We may encounter duplicate entry in the zswap_store():
1. swap slot that freed to per-cpu swap cache, doesn't invalidate
the zswap entry, then got reused. This has been fixed.
2. !exclusive load mode, swapin folio will leave its zswap entry
on the tree, then swapout again. This has been removed.
3. one folio can be dirtied again after zswap_store(), so need to
zswap_store() again. This should be handled correctly.
So we must invalidate the old duplicate entry before inserting the
new one, which actually doesn't have to be done at the beginning
of zswap_store().
The good point is that we don't need to lock the tree twice in the normal
store success path. And cleanup the loop as we are here.
Note we still need to invalidate the old duplicate entry when store failed
or zswap is disabled , otherwise the new data in swapfile could be
overwrite by the old data in zswap pool when lru writeback.
Link: https://lkml.kernel.org/r/20240209044112.3883835-1-chengming.zhou@linux.dev
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Chris Li <chrisl@kernel.org>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Since we don't need to leave zswap entry on the zswap tree anymore,
we should remove it from tree once we find it from the tree.
Then after using it, we can directly free it, no concurrent path
can find it from tree. Only the shrinker can see it from lru list,
which will also double check under tree lock, so no race problem.
So we don't need refcount in zswap entry anymore and don't need to
take the spinlock for the second time to invalidate it.
The side effect is that zswap_entry_free() maybe not happen in tree
spinlock, but it's ok since nothing need to be protected by the lock.
Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-6-99d4084260a0@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The !zswap_exclusive_loads_enabled mode will leave compressed copy in
the zswap tree and lru list after the folio swapin.
There are some disadvantages in this mode:
1. It's a waste of memory since there are two copies of data, one is
folio, the other one is compressed data in zswap. And it's unlikely
the compressed data is useful in the near future.
2. If that folio is dirtied, the compressed data must be not useful,
but we don't know and don't invalidate the trashy memory in zswap.
3. It's not reclaimable from zswap shrinker since zswap_writeback_entry()
will always return -EEXIST and terminate the shrinking process.
On the other hand, the only downside of zswap_exclusive_loads_enabled
is a little more cpu usage/latency when compression, and the same if
the folio is removed from swapcache or dirtied.
More explanation by Johannes on why we should consider exclusive load
as the default for zswap:
Caching "swapout work" is helpful when the system is thrashing. Then
recently swapped in pages might get swapped out again very soon. It
certainly makes sense with conventional swap, because keeping a clean
copy on the disk saves IO work and doesn't cost any additional memory.
But with zswap, it's different. It saves some compression work on a
thrashing page. But the act of keeping compressed memory contributes
to a higher rate of thrashing. And that can cause IO in other places
like zswap writeback and file memory.
And the A/B test results of the kernel build in tmpfs with limited memory
can support this theory:
!exclusive exclusive
real 63.80 63.01
user 1063.83 1061.32
sys 290.31 266.15
workingset_refault_anon 2383084.40 1976397.40
workingset_refault_file 44134.00 45689.40
workingset_activate_anon 837878.00 728441.20
workingset_activate_file 4710.00 4085.20
workingset_restore_anon 732622.60 639428.40
workingset_restore_file 1007.00 926.80
workingset_nodereclaim 0.00 0.00
pgscan 14343003.40 12409570.20
pgscan_kswapd 0.00 0.00
pgscan_direct 14343003.40 12409570.20
pgscan_khugepaged 0.00 0.00
Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-5-99d4084260a0@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
cat /sys/kernel/debug/zswap/duplicate_entry
2086447
When testing, the duplicate_entry value is very high, but no warning
message in the kernel log. From the comment of duplicate_entry "Duplicate
store was encountered (rare)", it seems something goes wrong.
Actually it's incremented in the beginning of zswap_store(), which found
its zswap entry has already on the tree. And this is a normal case, since
the folio could leave zswap entry on the tree after swapin, later it's
dirtied and swapout/zswap_store again, found its original zswap entry.
So duplicate_entry should be only incremented in the real bug case, which
already have "WARN_ON(1)", it looks redundant to count bug case, so this
patch just remove it.
Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-4-99d4084260a0@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When the shrinker encounter an existing folio in swap cache, it means we
are shrinking into the warmer region. We should terminate shrinking if
we're in the dynamic shrinker context.
