56278.6508 ( 0.00%) 213877.3496 (-280.03%) Max mmap-30 19716.2990 ( 0.00%) 216287.6229 (-997.00%) Max mmap-48 477923.9400 ( 0.00%) 245414.8238 ( 48.65%) For most thread counts, the time to mmap() is unfortunately increased. In earlier versions of the series, this was lower but a large number of throttling events were reaching their timeout increasing the amount of inefficient scanning of the LRU. There is no prioritisation of reclaim tasks making progress based on each tasks rate of page allocation versus progress of reclaim. The variance is also impacted for high worker counts but in all cases, the differences in latency are not statistically significant due to very large maximum outliers. Max-90 shows that 90% of the stalls are comparable but the Max results show the massive outliers which are increased to to stalling. It is expected that this will be very machine dependant. Due to the test design, reclaim is difficult so allocations stall and there are variances depending on whether THPs can be allocated or not. The amount of memory will affect exactly how bad the corner cases are and how often they trigger. The warmup period calculation is not ideal as it's based on linear writes where as fio is randomly writing multiple files from multiple tasks so the start state of the test is variable. For example, these are the latencies on a single-socket machine that had more memory Amean mmap-4 42.2287 ( 0.00%) 49.6838 * -17.65%* Amean mmap-7 216.4326 ( 0.00%) 47.4451 * 78.08%* Amean mmap-12 2412.0588 ( 0.00%) 51.7497 ( 97.85%) Amean mmap-21 5546.2548 ( 0.00%) 51.8862 ( 99.06%) Amean mmap-30 1085.3121 ( 0.00%) 72.1004 ( 93.36%) The overall system CPU usage and elapsed time is as follows 5.15.0-rc3 5.15.0-rc3 vanilla mm-reclaimcongest-v5r4 Duration User 6989.03 983.42 Duration System 7308.12 799.68 Duration Elapsed 2277.67 2092.98 The patches reduce system CPU usage by 89% as the vanilla kernel is rarely stalling. The high-level /proc/vmstats show 5.15.0-rc1 5.15.0-rc1 vanilla mm-reclaimcongest-v5r2 Ops Direct pages scanned 1056608451.00 503594991.00 Ops Kswapd pages scanned 109795048.00 147289810.00 Ops Kswapd pages reclaimed 63269243.00 31036005.00 Ops Direct pages reclaimed 10803973.00 6328887.00 Ops Kswapd efficiency % 57.62 21.07 Ops Kswapd velocity 48204.98 57572.86 Ops Direct efficiency % 1.02 1.26 Ops Direct velocity 463898.83 196845.97 Kswapd scanned less pages but the detailed pattern is different. The vanilla kernel scans slowly over time where as the patches exhibits burst patterns of scan activity. Direct reclaim scanning is reduced by 52% due to stalling. The pattern for stealing pages is also slightly different. Both kernels exhibit spikes but the vanilla kernel when reclaiming shows pages being reclaimed over a period of time where as the patches tend to reclaim in spikes. The difference is that vanilla is not throttling and instead scanning constantly finding some pages over time where as the patched kernel throttles and reclaims in spikes. Ops Percentage direct scans 90.59 77.37 For direct reclaim, vanilla scanned 90.59% of pages where as with the patches, 77.37% were direct reclaim due to throttling Ops Page writes by reclaim 2613590.00 1687131.00 Page writes from reclaim context are reduced. Ops Page writes anon 2932752.00 1917048.00 And there is less swapping. Ops Page reclaim immediate 996248528.00 107664764.00 The number of pages encountered at the tail of the LRU tagged for immediate reclaim but still dirty/writeback is reduced by 89%. Ops Slabs scanned 164284.00 153608.00 Slab scan activity is similar. ftrace was used to gather stall activity Vanilla ------- 1 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=16000 2 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=12000 8 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=8000 29 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=4000 82394 writeback_wait_iff_congested: usec_timeout=100000 usec_delayed=0 The fast majority of wait_iff_congested calls do not stall at all. What is likely happening is that cond_resched() reschedules the task for a short period when the BDI is not registering congestion (which it never will in this test setup). 