Currently <crypto/sha.h> contains declarations for both SHA-1 and SHA-2,
and <crypto/sha3.h> contains declarations for SHA-3.
This organization is inconsistent, but more importantly SHA-1 is no
longer considered to be cryptographically secure. So to the extent
possible, SHA-1 shouldn't be grouped together with any of the other SHA
versions, and usage of it should be phased out.
Therefore, split <crypto/sha.h> into two headers <crypto/sha1.h> and
<crypto/sha2.h>, and make everyone explicitly specify whether they want
the declarations for SHA-1, SHA-2, or both.
This avoids making the SHA-1 declarations visible to files that don't
want anything to do with SHA-1. It also prepares for potentially moving
sha1.h into a new insecure/ or dangerous/ directory.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
<linux/cryptohash.h> sounds very generic and important, like it's the
header to include if you're doing cryptographic hashing in the kernel.
But actually it only includes the library implementation of the SHA-1
compression function (not even the full SHA-1). This should basically
never be used anymore; SHA-1 is no longer considered secure, and there
are much better ways to do cryptographic hashing in the kernel.
Most files that include this header don't actually need it. So in
preparation for removing it, remove all these unneeded includes of it.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Instead of casting pointers to callback functions, add C wrappers
to avoid type mismatch failures with Control-Flow Integrity (CFI)
checking.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Based on 1 normalized pattern(s):
this program is free software you can redistribute it and or modify
it under the terms of the gnu general public license as published by
the free software foundation either version 2 of the license or at
your option any later version
extracted by the scancode license scanner the SPDX license identifier
GPL-2.0-or-later
has been chosen to replace the boilerplate/reference in 3029 file(s).
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190527070032.746973796@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Many shash algorithms set .cra_flags = CRYPTO_ALG_TYPE_SHASH. But this
is redundant with the C structure type ('struct shash_alg'), and
crypto_register_shash() already sets the type flag automatically,
clearing any type flag that was already there. Apparently the useless
assignment has just been copy+pasted around.
So, remove the useless assignment from all the shash algorithms.
This patch shouldn't change any actual behavior.
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
Add a missing symbol export that prevents this code to be built as a
module. Also, move the round constant table to the .rodata section,
and use a more optimized version of the core transform.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This integrates both the accelerated scalar and the NEON implementations
of SHA-224/256 as well as SHA-384/512 from the OpenSSL project.
Relative performance compared to the respective generic C versions:
| SHA256-scalar | SHA256-NEON* | SHA512 |
------------+-----------------+--------------+----------+
Cortex-A53 | 1.63x | 1.63x | 2.34x |
Cortex-A57 | 1.43x | 1.59x | 1.95x |
Cortex-A73 | 1.26x | 1.56x | ? |
The core crypto code was authored by Andy Polyakov of the OpenSSL
project, in collaboration with whom the upstream code was adapted so
that this module can be built from the same version of sha512-armv8.pl.
The version in this patch was taken from OpenSSL commit 32bbb62ea634
("sha/asm/sha512-armv8.pl: fix big-endian support in __KERNEL__ case.")
* The core SHA algorithm is fundamentally sequential, but there is a
secondary transformation involved, called the schedule update, which
can be performed independently. The NEON version of SHA-224/SHA-256
only implements this part of the algorithm using NEON instructions,
the sequential part is always done using scalar instructions.
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>