This patch add LRU_STOP to support this, to avoid overshrinking.
Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-3-99d4084260a0@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
During testing I found there are some times the zswap_writeback_entry()
return -ENOMEM, which is not we expected:
bpftrace -e 'kr:zswap_writeback_entry {@[(int32)retval]=count()}'
@[-12]: 1563
@[0]: 277221
The reason is that __read_swap_cache_async() return NULL because
swapcache_prepare() failed. The reason is that we won't invalidate zswap
entry when swap entry freed to the per-cpu pool, these zswap entries are
still on the zswap tree and lru list.
This patch moves the invalidation ahead to when swap entry freed to the
per-cpu pool, since there is no any benefit to leave trashy zswap entry on
the tree and lru list.
With this patch:
bpftrace -e 'kr:zswap_writeback_entry {@[(int32)retval]=count()}'
@[0]: 259744
Note: large folio can't have zswap entry for now, so don't bother
to add zswap entry invalidation in the large folio swap free path.
Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-2-99d4084260a0@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm/zswap: optimize zswap lru list", v2.
This series is motivated when observe the zswap lru list shrinking, noted
there are some unexpected cases in zswap_writeback_entry().
bpftrace -e 'kr:zswap_writeback_entry {@[(int32)retval]=count()}'
There are some -ENOMEM because when the swap entry is freed to per-cpu
swap pool, it doesn't invalidate/drop zswap entry. Then the shrinker
encounter these trashy zswap entries, it can't be reclaimed and return
-ENOMEM.
So move the invalidation ahead to when swap entry freed to the per-cpu
swap pool, since there is no any benefit to leave trashy zswap entries on
the zswap tree and lru list.
Another case is -EEXIST, which is seen more in the case of
!zswap_exclusive_loads_enabled, in which case the swapin folio will leave
compressed copy on the tree and lru list. And it can't be reclaimed until
the folio is removed from swapcache.
Changing to zswap_exclusive_loads_enabled mode will invalidate when folio
swapin, which has its own drawback if that folio is still clean in
swapcache and swapout again, we need to compress it again. Please see the
commit for details on why we choose exclusive load as the default for
zswap.
Another optimization for -EEXIST is that we add LRU_STOP to support
terminating the shrinking process to avoid evicting warmer region.
Testing using kernel build in tmpfs, one 50GB swapfile and
zswap shrinker_enabled, with memory.max set to 2GB.
mm-unstable zswap-optimize
real 63.90s 63.25s
user 1064.05s 1063.40s
sys 292.32s 270.94s
The main optimization is in sys cpu, about 7% improvement.
This patch (of 6):
Add more comments in shrink_memcg_cb() to describe the deref dance which
is implemented to fix race problem between lru writeback and swapoff, and
the reason why we rotate the entry at the beginning.
Also fix the stale comments in zswap_writeback_entry(), and add more
comments to state that we only deref the tree after we get the swapcache
reference.
Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-0-99d4084260a0@bytedance.com
Link: https://lkml.kernel.org/r/20240201-b4-zswap-invalidate-entry-v2-1-99d4084260a0@bytedance.com
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Suggested-by: Yosry Ahmed <yosryahmed@google.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
shrink_memcg_cb() is called by the shrinker and is based on
zswap_writeback_entry(). Move it in between. Save one fwd decl.
Link: https://lkml.kernel.org/r/20240130014208.565554-21-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The per-cpu compression init/exit callbacks are awkwardly in the
middle of the shrinker code. Move them up to the compression section.
Link: https://lkml.kernel.org/r/20240130014208.565554-19-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Writeback needs to decompress. Move the (de)compression API above what
will be the consolidated shrinking/writeback code.
Link: https://lkml.kernel.org/r/20240130014208.565554-18-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The higher-level entry operations modify the tree, so move the entry
API after the tree section.
Link: https://lkml.kernel.org/r/20240130014208.565554-17-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This completes consolidation of the LRU section.
Link: https://lkml.kernel.org/r/20240130014208.565554-16-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The zswap entry section sits awkwardly in the middle of LRU-related
functions. Group the external LRU API functions first.
Link: https://lkml.kernel.org/r/20240130014208.565554-15-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm: zswap: cleanups".
Cleanups and maintenance items that accumulated while reviewing zswap
patches.
This patch (of 20):
The parameters primarily control pool attributes. Move those
operations up to the pool section.