1 writeback_congestion_wait: usec_timeout=100000 usec_delayed=120000 2 writeback_congestion_wait: usec_timeout=100000 usec_delayed=132000 4 writeback_congestion_wait: usec_timeout=100000 usec_delayed=112000 380 writeback_congestion_wait: usec_timeout=100000 usec_delayed=108000 778 writeback_congestion_wait: usec_timeout=100000 usec_delayed=104000 congestion_wait if called always exceeds the timeout as there is no trigger to wake it up. Bottom line: Vanilla will throttle but it's not effective. Patch series ------------ Kswapd throttle activity was always due to scanning pages tagged for immediate reclaim at the tail of the LRU 1 usec_timeout=100000 usect_delayed=72000 reason=VMSCAN_THROTTLE_WRITEBACK 4 usec_timeout=100000 usect_delayed=20000 reason=VMSCAN_THROTTLE_WRITEBACK 5 usec_timeout=100000 usect_delayed=12000 reason=VMSCAN_THROTTLE_WRITEBACK 6 usec_timeout=100000 usect_delayed=16000 reason=VMSCAN_THROTTLE_WRITEBACK 11 usec_timeout=100000 usect_delayed=100000 reason=VMSCAN_THROTTLE_WRITEBACK 11 usec_timeout=100000 usect_delayed=8000 reason=VMSCAN_THROTTLE_WRITEBACK 94 usec_timeout=100000 usect_delayed=0 reason=VMSCAN_THROTTLE_WRITEBACK 112 usec_timeout=100000 usect_delayed=4000 reason=VMSCAN_THROTTLE_WRITEBACK The majority of events did not stall or stalled for a short period. Roughly 16% of stalls reached the timeout before expiry. For direct reclaim, the number of times stalled for each reason were 6624 reason=VMSCAN_THROTTLE_ISOLATED 93246 reason=VMSCAN_THROTTLE_NOPROGRESS 96934 reason=VMSCAN_THROTTLE_WRITEBACK The most common reason to stall was due to excessive pages tagged for immediate reclaim at the tail of the LRU followed by a failure to make forward. A relatively small number were due to too many pages isolated from the LRU by parallel threads For VMSCAN_THROTTLE_ISOLATED, the breakdown of delays was 9 usec_timeout=20000 usect_delayed=4000 reason=VMSCAN_THROTTLE_ISOLATED 12 usec_timeout=20000 usect_delayed=16000 reason=VMSCAN_THROTTLE_ISOLATED 83 usec_timeout=20000 usect_delayed=20000 reason=VMSCAN_THROTTLE_ISOLATED 6520 usec_timeout=20000 usect_delayed=0 reason=VMSCAN_THROTTLE_ISOLATED Most did not stall at all. A small number reached the timeout. For VMSCAN_THROTTLE_NOPROGRESS, the breakdown of stalls were all over the map 1 usec_timeout=500000 usect_delayed=324000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usec_timeout=500000 usect_delayed=332000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usec_timeout=500000 usect_delayed=348000 reason=VMSCAN_THROTTLE_NOPROGRESS 1 usec_timeout=500000 usect_delayed=360000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=228000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=260000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=340000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=364000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=372000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=428000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=460000 reason=VMSCAN_THROTTLE_NOPROGRESS 2 usec_timeout=500000 usect_delayed=464000 reason=VMSCAN_THROTTLE_NOPROGRESS 3 usec_timeout=500000 usect_delayed=244000 reason=VMSCAN_THROTTLE_NOPROGRESS 3 usec_timeout=500000 usect_delayed=252000 reason=VMSCAN_THROTTLE_NOPROGRESS 3 usec_timeout=500000 usect_delayed=272000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=188000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=268000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=328000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=380000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=392000 reason=VMSCAN_THROTTLE_NOPROGRESS 4 usec_timeout=500000 usect_delayed=432000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=204000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=220000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=412000 reason=VMSCAN_THROTTLE_NOPROGRESS 5 usec_timeout=500000 usect_delayed=436000 reason=VMSCAN_THROTTLE_NOPROGRESS 6 usec_timeout=500000 usect_delayed=488000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=212000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=300000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=316000 reason=VMSCAN_THROTTLE_NOPROGRESS 7 usec_timeout=500000 usect_delayed=472000 reason=VMSCAN_THROTTLE_NOPROGRESS 8 usec_timeout=500000 usect_delayed=248000 reason=VMSCAN_THROTTLE_NOPROGRESS 8 usec_timeout=500000 usect_delayed=356000 reason=VMSCAN_THROTTLE_NOPROGRESS 8 usec_timeout=500000 usect_delayed=456000 