Rename the various A/D status defines to explicitly associated them with
TDP. There is a subtle dependency on the bits in question never being
set when using PAE paging, as those bits are reserved, not available.
I.e. using these bits outside of TDP (technically EPT) would cause
explosions.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210225204749.1512652-13-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a module param to disable MMIO caching so that it's possible to test
the related flows without access to the necessary hardware. Using shadow
paging with 64-bit KVM and 52 bits of physical address space must disable
MMIO caching as there are no reserved bits to be had.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210225204749.1512652-12-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Stop tagging MMIO SPTEs with specific available bits and instead detect
MMIO SPTEs by checking for their unique SPTE value. The value is
guaranteed to be unique on shadow paging and NPT as setting reserved
physical address bits on any other type of SPTE would consistute a KVM
bug. Ditto for EPT, as creating a WX non-MMIO would also be a bug.
Note, this approach is also future-compatibile with TDX, which will need
to reflect MMIO EPT violations as #VEs into the guest. To create an EPT
violation instead of a misconfig, TDX EPTs will need to have RWX=0, But,
MMIO SPTEs will also be the only case where KVM clears SUPPRESS_VE, so
MMIO SPTEs will still be guaranteed to have a unique value within a given
MMU context.
The main motivation is to make it easier to reason about which types of
SPTEs use which available bits. As a happy side effect, this frees up
two more bits for storing the MMIO generation.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210225204749.1512652-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The value returned by make_mmio_spte() is a SPTE, it is not a mask.
Name it accordingly.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210225204749.1512652-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If MMIO caching is disabled, e.g. when using shadow paging on CPUs with
52 bits of PA space, go straight to MMIO emulation and don't install an
MMIO SPTE. The SPTE will just generate a !PRESENT #PF, i.e. can't
actually accelerate future MMIO.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210225204749.1512652-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disable MMIO caching if the MMIO value collides with the L1TF mitigation
that usurps high PFN bits. In practice this should never happen as only
CPUs with SME support can generate such a collision (because the MMIO
value can theoretically get adjusted into legal memory), and no CPUs
exist that support SME and are susceptible to L1TF. But, closing the
hole is trivial.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210225204749.1512652-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Convert kvm_x86_ops to use static calls. Note that all kvm_x86_ops are
covered here except for 'pmu_ops and 'nested ops'.
Here are some numbers running cpuid in a loop of 1 million calls averaged
over 5 runs, measured in the vm (lower is better).
Intel Xeon 3000MHz:
|default |mitigations=off
-------------------------------------
vanilla |.671s |.486s
static call|.573s(-15%)|.458s(-6%)
AMD EPYC 2500MHz:
|default |mitigations=off
-------------------------------------
vanilla |.710s |.609s
static call|.664s(-6%) |.609s(0%)
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jason Baron <jbaron@akamai.com>
Message-Id: <e057bf1b8a7ad15652df6eeba3f907ae758d3399.1610680941.git.jbaron@akamai.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Commit cae7ed3c2c ("KVM: x86: Refactor the MMIO SPTE generation handling")
cleaned up the computation of MMIO generation SPTE masks, however it
introduced a bug how the upper part was encoded:
SPTE bits 52-61 were supposed to contain bits 10-19 of the current
generation number, however a missing shift encoded bits 1-10 there instead
(mostly duplicating the lower part of the encoded generation number that
then consisted of bits 1-9).
In the meantime, the upper part was shrunk by one bit and moved by
subsequent commits to become an upper half of the encoded generation number
(bits 9-17 of bits 0-17 encoded in a SPTE).
In addition to the above, commit 56871d444b ("KVM: x86: fix overlap between SPTE_MMIO_MASK and generation")
has changed the SPTE bit range assigned to encode the generation number and
the total number of bits encoded but did not update them in the comment
attached to their defines, nor in the KVM MMU doc.
Let's do it here, too, since it is too trivial thing to warrant a separate
commit.
Fixes: cae7ed3c2c ("KVM: x86: Refactor the MMIO SPTE generation handling")
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <156700708db2a5296c5ed7a8b9ac71f1e9765c85.1607129096.git.maciej.szmigiero@oracle.com>
Cc: stable@vger.kernel.org
[Reorganize macros so that everything is computed from the bit ranges. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Even though the compiler is able to replace static const variables with
their value, it will warn about them being unused when Linux is built with W=1.
Use good old macros instead, this is not C++.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The SPTE format will be common to both the shadow and the TDP MMU.
Extract code that implements the format to a separate module, as a
first step towards adding the TDP MMU and putting mmu.c on a diet.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>