Link: https://lkml.kernel.org/r/20240130014208.565554-1-hannes@cmpxchg.org
Link: https://lkml.kernel.org/r/20240130014208.565554-14-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Move the operations against the global zswap_pools list (current pool,
last, find) to the pool section.
Link: https://lkml.kernel.org/r/20240130014208.565554-13-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Move pool refcounting functions into the pool section. First the
destroy functions, then the get and put which uses them.
__zswap_pool_empty() has an upward reference to the global
zswap_pools, to sanity check it's not the currently active pool that's
being freed. That gets the forward decl for zswap_pool_current().
This puts the get and put function above all callers, so kill the
forward decls as well.
Link: https://lkml.kernel.org/r/20240130014208.565554-12-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The function ordering in zswap.c is a little chaotic, which requires
jumping in unexpected directions when following related code. This is
a series of patches that brings the file into the following order:
- pool functions
- lru functions
- rbtree functions
- zswap entry functions
- compression/backend functions
- writeback & shrinking functions
- store, load, invalidate, swapon, swapoff
- debugfs
- init
But it has to be split up such the moving still produces halfway
readable diffs.
In this patch, move pool allocation and freeing functions.
Link: https://lkml.kernel.org/r/20240130014208.565554-11-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The branching is awkward and duplicates code. The comment about
writeback is also misleading: yes, the entry might have been written
back. Or it might have never been stored in zswap to begin with due to
a rejection - zswap_invalidate() is called on all exiting swap entries.
Link: https://lkml.kernel.org/r/20240130014208.565554-10-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
- Remove dupentry, reusing entry works just fine.
- Rename pool to shrink_pool, as this one actually is confusing.
- Remove page, use folio_nid() and kmap_local_folio() directly.
- Set entry->swpentry in a common path.
- Move value and src to local scope of use.
Link: https://lkml.kernel.org/r/20240130014208.565554-9-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
zswap_store() is long and mixes work at the zswap layer with work at
the backend and compression layer. Move compression & backend work to
zswap_compress(), mirroring zswap_decompress().
Link: https://lkml.kernel.org/r/20240130014208.565554-8-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Remove stale comment and unnecessary local variable.
Link: https://lkml.kernel.org/r/20240130014208.565554-6-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Put a standard sanity check on zswap_entry_get() for UAF scenario.
Link: https://lkml.kernel.org/r/20240130014208.565554-5-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Move it up to the other tree and refcounting functions.
Link: https://lkml.kernel.org/r/20240130014208.565554-4-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
There is only one caller and the function is trivial. Inline it.
Link: https://lkml.kernel.org/r/20240130014208.565554-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
There is a zswap_entry_ namespace with multiple functions already.
Link: https://lkml.kernel.org/r/20240130014208.565554-2-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Since the only user zswap_lru_putback() has gone, remove
list_lru_putback() too.
Link: https://lkml.kernel.org/r/20240126-zswap-writeback-race-v2-3-b10479847099@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Cc: Chris Li <chriscli@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
LRU writeback has race problem with swapoff, as spotted by Yosry [1]:
CPU1 CPU2
shrink_memcg_cb swap_off
list_lru_isolate zswap_invalidate
zswap_swapoff
kfree(tree)
// UAF
spin_lock(&tree->lock)
The problem is that the entry in lru list can't protect the tree from
being swapoff and freed, and the entry also can be invalidated and freed
concurrently after we unlock the lru lock.
We can fix it by moving the swap cache allocation ahead before referencing
the tree, then check invalidate race with tree lock, only after that we
can safely deref the entry. Note we couldn't deref entry or tree anymore
after we unlock the folio, since we depend on this to hold on swapoff.
So this patch moves all tree and entry usage to zswap_writeback_entry(),
we only use the copied swpentry on the stack to allocate swap cache and if
returned with folio locked we can reference the tree safely. Then we can
check invalidate race with tree lock, the following things is much the
same like zswap_load().
Since we can't deref the entry after zswap_writeback_entry(), we can't use
zswap_lru_putback() anymore, instead we rotate the entry in the beginning.
And it will be unlinked and freed when invalidated if writeback success.