reason=VMSCAN_THROTTLE_NOPROGRESS 9 usec_timeout=500000 usect_delayed=124000 reason=VMSCAN_THROTTLE_NOPROGRESS 9 usec_timeout=500000 usect_delayed=376000 reason=VMSCAN_THROTTLE_NOPROGRESS 9 usec_timeout=500000 usect_delayed=484000 reason=VMSCAN_THROTTLE_NOPROGRESS 10 usec_timeout=500000 usect_delayed=172000 reason=VMSCAN_THROTTLE_NOPROGRESS 10 usec_timeout=500000 usect_delayed=420000 reason=VMSCAN_THROTTLE_NOPROGRESS 10 usec_timeout=500000 usect_delayed=452000 reason=VMSCAN_THROTTLE_NOPROGRESS 11 usec_timeout=500000 usect_delayed=256000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=112000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=116000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=144000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=152000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=264000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=384000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=424000 reason=VMSCAN_THROTTLE_NOPROGRESS 12 usec_timeout=500000 usect_delayed=492000 reason=VMSCAN_THROTTLE_NOPROGRESS 13 usec_timeout=500000 usect_delayed=184000 reason=VMSCAN_THROTTLE_NOPROGRESS 13 usec_timeout=500000 usect_delayed=444000 reason=VMSCAN_THROTTLE_NOPROGRESS 14 usec_timeout=500000 usect_delayed=308000 reason=VMSCAN_THROTTLE_NOPROGRESS 14 usec_timeout=500000 usect_delayed=440000 reason=VMSCAN_THROTTLE_NOPROGRESS 14 usec_timeout=500000 usect_delayed=476000 reason=VMSCAN_THROTTLE_NOPROGRESS 16 usec_timeout=500000 usect_delayed=140000 reason=VMSCAN_THROTTLE_NOPROGRESS 17 usec_timeout=500000 usect_delayed=232000 reason=VMSCAN_THROTTLE_NOPROGRESS 17 usec_timeout=500000 usect_delayed=240000 reason=VMSCAN_THROTTLE_NOPROGRESS 17 usec_timeout=500000 usect_delayed=280000 reason=VMSCAN_THROTTLE_NOPROGRESS 18 usec_timeout=500000 usect_delayed=404000 reason=VMSCAN_THROTTLE_NOPROGRESS 20 usec_timeout=500000 usect_delayed=148000 reason=VMSCAN_THROTTLE_NOPROGRESS 20 usec_timeout=500000 usect_delayed=216000 reason=VMSCAN_THROTTLE_NOPROGRESS 20 usec_timeout=500000 usect_delayed=468000 reason=VMSCAN_THROTTLE_NOPROGRESS 21 usec_timeout=500000 usect_delayed=448000 reason=VMSCAN_THROTTLE_NOPROGRESS 23 usec_timeout=500000 usect_delayed=168000 reason=VMSCAN_THROTTLE_NOPROGRESS 23 usec_timeout=500000 usect_delayed=296000 reason=VMSCAN_THROTTLE_NOPROGRESS 25 usec_timeout=500000 usect_delayed=132000 reason=VMSCAN_THROTTLE_NOPROGRESS 25 usec_timeout=500000 usect_delayed=352000 reason=VMSCAN_THROTTLE_NOPROGRESS 26 usec_timeout=500000 usect_delayed=180000 reason=VMSCAN_THROTTLE_NOPROGRESS 27 usec_timeout=500000 usect_delayed=284000 reason=VMSCAN_THROTTLE_NOPROGRESS 28 usec_timeout=500000 usect_delayed=164000 reason=VMSCAN_THROTTLE_NOPROGRESS 29 usec_timeout=500000 usect_delayed=136000 reason=VMSCAN_THROTTLE_NOPROGRESS 30 usec_timeout=500000 usect_delayed=200000 reason=VMSCAN_THROTTLE_NOPROGRESS 30 usec_timeout=500000 usect_delayed=400000 reason=VMSCAN_THROTTLE_NOPROGRESS 31 usec_timeout=500000 usect_delayed=196000 reason=VMSCAN_THROTTLE_NOPROGRESS 32 usec_timeout=500000 usect_delayed=156000 reason=VMSCAN_THROTTLE_NOPROGRESS 33 usec_timeout=500000 usect_delayed=224000 reason=VMSCAN_THROTTLE_NOPROGRESS 35 usec_timeout=500000 usect_delayed=128000 reason=VMSCAN_THROTTLE_NOPROGRESS 35 usec_timeout=500000 usect_delayed=176000 reason=VMSCAN_THROTTLE_NOPROGRESS 36 usec_timeout=500000 usect_delayed=368000 reason=VMSCAN_THROTTLE_NOPROGRESS 36 usec_timeout=500000 usect_delayed=496000 reason=VMSCAN_THROTTLE_NOPROGRESS 37 usec_timeout=500000 usect_delayed=312000 reason=VMSCAN_THROTTLE_NOPROGRESS 38 usec_timeout=500000 usect_delayed=304000 reason=VMSCAN_THROTTLE_NOPROGRESS 40 usec_timeout=500000 usect_delayed=288000 reason=VMSCAN_THROTTLE_NOPROGRESS 43 usec_timeout=500000 usect_delayed=408000 reason=VMSCAN_THROTTLE_NOPROGRESS 55 usec_timeout=500000 usect_delayed=416000 reason=VMSCAN_THROTTLE_NOPROGRESS 56 usec_timeout=500000 usect_delayed=76000 reason=VMSCAN_THROTTLE_NOPROGRESS 58 usec_timeout=500000 usect_delayed=120000 reason=VMSCAN_THROTTLE_NOPROGRESS 59 usec_timeout=500000 usect_delayed=208000 reason=VMSCAN_THROTTLE_NOPROGRESS 61 usec_timeout=500000 usect_delayed=68000 reason=VMSCAN_THROTTLE_NOPROGRESS 71 usec_timeout=500000 usect_delayed=192000 reason=VMSCAN_THROTTLE_NOPROGRESS 71 usec_timeout=500000 usect_delayed=480000 reason=VMSCAN_THROTTLE_NOPROGRESS 