Another change is we don't update the memcg nr_zswap_protected in the
-ENOMEM and -EEXIST cases anymore. -EEXIST case means we raced with
swapin or concurrent shrinker action, since swapin already have memcg
nr_zswap_protected updated, don't need double counts here. For concurrent
shrinker, the folio will be writeback and freed anyway. -ENOMEM case is
extremely rare and doesn't happen spuriously either, so don't bother
distinguishing this case.
[1] https://lore.kernel.org/all/CAJD7tkasHsRnT_75-TXsEe58V9_OW6m3g6CF7Kmsvz8CKRG_EA@mail.gmail.com/
Link: https://lkml.kernel.org/r/20240126-zswap-writeback-race-v2-2-b10479847099@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Cc: Chris Li <chriscli@google.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Commit 7310895779 ("mm: zswap: tighten up entry invalidation") removed
the usage of tree argument, delete it.
Link: https://lkml.kernel.org/r/20240125081423.1200336-1-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
During swapoff, try_to_unuse() makes sure that zswap_invalidate() is
called for all swap entries before zswap_swapoff() is called. This means
that all zswap entries should already be removed from the tree. Simplify
zswap_swapoff() by removing the trees cleanup code, and leave an assertion
in its place.
Link: https://lkml.kernel.org/r/20240124045113.415378-3-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: "Huang, Ying" <ying.huang@intel.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Each swapfile has one rb-tree to search the mapping of swp_entry_t to
zswap_entry, that use a spinlock to protect, which can cause heavy lock
contention if multiple tasks zswap_store/load concurrently.
Optimize the scalability problem by splitting the zswap rb-tree into
multiple rb-trees, each corresponds to SWAP_ADDRESS_SPACE_PAGES (64M),
just like we did in the swap cache address_space splitting.
Although this method can't solve the spinlock contention completely, it
can mitigate much of that contention. Below is the results of kernel
build in tmpfs with zswap shrinker enabled:
linux-next zswap-lock-optimize
real 1m9.181s 1m3.820s
user 17m44.036s 17m40.100s
sys 7m37.297s 4m54.622s
So there are clearly improvements.
Link: https://lkml.kernel.org/r/20240117-b4-zswap-lock-optimize-v2-2-b5cc55479090@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Cc: Chris Li <chriscli@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm/zswap: optimize the scalability of zswap rb-tree", v2.
When testing the zswap performance by using kernel build -j32 in a tmpfs
directory, I found the scalability of zswap rb-tree is not good, which is
protected by the only spinlock. That would cause heavy lock contention if
multiple tasks zswap_store/load concurrently.
So a simple solution is to split the only one zswap rb-tree into multiple
rb-trees, each corresponds to SWAP_ADDRESS_SPACE_PAGES (64M). This idea
is from the commit 4b3ef9daa4 ("mm/swap: split swap cache into 64MB
trunks").
Although this method can't solve the spinlock contention completely, it
can mitigate much of that contention. Below is the results of kernel
build in tmpfs with zswap shrinker enabled:
linux-next zswap-lock-optimize
real 1m9.181s 1m3.820s
user 17m44.036s 17m40.100s
sys 7m37.297s 4m54.622s
So there are clearly improvements. And it's complementary with the
ongoing zswap xarray conversion by Chris. Anyway, I think we can also
merge this first, it's complementary IMHO. So I just refresh and resend
this for further discussion.
This patch (of 2):
Not all zswap interfaces can handle the absence of the zswap rb-tree,
actually only zswap_store() has handled it for now.
To make things simple, we make sure each swapfile always have the zswap
rb-tree prepared before being enabled and used. The preparation is
unlikely to fail in practice, this patch just make it explicit.
Link: https://lkml.kernel.org/r/20240117-b4-zswap-lock-optimize-v2-0-b5cc55479090@bytedance.com
Link: https://lkml.kernel.org/r/20240117-b4-zswap-lock-optimize-v2-1-b5cc55479090@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Cc: Chris Li <chriscli@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The core-api create_workqueue is deprecated, this patch replaces the
create_workqueue with alloc_workqueue. The previous implementation
workqueue of zswap was a bounded workqueue, this patch uses
alloc_workqueue() to create an unbounded workqueue. The WQ_UNBOUND
attribute is desirable making the workqueue not localized to a specific
cpu so that the scheduler is free to exercise improvisations in any
demanding scenarios for offloading cpu time slices for workqueues. For
example if any other workqueues of the same primary cpu had to be served
which are WQ_HIGHPRI and WQ_CPU_INTENSIVE. Also Unbound workqueue happens
to be more efficient in a system during memory pressure scenarios in
comparison to a bounded workqueue.
shrink_wq = alloc_workqueue("zswap-shrink",
WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
Overall the change suggested in this patch should be seamless and does not
alter the existing behavior, other than the improvisation to be an
unbounded workqueue.