79 usec_timeout=500000 usect_delayed=60000 reason=VMSCAN_THROTTLE_NOPROGRESS 82 usec_timeout=500000 usect_delayed=320000 reason=VMSCAN_THROTTLE_NOPROGRESS 82 usec_timeout=500000 usect_delayed=92000 reason=VMSCAN_THROTTLE_NOPROGRESS 85 usec_timeout=500000 usect_delayed=64000 reason=VMSCAN_THROTTLE_NOPROGRESS 85 usec_timeout=500000 usect_delayed=80000 reason=VMSCAN_THROTTLE_NOPROGRESS 88 usec_timeout=500000 usect_delayed=84000 reason=VMSCAN_THROTTLE_NOPROGRESS 90 usec_timeout=500000 usect_delayed=160000 reason=VMSCAN_THROTTLE_NOPROGRESS 90 usec_timeout=500000 usect_delayed=292000 reason=VMSCAN_THROTTLE_NOPROGRESS 94 usec_timeout=500000 usect_delayed=56000 reason=VMSCAN_THROTTLE_NOPROGRESS 118 usec_timeout=500000 usect_delayed=88000 reason=VMSCAN_THROTTLE_NOPROGRESS 119 usec_timeout=500000 usect_delayed=72000 reason=VMSCAN_THROTTLE_NOPROGRESS 126 usec_timeout=500000 usect_delayed=108000 reason=VMSCAN_THROTTLE_NOPROGRESS 146 usec_timeout=500000 usect_delayed=52000 reason=VMSCAN_THROTTLE_NOPROGRESS 148 usec_timeout=500000 usect_delayed=36000 reason=VMSCAN_THROTTLE_NOPROGRESS 148 usec_timeout=500000 usect_delayed=48000 reason=VMSCAN_THROTTLE_NOPROGRESS 159 usec_timeout=500000 usect_delayed=28000 reason=VMSCAN_THROTTLE_NOPROGRESS 178 usec_timeout=500000 usect_delayed=44000 reason=VMSCAN_THROTTLE_NOPROGRESS 183 usec_timeout=500000 usect_delayed=40000 reason=VMSCAN_THROTTLE_NOPROGRESS 237 usec_timeout=500000 usect_delayed=100000 reason=VMSCAN_THROTTLE_NOPROGRESS 266 usec_timeout=500000 usect_delayed=32000 reason=VMSCAN_THROTTLE_NOPROGRESS 313 usec_timeout=500000 usect_delayed=24000 reason=VMSCAN_THROTTLE_NOPROGRESS 347 usec_timeout=500000 usect_delayed=96000 reason=VMSCAN_THROTTLE_NOPROGRESS 470 usec_timeout=500000 usect_delayed=20000 reason=VMSCAN_THROTTLE_NOPROGRESS 559 usec_timeout=500000 usect_delayed=16000 reason=VMSCAN_THROTTLE_NOPROGRESS 964 usec_timeout=500000 usect_delayed=12000 reason=VMSCAN_THROTTLE_NOPROGRESS 2001 usec_timeout=500000 usect_delayed=104000 reason=VMSCAN_THROTTLE_NOPROGRESS 2447 usec_timeout=500000 usect_delayed=8000 reason=VMSCAN_THROTTLE_NOPROGRESS 7888 usec_timeout=500000 usect_delayed=4000 reason=VMSCAN_THROTTLE_NOPROGRESS 22727 usec_timeout=500000 usect_delayed=0 reason=VMSCAN_THROTTLE_NOPROGRESS 51305 usec_timeout=500000 usect_delayed=500000 reason=VMSCAN_THROTTLE_NOPROGRESS The full timeout is often hit but a large number also do not stall at all. The remainder slept a little allowing other reclaim tasks to make progress. While this timeout could be further increased, it could also negatively impact worst-case behaviour when there is no prioritisation of what task should make progress. For VMSCAN_THROTTLE_WRITEBACK, the breakdown was 1 usec_timeout=100000 usect_delayed=44000 reason=VMSCAN_THROTTLE_WRITEBACK 2 usec_timeout=100000 usect_delayed=76000 reason=VMSCAN_THROTTLE_WRITEBACK 3 usec_timeout=100000 usect_delayed=80000 reason=VMSCAN_THROTTLE_WRITEBACK 5 usec_timeout=100000 usect_delayed=48000 reason=VMSCAN_THROTTLE_WRITEBACK 5 usec_timeout=100000 usect_delayed=84000 reason=VMSCAN_THROTTLE_WRITEBACK 6 usec_timeout=100000 usect_delayed=72000 reason=VMSCAN_THROTTLE_WRITEBACK 7 usec_timeout=100000 usect_delayed=88000 reason=VMSCAN_THROTTLE_WRITEBACK 11 usec_timeout=100000 usect_delayed=56000 reason=VMSCAN_THROTTLE_WRITEBACK 12 usec_timeout=100000 usect_delayed=64000 reason=VMSCAN_THROTTLE_WRITEBACK 16 usec_timeout=100000 usect_delayed=92000 reason=VMSCAN_THROTTLE_WRITEBACK 24 usec_timeout=100000 usect_delayed=68000 reason=VMSCAN_THROTTLE_WRITEBACK 28 usec_timeout=100000 usect_delayed=32000 reason=VMSCAN_THROTTLE_WRITEBACK 30 usec_timeout=100000 usect_delayed=60000 reason=VMSCAN_THROTTLE_WRITEBACK 30 usec_timeout=100000 usect_delayed=96000 reason=VMSCAN_THROTTLE_WRITEBACK 32 usec_timeout=100000 usect_delayed=52000 reason=VMSCAN_THROTTLE_WRITEBACK 42 usec_timeout=100000 usect_delayed=40000 reason=VMSCAN_THROTTLE_WRITEBACK 77 usec_timeout=100000 usect_delayed=28000 reason=VMSCAN_THROTTLE_WRITEBACK 99 usec_timeout=100000 usect_delayed=36000 reason=VMSCAN_THROTTLE_WRITEBACK 137 usec_timeout=100000 usect_delayed=24000 reason=VMSCAN_THROTTLE_WRITEBACK 190 usec_timeout=100000 usect_delayed=20000 reason=VMSCAN_THROTTLE_WRITEBACK 339 usec_timeout=100000 usect_delayed=16000 reason=VMSCAN_THROTTLE_WRITEBACK 518 usec_timeout=100000 usect_delayed=12000 