Link: https://lkml.kernel.org/r/20240116133145.12454-1-debug.penguin32@gmail.com
Signed-off-by: Ronald Monthero <debug.penguin32@gmail.com>
Acked-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
We have to invalidate any duplicate entry even when !zswap_enabled since
zswap can be disabled anytime. If the folio store success before, then
got dirtied again but zswap disabled, we won't invalidate the old
duplicate entry in the zswap_store(). So later lru writeback may
overwrite the new data in swapfile.
Link: https://lkml.kernel.org/r/20240208023254.3873823-1-chengming.zhou@linux.dev
Fixes: 42c06a0e8e ("mm: kill frontswap")
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When a folio is swapped in, the protection size of the corresponding zswap
LRU is incremented, so that the zswap shrinker is more conservative with
its reclaiming action. This field is embedded within the struct lruvec,
so updating it requires looking up the folio's memcg and lruvec. However,
currently this lookup can happen after the folio is unlocked, for instance
if a new folio is allocated, and swap_read_folio() unlocks the folio
before returning. In this scenario, there is no stability guarantee for
the binding between a folio and its memcg and lruvec:
* A folio's memcg and lruvec can be freed between the lookup and the
update, leading to a UAF.
* Folio migration can clear the now-unlocked folio's memcg_data, which
directs the zswap LRU protection size update towards the root memcg
instead of the original memcg. This was recently picked up by the
syzbot thanks to a warning in the inlined folio_lruvec() call.
Move the zswap LRU protection range update above the swap_read_folio()
call, and only when a new page is allocated, to prevent this.
[nphamcs@gmail.com: add VM_WARN_ON_ONCE() to zswap_folio_swapin()]
Link: https://lkml.kernel.org/r/20240206180855.3987204-1-nphamcs@gmail.com
[nphamcs@gmail.com: remove unneeded if (folio) checks]
Link: https://lkml.kernel.org/r/20240206191355.83755-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20240205232442.3240571-1-nphamcs@gmail.com
Fixes: b5ba474f3f ("zswap: shrink zswap pool based on memory pressure")
Reported-by: syzbot+17a611d10af7d18a7092@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/all/000000000000ae47f90610803260@google.com/
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In zswap_writeback_entry(), after we get a folio from
__read_swap_cache_async(), we grab the tree lock again to check that the
swap entry was not invalidated and recycled. If it was, we delete the
folio we just added to the swap cache and exit.
However, __read_swap_cache_async() returns the folio locked when it is
newly allocated, which is always true for this path, and the folio is
ref'd. Make sure to unlock and put the folio before returning.
This was discovered by code inspection, probably because this path handles
a race condition that should not happen often, and the bug would not crash
the system, it will only strand the folio indefinitely.
Link: https://lkml.kernel.org/r/20240125085127.1327013-1-yosryahmed@google.com
Fixes: 04fc781608 ("mm: fix zswap writeback race condition")
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: <stable@vger.kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
LRU_SKIP can only be returned if we don't ever dropped lru lock, or we
need to return LRU_RETRY to restart from the head of lru list.
Otherwise, the iteration might continue from a cursor position that was
freed while the locks were dropped.
Actually we may need to introduce another LRU_STOP to really terminate the
ongoing shrinking scan process, when we encounter a warm page already in
the swap cache. The current list_lru implementation doesn't have this
function to early break from __list_lru_walk_one.
Link: https://lkml.kernel.org/r/20240126-zswap-writeback-race-v2-1-b10479847099@bytedance.com
Fixes: b5ba474f3f ("zswap: shrink zswap pool based on memory pressure")
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Cc: Chris Li <chriscli@google.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
In the per-memcg LRU universe, LRU removal uses entry->objcg to determine
which list count needs to be decreased. Drop the objcg reference after
updating the LRU, to fix a possible use-after-free.