reason=VMSCAN_THROTTLE_WRITEBACK 852 usec_timeout=100000 usect_delayed=8000 reason=VMSCAN_THROTTLE_WRITEBACK 3359 usec_timeout=100000 usect_delayed=4000 reason=VMSCAN_THROTTLE_WRITEBACK 7147 usec_timeout=100000 usect_delayed=0 reason=VMSCAN_THROTTLE_WRITEBACK 83962 usec_timeout=100000 usect_delayed=100000 reason=VMSCAN_THROTTLE_WRITEBACK The majority hit the timeout in direct reclaim context although a sizable number did not stall at all. This is very different to kswapd where only a tiny percentage of stalls due to writeback reached the timeout. Bottom line, the throttling appears to work and the wakeup events may limit worst case stalls. There might be some grounds for adjusting timeouts but it's likely futile as the worst-case scenarios depend on the workload, memory size and the speed of the storage. A better approach to improve the series further would be to prioritise tasks based on their rate of allocation with the caveat that it may be very expensive to track. This patch (of 5): Page reclaim throttles on wait_iff_congested under the following conditions: - kswapd is encountering pages under writeback and marked for immediate reclaim implying that pages are cycling through the LRU faster than pages can be cleaned. - Direct reclaim will stall if all dirty pages are backed by congested inodes. wait_iff_congested is almost completely broken with few exceptions. This patch adds a new node-based workqueue and tracks the number of throttled tasks and pages written back since throttling started. If enough pages belonging to the node are written back then the throttled tasks will wake early. If not, the throttled tasks sleeps until the timeout expires. [neilb@suse.de: Uninterruptible sleep and simpler wakeups] [hdanton@sina.com: Avoid race when reclaim starts] [vbabka@suse.cz: vmstat irq-safe api, clarifications] Link: https://lore.kernel.org/linux-mm/45d8b7a6-8548-65f5-cccf-9f451d4ae3d4@kernel.dk/ [1] Link: https://lkml.kernel.org/r/20211022144651.19914-1-mgorman@techsingularity.net Link: https://lkml.kernel.org/r/20211022144651.19914-2-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: NeilBrown <neilb@suse.de> Cc: "Theodore Ts'o" <tytso@mit.edu> Cc: Andreas Dilger <adilger.kernel@dilger.ca> Cc: "Darrick J . Wong" <djwong@kernel.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Dave Chinner <david@fromorbit.com> Cc: Rik van Riel <riel@surriel.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Christoph Hellwig
|
efee17134c |
mm: simplify bdi refcounting
Move grabbing and releasing the bdi refcount out of the common wb_init/wb_exit helpers into code that is only used for the non-default memcg driven bdi_writeback structures. [hch@lst.de: add comment] Link: https://lkml.kernel.org/r/20211027074207.GA12793@lst.de [akpm@linux-foundation.org: fix typo] Link: https://lkml.kernel.org/r/20211021124441.668816-6-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Miquel Raynal <miquel.raynal@bootlin.com> Cc: Richard Weinberger <richard@nod.at> Cc: Vignesh Raghavendra <vigneshr@ti.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Christoph Hellwig
|
702f2d1e3b |
mm: don't automatically unregister bdis
All BDI users now unregister explicitly. Link: https://lkml.kernel.org/r/20211021124441.668816-5-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Miquel Raynal <miquel.raynal@bootlin.com> Cc: Richard Weinberger <richard@nod.at> Cc: Vignesh Raghavendra <vigneshr@ti.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Christoph Hellwig
|
c6fd3ac0fc |
mm: export bdi_unregister
Patch series "simplify bdi unregistation". This series simplifies the BDI code to get rid of the magic auto-unregister feature that hid a recent block layer refcounting bug. This patch (of 5): To wind down the magic auto-unregister semantics we'll need to push this into modular code. Link: https://lkml.kernel.org/r/20211021124441.668816-1-hch@lst.de Link: https://lkml.kernel.org/r/20211021124441.668816-2-hch@lst.de Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Miquel Raynal <miquel.raynal@bootlin.com> Cc: Richard Weinberger <richard@nod.at> Cc: Vignesh Raghavendra <vigneshr@ti.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Christoph Hellwig
|
ccdf774189 |
mm: don't include <linux/blkdev.h> in <linux/backing-dev.h>