Link: https://lkml.kernel.org/r/20240130013438.565167-1-hannes@cmpxchg.org
Fixes: a65b0e7607 ("zswap: make shrinking memcg-aware")
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Reviewed-by: Chengming Zhou <zhouchengming@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
During our experiment with zswap, we sometimes observe swap IOs due to
occasional zswap store failures and writebacks-to-swap. These swapping
IOs prevent many users who cannot tolerate swapping from adopting zswap to
save memory and improve performance where possible.
This patch adds the option to disable this behavior entirely: do not
writeback to backing swapping device when a zswap store attempt fail, and
do not write pages in the zswap pool back to the backing swap device (both
when the pool is full, and when the new zswap shrinker is called).
This new behavior can be opted-in/out on a per-cgroup basis via a new
cgroup file. By default, writebacks to swap device is enabled, which is
the previous behavior. Initially, writeback is enabled for the root
cgroup, and a newly created cgroup will inherit the current setting of its
parent.
Note that this is subtly different from setting memory.swap.max to 0, as
it still allows for pages to be stored in the zswap pool (which itself
consumes swap space in its current form).
This patch should be applied on top of the zswap shrinker series:
https://lore.kernel.org/linux-mm/20231130194023.4102148-1-nphamcs@gmail.com/
as it also disables the zswap shrinker, a major source of zswap
writebacks.
For the most part, this feature is motivated by internal parties who
have already established their opinions regarding swapping - the
workloads that are highly sensitive to IO, and especially those who are
using servers with really slow disk performance (for instance, massive
but slow HDDs). For these folks, it's impossible to convince them to
even entertain zswap if swapping also comes as a packaged deal.
Writeback disabling is quite a useful feature in these situations - on
a mixed workloads deployment, they can disable writeback for the more
IO-sensitive workloads, and enable writeback for other background
workloads.
For instance, on a server with HDD, I allocate memories and populate
them with random values (so that zswap store will always fail), and
specify memory.high low enough to trigger reclaim. The time it takes
to allocate the memories and just read through it a couple of times
(doing silly things like computing the values' average etc.):
zswap.writeback disabled:
real 0m30.537s
user 0m23.687s
sys 0m6.637s
0 pages swapped in
0 pages swapped out
zswap.writeback enabled:
real 0m45.061s
user 0m24.310s
sys 0m8.892s
712686 pages swapped in
461093 pages swapped out
(the last two lines are from vmstat -s).
[nphamcs@gmail.com: add a comment about recurring zswap store failures leading to reclaim inefficiency]
Link: https://lkml.kernel.org/r/20231221005725.3446672-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231207192406.3809579-1-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: David Heidelberg <david@ixit.cz>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Mike Rapoport (IBM) <rppt@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Sergey Senozhatsky <senozhatsky@chromium.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Zefan Li <lizefan.x@bytedance.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Both callers now have a folio, so pass that in instead of the page.
Removes a few hidden calls to compound_head().
Link: https://lkml.kernel.org/r/20231213215842.671461-3-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "More swap folio conversions".
These all seem like fairly straightforward conversions to me. A lot of
compound_head() calls get removed. And page_swap_info(), which is nice.
This patch (of 13):
Move the folio->page conversion into the callers that actually want that.
Most of the callers are happier with the folio anyway. If the
page_allocated boolean is set, the folio allocated is of order-0, so it is
safe to pass the page directly to swap_readpage().
Link: https://lkml.kernel.org/r/20231213215842.671461-1-willy@infradead.org
Link: https://lkml.kernel.org/r/20231213215842.671461-2-willy@infradead.org
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
First of all, we need to rename acomp_ctx->dstmem field to buffer, since
we are now using for purposes other than compression.
Then we change per-cpu mutex and buffer to per-acomp_ctx, since them
belong to the acomp_ctx and are necessary parts when used in the
compress/decompress contexts.
So we can remove the old per-cpu mutex and dstmem.
Link: https://lkml.kernel.org/r/20231213-zswap-dstmem-v5-5-9382162bbf05@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Acked-by: Chris Li <chrisl@kernel.org> (Google)
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Cc: Barry Song <21cnbao@gmail.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Also after the common decompress part goes to __zswap_load(), we can
cleanup the zswap_writeback_entry() a little.
Link: https://lkml.kernel.org/r/20231213-zswap-dstmem-v5-4-9382162bbf05@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Chris Li <chrisl@kernel.org> (Google)
Cc: Barry Song <21cnbao@gmail.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
After the common decompress part goes to __zswap_load(), we can cleanup
the zswap_load() a little.