Move inode_to_bdi out of line to avoid having to include blkdev.h. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Link: https://lore.kernel.org/r/20210920123328.1399408-4-hch@lst.de Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
Christoph Hellwig
|
e41d12f539 |
mm: don't include <linux/blk-cgroup.h> in <linux/backing-dev.h>
There is no need to pull blk-cgroup.h and thus blkdev.h in here, so break the include chain. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Link: https://lore.kernel.org/r/20210920123328.1399408-3-hch@lst.de Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
Linus Torvalds
|
14726903c8 |
Merge branch 'akpm' (patches from Andrew)
Merge misc updates from Andrew Morton: "173 patches. Subsystems affected by this series: ia64, ocfs2, block, and mm (debug, pagecache, gup, swap, shmem, memcg, selftests, pagemap, mremap, bootmem, sparsemem, vmalloc, kasan, pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, compaction, mempolicy, memblock, oom-kill, migration, ksm, percpu, vmstat, and madvise)" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (173 commits) mm/madvise: add MADV_WILLNEED to process_madvise() mm/vmstat: remove unneeded return value mm/vmstat: simplify the array size calculation mm/vmstat: correct some wrong comments mm/percpu,c: remove obsolete comments of pcpu_chunk_populated() selftests: vm: add COW time test for KSM pages selftests: vm: add KSM merging time test mm: KSM: fix data type selftests: vm: add KSM merging across nodes test selftests: vm: add KSM zero page merging test selftests: vm: add KSM unmerge test selftests: vm: add KSM merge test mm/migrate: correct kernel-doc notation mm: wire up syscall process_mrelease mm: introduce process_mrelease system call memblock: make memblock_find_in_range method private mm/mempolicy.c: use in_task() in mempolicy_slab_node() mm/mempolicy: unify the create() func for bind/interleave/prefer-many policies mm/mempolicy: advertise new MPOL_PREFERRED_MANY mm/hugetlb: add support for mempolicy MPOL_PREFERRED_MANY ... |
||
Jan Kara
|
45a2966fd6 |
writeback: fix bandwidth estimate for spiky workload
Michael Stapelberg has reported that for workload with short big spikes of writes (GCC linker seem to trigger this frequently) the write throughput is heavily underestimated and tends to steadily sink until it reaches zero. This has rather bad impact on writeback throttling (causing stalls). The problem is that writeback throughput estimate gets updated at most once per 200 ms. One update happens early after we submit pages for writeback (at that point writeout of only small fraction of pages is completed and thus observed throughput is tiny). Next update happens only during the next write spike (updates happen only from inode writeback and dirty throttling code) and if that is more than 1s after previous spike, we decide system was idle and just ignore whatever was written until this moment. Fix the problem by making sure writeback throughput estimate is also updated shortly after writeback completes to get reasonable estimate of throughput for spiky workloads. [jack@suse.cz: avoid division by 0 in wb_update_dirty_ratelimit()] Link: https://lore.kernel.org/lkml/20210617095309.3542373-1-stapelberg+linux@google.com Link: https://lkml.kernel.org/r/20210713104716.22868-3-jack@suse.cz Signed-off-by: Jan Kara <jack@suse.cz> Reported-by: Michael Stapelberg <stapelberg+linux@google.com> Tested-by: Michael Stapelberg <stapelberg+linux@google.com> Cc: Wu Fengguang <fengguang.wu@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Jan Kara
|
633a2abb9e |
writeback: track number of inodes under writeback
Patch series "writeback: Fix bandwidth estimates", v4. Fix estimate of writeback throughput when device is not fully busy doing writeback. Michael Stapelberg has reported that such workload (e.g. generated by linking) tends to push estimated throughput down to 0 and as a result writeback on the device is practically stalled. The first three patches fix the reported issue, the remaining two patches are unrelated cleanups of problems I've noticed when reading the code. This patch (of 4): Track number of inodes under writeback for each bdi_writeback structure. We will use this to decide whether wb does any IO and so we can estimate its writeback throughput. In principle we could use number of pages under writeback (WB_WRITEBACK counter) for this however normal percpu counter reads are too inaccurate for our purposes and summing the counter is too expensive. Link: https://lkml.kernel.org/r/20210713104519.16394-1-jack@suse.cz Link: https://lkml.kernel.org/r/20210713104716.22868-1-jack@suse.cz Signed-off-by: Jan Kara <jack@suse.cz> Cc: Wu Fengguang <fengguang.wu@intel.com> Cc: Michael Stapelberg <stapelberg+linux@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Christoph Hellwig