Link: https://lkml.kernel.org/r/20231213-zswap-dstmem-v5-3-9382162bbf05@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Chis Li <chrisl@kernel.org> (Google)
Cc: Barry Song <21cnbao@gmail.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Nhat Pham <nphamcs@gmail.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
zswap_load() and zswap_writeback_entry() have the same part that
decompress the data from zswap_entry to page, so refactor out the common
part as __zswap_load(entry, page).
Link: https://lkml.kernel.org/r/20231213-zswap-dstmem-v5-2-9382162bbf05@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Chris Li <chrisl@kernel.org> (Google)
Cc: Barry Song <21cnbao@gmail.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm/zswap: dstmem reuse optimizations and cleanups", v5.
The problem this series tries to optimize is that zswap_load() and
zswap_writeback_entry() have to malloc a temporary memory to support
!zpool_can_sleep_mapped(). We can avoid it by reusing the percpu
crypto_acomp_ctx->dstmem, which is also used by zswap_store() and
protected by the same percpu crypto_acomp_ctx->mutex.
This patch (of 5):
In the !zpool_can_sleep_mapped() case such as zsmalloc, we need to first
copy the entry->handle memory to a temporary memory, which is allocated
using kmalloc.
Obviously we can reuse the per-compressor dstmem to avoid allocating every
time, since it's percpu-compressor and protected in percpu mutex.
Link: https://lkml.kernel.org/r/20231213-zswap-dstmem-v5-0-9382162bbf05@bytedance.com
Link: https://lkml.kernel.org/r/20231213-zswap-dstmem-v5-1-9382162bbf05@bytedance.com
Signed-off-by: Chengming Zhou <zhouchengming@bytedance.com>
Reviewed-by: Nhat Pham <nphamcs@gmail.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Acked-by: Chris Li <chrisl@kernel.org> (Google)
Cc: Barry Song <21cnbao@gmail.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Stats flushing for memcg currently follows the following rules:
- Always flush the entire memcg hierarchy (i.e. flush the root).
- Only one flusher is allowed at a time. If someone else tries to flush
concurrently, they skip and return immediately.
- A periodic flusher flushes all the stats every 2 seconds.
The reason this approach is followed is because all flushes are serialized
by a global rstat spinlock. On the memcg side, flushing is invoked from
userspace reads as well as in-kernel flushers (e.g. reclaim, refault,
etc). This approach aims to avoid serializing all flushers on the global
lock, which can cause a significant performance hit under high
concurrency.
This approach has the following problems:
- Occasionally a userspace read of the stats of a non-root cgroup will
be too expensive as it has to flush the entire hierarchy [1].
- Sometimes the stats accuracy are compromised if there is an ongoing
flush, and we skip and return before the subtree of interest is
actually flushed, yielding stale stats (by up to 2s due to periodic
flushing). This is more visible when reading stats from userspace,
but can also affect in-kernel flushers.
The latter problem is particulary a concern when userspace reads stats
after an event occurs, but gets stats from before the event. Examples:
- When memory usage / pressure spikes, a userspace OOM handler may look
at the stats of different memcgs to select a victim based on various
heuristics (e.g. how much private memory will be freed by killing
this). Reading stale stats from before the usage spike in this case
may cause a wrongful OOM kill.
- A proactive reclaimer may read the stats after writing to
memory.reclaim to measure the success of the reclaim operation. Stale
stats from before reclaim may give a false negative.
- Reading the stats of a parent and a child memcg may be inconsistent
(child larger than parent), if the flush doesn't happen when the
parent is read, but happens when the child is read.
As for in-kernel flushers, they will occasionally get stale stats. No
regressions are currently known from this, but if there are regressions,
they would be very difficult to debug and link to the source of the
problem.
This patch aims to fix these problems by restoring subtree flushing, and
removing the unified/coalesced flushing logic that skips flushing if there
is an ongoing flush. This change would introduce a significant regression
with global stats flushing thresholds. With per-memcg stats flushing
thresholds, this seems to perform really well. The thresholds protect the
underlying lock from unnecessary contention.