|
5ed964f8e5 |
mm: hide laptop_mode_wb_timer entirely behind the BDI API
Don't leak the detaіls of the timer into the block layer, instead initialize the timer in bdi_alloc and delete it in bdi_unregister. Note that this means the timer is initialized (but not armed) for non-block queues as well now. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Link: https://lore.kernel.org/r/20210809141744.1203023-2-hch@lst.de Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
Roman Gushchin
|
b43a9e76b4 |
writeback, cgroup: remove wb from offline list before releasing refcnt
Boyang reported that the commit |
||
Roman Gushchin
|
c22d70a162 |
writeback, cgroup: release dying cgwbs by switching attached inodes
Asynchronously try to release dying cgwbs by switching attached inodes to the nearest living ancestor wb. It helps to get rid of per-cgroup writeback structures themselves and of pinned memory and block cgroups, which are significantly larger structures (mostly due to large per-cpu statistics data). This prevents memory waste and helps to avoid different scalability problems caused by large piles of dying cgroups. Reuse the existing mechanism of inode switching used for foreign inode detection. To speed things up batch up to 115 inode switching in a single operation (the maximum number is selected so that the resulting struct inode_switch_wbs_context can fit into 1024 bytes). Because every switching consists of two steps divided by an RCU grace period, it would be too slow without batching. Please note that the whole batch counts as a single operation (when increasing/decreasing isw_nr_in_flight). This allows to keep umounting working (flush the switching queue), however prevents cleanups from consuming the whole switching quota and effectively blocking the frn switching. A cgwb cleanup operation can fail due to different reasons (e.g. not enough memory, the cgwb has an in-flight/pending io, an attached inode in a wrong state, etc). In this case the next scheduled cleanup will make a new attempt. An attempt is made each time a new cgwb is offlined (in other words a memcg and/or a blkcg is deleted by a user). In the future an additional attempt scheduled by a timer can be implemented. [guro@fb.com: replace open-coded "115" with arithmetic] Link: https://lkml.kernel.org/r/YMEcSBcq/VXMiPPO@carbon.dhcp.thefacebook.com [guro@fb.com: add smp_mb() to inode_prepare_wbs_switch()] Link: https://lkml.kernel.org/r/YMFa+guFw7OFjf3X@carbon.dhcp.thefacebook.com [willy@infradead.org: fix documentation] Link: https://lkml.kernel.org/r/20210615200242.1716568-2-willy@infradead.org Link: https://lkml.kernel.org/r/20210608230225.2078447-9-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Dennis Zhou <dennis@kernel.org> Reviewed-by: Jan Kara <jack@suse.cz> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dave Chinner <dchinner@redhat.com> Cc: Jan Kara <jack@suse.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Roman Gushchin
|
f3b6a6df38 |
writeback, cgroup: keep list of inodes attached to bdi_writeback
Currently there is no way to iterate over inodes attached to a specific cgwb structure. It limits the ability to efficiently reclaim the writeback structure itself and associated memory and block cgroup structures without scanning all inodes belonging to a sb, which can be prohibitively expensive. While dirty/in-active-writeback an inode belongs to one of the bdi_writeback's io lists: b_dirty, b_io, b_more_io and b_dirty_time. Once cleaned up, it's removed from all io lists. So the inode->i_io_list can be reused to maintain the list of inodes, attached to a bdi_writeback structure. This patch introduces a new wb->b_attached list, which contains all inodes which were dirty at least once and are attached to the given cgwb. Inodes attached to the root bdi_writeback structures are never placed on such list. The following patch will use this list to try to release cgwbs structures more efficiently. Link: https://lkml.kernel.org/r/20210608230225.2078447-6-guro@fb.com Signed-off-by: Roman Gushchin <guro@fb.com> Suggested-by: Jan Kara <jack@suse.cz> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: Tejun Heo <tj@kernel.org> Acked-by: Dennis Zhou <dennis@kernel.org> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Dave Chinner <dchinner@redhat.com> Cc: Jan Kara <jack@suse.com> Cc: Jens Axboe <axboe@kernel.dk> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Daniel Vetter