This patch was tested in two ways to ensure the latency of flushing is
up to par, on a machine with 384 cpus:
- A synthetic test with 5000 concurrent workers in 500 cgroups doing
allocations and reclaim, as well as 1000 readers for memory.stat
(variation of [2]). No regressions were noticed in the total runtime.
Note that significant regressions in this test are observed with
global stats thresholds, but not with per-memcg thresholds.
- A synthetic stress test for concurrently reading memcg stats while
memory allocation/freeing workers are running in the background,
provided by Wei Xu [3]. With 250k threads reading the stats every
100ms in 50k cgroups, 99.9% of reads take <= 50us. Less than 0.01%
of reads take more than 1ms, and no reads take more than 100ms.
[1] https://lore.kernel.org/lkml/CABWYdi0c6__rh-K7dcM_pkf9BJdTRtAU08M43KO9ME4-dsgfoQ@mail.gmail.com/
[2] https://lore.kernel.org/lkml/CAJD7tka13M-zVZTyQJYL1iUAYvuQ1fcHbCjcOBZcz6POYTV-4g@mail.gmail.com/
[3] https://lore.kernel.org/lkml/CAAPL-u9D2b=iF5Lf_cRnKxUfkiEe0AMDTu6yhrUAzX0b6a6rDg@mail.gmail.com/
[akpm@linux-foundation.org: fix mm/zswap.c]
[yosryahmed@google.com: remove stats flushing mutex]
Link: https://lkml.kernel.org/r/CAJD7tkZgP3m-VVPn+fF_YuvXeQYK=tZZjJHj=dzD=CcSSpp2qg@mail.gmail.com
Link: https://lkml.kernel.org/r/20231129032154.3710765-6-yosryahmed@google.com
Signed-off-by: Yosry Ahmed <yosryahmed@google.com>
Tested-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Acked-by: Shakeel Butt <shakeelb@google.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Greg Thelen <gthelen@google.com>
Cc: Ivan Babrou <ivan@cloudflare.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Michal Koutny <mkoutny@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Tejun Heo <tj@kernel.org>
Cc: Waiman Long <longman@redhat.com>
Cc: Wei Xu <weixugc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently, we only shrink the zswap pool when the user-defined limit is
hit. This means that if we set the limit too high, cold data that are
unlikely to be used again will reside in the pool, wasting precious
memory. It is hard to predict how much zswap space will be needed ahead
of time, as this depends on the workload (specifically, on factors such as
memory access patterns and compressibility of the memory pages).
This patch implements a memcg- and NUMA-aware shrinker for zswap, that is
initiated when there is memory pressure. The shrinker does not have any
parameter that must be tuned by the user, and can be opted in or out on a
per-memcg basis.
Furthermore, to make it more robust for many workloads and prevent
overshrinking (i.e evicting warm pages that might be refaulted into
memory), we build in the following heuristics:
* Estimate the number of warm pages residing in zswap, and attempt to
protect this region of the zswap LRU.
* Scale the number of freeable objects by an estimate of the memory
saving factor. The better zswap compresses the data, the fewer pages
we will evict to swap (as we will otherwise incur IO for relatively
small memory saving).
* During reclaim, if the shrinker encounters a page that is also being
brought into memory, the shrinker will cautiously terminate its
shrinking action, as this is a sign that it is touching the warmer
region of the zswap LRU.
As a proof of concept, we ran the following synthetic benchmark: build the
linux kernel in a memory-limited cgroup, and allocate some cold data in
tmpfs to see if the shrinker could write them out and improved the overall
performance. Depending on the amount of cold data generated, we observe
from 14% to 35% reduction in kernel CPU time used in the kernel builds.
[nphamcs@gmail.com: check shrinker enablement early, use less costly stat flushing]
Link: https://lkml.kernel.org/r/20231206194456.3234203-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231130194023.4102148-7-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Cc: Chengming Zhou <chengming.zhou@linux.dev>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Since zswap now writes back pages from memcg-specific LRUs, we now need a
new stat to show writebacks count for each memcg.
[nphamcs@gmail.com: rename ZSWP_WB to ZSWPWB]
Link: https://lkml.kernel.org/r/20231205193307.2432803-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231130194023.4102148-5-nphamcs@gmail.com
Suggested-by: Nhat Pham <nphamcs@gmail.com>
Signed-off-by: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Reviewed-by: Yosry Ahmed <yosryahmed@google.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>