|
c1ca59a1f2 |
mm/backing-dev.c: use might_alloc()
Now that my little helper has landed, use it more. On top of the existing check this also uses lockdep through the fs_reclaim annotations. [akpm@linux-foundation.org: include linux/sched/mm.h] Link: https://lkml.kernel.org/r/20210113135009.3606813-2-daniel.vetter@ffwll.ch Signed-off-by: Daniel Vetter <daniel.vetter@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Baolin Wang
|
6986c3e2b1 |
mm: backing-dev: Remove duplicated macro definition
Move the K() macro a little forward to remove the same macro definition. Link: https://lkml.kernel.org/r/d1ccdf2d3116dce9814f2bcc1f0415ecb4c76ea5.1612862230.git.baolin.wang@linux.alibaba.com Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com> Reviewed-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Joe Perches
|
5e4c0d86cf |
mm:backing-dev: use sysfs_emit in macro defining functions
The cocci script used in commit bdacbb8d04f ("mm: Use sysfs_emit for struct kobject * uses") does not convert the name##_show macro because the macro uses concatenation via ##. Convert it by hand. Link: https://lkml.kernel.org/r/45ec6cfc177d743f9c0ebaf35e43969dce43af42.1605376435.git.joe@perches.com Signed-off-by: Joe Perches <joe@perches.com> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Hugh Dickins <hughd@google.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Pekka Enberg <penberg@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> |
||
Christoph Hellwig
|
f56753ac2a |
bdi: replace BDI_CAP_NO_{WRITEBACK,ACCT_DIRTY} with a single flag
Replace the two negative flags that are always used together with a single positive flag that indicates the writeback capability instead of two related non-capabilities. Also remove the pointless wrappers to just check the flag. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
Christoph Hellwig
|
823423ef55 |
bdi: invert BDI_CAP_NO_ACCT_WB
Replace BDI_CAP_NO_ACCT_WB with a positive BDI_CAP_WRITEBACK_ACCT to make the checks more obvious. Also remove the pointless bdi_cap_account_writeback wrapper that just obsfucates the check. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
Christoph Hellwig
|
1cb039f3dc |
bdi: replace BDI_CAP_STABLE_WRITES with a queue and a sb flag
The BDI_CAP_STABLE_WRITES is one of the few bits of information in the backing_dev_info shared between the block drivers and the writeback code. To help untangling the dependency replace it with a queue flag and a superblock flag derived from it. This also helps with the case of e.g. a file system requiring stable writes due to its own checksumming, but not forcing it on other users of the block device like the swap code. One downside is that we an't support the stable_pages_required bdi attribute in sysfs anymore. It is replaced with a queue attribute which also is writable for easier testing. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jan Kara <jack@suse.cz> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
Christoph Hellwig
|
55b2598e84 |
bdi: initialize ->ra_pages and ->io_pages in bdi_init
Set up a readahead size by default, as very few users have a good reason to change it. This means code, ecryptfs, and orangefs now set up the values while they were previously missing it, while ubifs, mtd and vboxsf manually set it to 0 to avoid readahead. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Jan Kara <jack@suse.cz> Acked-by: David Sterba <dsterba@suse.com> [btrfs] Acked-by: Richard Weinberger <richard@nod.at> [ubifs, mtd] Signed-off-by: Jens Axboe <axboe@kernel.dk> |
||
Christoph Hellwig
|
8c911f3d4c |
writeback: remove struct bdi_writeback_congested
We never set any congested bits in the group writeback instances of it. And for the simpler bdi-wide case a simple scalar field is all that that is needed. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jens Axboe <axboe@kernel.dk> |